JPWO2008010316A1 - Polarizer and microscope using the polarizer - Google Patents

Polarizer and microscope using the polarizer Download PDF

Info

Publication number
JPWO2008010316A1
JPWO2008010316A1 JP2008525785A JP2008525785A JPWO2008010316A1 JP WO2008010316 A1 JPWO2008010316 A1 JP WO2008010316A1 JP 2008525785 A JP2008525785 A JP 2008525785A JP 2008525785 A JP2008525785 A JP 2008525785A JP WO2008010316 A1 JPWO2008010316 A1 JP WO2008010316A1
Authority
JP
Japan
Prior art keywords
polarizer
light
light source
sample
transmission axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008525785A
Other languages
Japanese (ja)
Other versions
JP5021645B2 (en
Inventor
川上 彰二郎
彰二郎 川上
井上 喜彦
喜彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonic Lattice Inc
Original Assignee
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice Inc filed Critical Photonic Lattice Inc
Priority to JP2008525785A priority Critical patent/JP5021645B2/en
Publication of JPWO2008010316A1 publication Critical patent/JPWO2008010316A1/en
Application granted granted Critical
Publication of JP5021645B2 publication Critical patent/JP5021645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Abstract

【課題】 偏光軸が直線的な偏光子ではなく,偏光顕微鏡に用いた場合に,レンズなど(削除)に由来する偏光状態変換の影響を受けない新規な偏光子を提供すること及び新規な偏光子を用いた,偏光変換作用の無い試料を観察した場合には,理想的に光が遮断される偏光顕微鏡を提供することを目的とする。【解決手段】 上記課題は,レンズが光軸に対して回転対称な曲面で構成されているのに対して,偏光軸が直線的である場合に不可避な問題である。従って,レンズ同様に光軸に対して回転対称な透過軸を有する偏光子を用いることで,上記課題は根本的に解決することができる。つまり,偏光顕微鏡に用いる偏光子を,透過軸が同心円状である偏光子もしくは透過軸が放射状である偏光子にすることにより,前記課題は解決される。【選択図】図6PROBLEM TO BE SOLVED: To provide a novel polarizer that is not affected by polarization state conversion derived from a lens or the like (deletion) when used in a polarization microscope, not a linear polarizer, and a novel polarization An object of the present invention is to provide a polarizing microscope that ideally blocks light when a sample having no polarization conversion effect is observed. The above problem is unavoidable when the lens is composed of a curved surface that is rotationally symmetric with respect to the optical axis, whereas the polarization axis is linear. Therefore, the above problem can be fundamentally solved by using a polarizer having a transmission axis that is rotationally symmetric with respect to the optical axis as in the case of the lens. That is, the above-mentioned problem can be solved by making the polarizer used in the polarizing microscope a polarizer having a concentric transmission axis or a polarizer having a radial transmission axis. [Selection] Figure 6

Description

本発明は,偏光子,及び偏光子を用いた顕微鏡などに関する。より詳しく説明すると,本発明は,同心円状の透過軸を有するように設計された偏光子,放射状に透過軸を有するように設計された偏光子,及びそのような偏光子を組み合せて用い,特定の成分のみを効果的に抽出し,観測できる顕微鏡などに関する。   The present invention relates to a polarizer and a microscope using the polarizer. More specifically, the present invention uses a polarizer designed to have a concentric transmission axis, a polarizer designed to have a transmission axis radially, and a combination of such polarizers. This is related to a microscope that can effectively extract and observe only the components.

偏光子は入射光のうち透過軸に沿った偏光成分のみを透過させる作用を有する素子であり,偏光状態の測定や,偏光を利用した顕微鏡,サングラスなどに広く用いられている(たとえば,特許3486355号公報を参照)。通常の偏光子は,直線で示される一方向の透過軸とこれに直交する一方向の遮断軸を有する。   A polarizer is an element having an action of transmitting only a polarized component along the transmission axis of incident light, and is widely used for measuring a polarization state, a microscope using polarized light, sunglasses, and the like (for example, Patent 3486355). Issue no.). A normal polarizer has a unidirectional transmission axis indicated by a straight line and a unidirectional blocking axis perpendicular thereto.

透明な物質で構成された観察対象,例えば生体細胞などを顕微鏡観察するなどの目的で,偏光顕微鏡が利用される。これは,観察対象の屈折率変化や複屈折性などを利用しており,生きたままの細胞などを無染色で観察したい場合などに用いられる。この偏光顕微鏡には,観察対象を偏光照射するための偏光子と,観察像の明るさを偏光の向きによって調節するための偏光子(検光子)が用いられるのが一般的である。例えば照射側偏光子と観察側偏光子の偏光軸を直交させた場合,観察対象の偏光変換作用のある部位のみが明るく観察されることになる。偏光顕微鏡は,このような原理に基づいて,通常では見ることのできない透明体の内部構造などを観察できる場合がある。このような特徴を有する偏光顕微鏡には,従来透過軸が直線的に一方向であるような偏光子が用いられてきた。   A polarizing microscope is used for the purpose of observing an observation object composed of a transparent substance, for example, a living cell under a microscope. This uses the refractive index change or birefringence of the object to be observed, and is used when it is desired to observe living cells without staining. In this polarization microscope, a polarizer for irradiating an observation target with polarized light and a polarizer (analyzer) for adjusting the brightness of an observation image according to the direction of polarization are generally used. For example, when the polarization axes of the irradiation-side polarizer and the observation-side polarizer are orthogonal to each other, only the portion having the polarization conversion effect to be observed is observed brightly. Based on such a principle, a polarizing microscope may be able to observe the internal structure of a transparent body that cannot normally be seen. A polarizing microscope having such a characteristic has conventionally been used with a polarizer having a transmission axis that is linearly unidirectional.

例えば,特許2828451号公報(特許文献1)には,「入射された光線のうち赤外線を反射して可視光を透過するコールドミラー膜をガラス基板の一方の面にコーティングし,入射された無偏光の光線を偏光面が互いに直交する2つの直線偏光の光線に分岐する偏光ビームスプリッタ膜を前記ガラス基板の他方の面にコーティングして成ることを特徴とする偏光子」(請求項8)が開示され,そして,その偏光子を用いた偏光顕微鏡が開示されている。やはり,上記の文献に開示される偏光顕微鏡においても,直線的な偏光軸を有する偏光子を一つ,又は複数用いることが意図されている。   For example, Japanese Patent No. 2828451 (Patent Document 1) states that “a cold mirror film that reflects infrared rays of incident light and transmits visible light is coated on one surface of the glass substrate, and the incident non-polarized light is applied. A polarizer comprising: a polarizing beam splitter film that divides the light beam into two linearly polarized light beams whose polarization planes are orthogonal to each other, and is coated on the other surface of the glass substrate (Claim 8). And a polarizing microscope using the polarizer is disclosed. Again, in the polarizing microscope disclosed in the above document, it is intended to use one or a plurality of polarizers having a linear polarization axis.

しかしながら,照射側偏光子と観察側偏光子に,直線的な偏光軸を有する偏光子を用いた場合,対物レンズが曲面を有しているので,対物レンズにより光の偏光状態が変化してしまい,結局観察試料が何もない場合であっても,完全に暗くすることができないという問題があった。特に倍率の高い対物レンズを用いた偏光顕微鏡では,上記偏光変換が顕著に発生するという問題がある。すなわち,従来のような直線的な偏光軸を有する偏光子を用いた偏光顕微鏡では,高い消光比を達成することが困難であった。   However, when a polarizer having a linear polarization axis is used for the irradiation side polarizer and the observation side polarizer, the objective lens has a curved surface, so that the polarization state of the light is changed by the objective lens. After all, there was a problem that even if there was no observation sample, it could not be completely darkened. In particular, in a polarizing microscope using an objective lens having a high magnification, there is a problem that the above-described polarization conversion occurs remarkably. That is, it has been difficult to achieve a high extinction ratio with a polarization microscope using a polarizer having a linear polarization axis as in the prior art.

上記のレンズ透過に伴う偏光回転現象は,光の進行方向に垂直ではない傾斜面における透過率が,入射面と電界の振動方向が平行なp波と,これに垂直なs波とで異なることが原因の一つである。また,レンズ表面に設けられた反射防止膜などの多層膜によって,前記p波とs波との位相にずれが生じることも,偏光状態を変えてしまう原因になる。このようにp波とs波とで異なる透過率と位相差をレンズ表面で発生することにより,両波の成分を含む光は直線偏光が楕円偏光に変化したり主軸方向が回転したりしてしまう。このため,例えば照射側偏光子と観察側偏光子とを互いの透過軸を直交させて用いた場合,観察試料の存在していない部分でも完全な暗部にすることができず,従って観察試料に起因する微弱な偏光変換作用の検出を阻害するという問題がある。   The polarization rotation phenomenon associated with the lens transmission described above is that the transmittance on an inclined surface that is not perpendicular to the traveling direction of light differs between a p-wave whose incident surface is parallel to the vibration direction of the electric field and an s-wave perpendicular to this. Is one of the causes. In addition, a deviation in phase between the p wave and the s wave caused by a multilayer film such as an antireflection film provided on the lens surface also causes a change in the polarization state. By generating different transmittance and phase difference between the p-wave and s-wave on the lens surface in this way, light containing both wave components changes from linearly polarized light to elliptically polarized light, and the principal axis direction rotates. End up. For this reason, for example, when the irradiation-side polarizer and the observation-side polarizer are used with their transmission axes orthogonal to each other, even a portion where the observation sample does not exist cannot be made a completely dark portion. There is a problem in that the detection of the weak polarization conversion effect resulting from this is obstructed.

更に,直線偏光を照射光として用いた偏光観察では,照射した偏光軸に平行及び直交する方位に光学異方性軸を有するような,観察試料の光学特性は観察できなかった。このため,偏光観察を行う際,照射光の偏光方位を少なくても2つの方向に設定した複数の観察結果を比較して,試料の評価をすることが多く行われており,観察の為のプロセスの増加の一因となっていた。
特許2828451号公報
Furthermore, in the polarization observation using the linearly polarized light as the irradiation light, the optical characteristics of the observation sample having an optical anisotropy axis in the direction parallel and perpendicular to the irradiated polarization axis could not be observed. For this reason, when performing polarization observation, it is often the case that samples are evaluated by comparing multiple observation results set in at least two directions of the polarization direction of the irradiated light. It contributed to the increase of the process.
Japanese Patent No. 2828451

本発明は,偏光軸が直線的な偏光子ではなく,回転対称な偏光軸を有する偏光子を用いることにより,偏光顕微鏡に用いた場合に,レンズなどに由来する偏光面のずれの影響を受けにくい新規な偏光子を提供することを目的とする。   The present invention uses a polarizer having a rotationally symmetric polarization axis instead of a linear polarization axis, so that when used in a polarization microscope, the present invention is affected by the deviation of the polarization plane derived from a lens or the like. An object of the present invention is to provide a novel polarizer that is difficult.

本発明は,新規な偏光子を用いた,試料がない場合には,高い消光比で光が遮断される偏光顕微鏡を提供することを目的とする。   An object of the present invention is to provide a polarizing microscope that uses a novel polarizer and blocks light with a high extinction ratio when there is no sample.

本発明は,一度の観察で方向依存性の無い観察像を取得できる偏光顕微鏡を提供することを目的とする。   An object of this invention is to provide the polarization microscope which can acquire the observation image without direction dependence by one observation.

