JPH0653120A - Illuminating optic device - Google Patents

Illuminating optic device

Info

Publication number
JPH0653120A
JPH0653120A JP4219782A JP21978292A JPH0653120A JP H0653120 A JPH0653120 A JP H0653120A JP 4219782 A JP4219782 A JP 4219782A JP 21978292 A JP21978292 A JP 21978292A JP H0653120 A JPH0653120 A JP H0653120A
Authority
JP
Japan
Prior art keywords
light
illumination
inclined
optical system
direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4219782A
Other languages
Japanese (ja)
Other versions
JP3246615B2 (en
Inventor
Masato Shibuya
眞人 渋谷
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, 株式会社ニコン filed Critical Nikon Corp
Priority to JP21978292A priority Critical patent/JP3246615B2/en
Publication of JPH0653120A publication Critical patent/JPH0653120A/en
Application granted granted Critical
Publication of JP3246615B2 publication Critical patent/JP3246615B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control, in all parts of the microlithographic apparatus, e.g. pulse length control, light interruption
    • G03F7/70566Polarisation control

Abstract

PURPOSE:To improve image contrast for oblique illumination performed by a plurality of illuminating devices when a reticle pattern is a line-and-space pattern whose lengthwise direction is vertical to the incident plane of the illuminating light. CONSTITUTION:Four apertures 24a-24d of a space filter as a secondary light source forming part are covered with a polarizing plates 24A-25D and the polarizing direction of the polarizing plates 25A-25D is set in the direction of the tangential line of a circumference whose axis is an optical axis AX.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、例えば半導体素子又は液晶表示素子等を製造する際に使用される投影露光装置の照明系に適用して好適な照明光学装置に関する。 The present invention relates to relates to, for example, suitable illumination optical apparatus is applied to the illumination system of the projection exposure apparatus used in fabricating semiconductor devices or liquid crystal display devices and the like.

【0002】 [0002]

【従来の技術】半導体素子又は液晶表示素子等をフォトリソグラフィー技術を用いて製造する際に、フォトマスク又はレチクル(以下、「レチクル」と総称する)のパターンを感光基板上に転写する投影露光装置が使用されている。 BACKGROUND OF THE INVENTION Semiconductor devices or liquid crystal display element or the like in manufacturing by photolithography, a photomask or reticle (hereinafter generally referred to as "reticle") projection exposure apparatus for transferring onto the photosensitive substrate a pattern of There has been used. 斯かる投影露光装置においては、半導体素子等の高集積化に伴い、より微細なパターンを高解像度で焼き付けることが要求されている。 In such projection exposure apparatus, with higher integration of semiconductor devices, it is required to burn finer pattern with high resolution. これを実現する方法として、レチクルのパターン領域の異なる透明部からの光の干渉効果を利用する位相シフトレチクル法が特公昭6 As a method to achieve this, the phase shift reticle method Kokoku 6 utilizing an interference effect of light from different transparent portion of the pattern area of ​​the reticle
2−50811号公報に開示されている。 It disclosed in 2-50811 JP. この方法をライン・アンド・スペース像に応用すると基本的に0次回折光がなくなり、±1次回折光のみによる結像となり、 Basically, 0 there is no order diffracted light and the application of this method to the line-and-space image, become the imaging by only ± 1-order diffracted light,
同一の開口数の投影光学系でも従来のレチクルの場合よりも微細なライン・アンド・スペース像を高い解像度で焼き付けることができる。 Same in the numerical aperture of the projection optical system can burn fine line-and-space image than in conventional reticle at a high resolution.

【0003】また、より解像度を高めるための別のアプローチとして、照明光学系を工夫して、微細なパターンを高い解像度で且つ比較的深い焦点深度で焼き付ける方法が本出願人により提案されている(例えば1992年3月応用物理学関係連合講演会予稿集30−a−NA− [0003] As another approach to enhance the resolution, by devising an illumination optical system, a method of baking in and relatively deep depth of focus with high resolution fine patterns it has been proposed by the present applicant ( For example, March 1992 applied physics and related Union Lecture Proceedings 30-a-NA-
3,4参照)。 3,4 see). 以下ではその方法を「複数傾斜照明法」 The Hereinafter method "multiple-axis illumination"
と呼び、図8を参照してその方法につき説明する。 A call, with reference to FIG. 8 will be described the method. 先ず図8(a)は複数傾斜照明法を適用した照明光学系における2次光源部等の等価光源部10を示し、この図8 First, FIG. 8 (a) shows the secondary light source unit such as an equivalent light source 10 of the illumination optical system according to the plurality axis illumination, FIG. 8
(a)において、直交座標系を形成するx軸及びy軸に対してそれぞれ45°で交差する軸x′及びこの軸x′ (A) in the axial x intersect at 45 °, respectively with respect to x-axis and y-axis to form an orthogonal coordinate system 'and the axis x'
とy軸に関して対称な軸に沿って4個の小光源11A〜 Along the symmetrical axis with respect to y-axis and four small light source 11A~
11Dが配置されている。 11D is located. この小光源11A〜11Dの配列は、転写対象とするレチクルのパターンが主にx軸に平行な長いエッジ又はy軸に平行な長いエッジを有するライン・アンド・スペースパターンの場合に適している。 The sequence of this small light sources 11A~11D is suitable for the case of a line-and-space pattern having a long edge parallel to the pattern mainly long edge or y-axis parallel to the x-axis of the reticle to transfer object.

【0004】図8(b)はその図8(a)の等価光源部10を光源とする投影露光装置の概略構成を示し、この図8(b)において、等価光源部10の小光源11Aからの照明光の主光線15Aが図示省略したコンデンサーレンズ系を介してレチクル12に光軸AXに対して斜めに照射される。 [0004] FIG. 8 (b) shows a schematic configuration of a projection exposure apparatus whose light source equivalent source unit 10 of the FIG. 8 (a), the in this FIG. 8 (b), the a small light sources 11A equivalent light source unit 10 principal ray 15A of the illumination light is irradiated obliquely to the optical axis AX on the reticle 12 via the condenser lens system is not shown in. 等価光源部10は投影光学系13の瞳面(入射瞳面)10Aと共役であり、この瞳面には開口絞り13aが設けられている。 Equivalent source unit 10 is a pupil plane (plane entrance pupil) 10A and conjugate of the projection optical system 13, and the aperture stop 13a is provided on the pupil plane. そのレチクル12からは0 0 from the reticle 12
次回折光(これも符号15Aで表す)及び1次回折光1 Order diffracted light (which is also represented by reference numeral 15A) and first-order diffracted light 1
6Aが光軸AXに対してほぼ対称に射出され、これら0 6A is injected substantially symmetrically with respect to the optical axis AX, these 0
次回折光15A及び1次回折光16Aは投影光学系13 Next diffracted light 15A and the first-order diffracted light 16A projection optical system 13
を経てをほぼ同一の入射角θで感光基板としてのウエハ14に入射する。 Through the incident on the wafer 14 as a photosensitive substrate at substantially the same angle of incidence θ and. この場合、0次回折光15Aと1次回折光とが光軸AX対して対称に瞳の周縁近くを通過するため、投影光学系13の性能限界までの解像度が得られる。 In this case, 0-order diffracted light 15A and the first-order diffracted light to pass near the periphery of the pupil symmetrically against optical axis AX, resolution up performance limit of the projection optical system 13 is obtained.