本発明は,微小な欠陥や傷や繊維質構造などを効果的に観測できる偏光顕微鏡を提供することを目的とする。   An object of the present invention is to provide a polarizing microscope capable of effectively observing minute defects, scratches, fiber structures, and the like.

本発明の第1の側面は,基本的には,偏光面が平行な偏光子ではなく,透過軸が同心円状又は放射状の偏光子を提供するものである。これらの偏光子は,基本的には,照射側偏光子と観察側偏光子に,それぞれ透過軸が同心円状のもの又は透過軸が放射状(従って,遮断軸が同心円状)のものを用いた偏光顕微鏡に有用である。すなわち,偏光顕微鏡では,対物レンズなどのレンズにより,偏光状態の局所的な乱れ(偏光変換)が生ずる。もちろん,偏光顕微鏡以外の顕微鏡では,偏光状態の局所的な乱れは何ら問題とならないし,偏光顕微鏡であっても,レンズによる偏光状態変換による光はわずかである。しかしながら,特に生物試料の観察に偏光顕微鏡を用いる場合など,わずかな偏光変換作用を有する試料の観察をする場合,そのわずかなレンズ自体による偏光変換作用が微弱な信号光の検出限界に影響を与える。本発明では,基本的には,照射側偏光子と観察側偏光子に,それぞれ透過軸が同心円状のもの又は透過軸が放射状(従って,遮断軸が同心円状)のものを用いる。組立て誤差やレンズの残留応力による光弾性効果など除去できる原因を別として,顕微鏡は基本的に軸対称な光学系である。そのような系において,同心円状の偏光を持つ光はレンズや空間を通過する際,放射状の偏光を持つ光に一切変換されず,逆もまた成り立つので,本発明の偏光子を用いれば,レンズなどの影響を受けない偏光顕微鏡を得ることができる。   The first aspect of the present invention basically provides a polarizer having a concentric or radial transmission axis, not a polarizer having parallel polarization planes. Basically, these polarizers are polarized light using an irradiation side polarizer and an observation side polarizer having a concentric transmission axis or a radial transmission axis (and thus a blocking axis being concentric). Useful for microscopes. That is, in a polarizing microscope, a local disturbance (polarization conversion) of the polarization state occurs due to a lens such as an objective lens. Of course, in a microscope other than the polarization microscope, local disturbance of the polarization state does not cause any problem, and even in the polarization microscope, the light due to the polarization state conversion by the lens is small. However, when observing a sample with a slight polarization conversion effect, such as when using a polarizing microscope to observe a biological sample, the polarization conversion effect of the slight lens itself affects the detection limit of weak signal light. . In the present invention, basically, the irradiation-side polarizer and the observation-side polarizer each have a concentric transmission axis or a radial transmission axis (and therefore a blocking axis is concentric). The microscope is basically an axially symmetric optical system, apart from causes that can eliminate the assembly error and the photoelastic effect due to the residual stress of the lens. In such a system, light having concentric polarization is not converted into light having radial polarization when passing through a lens or space, and vice versa, so if the polarizer of the present invention is used, the lens A polarizing microscope that is not affected by the above can be obtained.

すなわち,本発明の第1の側面は,透過軸が同心円状に設けられる偏光子に関する。そして,本発明の第1の側面の好ましい態様は,前記透過軸は,一つの中心から同心円状に複数設けられる上記に記載の偏光子であるものである。このような偏光子は,たとえば,表面の凹凸が同心円状に複数となるような基板を用いて自己クローニング法により製造すればよい。すなわち,例えば,偏光子を構成する層が複数の同心円状の周期構造を有するものであり,そのような層が多層形成されていればよい。また,透過軸が同心円状に設けられる偏光子は,放射状の周期構造が中心から外縁部まで多段に形成されている層を有する偏光子であってもよい。本発明の第1の側面の好ましい態様は,自己クローニングフォトニック結晶により構成される上記いずれかに記載の偏光子に関する。透過軸が同心円状に設けられる偏光子の具体例として,複数の層により構成される自己クローニングフォトニック結晶により構成され,各層の周期が232nmである同心円状の周期構造を有し,SiO層の厚さが58nm, Ta層の厚さが81nmであり,SiO層とTa層とが交互に40層積層し,波長が520nm以上540nm以下の入力光に対して,各同心円の円周の接線に平行な電界成分を有する偏光を透過する偏光子があげられる。透過軸が同心円状に設けられる偏光子の上記とは別の具体例として,複数の層により構成される自己クローニングフォトニック結晶により構成され,放射状の周期構造を有し,基板ピッチが245nmでSiOが145nm, Taが125nmで各27層の偏光子があげられる。That is, the 1st side surface of this invention is related with the polarizer by which a transmission axis is provided concentrically. A preferred embodiment of the first aspect of the present invention is the polarizer according to the above, wherein a plurality of the transmission axes are provided concentrically from one center. Such a polarizer may be manufactured by, for example, a self-cloning method using a substrate having a plurality of concavities and convexities on the surface. That is, for example, the layers constituting the polarizer have a plurality of concentric periodic structures, and such layers may be formed in multiple layers. Further, the polarizer provided with the transmission axes concentrically may be a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge. A preferred embodiment of the first aspect of the present invention relates to the polarizer described in any one of the above, which is constituted by a self-cloning photonic crystal. As a specific example of a polarizer having transmission axes concentrically arranged, a SiO 2 layer having a concentric periodic structure composed of a self-cloning photonic crystal composed of a plurality of layers, each layer having a period of 232 nm. The thickness of the layer is 58 nm, the thickness of the Ta 2 O 5 layer is 81 nm, 40 layers of SiO 2 layers and Ta 2 O 5 layers are alternately stacked, and the input light having a wavelength of 520 nm or more and 540 nm or less is Examples thereof include a polarizer that transmits polarized light having an electric field component parallel to the tangent line of the circumference of each concentric circle. As another specific example of the polarizer having transmission axes concentrically arranged, the polarizer is composed of a self-cloning photonic crystal composed of a plurality of layers, has a radial periodic structure, and has a substrate pitch of 245 nm and SiO 2 2 is 145 nm, Ta 2 O 5 is 125 nm, and there are 27 layers of polarizers.

本発明の第1の側面の上記とは別の態様は,透過軸が1点から放射状に設けられる(従って,遮断軸が同心円状である)偏光子に関する。この態様の好ましい態様は,放射状の周期構造が中心から外縁部まで多段に形成されている層を有するものであり,さらには,自己クローニングフォトニック結晶により構成される上記に記載の偏光子に関する。より具体的には,偏光子を構成する層が周期構造を有するもので,放射状に形成された周期構造の間隔が一定範囲になることを目的として,中心から外縁部まで多段に放射型の周期構造が形成されているものがあげられる。より具体的には,透過軸が1点から放射状に設けられる偏光子として,複数の層により構成される自己クローニングフォトニック結晶により構成され,各層の周期が232nmである放射状の周期構造を有し,SiO層の厚さが58nm, Ta層の厚さが81nmであり,SiO層とTa層とが交互に40層積層し,波長が520nm以上540nm以下の入力光に対して,各同心円の円周の接線に垂直な電界成分を有する偏光を透過する偏光子があげられる。透過軸が1点から放射状に設けられる偏光子として,複数の層により構成される自己クローニングフォトニック結晶により構成され,中心から同心円状の周期構造を有し,基板ピッチが245nmでSiOが145nm, Taが125nmで各27層の偏光子があげられる。The aspect different from the above of the first aspect of the present invention relates to a polarizer in which the transmission axis is provided radially from one point (therefore, the cutoff axis is concentric). A preferred embodiment of this embodiment has a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge, and further relates to the polarizer described above which is constituted by a self-cloning photonic crystal. More specifically, the layers constituting the polarizer have a periodic structure, and in order to keep the interval between the periodically formed periodic structures within a certain range, the radiating periodicity is formed in multiple stages from the center to the outer edge. Examples include a structure formed. More specifically, a polarizer having a transmission axis radially provided from one point is composed of a self-cloning photonic crystal composed of a plurality of layers, and each layer has a radial periodic structure with a period of 232 nm. , SiO 2 layer thickness is 58 nm, Ta 2 O 5 layer thickness is 81 nm, 40 layers of SiO 2 layers and Ta 2 O 5 layers are alternately stacked, and the input light has a wavelength of 520 nm or more and 540 nm or less On the other hand, there is a polarizer that transmits polarized light having an electric field component perpendicular to the tangent of the circumference of each concentric circle. As a polarizer having a transmission axis that is radially provided from one point, it is composed of a self-cloning photonic crystal composed of a plurality of layers, has a concentric periodic structure from the center, a substrate pitch of 245 nm, and SiO 2 of 145 nm. , Ta 2 O 5 is 125 nm and there are 27 layers of polarizers.

本発明の第2の側面は,光源と;前記光源からの光が透過する,透過軸が光軸を中心とする同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,透過軸が光軸を中心として放射状に設けられる第2の偏光子と;を具備する偏光顕微鏡に関する。「透過軸が光軸を中心として放射状に設けられる第2の偏光子」は,好ましくは透過軸が偏光子の中心から放射状に設けられる先に説明した偏光子である。すなわち,第1の偏光子及び第2の偏光子として,上記した偏光子を適宜用いることができる。   According to a second aspect of the present invention, there is provided a light source; a first polarizer that transmits light from the light source, a transmission axis that is provided concentrically with the optical axis as a center; and transmission through the first polarizer. An observation sample stage on which a sample irradiated with the irradiated light is mounted; an objective lens through which light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage transmits; The present invention relates to a polarizing microscope including: a second polarizer that transmits light that has passed through the objective lens, and whose transmission axis is provided radially about the optical axis. The “second polarizer in which the transmission axis is provided radially from the optical axis” is preferably the polarizer described above in which the transmission axis is provided radially from the center of the polarizer. That is, the above-described polarizer can be used as appropriate as the first polarizer and the second polarizer.

すなわち,従来の偏光顕微鏡では,直線的な偏光軸を有する偏光子を用いていたので,レンズなどによる影響を受け,高い消光比を得ることができなかった。本発明の偏光顕微鏡では,透過軸が同心円状に設けられる偏光子と透過軸が光軸を中心として放射状に設けられる偏光子を組み合わせて用いたので,レンズなどによる影響を抑えることができ,高い消光比を得ることができるというものである。   That is, in the conventional polarizing microscope, a polarizer having a linear polarization axis is used, so that a high extinction ratio cannot be obtained due to the influence of the lens. In the polarizing microscope of the present invention, a polarizer having a transmission axis concentrically provided and a polarizer having a transmission axis provided radially around the optical axis are used in combination. The extinction ratio can be obtained.

本発明の第2の側面の上記とは別の態様は,光源と;前記光源からの光が透過する,透過軸が光軸を中心として放射状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,透過軸が光軸を中心とする同心円状に設けられる第2の偏光子と;を具備する偏光顕微鏡に関する。   Another aspect of the second aspect of the present invention is a light source; a first polarizer that transmits light from the light source and that has a transmission axis radially formed around the optical axis; and the first An observation sample stage on which the sample irradiated with the light transmitted through the polarizer is irradiated; light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage is transmitted , An objective lens; and a second polarizer that transmits light transmitted through the objective lens and has a transmission axis provided concentrically around the optical axis.

本発明の第2の側面の上記とは別の態様は,光源と;前記光源からの光が透過する,透過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,偏光主軸方向を直交させる旋光子と;前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;を具備する偏光顕微鏡に関する。   The aspect different from the above of the second aspect of the present invention is the light source; the light from the light source is transmitted; the transmission axis is provided radially around the optical axis or concentrically centered around the optical axis. 1 polarizer; an observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through a sample mounted on the observation sample stage, or mounted on the observation sample stage An objective lens that transmits light reflected from the sample to be transmitted; an optical rotator that transmits light transmitted through the objective lens; an optical rotator that orthogonally crosses the polarization principal axis direction; and a first polarized light that transmits light transmitted through the optical rotator And a second polarizer having a transmission axis similar to that of the polarizer.

すなわち,旋光子を具備することにより,偏光面が90度ずれるので,1種類(好ましくは1枚)の偏光子により上記した偏光顕微鏡の機能を達成することができる。すなわち,「第1の偏光子と同様の透過軸を有する第2の偏光子」とは,例えば,第1の偏光子が,透過軸が光軸を中心とする同心円状に設けられる偏光子の場合は,全く同じ偏光子であるか,又は透過軸が光軸を中心とする同心円状に設けられる偏光子があげられ,第1の偏光子が透過軸が光軸を中心として放射状に設けられる偏光子の場合は,全く同じ偏光子であるか,又は透過軸が光軸を中心として放射状に設けられる偏光子であればよい。   That is, by providing the optical rotator, the plane of polarization is shifted by 90 degrees, so that the function of the polarizing microscope described above can be achieved by one type (preferably one) polarizer. That is, “a second polarizer having a transmission axis similar to that of the first polarizer” means, for example, a polarizer in which the first polarizer is provided concentrically with the transmission axis being centered on the optical axis. In this case, the polarizers may be exactly the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizers may be provided radially around the optical axis. In the case of a polarizer, the polarizers may be exactly the same or may be polarizers whose transmission axes are provided radially around the optical axis.

本発明の第2の側面の上記とは別の態様は,光源と;前記光源からの光が透過する,透過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が透過する,偏光主軸方向を直交させる旋光子と;前記旋光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;を具備する偏光顕微鏡に関する。   The aspect different from the above of the second aspect of the present invention is the light source; the light from the light source is transmitted; the transmission axis is provided radially around the optical axis or concentrically centered around the optical axis. A polarizer of 1; an optical rotator that transmits light transmitted through the first polarizer, an orthogonal polarization axis direction; an observation sample stage that mounts a sample irradiated with light transmitted through the optical rotator; An objective lens through which light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage transmits; first polarized light through which light transmitted through the optical rotator transmits; And a second polarizer having a transmission axis similar to that of the polarizer.

本発明の第2の側面に係る偏光顕微鏡の好ましい態様は,前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;前記第1の偏光子は,前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;前記第2の偏光子は,前記対物レンズの瞳位置に配置される;上記いずれかに記載の偏光顕微鏡に関する。   In a preferred aspect of the polarizing microscope according to the second aspect of the present invention, a condensing lens for condensing light from the light source is provided between the light source and the first polarizer; The child is disposed between the light source and the observation sample and is disposed at a pupil position of the condenser lens; the second polarizer is disposed at a pupil position of the objective lens; This relates to a polarizing microscope.

この態様に係る本発明の偏光顕微鏡は,回転対称な偏光軸を有する偏光子を集光レンズ及び対物レンズの瞳位置,又はそれらと共役な位置に配置することにより,全方位の直線偏光が等しく混ざった光が試料へ入射するので,一度の観察で方向依存性の無い観察像を取得できる。また,この偏光顕微鏡は,試料面が一様な透明体の場合,観察試料の前段に配置された同心円状偏光子のある一点を通過した光は,観察試料後段に配置された放射状偏光子の対応する一点に集まることで遮断される。一方,観察試料が一様でない成分を有する場合,その不均質さに応じて透過される成分が多くなる。従って,観察試料中の不均質点が微小であるほど,透過率は上昇する傾向を有し,全体として高周波成分を強調した観察像を得ることができる。よって,この態様に係る偏光顕微鏡は,微小な欠陥や傷や繊維質構造などの観察に好適である。   In the polarizing microscope of the present invention according to this aspect, the linearly polarized light in all directions is equal by disposing a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate with them. Since the mixed light is incident on the sample, an observation image having no direction dependency can be acquired by one observation. In this polarizing microscope, when the sample surface is a transparent body, the light passing through one point of the concentric circular polarizer arranged at the front stage of the observation sample is reflected by the radial polarizer arranged at the rear stage of the observation sample. It is blocked by gathering at one corresponding point. On the other hand, when the observation sample has a non-uniform component, more components are transmitted according to the heterogeneity. Therefore, as the inhomogeneous point in the observation sample is smaller, the transmittance tends to increase, and an observation image in which high-frequency components are emphasized as a whole can be obtained. Therefore, the polarizing microscope according to this aspect is suitable for observing minute defects, scratches, fibrous structures, and the like.

本発明の第3の側面に係る顕微鏡は,集光レンズの瞳位置及び対物レンズの瞳位置に,透過軸が同心円状の偏光子及び透過軸が放射状の偏光子のいずれかを具備し,微細な構造体ほど高い解像度の像が得られることを特徴とする,顕微鏡に関する。すなわち,この顕微鏡は,たとえば集光レンズの瞳位置に透過軸が同心円状の偏光子を具備するとともに,対物レンズの瞳位置に透過軸が放射状の偏光子を具備する。又はこの顕微鏡は,たとえば集光レンズの瞳位置に透過軸が放射状の偏光子を具備するとともに,対物レンズの瞳位置に透過軸が同心円の偏光子を具備する。後述する実施例により実証されたとおり,集光レンズの瞳位置及び対物レンズの瞳位置に,透過軸が同心円状の偏光子及び透過軸が放射状の偏光子のいずれかを具備することで,微細な構造体ほど高い解像度の像を得ることが得きる。なお,この態様の顕微鏡として,上記の偏光子以外の構成は,通常の顕微鏡の構成を適宜採用することができる。   The microscope according to the third aspect of the present invention includes a polarizer having a concentric transmission axis and a radial polarizer having a transmission axis at the pupil position of the condenser lens and the pupil position of the objective lens. The present invention relates to a microscope characterized in that an image with a higher resolution can be obtained with a more structural body. In other words, this microscope includes, for example, a polarizer having a concentric transmission axis at the pupil position of the condenser lens and a polarizer having a radial transmission axis at the pupil position of the objective lens. Alternatively, this microscope includes, for example, a polarizer having a radial transmission axis at the pupil position of the condenser lens and a polarizer having a concentric transmission axis at the pupil position of the objective lens. As demonstrated by the examples described later, the pupil position of the condenser lens and the pupil position of the objective lens have either a concentric polarizer with a transmission axis and a polarizer with a radial transmission axis. The higher the resolution, the higher the resolution. In addition, as a microscope of this aspect, the configuration of a normal microscope can be appropriately adopted as the configuration other than the polarizer.

本発明によれば,偏光面が平行な偏光子ではなく,透過軸が同心円状のもの又は透過軸が放射状(従って,遮断軸が同心円状)である新規な偏光子を提供することができ,それらは,上述した偏光顕微鏡などに効果的に用いられうる。   According to the present invention, it is possible to provide a novel polarizer in which the transmission axis is not concentric, or the transmission axis is radial (and thus the cutoff axis is concentric), instead of a polarizer having parallel polarization planes. They can be effectively used in the above-described polarizing microscope and the like.

本発明によれば,照射側偏光子と観察側偏光子に,それぞれ透過軸が同心円状のもの又は透過軸が放射状(従って,遮断軸が同心円状)のものを用いることで,対物レンズなどのレンズによる偏光面の歪みの影響を受けなくし,試料がない場合には,きちんと光が遮断される偏光顕微鏡を提供できる。   According to the present invention, the irradiation-side polarizer and the observation-side polarizer each have a concentric transmission axis or a radial transmission axis (thus, the blocking axis is concentric), so that an objective lens, etc. It is possible to provide a polarizing microscope that is not affected by the distortion of the polarization plane caused by the lens and that blocks light when there is no sample.

本発明によれば,一度の観察で方向依存性の無い観察像を取得できる偏光顕微鏡を提供することができる。   According to the present invention, it is possible to provide a polarization microscope capable of acquiring an observation image having no direction dependency by one observation.

本発明によれば,微小な欠陥や傷や繊維質構造などを効果的に観測できる偏光顕微鏡を提供することができる。   According to the present invention, it is possible to provide a polarization microscope that can effectively observe minute defects, scratches, fibrous structures, and the like.

以下,図面に従って,本発明を詳細に説明する。図1は,透過軸が同心円状に設けられる偏光子における,透過軸の方向を示す図である。図1に示されるように,本発明の第1の側面は,透過軸が同心円状に設けられる偏光子に関する。このような偏光子は,たとえば,表面の凹凸が同心円状に複数となるような基板を用いて自己クローニング法により製造すればよい。すなわち,例えば,偏光子を構成する層が複数の同心円状の周期構造を有するものであり,そのような層が多層形成されていればよい。図2は,透過軸が1点から放射状に設けられる偏光子における,透過軸の方向を示す図である。図2に示されるように,透過軸が1点から放射状に設けられる偏光子では,透過軸が1点(好ましくは偏光子の重心)から均等な割合で,透過軸が放射状に設けられる。透過軸と遮断軸とは直交するので,このような偏光子の遮断軸は,同心円状となる。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the direction of the transmission axis in a polarizer in which transmission axes are provided concentrically. As shown in FIG. 1, the first aspect of the present invention relates to a polarizer in which transmission axes are provided concentrically. Such a polarizer may be manufactured by, for example, a self-cloning method using a substrate having a plurality of concavities and convexities on the surface. That is, for example, the layers constituting the polarizer have a plurality of concentric periodic structures, and such layers may be formed in multiple layers. FIG. 2 is a diagram showing the direction of the transmission axis in a polarizer in which the transmission axis is provided radially from one point. As shown in FIG. 2, in a polarizer in which the transmission axis is provided radially from one point, the transmission axis is provided radially at a ratio equal to the transmission axis from one point (preferably the center of gravity of the polarizer). Since the transmission axis and the blocking axis are orthogonal, the blocking axis of such a polarizer is concentric.