【0005】また、従来のように0次回折光がウエハ1 [0005] In addition, as in the conventional zero-order diffracted light is wafer 1
4に垂直に入射する方式では、ウエハ14のデフォーカス量に対する0次回折光の波面収差と他の回折光の波面収差とが大きく異なることから、焦点深度が浅くなっている。 The method incident perpendicularly to 4, since the wavefront aberration of the zero-order diffracted light with respect to the defocus amount of the wafer 14 and the wavefront aberration of the other diffraction light are greatly different, the depth of focus becomes shallow. これに対して、図8(b)の構成では、0次回折光と1次回折光とが等しい入射角でウエハ14に入射するため、ウエハ14が投影光学系13の焦点位置の前後にあるときの0次回折光と1次回折光との波面収差は相等しく、焦点深度が深くなっている。 In contrast, in the configuration of FIG. 8 (b), 0 to incident on the wafer 14 in order diffracted light and the first incident angle and the diffracted light are equal, when the wafer 14 before and after the focal position of the projection optical system 13 0 wavefront aberration of the diffracted light and 1-order diffracted light is equal to one another, the focal depth becomes deeper.

【0006】 [0006]

【発明が解決しようとする課題】その複数傾斜照明法では、x軸方向又はy軸方向のライン・アンド・スペースパターン8であれば有効である。 [Problems that the Invention is to Solve In the plural-axis illumination, it is effective if a line-and-space pattern 8 in the x-axis direction or y-axis direction. これに対して、図9に示すように、長いエッジがx軸又はy軸に対して45゜の方向のライン・アンド・スペースパターン9の場合は、10Aが投影光学系の瞳であるとすると、図8 In contrast, as shown in FIG. 9, when the long edges of the x-axis or y-axis relative to the 45 ° direction of the line-and-space pattern 9 and 10A is that the pupil of the projection optical system , Figure 8
(a)の4つの小光源11A〜11Dのうちの2つの小光源11B及び11Dからの回折光は、0次回折光15 Diffracted light from the four two small light sources 11B and 11D of the small light sources 11A~11D of (a) is zero-order diffracted light 15
B及び15Dのみが投影レンズの瞳10Aを通過し、± Only B and 15D passes through the pupil 10A of the projection lens, ±
1次回折光16B及び16Dは瞳10Aを通過しないため、ウエハ14上でパターンを形成することはなく、単にウエハ14を一様に照明することになる。 1 for order diffracted light 16B and 16D does not pass through the pupil 10A, rather than forming a pattern on the wafer 14 simply will uniformly illuminate the wafer 14. その結果、 as a result,
ウエハ14上でのパターンのコントラストが低下することとなる。 Contrast pattern on the wafer 14 is lowered.

【0007】このことを簡単な数値計算で示す。 [0007] This is illustrated by a simple numerical calculation. 0次回折光の強さに対する±1次回折光の強さをaとし、各小光源11A〜11Dは点光源とみなす。 0 the intensity of the ± 1-order diffracted light with respect to the intensity of the diffracted light is a, the small light source 11A~11D is regarded as a point light source. このとき、y軸方向に長いライン・アンド・スペースパターンの場合のx軸上の像強度分布I(x)は各小光源による像強度分布の和として次のようになる。 At this time, the image intensity on the x-axis distribution in the case of a long line and space pattern in the y-axis direction I (x) is as follows as the sum of the image intensity distribution by each small light source.

【数1】 I(x)=4{1+a 2 +2a・cos[(4π/λ)(sinθ)x]} [Number 1] I (x) = 4 {1 + a 2 + 2a · cos [(4π / λ) (sinθ) x]}

【0008】ここで、入射角θは、図8(b)に示すように、0次回折光又は±1次回折光が光軸AXとなす角である。 [0008] Here, the incident angle theta, as shown in FIG. 8 (b), 0-order diffracted light or ± 1-order diffracted light is the optical axis AX and angle. これに対して、x軸又はy軸に45゜で交差する方向に長いライン・アンド・スペースパターンの場合に、45゜方向の座標軸をx′軸とすると、強度分布I In contrast, in the case of a long line and space pattern in a direction intersecting 45 ° to the x-axis or y-axis, when the 45 ° direction of the coordinate axes and x 'axis, the intensity distribution I
(x′)は次のようになる。 (X ') is as follows.

【数2】 I(x′)=2{1+a 2 +2a・cos[(4π/λ)(sinθ)x]} +2{1} =4{1+(a 2 /2)+a・cos[(4π/λ)(sinθ)x]} [Number 2] I (x ') = 2 { 1 + a 2 + 2a · cos [(4π / λ) (sinθ) x]} +2 {1} = 4 {1+ (a 2/2) + a · cos [(4π / λ) (sinθ) x]}

【0009】(数1)及び(数2)から各々の強度分布のコントラストCx及びCx′を求めると、次のようになる。 [0009] Request (number 1) and contrast Cx and Cx of each intensity distribution from equation (2) ', as follows.

【数3】 Cx=2a/(1+a 2 ),Cx′=a/(1+a 2 /2 ) [Number 3] Cx = 2a / (1 + a 2), Cx '= a / (1 + a 2/2)

【0010】この場合、次式が成立する。 [0010] In this case, the following equation is established. Cx−Cx′=a/{(1+a 2 )(1+a 2 /2)}>0 従って、次式が成立する。 Cx-Cx '= a / { (1 + a 2) (1 + a 2/2)}> 0 Therefore, the following equation is established.

【数4】Cx>Cx′ [Number 4] Cx> Cx '

【0011】従って、x軸に45゜で交差する方向に長いパターンのコントラストの低下が示される。 Accordingly, reduction in the contrast of a long pattern in a direction 45 ° intersects the x-axis is shown. 例えばラインとスペースとの幅が等しい場合には、±1次回折光の強さaは2/πとなるので、次式のようになる。 For example, when the width of the lines and spaces are equal, because the strength a of ± 1-order diffracted light becomes 2 / [pi, expressed by the following equation. Cx=0.906,Cx′=0.529 Cx = 0.906, Cx '= 0.529

【0012】なお、上述の説明では複数傾斜照明法の場合を例として説明したが、例えば輪帯照明法等を使用した場合でも、像のコントラストをより改善することが望まれている。 [0012] Although in the above description has described the case of a multiple-axis illumination as an example, for example, even when using the annular illumination method, it is desired to improve further the contrast of the image. 本発明は斯かる点に鑑み、光軸に対して傾斜した照明光を積極的に利用してレチクル等を照明する照明光学装置において、そのレチクル等のパターンがその照明光の入射面に垂直な方向を長手方向とするライン・アンド・スペースパターンであるような場合に、投影光学系でそのレチクル等のパターンを投影したときに照明光学装置側の工夫でその像のコントラストを改善できるようにすることを目的とする。 The present invention has been made in view of the points mow 斯, in the illumination optical apparatus of the illumination light inclined with respect to the optical axis by positively utilizing illuminates the reticle or the like, the pattern of the reticle or the like is perpendicular to the plane of incidence of the illumination light when the direction that the is line-and-space pattern whose longitudinal direction, to be able to improve the contrast of the image in devising the illumination optical apparatus when projected the pattern of the reticle such as in the projection optical system and an object thereof.