図3に,自己クローニングフォトニック結晶による,同心円状もしくは放射状に透過軸を有する偏光子の模式図を示す。図3(a)は,透過軸が同心円状に設けられる偏光子の例を示す。図3(b)は,透過軸が1点から放射状に設けられる偏光子の例を示す。図3(c)は,放射状の周期構造が多段に形成されている層を有する偏光子の例を示す。図4は,自己クローニングフォトニック結晶の例を示す図である。図4に示されるように,自己クローニングフォトニック結晶は,一般に,特定の周期構造を有する層が多数積み重ねられて形成され,表面凹凸の溝に平行な方向とこれに垂直な方向にそれぞれ電界振動を持つ偏光に対して異なる透過特性を設計することができる。例えば図4に示すように溝に平行な電界振動を持つ偏光を反射し,溝に垂直な電界振動を有する偏光を透過させることができる。また,凹凸のピッチや多層膜の膜厚の調整により,図4とは逆に,溝に平行な電界振動を持つ偏光のみを透過させることもできる。従って,自己クローニング法によれば,図3(a)及び図3(b)のような形状を有する偏光子を製造することができる。   FIG. 3 shows a schematic diagram of a polarizer having a transmission axis in a concentric or radial manner by a self-cloning photonic crystal. FIG. 3A shows an example of a polarizer in which transmission axes are provided concentrically. FIG. 3B shows an example of a polarizer in which the transmission axis is provided radially from one point. FIG. 3C shows an example of a polarizer having a layer in which radial periodic structures are formed in multiple stages. FIG. 4 is a diagram illustrating an example of a self-cloning photonic crystal. As shown in FIG. 4, a self-cloning photonic crystal is generally formed by stacking a large number of layers having a specific periodic structure, and electric field oscillations in a direction parallel to a surface irregularity groove and a direction perpendicular thereto, respectively. Different transmission characteristics can be designed for polarized light having For example, as shown in FIG. 4, polarized light having electric field vibration parallel to the groove can be reflected and polarized light having electric field vibration perpendicular to the groove can be transmitted. Further, by adjusting the pitch of the unevenness and the film thickness of the multilayer film, it is possible to transmit only the polarized light having the electric field vibration parallel to the groove, contrary to FIG. Therefore, according to the self-cloning method, a polarizer having a shape as shown in FIGS. 3A and 3B can be manufactured.

図3(c)に示されるものは,放射状の周期構造が中心から外縁部までを三等分するように三段階になるように設計されているが,本発明の偏光子はこのものに限定されず,2段階でもよく,4段階以上であってもよい。このような偏光子の好ましい態様は,偏光子を構成する層が周期構造を有するもので,放射状に形成された周期構造の間隔が一定範囲になることを目的として,多段に放射型の周期構造が形成されているものである。なお,偏光子の大きさは,特に限定されないが,偏光顕微鏡のレンズなどとして用いられる程度の大きさであるものが好ましい。   The one shown in FIG. 3 (c) is designed so that the radial periodic structure is divided into three stages so that the center to the outer edge are divided into three equal parts, but the polarizer of the present invention is limited to this. It may be two steps or four steps or more. In a preferred embodiment of such a polarizer, the layers constituting the polarizer have a periodic structure, and the periodic structure of the radial type is formed in a multi-stage for the purpose of keeping the interval between the radially formed periodic structures within a certain range. Is formed. The size of the polarizer is not particularly limited, but is preferably a size that can be used as a lens for a polarizing microscope.

上記のような偏光子は,例えば,特開平10−335758号公報,特開2000−258645号公報,特開2001−74954号公報,特開2001−249235号公報,特開2004−45779号公報などに開示される製造技術を用いて適宜作成することができる。自己クローニングフォトニック結晶の望ましい製造方法を以下に記す。基板材料に石英を用い,フォトリソグラフィープロセスを用いて動作波長の半分程度のピッチの周期的な凹凸を形成する。これをスパッタリング装置を用いて成膜することにより,フォトニック結晶を得ることができる。成膜する材料は,例えばSiO,Nb,又はTaなど,スパッタリングすることができる材料から適宜選択することができる。例えばSiO及びNbを用いて多層膜を自己クローニング成膜する場合,成膜装置内に4:1の分圧でArと酸素ガスとを流しながら約0.5Paのガス圧で電圧印加,スパッタリングを行えばよい。同時に基板バイアスを印加することにより,成膜とエッチングとを同時に行うことができ,これにより,自己クローニング成膜を実現できる。なお,基板バイアスに印加する電力は,成膜電力の10%以下であることが望ましい。Examples of the polarizer as described above include, for example, JP-A-10-335758, JP-A-2000-258645, JP-A-2001-74554, JP-A-2001-249235, and JP-A-2004-45779. It can be made as appropriate using the manufacturing technique disclosed in. A desirable method for producing self-cloning photonic crystals is described below. Quartz is used as the substrate material, and periodic irregularities with a pitch of about half the operating wavelength are formed using a photolithography process. A photonic crystal can be obtained by forming a film using a sputtering apparatus. The material for forming the film can be appropriately selected from materials that can be sputtered, such as SiO 2 , Nb 2 O 5 , or Ta 2 O 5 . For example, when self-cloning a multilayer film using SiO 2 and Nb 2 O 5 , a voltage is applied at a gas pressure of about 0.5 Pa while flowing Ar and oxygen gas at a partial pressure of 4: 1 in the film forming apparatus. Application and sputtering may be performed. By applying a substrate bias at the same time, film formation and etching can be performed simultaneously, thereby realizing self-cloning film formation. The power applied to the substrate bias is desirably 10% or less of the film forming power.

後述する実施例により実証されたとおり,例えば,石英基板を用いて,基板ピッチ(凹凸の一周期)が232nm,SiO層の厚さが58nm, Ta層の厚さが81nmで各40層積層した場合,波長520〜540nmで凹凸に平行な電界成分を有する偏光のみが透過する(消光比40dB以上の)偏光子を得ることができた。つまり,この場合は基板溝が同心円状の場合に,透過軸が同心円状のものを得ることができる。逆に,基板溝が放射状のものを用いれば,透過軸が放射状のものを製造することができる。たとえば,放射状の周期構造が中心から外縁部まで多段に形成されている層を有する偏光子であっても透過軸が放射状のものを得ることができる。このように,基板に設けられた溝と,透過軸が平行な偏光子は,この実施例に基づき,適宜基板の溝形状,基板ピッチ,各層を構成する材料,及び各層の膜厚などを適宜調整することで,製造できる。基板ピッチは,特に限定されないが,入射光の波長の半分程度,例えば,50nm以上600nm以下の範囲,好ましくは100nm以上500nm以下の範囲において適宜調整すればよい。自己クローニング結晶からなる偏光子を構成する各層の厚さは,例えば,20nm以上150nm以下から適宜調整すればよい。また,各層は異なる2種類の層がひとつのペアとなり,そのペアが複数積み重ねられるようにされているものが好ましい。そのようなペアの数(層数)として,例えば10層以上200層以下があげられ,20層以上100層以下であってもよい。As demonstrated by the examples described later, for example, using a quartz substrate, the substrate pitch (one period of unevenness) is 232 nm, the thickness of the SiO 2 layer is 58 nm, and the thickness of the Ta 2 O 5 layer is 81 nm. When 40 layers were laminated, it was possible to obtain a polarizer that transmits only polarized light having an electric field component parallel to the irregularities at a wavelength of 520 to 540 nm (an extinction ratio of 40 dB or more). That is, in this case, when the substrate groove is concentric, a transmission axis having a concentric shape can be obtained. On the other hand, if the substrate groove is radial, the transmission axis can be made radial. For example, even a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge can be obtained with a radial transmission axis. As described above, the groove provided in the substrate and the polarizer having the transmission axis parallel to each other are appropriately configured based on this embodiment by appropriately changing the groove shape of the substrate, the substrate pitch, the material constituting each layer, the film thickness of each layer, and the like. It can be manufactured by adjusting. The substrate pitch is not particularly limited, but may be appropriately adjusted within about half the wavelength of incident light, for example, in the range of 50 nm to 600 nm, preferably in the range of 100 nm to 500 nm. What is necessary is just to adjust the thickness of each layer which comprises the polarizer which consists of a self-cloning crystal | crystallization suitably from 20 nm or more and 150 nm or less, for example. In addition, each layer is preferably configured such that two different types of layers form one pair and a plurality of such pairs are stacked. Examples of the number of such pairs (number of layers) include 10 to 200 layers, and may be 20 to 100 layers.

一方,後述する実施例において実証されたとおり,同じ材料を用いても,基板ピッチが245nmでSiOが145nm, Taが125nmで各27層の場合,波長520〜550nmで凹凸に垂直は電界成分を有する偏光のみが透過する偏光子が得られる。この場合は,基板溝が同心円状の場合,透過軸が放射状の偏光子が得られ,基板溝が放射状の場合,透過軸が同心円状のものが得られる。たとえば,放射状の周期構造が中心から外縁部まで多段に形成されている層を有する偏光子であっても,透過軸が同心円状のものを得ることができる。このように,基板に設けられた溝と,透過軸が直交する偏光子は,この実施例に基づき適宜,基板の溝形状,基板ピッチ,各層を構成する材料,各層の膜厚などを調整することで製造することができる。基板ピッチは,特に限定されないが,入射光の波長の半分程度,例えば,50nm以上600nm以下の範囲,好ましくは100nm以上500nm以下の範囲において適宜調整すればよい。自己クローニング結晶からなる偏光子を構成する各層の厚さは,例えば,20nm以上150nm以下から適宜調整すればよい。また,各層は異なる2種類の層がひとつのペアとなり,そのペアが複数積み重ねられるようにされているものが好ましい。そのようなペアの数(層数)として,例えば10層以上200層以下があげられ,20層以上100層以下であってもよい。On the other hand, as demonstrated in the examples to be described later, even when the same material is used, when the substrate pitch is 245 nm, SiO 2 is 145 nm, Ta 2 O 5 is 125 nm, and each has 27 layers, the wavelength is 520 to 550 nm, and it is perpendicular to the unevenness. Obtains a polarizer that transmits only polarized light having an electric field component. In this case, when the substrate groove is concentric, a polarizer having a radial transmission axis is obtained, and when the substrate groove is radial, a transmission axis having a concentric circle is obtained. For example, even a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge, a transmission axis having a concentric shape can be obtained. In this way, the grooves provided in the substrate and the polarizer whose transmission axes are orthogonal to each other adjust the groove shape of the substrate, the substrate pitch, the material constituting each layer, the film thickness of each layer, etc., as appropriate based on this embodiment. Can be manufactured. The substrate pitch is not particularly limited, but may be appropriately adjusted within about half the wavelength of incident light, for example, in the range of 50 nm to 600 nm, preferably in the range of 100 nm to 500 nm. What is necessary is just to adjust the thickness of each layer which comprises the polarizer which consists of a self-cloning crystal | crystallization suitably from 20 nm or more and 150 nm or less, for example. In addition, each layer is preferably configured such that two different types of layers form one pair and a plurality of such pairs are stacked. Examples of the number of such pairs (number of layers) include 10 to 200 layers, and may be 20 to 100 layers.

また,自己クローニングフォトニック結晶以外にも,例えば図5のような形状のワイヤーグリッド型の偏光子により放射状に透過軸を有する偏光子を実現することができる。図5は,ワイヤーグリッド型の偏光子の模式図である。ただし,自己クローニングフォトニック結晶によるものの方が,高い精度を持って製造でき,偏光調整機能を発揮できるので好ましい。   In addition to the self-cloning photonic crystal, for example, a polarizer having a transmission axis radially can be realized by a wire grid polarizer having a shape as shown in FIG. FIG. 5 is a schematic diagram of a wire grid type polarizer. However, the self-cloning photonic crystal is preferable because it can be manufactured with high accuracy and can exhibit the polarization adjustment function.