【0013】 [0013]

【課題を解決するための手段】本発明による第1の照明光学装置は、例えば図3に示すように、照明光学系からの照明光によって物体(12)上の所定領域を均一に照明する照明光学装置において、その照明光学系は、その所定領域を斜め方向から照明する傾斜光(27B,27 First illumination optical apparatus according to the present invention SUMMARY OF THE INVENTION may, for example, as shown in FIG. 3, the illumination to uniformly illuminate a predetermined region on the object (12) with illumination light from the illumination optical system in the optical device, the illumination optical system is inclined light illuminating the predetermined area from the oblique direction (27B, 27
C)を形成する傾斜光形成手段(24)と、この傾斜光を変換して、その所定領域を傾斜照明するその傾斜光の入射面に対し直交した方向に直線偏光する照明光を形成する偏光手段(25B,25C)とを有するものである。 An inclined beam forming means for forming a C) (24), converts the inclined light, polarized light forming illumination light to linearly polarized in the direction orthogonal to the incident surface of the inclined light which is inclined illuminate the predetermined area and it has a means (25B, 25C).

【0014】また、第2の照明光学装置は、例えば図3 Further, the second illumination optical system, for example, FIG. 3
に示すように、照明光を供給する光源(20)とこの照明光で物体(12)上の所定領域を均一に照明する集光光学系(26)とを有する照明光学装置において、その照明光によってその集光光学系の光軸に対し偏心した2 As shown, in the illumination optical system having a light source for supplying illumination light (20) condensing optical system to uniformly illuminate a predetermined region on the object (12) with illumination light of Toko (26), the illumination light 2 which is eccentric with respect to the optical axis of the condensing optical system by
次光源を形成してその所定領域を斜め方向から照明する傾斜光形成手段(24)をその光源(20)とその集光光学系(26)との間に配置し、この傾斜光を変換して、その所定領域を傾斜照明する傾斜光の入射面に対し直交した方向に直線偏光する照明光を形成する偏光手段(25B,25C)をその傾斜光形成手段(24)とその集光光学系(26)との間に配置したものである。 To form a next light source is disposed between the inclined beam forming means for illuminating the predetermined area from the oblique direction (24) and its source (20) and its condensing optical system (26), it converts the inclined light Te, polarizing means (25B, 25C) to form the illumination light linearly polarized in orthogonal directions with respect to the incident surface of the inclined light which is inclined illuminate the predetermined area thereof inclined light forming means (24) thereof converging optical system in which it disposed between the (26).

【0015】 [0015]

【作用】以下、本発明の原理につき偏心した4個の小光源からの照明光で物体を照明する複数傾斜照明法を例にとって説明する。 [Action] will be explained as an example a plurality oblique illumination method for illuminating an object with illumination light from four small light sources eccentric per the principles of the present invention. 先ず、本発明の第1の照明光学装置によれば、例えば図3に示すように、物体(12)の所定領域を斜め方向から照明する傾斜光(27B,27C) First, according to the first illumination optical apparatus of the present invention, for example as shown in FIG. 3, inclined light illuminating a predetermined region of the object (12) from an oblique direction (27B, 27C)
が形成され、これら傾斜光(27B,27C)はそれぞれ物体(12)に対する入射面(紙面)に垂直な方向に直線偏光(入射面に垂直な方向に電気ベクトルが振動) There is formed, the inclined light (27B, 27C) is (electric vector vibrates in the direction perpendicular to the plane of incidence) the incident plane linearly polarized light in a direction perpendicular to the (paper) relative to the object (12), respectively
している。 doing. なお、直線偏光とは、光波の電気ベクトルの振動方向が一平面内にある状態を意味し、電気ベクトルの振動方向を直線偏光の方向と定義する。 Note that the linearly polarized light means a state in which the vibration direction of the electric vector of the light wave is in a plane, to define the vibration direction of electric vector to the direction of the linearly polarized light. また、入射面とは、光が媒質の境界面に達した時に、その点での面の法線と光の入射方向とを含む面の事と定義する。 Further, the incident surface, when the light reaches the boundary surface of the medium, is defined as that of the plane including the incident direction of the normal to the optical surface at that point. その図3の照明光学装置を簡略化すると図1のようになる。 When simplifying the illumination optical apparatus of FIG. 3 is shown in Figure 1.

【0016】図1(a)は図3の照明光学装置の2次光源部等の等価光源部10を示し、この図1(a)において、直交座標系を形成するx軸及びy軸に対してそれぞれ45°で交差する軸x′及びこの軸x′とy軸に関して対称な軸に沿って4個の小光源11A〜11Dが配置されている。 [0016] FIG. 1 (a) shows an equivalent light source unit 10 of the secondary light source unit and the like of the illumination optical apparatus of FIG. 3, in this FIG. 1 (a), with respect to x-axis and y-axis to form an orthogonal coordinate system It is arranged four small light source 11A~11D along a symmetrical axis with respect to the y-axis with the axis x 'and the axis x' intersect at 45 °, respectively Te.

【0017】図1(b)はその図3の照明光学装置を用いた投影露光装置の概略構成を示し、この図1(b)において、等価光源部10は図1(a)の等価光源部と等しい。 [0017] FIG. 1 (b) shows a schematic configuration of a projection exposure apparatus using the illumination optical apparatus of the FIG. 3, the equivalent source part of in the FIG. 1 (b), the equivalent source unit 10 FIGS. 1 (a) When equal. その等価光源部10の小光源11Aからの露光光の主光線15Aが図示省略したコンデンサーレンズ系を介してレチクル12に光軸AXに対して斜めに照射される。 Its principal ray 15A of the exposure light from a small light source 11A equivalent light source unit 10 is irradiated obliquely to the optical axis AX on the reticle 12 via the condenser lens system (not shown). その主光線15Aが図3の傾斜光(27B,27 Its principal ray 15A is inclined light of FIG. 3 (27B, 27
C)に対応する。 Corresponding to C). その主光線15Aの入射面は図1 Entrance face of the principal ray 15A Figure 1
(b)の紙面に平行であるため、本発明によれば、その主光線15Aは図1(b)の紙面に垂直な方向に直線偏光(紙面に垂直な方向に電気ベクトルが振動)してレチクル12に入射する。 Because it is parallel to the plane of (b), according to the present invention, the principal ray 15A is the plane (electric vector in a direction perpendicular to the paper surface vibration) linearly polarized in a direction perpendicular to the shown in FIG. 1 (b) to incident on the reticle 12. 同様に、図1(a)において、各小光源11B〜11Dからの光は、図1(a)の矢印の方向即ち、レチクル12に対する入射面に垂直な方向に直線偏光して図1(b)のレチクル12に入射する。 Similarly, in FIG. 1 (a), the light from a small light source 11B to 11D, i.e., the direction of the arrow in FIG. 1 (a), linearly polarized in a direction perpendicular to the plane of incidence with respect to the reticle 12 FIG 1 (b ) incident on the reticle 12.

【0018】また、レチクル12からの0次回折光(これをも符号15Aで表す)及び1次回折光16Aは投影光学系13を経てウエハ14上に入射する。 Further, 0-order diffracted light (represented by reference numeral 15A also this) and first-order diffracted light 16A from the reticle 12 is incident on the wafer 14 via the projection optical system 13. 先ず、そのレチクル12に形成されたパターンが、従来例に好適なパターンである図1(a)のx軸又はy軸に平行な方向に長いライン・アンド・スペースパターンであるとすると、そのパターンによりx方向又はy方向に回折された照明光は、偏光方向がそのパターンに対して45゜方向であるので、ランダム偏光と同じ結像状況である。 First, when the pattern formed on the reticle 12, and a long line-and-space pattern in a direction parallel to the x-axis or y-axis shown in FIG. 1 (a) is a suitable pattern to the conventional example, the pattern illumination light diffracted in the x direction or y direction by, since the polarization direction is 45 ° direction with respect to the pattern, the same imaging conditions as the random polarized light. 従って、コントラストは従来例と同様である。 Therefore, the contrast is the same as the conventional example.

【0019】これに対して、そのレチクル12に形成されたパターンが、図1(a)のx′軸に垂直な方向に長いライン・アンド・スペースパターン9であるとすると、小光源11Aからの照明光15Aの1次回折光が投影光学系13の瞳内に入ることになる。 [0019] In contrast, the pattern formed on the reticle 12 is, when a long line-and-space pattern 9 in a direction perpendicular to the x 'axis of FIG. 1 (a), from a small light source 11A 1-order diffracted light of the illumination light 15A is to fall within the pupil of the projection optical system 13. 尚、図1(b) Incidentally, and FIG. 1 (b)
ではx′軸は紙面と平行になっている。 In x 'axis is parallel to the paper surface. ここで、図1 Here, FIG. 1
(b)に示すように、その照明光15Aの0次回折光1 As shown in (b), 0-order diffracted light of the illumination light 15A 1
5A及び1次回折光15Bは共に偏光方向(電気ベクトルの振動する方向)がウエハ14の表面で平行なS偏光(図1(b)の紙面に垂直な方向に電気ベクトルが振動する光)である。 5A and first-order diffracted light 15B is the both polarization directions (vibration directions of the electric vector) surface in parallel with the S-polarized light of the wafer 14 (light electric vector in a direction perpendicular to the paper surface in FIG. 1 (b) to vibrate) . 従って、ウエハ14上における干渉効果がランダム偏光のときよりも大きくなり、高コントラストの像が作られる。 Thus, interference effects on the wafer 14 is larger than when randomly polarized light, an image of high contrast is created. このため、図9を用いて説明したようにx′方向に回折された場合に、回折光の一部が瞳外に出てしまうことによりコントラストが低下するという従来の不都合が補われることになる。 Therefore, so that when it is diffracted in the x 'direction as described with reference to FIG. 9, the conventional disadvantage that the contrast is lowered by some of the diffracted light would go out pupil is compensated .

【0020】ここで、偏光方向による強度分布の差を簡単に以下に述べる。 [0020] Here, briefly described below the difference in intensity distribution by the polarization direction. 図2では、像面、即ちウエハ14の表面付近の様子をP偏光(電気ベクトルの振動方向が入射面内にある光)とS偏光(電気ベクトルの振動方向が入射面と垂直な光)を用いて示してある。 In Figure 2, the image surface, i.e., a state near the surface of the wafer 14 P-polarized light (oscillation direction of the electric vector is in the plane of incidence light) and S-polarized light (vibration directions incident surface of an electric vector perpendicular to the light) used is shown in. 0次回折光1 0-order diffracted light 1
5A及び1次回折光16Aの入射角をそれぞれθ 0及びθ 1とすると、S偏光の場合の像面上の強度分布Is 5A and 1 when respectively theta 0 and theta 1 the incident angle of the diffracted light 16A, S-polarized light intensity distribution on the image plane when Is
(x)は振幅分布Us(x)を用いて次のように簡単に示される。 (X) it is shown briefly in the following manner using the amplitude distribution Us (x).

【数5】 Is(x)=|Us(x)| 2 , Vs(x)=a 0・exp〔−i(2π/λ)(sinθ 0 )x〕 +a 1・exp〔−i(2π/λ)(sinθ 1 )x〕 [Number 5] Is (x) = | Us ( x) | 2, Vs (x) = a 0 · exp [-i (2π / λ) (sinθ 0) x ] + a 1 · exp [-i (2π / λ) (sinθ 1) x]

【0021】従って、強度分布Is(x)は次のようになる。 [0021] Thus, the intensity distribution Is (x) is as follows.

【数6】 Is(x)=a 0 2 +a 1 2 +2a 01・cos〔(2π/λ)(sinθ 0 −sinθ 1 )x〕 ここで、係数a 0及びa 1はそれぞれ0次回折光及び1 [6] Is (x) = a 0 2 + a 1 2 + 2a 0 a 1 · cos [(2π / λ) (sinθ 0 -sinθ 1) x ], where the coefficients a 0 and a 1, respectively 0-order diffracted light and 1
次回折光の強さ(振幅)である。 A-order diffracted light of the strength (amplitude). x′方向にピッチを持つライン・アンド・スペースパターンの場合、4つの小光源の内、2つは0次回折光しか投影光学系13を通過しないのでS偏光のコントラストCsは次のようになる。 For line and space pattern having a pitch in the x 'direction, of the four small light sources, only two 0-order diffracted light contrast Cs of S-polarized light does not pass through the projection optical system 13 is as follows.

【数7】Cs=2a 01 /(2a 0 2 +a 1 2 [Equation 7] Cs = 2a 0 a 1 / ( 2a 0 2 + a 1 2)

【0022】一方、P偏光の場合は、偏光のx成分と、 On the other hand, in the case of P-polarized light, and the x component of the polarization,
z成分とを考えなくてはいけない。 I do not not think the z component. P偏光の場合の像面上の振幅分布Up(x)をベクトルで表して、x成分とz成分とを示すと次式が得られる。 Represents P amplitude distribution on the image plane when the polarization Up (x) is a vector, the following equation when showing the x component and the z component is obtained.