次に本発明の第2の側面に係る偏光顕微鏡について説明する。本発明の第2の側面は,光源と;前記光源からの光が透過する,透過軸が光軸を中心とする同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,透過軸が光軸を中心として放射状に設けられる第2の偏光子と;を具備する偏光顕微鏡に関する。なお,光軸とは,偏光顕微鏡における光が通る軸を意味する。本発明の偏光顕微鏡では,透過軸が同心円状に設けられる偏光子と透過軸が光軸を中心として放射状に設けられる偏光子を組み合わせて用いたので,レンズなどによる影響を抑えることができ,高い消光比を得ることができる。   Next, a polarizing microscope according to the second aspect of the present invention will be described. According to a second aspect of the present invention, there is provided a light source; a first polarizer that transmits light from the light source, a transmission axis that is provided concentrically with the optical axis as a center; and transmission through the first polarizer. An observation sample stage on which a sample irradiated with the irradiated light is mounted; an objective lens through which light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage transmits; The present invention relates to a polarizing microscope including: a second polarizer that transmits light that has passed through the objective lens and that has a transmission axis that is provided radially around the optical axis. The optical axis means an axis through which light passes in a polarizing microscope. In the polarizing microscope of the present invention, a polarizer having a transmission axis concentrically provided and a polarizer having a transmission axis provided radially around the optical axis are used in combination. An extinction ratio can be obtained.

本発明の第2の側面の上記とは別の態様は,光源と;前記光源からの光が透過する,透過軸が光軸を中心として放射状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,透過軸が光軸を中心とする同心円状に設けられる第2の偏光子と;を具備する偏光顕微鏡に関する。光源からの光が第1の偏光子を透過すると,その偏光面が調整される。そのような第1の偏光子を透過した光は,観察試料台上の試料に照射される。観察試料を透過した光,又は前記観察試料から反射した光は,対物レンズを透過する。対物レンズを透過した光は,第2の偏光子を透過する。そして,第2の偏光子を透過した光は,適宜対物レンズなどを通して観測されることとなる。   Another aspect of the second aspect of the present invention is a light source; a first polarizer that transmits light from the light source and that has a transmission axis radially formed around the optical axis; and the first An observation sample stage on which the sample irradiated with the light transmitted through the polarizer is irradiated; light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage is transmitted , An objective lens; and a second polarizer that transmits light transmitted through the objective lens and has a transmission axis provided concentrically around the optical axis. When light from the light source passes through the first polarizer, the plane of polarization is adjusted. The light transmitted through the first polarizer is irradiated onto the sample on the observation sample stage. The light transmitted through the observation sample or the light reflected from the observation sample passes through the objective lens. The light that has passed through the objective lens passes through the second polarizer. And the light which permeate | transmitted the 2nd polarizer will be observed through an objective lens etc. suitably.

図6に偏光顕微鏡の装置構成例を示す。図6の顕微鏡(11)では,ランプハウス(12)において集光レンズ(13)にて集光され水平に出力された光が顕微鏡下部のミラー(14)により上方に曲げられ,照射側偏光子(15),コンデンサレンズ(16),観察試料(17),対物レンズ(18),観察側偏光子(検光子)(19)の順に通過する。そして,接眼レンズ(20)を介して,像が得られる。この顕微鏡は透過型の構成である。照射側偏光子(15)及び観察側偏光子(検光子)(19)は,いずれかが図1のような同心円状の透過軸を有する偏光子であり,残りが図2に示されるような放射状の透過軸を有する偏光子である。このように同心円状もしくは放射状に透過軸を有する偏光子を自己クローニング形フォトニック結晶偏光子で実現した場合の概観図は図3(a),図3(b),及び図3(c)に示されるとおりである。照射側偏光子(15)にて,所定の透過パターンを有することとされた光は,そのまま偏光面が調整されないまま観察側偏光子へと到達した場合,観察側偏光子(検光子)(19)によりすべて遮断されることとなる。しかしながら,観察試料(17)により偏光面がずらされた成分のみが観測されることとなる。勿論,反射型などの図6以外の構成の顕微鏡であってもかまわない。図6の照射側偏光子と観察側偏光子の位置に,同心円状もしくは放射状に透過軸を配置された偏光子を設けることにより,レンズによる偏光変換の影響をうけない高感度な偏光顕微鏡を構成することができる。   FIG. 6 shows an apparatus configuration example of a polarizing microscope. In the microscope (11) of FIG. 6, the light collected and horizontally output by the condenser lens (13) in the lamp house (12) is bent upward by the mirror (14) at the bottom of the microscope, and the irradiation side polarizer. (15), condenser lens (16), observation sample (17), objective lens (18), observation side polarizer (analyzer) (19) are passed in this order. Then, an image is obtained through the eyepiece lens (20). This microscope has a transmissive configuration. One of the irradiation side polarizer (15) and the observation side polarizer (analyzer) (19) is a polarizer having a concentric transmission axis as shown in FIG. 1, and the rest are as shown in FIG. It is a polarizer having a radial transmission axis. 3A, FIG. 3B, and FIG. 3C are schematic views in the case where a polarizer having a transmission axis in a concentric or radial manner is realized by a self-cloning photonic crystal polarizer. As shown. In the irradiation side polarizer (15), when the light having a predetermined transmission pattern reaches the observation side polarizer without adjusting the polarization plane, the observation side polarizer (analyzer) (19 ) Will be blocked. However, only the component whose polarization plane is shifted by the observation sample (17) is observed. Of course, a microscope having a configuration other than that shown in FIG. 6 such as a reflection type may be used. A highly sensitive polarization microscope that is not affected by the polarization conversion by the lens is provided by providing a polarizer with transmission axes arranged concentrically or radially at the position of the irradiation side polarizer and the observation side polarizer in FIG. can do.

図7は,照射側偏光子と観察側偏光子の間に,水晶旋光子もしくは液晶などで構成された旋光素子を挿入した偏光顕微鏡の例を示す図である。図7に示されるように,照射側偏光子と観察側偏光子の間に,水晶旋光子もしくは液晶などで構成された旋光素子を挿入することにより,二つの偏光子の間の消光状態をある程度緩和して観察側偏光子を透過する光量を増やし,観察のための予備的な位置決めに資することができる。   FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or a liquid crystal is inserted between an irradiation side polarizer and an observation side polarizer. As shown in FIG. 7, by inserting an optical rotator composed of a crystal rotator or a liquid crystal between the irradiation side polarizer and the observation side polarizer, the extinction state between the two polarizers can be reduced to some extent. The amount of light transmitted through the observation side polarizer can be relaxed and contribute to preliminary positioning for observation.

図8は,照射側偏光子と観察側偏光子の間に,ファラデー効果を用いた旋光子(ファラデー素子)を設けた偏光顕微鏡の例を示す図である。図8に示されるように,ファラデー素子(21)を介することで,照射側偏光子と観察側偏光子を一枚の偏光子(22)で共用できる。前記のとおり,例えば同心円状に透過軸を有する偏光子を照射側偏光子として用いた場合,観察試料の無い試料面を透過した光は,偏光状態変換されることなく観察側偏光子に到達することから,放射状に透過軸を有する偏光子により遮断することができる。本発明の旋光子として,偏光主軸方向を直交させる機能を有するものであれば公知のものを適宜用いることができ,具体的な旋光子として,磁気を用いるファラデー旋光子(例えば,特開2005−283635号公報,栖原敏明著「光波光学」,コロナ社,1998年,223頁を参照。)の他,そのような機能を有し,水晶又は液晶により構成されるものがあげられる。すなわち,図8に示される態様の偏光顕微鏡は,光源と;前記光源からの光が透過する,透過軸が放射状もしくは同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記対物レンズを透過した光が透過する,偏光主軸方向を直交させる旋光子と;前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;を具備する偏光顕微鏡に関する。   FIG. 8 is a diagram illustrating an example of a polarization microscope in which an optical rotator (Faraday element) using a Faraday effect is provided between an irradiation side polarizer and an observation side polarizer. As shown in FIG. 8, the irradiation-side polarizer and the observation-side polarizer can be shared by one polarizer (22) through the Faraday element (21). As described above, for example, when a polarizer having a concentric transmission axis is used as the irradiation side polarizer, the light transmitted through the sample surface without the observation sample reaches the observation side polarizer without being converted in polarization state. Therefore, it can be blocked by a polarizer having a transmission axis radially. As the optical rotator of the present invention, any known optical rotator can be used as long as it has a function of orthogonally crossing the polarization main axis direction. 283635, Toshiaki Sugawara, “Lightwave Optics”, Corona, 1998, p. 223), and those having such functions and composed of crystal or liquid crystal. That is, the polarizing microscope of the embodiment shown in FIG. 8 includes a light source; a first polarizer that transmits light from the light source and whose transmission axis is provided radially or concentrically; and transmits the first polarizer. An observation sample stage on which a sample irradiated with the irradiated light is mounted; an objective lens through which light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage transmits; An optical rotator that transmits light transmitted through the objective lens and that has orthogonal polarization main axis directions; a second polarizer that transmits the light transmitted through the optical rotator and has a transmission axis similar to that of the first polarizer; A polarizing microscope.

すなわち,旋光子を具備することにより,偏光面が90度ずれるので,1種類(好ましくは1枚)の偏光子により上記した偏光顕微鏡の機能を達成することができる。すなわち,「第1の偏光子と同様の透過軸を有する第2の偏光子」とは,例えば,第1の偏光子が,透過軸が光軸を中心とする同心円状に設けられる偏光子の場合は,全く同じ偏光子であるか,又は透過軸が光軸を中心とする同心円状に設けられる偏光子があげられ,第1の偏光子が透過軸が光軸を中心として放射状に設けられる偏光子の場合は,全く同じ偏光子であるか,又は透過軸が光軸を中心として放射状に設けられる偏光子であればよい。ただし,磁気を用いるファラデー旋光子は,いったんファラデー旋光子を透過させた光を,反射させた後,再度反対側からファラデー旋光子を透過させると,2倍旋光させる性質がある。一方,水晶又は液晶による旋光子の場合,いったん旋光子を透過させ,反対側から旋光子を透過させると,順側から透過させたのと逆向きに旋光するので旋光が打ち消され,旋光量がなくなる。よって,反射型顕微鏡のように試料への照射光と,試料からの観察光とが同じ経路を通る場合は,磁気を用いるファラデー旋光子を用いることが好ましい。一方,照射光と観察光との経路が完全に分離している透過型の偏光顕微鏡においては,いずれのタイプの旋光子をも用いることができる。すなわち,図8に示されるような反射型の偏光顕微鏡においては,ファラデー旋光子を用いることが好ましい。   That is, by providing the optical rotator, the plane of polarization is shifted by 90 degrees, so that the function of the polarizing microscope described above can be achieved by one type (preferably one) polarizer. That is, “a second polarizer having a transmission axis similar to that of the first polarizer” means, for example, a polarizer in which the first polarizer is provided concentrically with the transmission axis being centered on the optical axis. In this case, the polarizers may be exactly the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizers may be provided radially around the optical axis. In the case of a polarizer, the polarizers may be exactly the same or may be polarizers whose transmission axes are provided radially around the optical axis. However, the Faraday rotator using magnetism has the property of rotating twice when the light transmitted through the Faraday rotator is reflected and then transmitted again from the opposite side. On the other hand, in the case of an optical rotator made of crystal or liquid crystal, once the optical rotator is transmitted and the optical rotator is transmitted from the opposite side, the optical rotation is canceled because the optical rotation is reversed from that transmitted from the forward side. Disappear. Therefore, when the irradiation light to the sample and the observation light from the sample pass through the same path as in a reflection microscope, it is preferable to use a Faraday rotator using magnetism. On the other hand, any type of optical rotator can be used in a transmission-type polarization microscope in which the paths of irradiation light and observation light are completely separated. That is, it is preferable to use a Faraday rotator in a reflective polarization microscope as shown in FIG.

このような偏光顕微鏡はまた,光源と;前記光源からの光が透過する,透過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けられる第1の偏光子と;前記第1の偏光子を透過した光が透過する,偏光主軸方向を直交させる旋光子と;前記旋光子を透過した光が照射する試料を搭載する観察試料台と;前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;を具備する偏光顕微鏡であってもよい。   Such a polarizing microscope also includes a light source; a first polarizer that transmits light from the light source, and whose transmission axis is provided radially around the optical axis or concentrically around the optical axis; An optical rotator that transmits light transmitted through one polarizer and that has orthogonal polarization principal axis directions; an observation sample stage that mounts a sample irradiated with light transmitted through the optical rotator; and a sample that is mounted on the observation sample stage An objective lens that transmits light transmitted through the observation sample stage or light reflected from a sample mounted on the observation sample stage; and has a transmission axis similar to that of the first polarizer that transmits light transmitted through the optical rotator A polarizing microscope comprising: a second polarizer;

以下,試料前段の集光レンズの瞳位置に配置された同心円もしくは放射状偏光子を通過した光がどのような作用を受けて像面に達するかを説明する。集光レンズ瞳位置の全面を同じ方向に通過した光線は,像面の一点に集光される。従って,像面の一点を照らす光は,同心円もしくは放射状偏光子の全ての面を通過した光の集合体であり,あらゆる偏光方位の光である。これらの光は,像面に物体が存在しない場合にはそれぞれ対物レンズの瞳位置に配置された放射状もしくは同心円状の偏光子に到達し,この偏光子はそれぞれの光線の偏光方位に直交する透過軸を有するので,全ての光は遮断される。   Hereinafter, it will be described how the light that has passed through the concentric circles or radial polarizers arranged at the pupil position of the condenser lens in front of the sample is subjected to the image plane. A light beam that has passed through the entire surface of the condenser lens pupil position in the same direction is condensed at one point on the image plane. Therefore, the light that illuminates a point on the image plane is a collection of light that has passed through all the surfaces of the concentric or radial polarizers, and is light of any polarization orientation. When no object is present on the image plane, these lights reach radial or concentric polarizers arranged at the pupil position of the objective lens, and these polarizers are transmitted perpendicular to the polarization direction of each light beam. Since it has an axis, all light is blocked.

一方,試料面に散乱体が存在した場合,集光レンズ瞳位置の一点を通過した光線は,散乱体に入射後に対物レンズの瞳面(すなわち,フーリエ面)には,一点ではなく広がりを持った光束を形成する。以下,試料が複屈折性を有する場合,即ち試料を通過した光線が通過前と直交する成分の偏光を持つ場合も考慮する為に,試料通過前後で偏光方位が変化しない場合と直交する場合の2状態を考察する。全ての状態を,この2状態の組み合わせで表現できる。
まず,試料通過前後で偏光方位が変化しない場合について考察する。試料を直線的に貫く成分の光線は,対物レンズの瞳位置に配置された放射状もしくは同心円状偏光子に到達した点では,偏光方位と偏光子の透過軸は直交するので,完全に遮断される。しかしながら,前記試料を直線的に貫く光線以外にも,試料の微細度に応じて回折光が生じる為,前記の対物レンズ瞳位置に到達した光は,広がりを持った領域を照射する。その中央部以外の領域では,光線の偏光方位と透過軸とが直交からずれが生じる為,そのズレ量に応じて遮断されない成分が発生する。また,光線の偏光方位と偏光子透過軸の直交方位からのズレ量は,光束の広がりが大きいほど,即ち光束の中心から離れた成分が大きいほど多くなる。更に,光束の広がりは,散乱体の空間周波数成分が大きいほど,即ち散乱体が微細であるほど大きくなる。従って,前記の非遮断成分は,試料が微細であるほど大きくなることがわかる。試料が十分に微細である場合,即ち試料による回折光が対物レンズ瞳位置全体に広がる場合,透過率は50%になる。この様子を図9に示す。図9は,試料による偏光変換が無い場合における透過率と試料の空間周波数成分との関係を示すグラフである。
On the other hand, when a scatterer is present on the sample surface, the light beam that has passed through one point on the condenser lens pupil position has a spread on the pupil plane of the objective lens (that is, the Fourier plane) instead of a single point after entering the scatterer. Form a luminous flux. Hereinafter, in order to consider the case where the sample has birefringence, that is, the light beam that has passed through the sample has a polarization component that is orthogonal to that before passing, the case where the polarization direction does not change before and after passing through the sample Consider two states. All states can be expressed by a combination of these two states.
First, consider the case where the polarization orientation does not change before and after passing through the sample. The component light beam penetrating the sample in a straight line is completely blocked at the point where it reaches the radial or concentric polarizer placed at the pupil position of the objective lens, since the polarization direction and the transmission axis of the polarizer are orthogonal. . However, in addition to the light beam penetrating the sample linearly, diffracted light is generated according to the fineness of the sample, so that the light reaching the objective lens pupil position irradiates a wide area. In a region other than the central portion, the polarization direction of the light beam and the transmission axis are deviated from orthogonal, and a component that is not blocked is generated according to the amount of deviation. Further, the amount of deviation between the polarization direction of the light beam and the orthogonal direction of the polarizer transmission axis increases as the spread of the light beam increases, that is, as the component away from the center of the light beam increases. Furthermore, the spread of the luminous flux increases as the spatial frequency component of the scatterer increases, that is, as the scatterer becomes finer. Therefore, it can be seen that the non-blocking component becomes larger as the sample becomes finer. When the sample is sufficiently fine, that is, when the diffracted light by the sample spreads over the entire objective lens pupil position, the transmittance is 50%. This is shown in FIG. FIG. 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample.

次に,試料通過前後で偏光方位が90度変化する場合について考察する。この場合,試料を直線的に貫く光線は,対物レンズ瞳位置の偏光子の透過軸と平行な偏光であるので,100%透過する。試料が小さくなるほど前記光線の周囲に回折光が存在する為,透過しない成分が生じることになる。つまり,試料が微細であるほど遮断成分が増え,十分に微細である場合,やはり試料からの回折光が対物レンズ瞳位置全体に広がる為に,透過率は50%になる。この様子を図10に示す。図10は,試料により偏光方位が90度変換される場合における透過率と試料の空間周波数成分との関係を示すグラフである。   Next, consider the case where the polarization orientation changes by 90 degrees before and after passing through the sample. In this case, since the light beam penetrating the sample linearly is polarized light parallel to the transmission axis of the polarizer at the objective lens pupil position, it passes through 100%. As the sample becomes smaller, diffracted light is present around the light beam, so that a component that does not transmit is generated. That is, as the sample is finer, the blocking component increases. When the sample is sufficiently fine, the diffracted light from the sample spreads over the entire objective lens pupil position, so that the transmittance is 50%. This is shown in FIG. FIG. 10 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when the polarization direction is changed by 90 degrees by the sample.

以上の考察から,試料面に何も無い場合には完全な暗部が得られ,試料面の物体が十分に微細である場合,その物体に複屈折性がある無しにかかわらず50%の光線透過率が得られ,その反対に物体が完全に一様である場合には,その物体のもつ複屈折性に応じた透過率が得られることがわかる。従って,複屈折性の有無だけではなく,試料の微細度に応じた感度をもつ観察像が得られることになる。 From the above consideration, when there is nothing on the sample surface, a complete dark part is obtained, and when the object on the sample surface is sufficiently fine, 50% light transmission is possible regardless of whether the object has birefringence or not. On the other hand, if the object is completely uniform, the transmittance corresponding to the birefringence of the object can be obtained. Therefore, an observation image having a sensitivity corresponding to not only the presence / absence of birefringence but also the fineness of the sample can be obtained.

本発明の偏光顕微鏡の好ましい態様は,前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;前記第1の偏光子は,前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;前記第2の偏光子は,前記対物レンズの瞳位置に配置される;上記いずれかに記載の偏光顕微鏡に関する。本明細書において,「集光レンズの瞳位置」とは,集光レンズの焦点位置を意味する。一方,「対物レンズの瞳位置」とは,対物レンズの焦点位置を意味する。   In a preferred aspect of the polarizing microscope of the present invention, a condensing lens for condensing light from the light source is provided between the light source and the first polarizer; the first polarizer includes the light source and The polarizing microscope according to any one of the above, wherein the second polarizer is disposed at a pupil position of the objective lens between the observation samples and at the pupil position of the condenser lens. In this specification, the “pupil position of the condenser lens” means the focal position of the condenser lens. On the other hand, the “pupil position of the objective lens” means the focal position of the objective lens.

この態様に係る本発明の偏光顕微鏡は,回転対称な偏光軸を有する偏光子を集光レンズ及び対物レンズの瞳位置,又はそれらと共役な位置に配置することにより,全方位の直線偏光が等しく混ざった光が試料へ入射するので,一度の観察で方向依存性の無い観察像を取得できる。また,この偏光顕微鏡は,試料面が一様な透明体の場合,観察試料の前段に配置された同心円状偏光子のある一点を通過した光は,観察試料後段に配置された放射状偏光子の対応する一点に集まることで遮断される。一方,観察試料が一様でない成分を有する場合,その不均質さに応じて透過される成分が多くなる。従って,観察試料中の不均質点が微小であるほど,透過率は上昇する傾向を有し,全体として高周波成分を強調した観察像を得ることができる。よって,この態様に係る偏光顕微鏡は,微小な欠陥や傷や繊維質構造などの観察に好適である。   In the polarizing microscope of the present invention according to this aspect, the linearly polarized light in all directions is equal by disposing a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate with them. Since the mixed light is incident on the sample, an observation image having no direction dependency can be acquired by one observation. In this polarizing microscope, when the sample surface is a transparent body, the light passing through one point of the concentric circular polarizer arranged at the front stage of the observation sample is reflected by the radial polarizer arranged at the rear stage of the observation sample. It is blocked by gathering at one corresponding point. On the other hand, when the observation sample has a non-uniform component, more components are transmitted according to the heterogeneity. Therefore, as the inhomogeneous point in the observation sample is smaller, the transmittance tends to increase, and an observation image in which high-frequency components are emphasized as a whole can be obtained. Therefore, the polarizing microscope according to this aspect is suitable for observing minute defects, scratches, fibrous structures, and the like.

以下,実施例を用いて本発明を具体的に説明する。しかしながら,本発明は,以下の実施例に限定されるものではない。また,本発明は,公知技術に従って適宜修正を加えることができ,適宜公知技術を取り入れることができる。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples. In addition, the present invention can be appropriately modified according to known techniques, and known techniques can be incorporated as appropriate.

1.基板作成
偏光子を作成するための基板を作成した。具体的には,石英基板にイオンビーム露光を施して,矩形の凹凸を同心円状となるように複数設けた。得られた基板を図11に示す。すなわち,図11は,実施例1により得られた基板の概念図である。なお,凹凸の幅は,通常波長の半分程度の深さとし,深さもほぼ波長の半分程度とすればよい。
1. Substrate preparation A substrate for preparing a polarizer was prepared. Specifically, the quartz substrate was subjected to ion beam exposure, and a plurality of rectangular irregularities were provided so as to be concentric. The obtained substrate is shown in FIG. That is, FIG. 11 is a conceptual diagram of the substrate obtained in Example 1. Note that the width of the unevenness may be about half the normal wavelength, and the depth may be about half the wavelength.