【数8】 Up(x)=(a 0・exp 〔−i(2π/λ)(sin θ 0 )x〕・cos θ 0 +a 1・exp 〔−i(2π/λ)(sin θ 1 )x〕・cos θ 1 , a 0・exp 〔−i(2π/λ)(sin θ 0 )x〕・sin θ 0 +a 1・exp 〔−i(2π/λ)(sin θ 1 )x〕・sin θ 1 [Equation 8] Up (x) = (a 0 · exp [-i (2π / λ) (sin θ 0) x ] · cos θ 0 + a 1 · exp [-i (2π / λ) (sin θ 1) x] · cos θ 1, a 0 · exp [-i (2π / λ) (sin θ 0) x ] · sin θ 0 + a 1 · exp [-i (2π / λ) (sin θ 1) x ] - sin θ 1)

【0023】従って、P偏光の場合の像面上の強度分布Ip(x)は次のようになる。 [0023] Thus, the intensity distribution on the image plane in the case of the P-polarized light Ip (x) is as follows.

【数9】 Ip(x)=|Up(x)| 2 =a 0 2 +a 1 2 +2a 01 ×(cosθ 0 cosθ 1 +sinθ 0 sinθ 1 ) ×cos〔(2π/λ)(sinθ 0 −sinθ 1 )x〕 Equation 9] Ip (x) = | Up ( x) | 2 = a 0 2 + a 1 2 + 2a 0 a 1 × (cosθ 0 cosθ 1 + sinθ 0 sinθ 1) × cos [(2π / λ) (sinθ 0 - sinθ 1) x]

【0024】従って、P偏光の場合のコントラストCp [0024] Therefore, in the case of P polarization contrast Cp
は次のようになる。 It is as follows.

【数10】 Cp=2a 01 cos(θ 0 −θ 1 )/(2a 0 2 +a 1 2 ) (数7)と(数10)とを比較して、P偏光の場合は、 Equation 10] Compared Cp = 2a 0 a 1 cos ( θ 0 -θ 1) / (2a 0 2 + a 1 2) and (7) and (Equation 10), in the case of P-polarized light,
コントラストがcos(θ 0 −θ 1 )倍となることが分かる。 Contrast cos (θ 01) times become can be seen. 例えば、sinθ 0 =0.4、sinθ 1 =− For example, sinθ 0 = 0.4, sinθ 1 = -
0.4の場合を考えると、cos(θ 0 −θ 1 )=0. Considering the case of 0.4, cos (θ 0 -θ 1 ) = 0.
68となり、P偏光の場合とS偏光の場合とでは大きな差がつく。 Next 68, get a big difference between cases of P polarized light and S-polarized light. ランダム偏光は、P偏光とS偏光との平均と考えられるので、コントラストは(1/2)(1+0. Random polarized, it is considered that the average of the P polarized light and S-polarized light, the contrast (1/2) (1 + 0.
68)=0.84である。 68) = 0.84.

【0025】このように、S偏光とすることにより、コントラストに大きな差が生じる。 [0025] Thus, by the S-polarized light, it caused a large difference in contrast. 即ち、図1(a)のような偏光状態の照明光を使用すると、x軸及びy軸に対して45゜で交差する方向にエッジが平行なライン・アンド・スペースパターンに対して、従来よりも2割程度のコントラストの増加が見込まれ、微細パターンに有効であることが分かる。 That is, with respect to the polarization by using the illuminating light of the state, x-axis and the direction parallel edges to a line-and-space pattern crossing 45 ° relative to the y-axis as in FIG. 1 (a), conventionally an increase of about 20% of the contrast is expected, it is understood that the effective fine pattern.

【0026】なお、これまでは複数傾斜照明法を例にとって説明したが、本発明を例えば輪帯照明法に適用すると、例えば図7(a)に示すように、等価光源部10の輪帯状の光源からの光をそれぞれ入射面に垂直な方向、 [0026] Incidentally, heretofore it has been described several axis illumination of an example, by applying the present invention, for example, in annular illumination method, as shown in FIG. 7 (a), of the annular equivalent light source unit 10 the direction perpendicular to the respective incident surface of light from a light source,
即ち光軸を中心とした円の接線方向に直線偏光する光に変換すればよい。 That in the tangential direction of a circle centering on the optical axis may be converted to linearly polarized light.

【0027】次に、本発明の第2の照明光学装置によれば、例えば図3に示すように、傾斜光を形成するのに、 Next, according to the second illumination optical apparatus of the present invention, for example as shown in FIG. 3, to form the inclined light,
光源からの照明光により偏心した2次光源が形成されている。 Secondary light source that is eccentric by illumination light from the light source is formed. その2次光源を例えば図1(a)の等価光源10 Equivalent source 10 of the secondary light source for example FIGS. 1 (a)
とみなせば、上述の説明はそのまま本発明にも適用される。 It is regarded as, the above description also applies directly to the present invention.

【0028】 [0028]

【実施例】以下、本発明による照明光学装置を備えた投影露光装置の第1実施例につき図3及び図4を参照して説明する。 EXAMPLES The following will be described with reference to attached FIGS. 3 and 4 in the first embodiment of the projection exposure apparatus having an illumination optical system according to the present invention. 本例は投影露光装置の照明光学系に本発明を適用したものである。 This example is an application of the present invention to the illumination optical system of the projection exposure apparatus. 図3は本実施例の投影露光装置の照明光学系を示し、この図3において、水銀ランプよりなる光源20からの照明光が楕円鏡21で集光され、この集光された照明光がコリメータレンズ22を介してフライアイレンズ23(オプティカルインテグレータ)に入射する。 Figure 3 shows an illumination optical system of the projection exposure apparatus of this embodiment, in FIG. 3, the illumination light from the light source 20 of a mercury lamp is collected by the ellipsoidal mirror 21, the focused illumination light collimator through the lens 22 is incident on the fly eye lens 23 (optical integrator). フライアイレンズ23の射出側(レチクル側)の焦点面には面状の2次光源が形成される。 The focal plane of the exit side (reticle side) of the fly-eye lens 23 surface of the secondary light source is formed.