具体的には,同心円状の溝を複数設けた石英基板を用いて,SiOとTaとの自己クローニングフォトニック結晶を作成した。基板ピッチ(凹凸の一周期)が232nm,SiOが58nm, Taが81nmで各40層積層した。このようにして,波長520〜540nmで凹凸に平行な電界成分を有する偏光のみが透過する(消光比40dB以上の)偏光子を得ることができた。また,基板に中心から放射状に伸びる複数の溝を有する石英基板を用いて偏光子を製造した。この偏光子は,透過軸も放射状であった。Specifically, a self-cloning photonic crystal of SiO 2 and Ta 2 O 5 was prepared using a quartz substrate provided with a plurality of concentric grooves. Forty layers were laminated with a substrate pitch (one period of unevenness) of 232 nm, SiO 2 of 58 nm, and Ta 2 O 5 of 81 nm. In this way, it was possible to obtain a polarizer that transmits only polarized light having an electric field component parallel to the unevenness at a wavelength of 520 to 540 nm (an extinction ratio of 40 dB or more). A polarizer was manufactured using a quartz substrate having a plurality of grooves extending radially from the center of the substrate. This polarizer also had a radial transmission axis.

一方,同じ材料を用いて,基板ピッチが245nmでSiOが145nm, Taが125nmで各27層の偏光子を製造した。波長520〜550nmで凹凸に垂直は電界成分を有する偏光のみが透過する偏光子を得ることができた。この偏光子の消光比40dB以上のものが得られた。基板溝が同心円状の場合,透過軸が放射状の偏光子を得ることができ,基板溝が放射状のものを用いた場合,透過軸は同心円状の偏光子を得ることができた。On the other hand, 27 layers of polarizers each having a substrate pitch of 245 nm, SiO 2 of 145 nm, and Ta 2 O 5 of 125 nm were manufactured using the same material. A polarizer that transmits only polarized light having an electric field component perpendicular to the unevenness at a wavelength of 520 to 550 nm could be obtained. A polarizer having an extinction ratio of 40 dB or more was obtained. When the substrate groove is concentric, a polarizer having a radial transmission axis can be obtained. When the substrate groove having a radial shape is used, a polarizer having a concentric transmission axis can be obtained.

2.製膜プロセス
図11に示される基板を用いてオートクローニング法により成膜を行った。具体的には,スパッタリング装置内に,図11で示される基板を設置し,(a)成膜粒子の堆積,(b)Arイオンによるプラズマ・エッチング,及び(c)エッチングにより飛び出した表面構成粒子の再付着の3つの現象をバランスよく同時進行させることにより,安定した三角波形状の最表面層を維持し続けた。図12は,オートクローニングに用いた装置の概略図と,オートクローニング法の概略図である。なお,二酸化ケイ素と酸化タンタル(Ta)を交互に製膜した。図13は,得られた偏光子の概念図を示す。図14は,得られた偏光子の図面に替わる写真を示す。図14に示されるように,本方法に基づいて,実際に偏光子を得ることができた。
2. Film Formation Process Film formation was performed by the autocloning method using the substrate shown in FIG. Specifically, the substrate shown in FIG. 11 is installed in a sputtering apparatus, and (a) deposition of film-forming particles, (b) plasma etching with Ar ions, and (c) surface constituent particles popped out by etching. By continuing the three phenomena of re-adhesion in a balanced manner at the same time, the outermost surface layer with a stable triangular wave shape was maintained. FIG. 12 is a schematic diagram of an apparatus used for autocloning and a schematic diagram of the autocloning method. Silicon dioxide and tantalum oxide (Ta 2 O 5 ) were alternately formed. FIG. 13 shows a conceptual diagram of the obtained polarizer. FIG. 14 shows a photograph replacing the drawing of the obtained polarizer. As shown in FIG. 14, a polarizer was actually obtained based on this method.

3.特性評価
得られた偏光子の特性を測定した。図15は,試作した自己クローニングフォトニック結晶偏光子の分光特性評価結果を示す図面に替わるグラフである。測定には,同心円状に溝を有する基板と同時に成膜を行った直線的に溝を有する測定用サンプルを用いた。凹凸溝に平行な電界振動成分を有するTE波は500nm以下の帯域で0.1%以下の透過率を示しており,凹凸溝に直交する電界振動成分を有するTM波は405nm以上の帯域で90%以上の高い透過率を示しており,高い偏光分離機能を有することが分る。なお,凹凸溝ピッチや多層膜の積層周期を変える事により,偏光子として動作する帯域を様々に調整できる。以上のデータから,同心円状に溝を有する試作偏光子で,同心円状に遮断軸を,放射状に透過軸を有する偏光機能が実現されていることが分る。
3. Characteristic evaluation The characteristic of the obtained polarizer was measured. FIG. 15 is a graph replaced with a drawing showing the spectral characteristic evaluation results of the prototype self-cloning photonic crystal polarizer. In the measurement, a measurement sample having a linear groove formed simultaneously with a substrate having a groove concentrically was used. A TE wave having an electric field vibration component parallel to the concave and convex grooves shows a transmittance of 0.1% or less in a band of 500 nm or less, and a TM wave having an electric field vibration component orthogonal to the concave and convex grooves is 90 in a band of 405 nm or more. % Indicates a high transmittance, and it has a high polarization separation function. It should be noted that the band operating as a polarizer can be variously adjusted by changing the pitch of the concavo-convex grooves or the lamination period of the multilayer film. From the above data, it can be seen that a polarization function having a concentric cut-off axis and a radial transmission axis is realized with a prototype polarizer having concentric grooves.

4.シミュレーション
図16に,本発明の偏光顕微鏡で観察面に様々な形状の散乱体が配置された場合に得られる像をシミュレーションした結果を示す。図16(a)は,エッジのシャープさが同じで大きさが異なる散乱体について偏光顕微鏡で観測される像を示す図である。図16(b)は,大きさが同じでエッジのシャープさが異なる散乱体について偏光顕微鏡で観測される像を示す図である。図16(a)から,本発明の偏光顕微鏡を用いれば,小さい物体ほど得られる像の輝度が高くなることがわかる。また,図16(b)から,エッジがシャープなものほど得られる像の輝度が高くなる傾向がわかる。
4). Simulation FIG. 16 shows the result of simulating an image obtained when scatterers of various shapes are arranged on the observation surface with the polarizing microscope of the present invention. FIG. 16A is a diagram showing an image observed with a polarizing microscope for scatterers having the same edge sharpness and different sizes. FIG. 16B is a diagram showing an image observed with a polarization microscope with respect to scatterers having the same size but different edge sharpness. From FIG. 16 (a), it can be seen that the brightness of the obtained image increases as the object becomes smaller if the polarizing microscope of the present invention is used. Moreover, it can be seen from FIG. 16B that the sharper the edge, the higher the luminance of the obtained image.

本発明の偏光子は,偏光顕微鏡のみならず,光学素子産業において広く利用されうる。一方,本発明の偏光顕微鏡は,生体試料の観測などに効果的に用いられるので,広く顕微鏡として利用される。   The polarizer of the present invention can be widely used not only in a polarizing microscope but also in the optical element industry. On the other hand, the polarizing microscope of the present invention is used effectively as a microscope because it is effectively used for observation of biological samples.

図1は,透過軸が同心円状に設けられる偏光子における,透過軸の方向を示す図である。FIG. 1 is a diagram illustrating the direction of the transmission axis in a polarizer in which transmission axes are provided concentrically. 図2は,透過軸が1点から放射状に設けられる偏光子における,透過軸の方向を示す図である。FIG. 2 is a diagram showing the direction of the transmission axis in a polarizer in which the transmission axis is provided radially from one point. 図3に,自己クローニングフォトニック結晶による,同心円状もしくは放射状に透過軸を有する偏光子の模式図を示す。図3(a)は,透過軸が同心円状に設けられる偏光子の例を示す。図3(b)は,透過軸が1点から放射状に設けられる偏光子の例を示す。図3(c)は,透過軸が偏光子の中心から多段階の放射状に設けられる偏光子の例を示す。FIG. 3 shows a schematic diagram of a polarizer having a transmission axis in a concentric or radial manner by a self-cloning photonic crystal. FIG. 3A shows an example of a polarizer in which transmission axes are provided concentrically. FIG. 3B shows an example of a polarizer in which the transmission axis is provided radially from one point. FIG. 3C shows an example of a polarizer in which the transmission axis is provided in multiple stages radially from the center of the polarizer. 図4は,自己クローニングフォトニック結晶の例を示す図である。FIG. 4 is a diagram illustrating an example of a self-cloning photonic crystal. 図5は,ワイヤーグリッド型の偏光子の模式図である。FIG. 5 is a schematic diagram of a wire grid type polarizer. 図6に偏光顕微鏡の装置構成例を示す。FIG. 6 shows an apparatus configuration example of a polarizing microscope. 図7は,照射側偏光子と観察側偏光子の間に,水晶旋光子もしくは液晶などで構成された旋光素子を挿入した偏光顕微鏡の例を示す図である。FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or a liquid crystal is inserted between an irradiation side polarizer and an observation side polarizer. 図8は,照射側偏光子と観察側偏光子の間に,ファラデー効果を用いた旋光子(ファラデー素子)を設けた偏光顕微鏡の例を示す図である。FIG. 8 is a diagram illustrating an example of a polarization microscope in which an optical rotator (Faraday element) using a Faraday effect is provided between an irradiation side polarizer and an observation side polarizer. 図9は,試料による偏光変換が無い場合における透過率と試料の空間周波数成分との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample. 図10は,試料により偏光方位が90度変換される場合における透過率と試料の空間周波数成分との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when the polarization direction is changed by 90 degrees by the sample. 図11は,実施例1により得られた基板の概念図である。FIG. 11 is a conceptual diagram of a substrate obtained in Example 1. 図12は,オートクローニングに用いた装置の概略図と,オートクローニング法の概略図である。なお,二酸化ケイ素と酸化タンタル(Ta)を交互に製膜した。FIG. 12 is a schematic diagram of an apparatus used for autocloning and a schematic diagram of the autocloning method. Silicon dioxide and tantalum oxide (Ta 2 O 5 ) were alternately formed. 図13は,得られた偏光子の概念図を示す。FIG. 13 shows a conceptual diagram of the obtained polarizer. 図14は,得られた偏光子の図面に替わる写真を示す。FIG. 14 shows a photograph replacing the drawing of the obtained polarizer. 図15は,試作した自己クローニングフォトニック結晶偏光子の分光特性評価結果を示す図面に替わるグラフである。FIG. 15 is a graph replaced with a drawing showing the spectral characteristic evaluation results of the prototype self-cloning photonic crystal polarizer. 図16は,本発明の偏光顕微鏡で観察面に様々な形状の散乱体が配置された場合に得られる像をシミュレーションした結果を示す。図16(a)は,エッジのシャープさが同じで大きさが異なる散乱体について偏光顕微鏡で観測される像を示す図である。図16(b)は,大きさが同じでエッジのシャープさが異なる散乱体について偏光顕微鏡で観測される像を示す図である。FIG. 16 shows the result of simulating an image obtained when scatterers having various shapes are arranged on the observation surface in the polarizing microscope of the present invention. FIG. 16A is a diagram showing an image observed with a polarizing microscope for scatterers having the same edge sharpness and different sizes. FIG. 16B is a diagram showing an image observed with a polarization microscope with respect to scatterers having the same size but different edge sharpness.