【0029】フライアイレンズ23の射出端付近に光軸AXに対して偏心した4個の開口が形成された空間フィルター24を設ける。 [0029] providing a spatial filter 24 four openings eccentrically with respect to the optical axis AX is formed in the vicinity of the exit end of the fly's eye lens 23. また、この空間フィルター24の4個の開口のレチクル側(又は光源20側でもよい)にそれぞれ偏光板25A〜25Dを被着する。 Further, depositing polarizing plates 25A~25D the reticle side of the four openings of the spatial filter 24 (or in the light source 20 side). 但し、図3 However, as shown in FIG. 3
では偏光板25B及び25Cのみが現れている。 In only a polarizing plate 25B and 25C has appeared. 図4 Figure 4
(a)は図3の空間フィルター24をレチクル側から見た正面図、図4(b)は図4(a)のAA線に沿う断面図であり、これら図4(a)及び(b)に示すように、 (A) is a front view of the spatial filter 24 as viewed from the reticle side of FIG. 3 is a sectional view taken along the AA line in FIG. 4 (b) FIG. 4 (a), the these FIGS. 4 (a) and (b) as shown in,
空間フィルター24には光軸AXを中心として、90° Around the optical axis AX in the spatial filter 24, 90 °
間隔で4個の開口24a〜24dが形成され、これら開口がそれぞれ偏光板25A〜25Dで覆われている。 Four openings 24a~24d are formed at intervals, these openings are covered with polarizing plates 25A to 25D. また、それら偏光板25A〜25Dの偏光方向はそれぞれ矢印で示すように、光軸AXを中心とした円周の接線方向に設定されている。 The polarization directions of the polarizing plate 25A~25D, as shown by arrows, respectively, are set in the tangential direction of the circumference around the optical axis AX. 従って、その空間フィルター24 Thus, the spatial filter 24
の開口24a〜24dから射出される照明光は、それぞれ光軸AXを中心とした円周の接線方向にほぼ平行な方向に直線偏光している。 Illumination light emitted from the aperture 24a~24d of is linearly polarized in a direction substantially parallel to the tangential direction of the circumference around the optical axis AX respectively.

【0030】図3に戻り、空間フィルター24により光軸AXに対して偏心した4個の2次光源が形成される。 [0030] Returning to FIG. 3, four secondary light sources which is eccentric with respect to the optical axis AX by a spatial filter 24 is formed.
それら4個の2次光源から射出された照明光はそれぞれ偏光板25A〜25Dを通過した後に、コンデンサーレンズ系26を経てレチクル12に入射する。 After their four illumination light emitted from the secondary light source which has passed through the polarizing plates 25A to 25D, it is incident on the reticle 12 through the condenser lens system 26. 尚、コンデンサーレンズ系26の前側焦点(光源側焦点)位置には、空間フィルター24(偏光板25A〜25D)が設けられており、レチクル12のパターン形成面はコンデンサーレンズ系26に関して空間フィルター24の配置面とフーリエ変換の関係にある。 Note that the condenser lens system 26 at the front focal (light source side focal) position, is provided with the spatial filter 24 (the polarizing plate 25A to 25D), the pattern formation surface of the reticle 12 are spatial filter 24 with respect to the condenser lens system 26 the relationship of the arrangement surface and the Fourier transform. この場合、例えば空間フィルター24の開口24b及び24cから射出された主光線27B及び27Cはコンデンサーレンズ系26を経てそれぞれレチクル12上に光軸AXに対して斜めに入射する。 In this case, for example, the principal ray 27B and 27C emitted from the opening 24b and 24c of the spatial filter 24 is incident obliquely to the optical axis AX on the respective reticle 12 through the condenser lens system 26. また、これら主光線27B及び27Cはそれぞれレチクル12に対する入射面(紙面方向)に対して垂直な方向に直線偏光している。 Also, it is linearly polarized in a direction perpendicular to the plane of incidence (the plane direction) with respect to each of these principal rays 27B and 27C reticle 12.

【0031】このような照明光学系を使用すると、本発明の原理説明で説明したように、例えばレチクル12上に図4(a)の開口24aと24cとを結ぶ直線に対して平行又は垂直な方向に長いエッジを有するライン・アンド・スペースパターンが形成されている場合に、従来よりも良好なコントラストのもとでそのパターンを投影光学系13を通してウエハ14上に投影することができる。 [0031] The use of such an illumination optical system, as described in the principle the description of the present invention, parallel to or perpendicular to a straight line connecting the opening 24a and 24c of FIGS. 4 (a), for example, the reticle 12 on If the line-and-space pattern having a longer edge direction is formed, it is possible to project the pattern on the wafer 14 through the projection optical system 13 than the conventional under good contrast. ここで、図3の装置では、フライアイレンズ23の入射側面と物体面(レチクル12又はウエハ14)とが共役に構成されており、フライアイレンズ23の射出側面(2次光源10)と投影光学系13の瞳面10Aとが共役に構成されている。 Here, in the apparatus of FIG. 3, the incident side surface and the object plane of the fly's eye lens 23 and (reticle 12 or wafer 14) is configured to conjugate the exit side (secondary light source 10) of the fly-eye lens 23 and the projection a pupil plane 10A of the optical system 13 is constituted in a conjugate. なお、図3の構成の他に、フライアイレンズ23と空間フィルター24との間に別の大きな偏光板を配置し、空間フィルター24の4個の開口24a〜24dの一部又は全部に1/2波長板を配置して、各1/2波長板の回転角を調整するようにしてもよい。 In addition to the configuration of FIG. 3, to place another large polarizing plate between the fly-eye lens 23 and the spatial filter 24, a part or all of the four openings 24a~24d spatial filter 24 1 / by placing a half-wave plate, may be adjusted a rotation angle of the half-wave plate. これによっても、図4(a)に示すような、光軸A This also shown in FIG. 4 (a), the optical axis A
Xを中心とする円周の接線方向に偏光した照明光が得られる。 Illumination light polarized in the tangential direction of the circumference around the X is obtained. この場合、別の大きな偏光板の偏光方向によつては、1/2波長板は空間フィルター24のすべての開口に設ける必要はない。 In this case, connexion by the polarization direction of another large polarizing plate is 1/2-wavelength plate is not necessary to provide all of the opening of the spatial filter 24.

【0032】更に、例えば光源として直線偏光のレーザービームが射出されるようなレーザー光源を使用することにより、等価光源となる図3の空間フィルター24の全体を直線偏光の照明光で照明する場合には、空間フィルター24の4個の開口24a〜24dの一部または全部に適当な回転方向の1/2波長板を設けるだけでよい。 Furthermore, for example, by a laser beam of linearly polarized light using a laser light source such as it is emitted as a light source, in the case of illuminating the entire spatial filter 24 of FIG. 3 to be equivalent to a light source with illumination light of linear polarization It need only provide four half-wave plate of a suitable direction of rotation to a part or the whole of the opening 24a~24d of the spatial filter 24. この場合、一部の開口に1/2波長板を設けるだけでもよいが、全部の開口に1/2波長板を設けるほうが照明のバラツキを低減する上で効果がある。 In this case, may only provide a half-wave plate in a part of the opening, it is effective in terms of better to provide a half-wave plate to the entire opening to reduce variations in illumination. このように1/2波長板を使用して偏光方向を調整した場合には、 When adjusting the polarization direction thus using half-wave plate,
照明光の損失がないので照明効率が良い。 Since there is no loss of the illumination light illuminating efficiency.