符号の説明Explanation of symbols

11 偏光顕微鏡
12 ランプハウス
13 集光レンズ
14 ミラー
15 照射側偏光子
16 コンデンサレンズ
17 観察試料
18 対物レンズ
19 観察側偏光子(検光子)
20 接眼レンズ
21 ファラデー素子
22 偏光子
DESCRIPTION OF SYMBOLS 11 Polarizing microscope 12 Lamphouse 13 Condensing lens 14 Mirror 15 Irradiation side polarizer 16 Condenser lens 17 Observation sample 18 Objective lens 19 Observation side polarizer (analyzer)
20 Eyepiece 21 Faraday Element 22 Polarizer

Claims (15)

透過軸が同心円状に設けられる偏光子。   A polarizer in which transmission axes are provided concentrically. 自己クローニングフォトニック結晶により構成される請求項1に記載の偏光子。   The polarizer of Claim 1 comprised by the self-cloning photonic crystal. 透過軸が1点から放射状に設けられる偏光子。   A polarizer whose transmission axis is provided radially from one point. 自己クローニングフォトニック結晶により構成される請求項3に記載の偏光子。   The polarizer of Claim 3 comprised by the self-cloning photonic crystal. 光源と;
前記光源からの光が透過する,透過軸が光軸を中心とする同心円状に設けられる第1の偏光子と;
前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;
前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;
前記対物レンズを透過した光が透過する,透過軸が光軸を中心として放射状に設けられる第2の偏光子と;
を具備する偏光顕微鏡。
With a light source;
A first polarizer that transmits light from the light source and has a transmission axis provided concentrically around the optical axis;
An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted;
An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
A second polarizer that transmits light that has passed through the objective lens, and whose transmission axis is provided radially about the optical axis;
A polarizing microscope.
前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;
前記第1の偏光子は,
前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;
前記第2の偏光子は,
前記対物レンズの瞳位置に配置される;
請求項5に記載の偏光顕微鏡。
A condensing lens for condensing light from the light source between the light source and the first polarizer;
The first polarizer is:
Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
The second polarizer is:
Disposed at the pupil position of the objective lens;
The polarizing microscope according to claim 5.
光源と;
前記光源からの光が透過する,透過軸が光軸を中心として放射状に設けられる第1の偏光子と;
前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;
前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;
前記対物レンズを透過した光が透過する,透過軸が光軸を中心とする同心円状に設けられる第2の偏光子と;
を具備する偏光顕微鏡。
With a light source;
A first polarizer that transmits light from the light source and whose transmission axis is provided radially about the optical axis;
An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted;
An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
A second polarizer that transmits light that has passed through the objective lens and that is provided concentrically with a transmission axis centered on the optical axis;
A polarizing microscope.
前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;
前記第1の偏光子は,
前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;
前記第2の偏光子は,
前記対物レンズの瞳位置に配置される;
請求項7に記載の偏光顕微鏡。
A condensing lens for condensing light from the light source between the light source and the first polarizer;
The first polarizer is:
Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
The second polarizer is:
Disposed at the pupil position of the objective lens;
The polarizing microscope according to claim 7.
光源と;
前記光源からの光が透過する,透過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けられる第1の偏光子と;
前記第1の偏光子を透過した光が照射する試料を搭載する観察試料台と;
前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;
前記対物レンズを透過した光が透過する,偏光主軸方向を直交させる旋光子と;
前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;
を具備する偏光顕微鏡。
With a light source;
A first polarizer that transmits light from the light source, and whose transmission axis is provided radially around the optical axis or concentrically around the optical axis;
An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted;
An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
An optical rotator that transmits the light transmitted through the objective lens and that orthogonally crosses the polarization main axis direction;
A second polarizer having a transmission axis similar to that of the first polarizer, through which the light transmitted through the optical rotator is transmitted;
A polarizing microscope.
前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;
前記第1の偏光子は,
前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;
前記第2の偏光子は,
前記対物レンズの瞳位置に配置される;
請求項9に記載の偏光顕微鏡。
A condensing lens for condensing light from the light source between the light source and the first polarizer;
The first polarizer is:
Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
The second polarizer is:
Disposed at the pupil position of the objective lens;
The polarizing microscope according to claim 9.
前記第1の偏光子と前記第2の偏光子とは同一の偏光子である請求項9に記載の偏光顕微鏡。   The polarizing microscope according to claim 9, wherein the first polarizer and the second polarizer are the same polarizer. 光源と;
前記光源からの光が透過する,透過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けられる第1の偏光子と;
前記第1の偏光子を透過した光が透過する,偏光主軸方向を直交させる旋光子と;
前記旋光子を透過した光が照射する試料を搭載する観察試料台と;
前記観察試料台に搭載される試料を透過した光,又は前記観察試料台に搭載される試料から反射した光が透過する,対物レンズと;
前記旋光子を透過した光が透過する,第1の偏光子と同様の透過軸を有する第2の偏光子と;
を具備する偏光顕微鏡。
With a light source;
A first polarizer that transmits light from the light source, and whose transmission axis is provided radially around the optical axis or concentrically around the optical axis;
An optical rotator that transmits the light transmitted through the first polarizer and that orthogonally crosses the polarization main axis direction;
An observation sample stage carrying a sample irradiated with light transmitted through the optical rotator;
An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
A second polarizer having a transmission axis similar to that of the first polarizer, through which the light transmitted through the optical rotator is transmitted;
A polarizing microscope.
前記光源と前記第1の偏光子の間に,前記光源からの光を集光する集光レンズを具備し;
前記第1の偏光子は,
前記光源と前記観察試料の間であって,前記集光レンズの瞳位置に配置され;
前記第2の偏光子は,
前記対物レンズの瞳位置に配置される;
請求項12に記載の偏光顕微鏡。
A condensing lens for condensing light from the light source between the light source and the first polarizer;
The first polarizer is:
Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
The second polarizer is:
Disposed at the pupil position of the objective lens;
The polarizing microscope according to claim 12.
前記第1の偏光子と前記第2の偏光子とは同一の偏光子である請求項12に記載の偏光顕微鏡。   The polarizing microscope according to claim 12, wherein the first polarizer and the second polarizer are the same polarizer. 集光レンズの瞳位置及び対物レンズの瞳位置に,透過軸が同心円状の偏光子及び透過軸が放射状の偏光子のいずれかを具備し,微細な構造体ほど高い解像度の像が得られることを特徴とする,顕微鏡。
At the pupil position of the condenser lens and the pupil position of the objective lens, either a polarizer with a concentric transmission axis or a polarizer with a radial transmission axis is provided, and a finer structure can obtain a higher resolution image. Features a microscope.
JP2008525785A 2006-07-17 2007-07-17 Polarizer and microscope using the polarizer Active JP5021645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008525785A JP5021645B2 (en) 2006-07-17 2007-07-17 Polarizer and microscope using the polarizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006194991 2006-07-17
JP2006194991 2006-07-17
JP2008525785A JP5021645B2 (en) 2006-07-17 2007-07-17 Polarizer and microscope using the polarizer
PCT/JP2007/000767 WO2008010316A1 (en) 2006-07-17 2007-07-17 Polarizer and microscope with polarizer

Publications (2)

Publication Number Publication Date
JPWO2008010316A1 true JPWO2008010316A1 (en) 2009-12-17
JP5021645B2 JP5021645B2 (en) 2012-09-12

Family

ID=38956651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008525785A Active JP5021645B2 (en) 2006-07-17 2007-07-17 Polarizer and microscope using the polarizer

Country Status (2)

Country Link
JP (1) JP5021645B2 (en)
WO (1) WO2008010316A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508195B2 (en) * 2010-08-27 2014-05-28 浜松ホトニクス株式会社 Optical element and manufacturing method thereof
CN111474173B (en) * 2020-04-26 2022-12-16 山东省地质矿产勘查开发局第一地质大队 Method and system for determining transparent mineral protrusion grade in rock and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100732A (en) * 1985-10-29 1987-05-11 Seiko Epson Corp Liquid crystal dimmer
JP2828451B2 (en) * 1988-12-02 1998-11-25 株式会社日立製作所 Liquid crystal projector, polarizer used for the same, and polarizing microscope using the polarizer
JPH0590128A (en) * 1991-06-13 1993-04-09 Nikon Corp Aligner
JP3246615B2 (en) * 1992-07-27 2002-01-15 株式会社ニコン Illumination optical device, exposure apparatus, and exposure method
JP3288976B2 (en) * 1998-08-07 2002-06-04 彰二郎 川上 Polarizer and its manufacturing method
DE10010131A1 (en) * 2000-03-03 2001-09-06 Zeiss Carl Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
TWI395068B (en) * 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure

Also Published As

Publication number Publication date
WO2008010316A1 (en) 2008-01-24
JP5021645B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US7203001B2 (en) Optical retarders and related devices and systems
US11415725B2 (en) System, method and apparatus for polarization control
Brasselet Tunable high-resolution macroscopic self-engineered geometric phase optical elements
JP5118311B2 (en) Measuring device for phase difference and optical axis orientation
US20090122402A1 (en) Achromatic Converter Of A Spatial Distribution Of Polarization Of Light
JP5140409B2 (en) Polarimeter, measurement system
KR100723561B1 (en) Calcium Fluoride CaF2 Stress Plate and Method of Making the Same
JP2022521489A (en) High-sensitivity particle detection using spatially variable polarized rotators and polarizers
Chen et al. Calibration of polarization effect of a high-numerical-aperture objective lens with Mueller matrix polarimetry
MacNally et al. Glancing-angle-deposited silica films for ultraviolet wave plates
JP5965476B2 (en) Assembly for generation of differential interference contrast images
JP5021645B2 (en) Polarizer and microscope using the polarizer
JPWO2008105156A1 (en) Polarization imaging apparatus and differential interference microscope
US20220390656A1 (en) High-quality-factor metasurface for phase contrast imaging and spatial frequency filtering
JP2015166861A (en) Method for manufacturing optical device and optical device
US8970954B2 (en) Polarization converter of bidirectional cylindrical symmetry and cartesian-cylindrical polarization conversion method
Ishizuka et al. Linear polarization-separating metalens at long-wavelength infrared
Ingersoll et al. Optical Activity, Circular Dichroism, and Absorption of Crystalline Nickel Sulphate
JP2003240526A (en) Apparatus and method for measurement of surface
Sharma et al. Translationally invariant generation of annular beams using thin films
WO2023148493A9 (en) Nanostructured birefringent optical elements and microscopes with nanostructured birefringent optical elements
US20230187241A1 (en) Single-Material Waveplates for Pupil Polarization Filtering
JP6896262B1 (en) Reflective type polarization separation diffraction element and optical measuring device equipped with this
Ren et al. Mounting‐insensitive nonpolarizing guided‐mode resonance filters for optical communications
Ju et al. Design and Fabrication of Bilayer Wire Grid Polarizer Using Ultraviolet Replicated Nanograting against Nickel Electroformed Nanostamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250