【0033】また、全体として円偏光の照明光を発生する装置を用いて、等価光源となる図3の空間フィルター24を照明する場合には、空間フィルター24の各開口に適当な回転方向の1/4波長板を設けることがよい。 Further, a device for generating an illumination light circularly polarized light as a whole, in the case of illuminating the spatial filter 24 of FIG. 3 to be equivalent light source, the appropriate rotational direction to each opening of the spatial filter 24 1 / 4 it is possible to provide a wavelength plate.

【0034】次に、本発明の第2実施例につき図5を参照して説明する。 Next, it will be described with reference to Figure 5 per second embodiment of the present invention. 図5は本例の投影露光装置を示し、この図5において、光源20からの照明光は楕円鏡21、 Figure 5 shows a projection exposure apparatus of this embodiment, in FIG. 5, the illumination light from the light source 20 is ellipsoidal mirror 21,
折り曲げミラー28及びインプットレンズ29を経てほぼ平行光束になる。 Substantially parallel beam via the bending mirror 28 and the input lens 29. その楕円鏡21と折り曲げミラー2 Mirror 2 and folding the elliptical mirror 21
8との間にシャッター30を配置し、このシャッター3 The shutter 30 is disposed between the 8, the shutter 3
0を駆動モーター31で閉じることにより、インプットレンズ29に対する照明光の供給を随時停止する。 By closing the 0 driving motor 31 is stopped from time to time the supply of illumination light with respect to the input lens 29. 光源1としては、水銀ランプの外に、例えばKrFレーザー光等を発生するエキシマレーザー光源等を使用することができる。 As the light source 1, out of the mercury lamp can be used, for example excimer laser light source or the like for generating a KrF laser beam and the like. エキシマレーザー光源を使用する場合には、 When using an excimer laser light source,
楕円鏡21〜インプットレンズ29までの光学系の代わりにビームエクスパンダ等が使用される。 Beam expander or the like is used in place of the optical system up to the ellipsoidal mirror 21 to the input lens 29.

【0035】そして、インプットレンズ29から順に、 [0035] Then, in the order from the input lens 29,
4角錐型(ピラミッド型)の凹部を有する第1の多面体プリズム32及び4角錐型(ピラミッド型)の凸部を有する第2の多面体プリズム33を配置する。 4 pyramid disposing a second polyhedron prism 33 having a convex portion of the first polyhedron prism 32 and the 4 pyramid having a recess (pyramid) (pyramid). この第2の多面体プリズム33から射出される照明光は、光軸を中心として光軸の周囲に等角度で4個の光束に分割されている。 Illumination light emitted from the second polyhedron prism 33 is divided into four light beams at equal angles around the optical axis around the optical axis.

【0036】これら4個に分割された光束をそれぞれ第2群のフライアイレンズ34A,34B,34C及び3 [0036] The four split light beam, respectively a second group of fly-eye lenses 34A, 34B, 34C and 3
4Dに入射させる。 To be incident on 4D. 図5ではフライアイレンズ34A及び34Bのみが示されているが、図5の紙面に垂直な方向に光軸を挟んで2個のフライアイレンズ34C及び3 Although only fly-eye lenses 34A and 34B in FIG. 5 is shown, the two fly-eye lenses 34C and 3 across the optical axis in a direction perpendicular to the plane of FIG. 5
4Dが配置されている。 4D is arranged. そして、フライアイレンズ34 The fly-eye lens 34
Aから射出された光束は、レンズ系35A及び36Aよりなるガイド光学系を介してほぼ平行光束に変換されて第1群のフライアイレンズ37Aに入射する。 The light beam emitted from the A is incident on the first group of fly-eye lenses 37A is converted into substantially parallel light beam through a guide optical system consisting of lens systems 35A and 36A. 同様に、 Similarly,
第2群のフライアイレンズ34Bを射出した光束は、レンズ系35B及び36Bよりなるガイド光学系を介してほぼ平行光束に変換されて第1群のフライアイレンズ3 The light beam emitted from the second group of fly-eye lens 34B is a lens system 35B, and the first group is converted into substantially parallel light beam through a guide optical system consisting 36B fly-eye lens 3
7Bに入射し、図示省略するも、第2群のフライアイレンズ34C及び34Dを射出した光束は、それぞれガイド光学系を介して第1群のフライアイレンズ37C及び37Dに入射する。 Incident on 7B, also shown omitted, the light beam emerging from the second group of fly-eye lenses 34C and 34D enters the first group of fly-eye lenses 37C and 37D through respective guide optical system.

【0037】第1群のフライアイレンズ37A〜37D The fly-eye lens in the first lens group 37A~37D
は光軸の回りに90°間隔で配置されている。 It is disposed at 90 ° intervals around the optical axis. 第1群のフライアイレンズ37A〜37Dのレチクル側焦点面にはそれぞれ面状の2次光源が形成されるが、それら2次光源の形成面にそれぞれ可変開口絞り38A〜38Dを配置する。 The first group of fly-eye lenses 37A~37D the reticle-side focal plane the surface-shaped secondary light source in is formed, but to place the respective variable aperture stop 38A~38D the forming surface thereof a secondary light source. 更に、これら可変開口絞り38A〜38Dのレチクル側にそれぞれ偏光板39A〜39Dを配置する。 Furthermore, disposing the polarizing plates 39A~39D respectively the reticle side of the variable aperture stop 38 a to 38 d. なお、図5では可変開口絞り13A,13B及び偏光板39A,39Bのみが現れている。 Incidentally, FIG. 5, the variable aperture stop 13A, 13B and the polarizing plate 39A, 39B only has appeared.

【0038】それら可変開口絞り38A〜38Dから偏光板39A〜39Dを透過して射出した照明光は、それぞれ補助コンデンサーレンズ40、ミラー41及び主コンデンサーレンズ42を経て適度に集光されてレチクル12をほぼ均一な照度で照明する。 The illumination light emitted from their variable aperture stop 38A~38D transmitted through the polarizing plate 39A~39D each auxiliary condenser lens 40, a mirror 41 and reticle 12 moderately is condensed through the main condenser lens 42 with a substantially uniform illuminance. そのレチクル12のパターンが投影光学系13によりウエハステージWS上のウエハ14に所定の縮小倍率βで転写される。 It is transferred at a predetermined reduction ratio β on the wafer 14 on the wafer stage WS by the pattern the projection optical system 13 of the reticle 12. それら偏光板39A〜39Dの偏光方向は、光軸AXを中心とする円周の接線方向に平行である。 Polarization directions of the polarizing plate 39A~39D is parallel to the tangential direction of the circumference around the optical axis AX. 例えば可変開口絞り38Aから偏光板39Aを透過して射出される光束の主光線43Aは、紙面に垂直な方向に直線偏光した状態でレチクル12上に光軸AXに対して斜めに入射する。 For example a variable aperture diaphragm principal ray 43A of the light beam emitted by passing through the polarizing plate 39A from 38A is incident obliquely with respect to the optical axis AX on the reticle 12 in a state of linearly polarized in a direction perpendicular to the paper surface. なお、図5に示した偏光板39A〜39Dは、実質的に、 Polarizing plates 39A~39D shown in FIG. 5 is substantially
補助コンデンサーレンズ40と主コンデンサーレンズとの合成系のコンデンサーレンズ系の前側焦点(光源側焦点)位置に設けられており、この位置は実質的に投影光学系13の瞳面10Aと共役である。 Auxiliary condenser lens 40 and is provided at the front focal (light source side focal) position of the composite system condenser lens system of the main condenser lens, this position is the pupil plane 10A and conjugate substantially projection optical system 13.

【0039】本例によっても、レチクル12上の所定の方向のライン・アンド・スペースパターンのウエハ14 The present example as well, in the given direction of the line-and-space pattern on the reticle 12 wafer 14
上の投影像のコントラストを改善することができる。 It is possible to improve the contrast of the projected image of the above. 更に、第1群のフライアイレンズ37A〜37Dの他に第2群のフライアイレンズ34A〜34Dが設けられているので、レチクル12上の照度の均一性が更に改善されている。 Further, since the fly's eye lens 34A~34D of the second group are provided in addition to the fly-eye lens 37A~37D the first group, the uniformity of illuminance on the reticle 12 is further improved. なお、図5において、偏光板39A及び39B In FIG. 5, a polarizing plate 39A and 39B
はそれぞれ例えばリレー光学系の間の位置44A及び4 Position 44A and 4 between the respective example a relay optical system
4Bに配置してもよく、更に他の位置に配置してもよい。 May be disposed 4B, it may be further disposed in other locations. また、光源20からの照明光が既に直線偏光であるような場合には、偏光板39A及び39Bの代わりに1 Further, when the illumination light from the light source 20 is as already linearly polarized light, in place of the polarizing plate 39A and 39B 1
/2波長板を使用してもよい。 / May be used 2-wave plate.

【0040】次に、本発明の第3実施例につき図6及び図7を参照して説明する。 Next, it will be described with reference to FIGS. 6 and 7 per the third embodiment of the present invention. 本実施例は、先に説明した図3に示す第1実施例の空間フィルター24を変えて、図6(a)に示す如き輪帯状の開口240aを有する空間フィルター240をフライアイレンズ23の射出側に設けた例を示すものである。 This embodiment, by changing the spatial filter 24 of the first embodiment shown in FIG. 3 described above, emits the spatial filter 240 of the fly-eye lens 23 having the annular opening 240a as shown in FIGS. 6 (a) It illustrates an example in which the side. この空間フィルター240の配置により、フライアイレンズ23の射出側には、図6 The arrangement of the spatial filter 240, on the exit side of the fly's eye lens 23, FIG. 6
(a)に示す如く、光軸AXから偏心した輪帯状の2次光源45が形成され、この輪帯状の2次光源45からの光が、図3に示す如く、コンデンサーレンズ26、レチクル12を介して投影光学系13の瞳面10A(入射瞳面)に達する。 As (a), the annular secondary light source 45 which is eccentric from the optical axis AX is formed, light from the annular secondary light source 45 is, as shown in FIG. 3, the condenser lens 26, a reticle 12 through and reach the pupil plane 10A of the projection optical system 13 (surface entrance pupil). ここで、説明を簡単にするために、レチクル12のライン・アンド・スペースパターンの回折作用による0次回折光と1次回折光との様子について考えると、この投影光学系13の瞳面10Aには、図6 Here, in order to simplify the description, considering the state of the 0-order diffracted light and 1-order diffracted light by the diffraction action of the line-and-space pattern of the reticle 12, the pupil plane 10A of the projection optical system 13, Figure 6
(b)に示す如く、輪帯光源45と相似な輪帯状の0次回折光45Aと輪帯状の0次回折光45Aを横ずれさせた輪帯状の1次回折光45Bが形成される。 As (b), the annular light source 45, similar to a zonal 0-order diffracted light 45A and zonal 0 zonal 1-order diffracted light 45B obtained by lateral displacement of the diffracted light 45A is formed.

【0041】この場合、本例では図7(a)に示すように、等価光源部10の輪帯状の2次光源45から射出される照明光をそれぞれ光軸AXを中心とする円周の接線方向に偏光させる輪帯状の偏光板250が空間フィルター240上に設けられている。 [0041] In this case, as in the present embodiment shown in FIG. 7 (a), the circumferential tangent around the illumination light respectively the optical axis AX is emitted from the annular secondary light source 45 of the equivalent source part 10 annular polarizing plate 250 for polarizing direction is provided on the spatial filter 240. これにより、微細パターンに対して高コントラストの像を得ることができる。 This makes it possible to obtain an image of high contrast for fine pattern. なお、図7(b)に示すように輪帯状光源を円弧状の各ゾーンに分ける開口を持つ空間フィルター240を用いて、各ゾーン上に偏光板250A〜250Hを設けて、 Incidentally, using a spatial filter 240 having an opening to divide each zone the annular light source arcuate as shown in FIG. 7 (b), the polarizing plate 250A~250H provided on each zone,
各ゾーンごとに光軸AXを軸とする円周の接線方向の直線偏光の照明光となるようにしてもよい。 May be the optical axis AX becomes circumferential tangential direction of linearly polarized light illumination light whose axes for each zone.

【0042】なお、本発明は上述実施例に限定されず本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。 [0042] The present invention is to obtain take various arrangements without departing from the gist of the present invention is not limited to the above examples as a matter of course.

【0043】 [0043]

【発明の効果】本発明の第1及び第2の照明光学装置によれば、物体に対して傾斜して入射する照明光が入射面に垂直な方向に偏光しているので、その物体上のパターンがその照明光の入射面に垂直な方向を長手方向とするライン・アンド・スペースパターンであるような場合に、投影光学系でその物体のパターンを投影したときにその像のコントラストを大幅に改善できる利点がある。 According to the first and second illumination optical apparatus of the present invention, since the illumination light incident inclined relative to the object is polarized in a direction perpendicular to the incident surface, on the object when the pattern is such that a line-and-space pattern and a direction perpendicular to the plane of incidence of the illumination light and the longitudinal direction, greatly contrast of the image when projecting the pattern of the object in the projection optical system there is an advantage that can be improved.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)は本発明による照明光学装置の原理の説明に供する等価光源を示す図、(b)は図1(a)の等価光源を使用した投影露光装置を示す概略構成図である。 [1] (a) is a diagram showing an equivalent light source for explaining the principle of the illumination optical apparatus according to the present invention, (b) is a schematic diagram showing a projection exposure apparatus using an equivalent source of FIG. 1 (a) is there.

【図2】本発明の原理の説明に供する図である。 2 is a diagram for explaining the principles of the present invention.

【図3】本発明の第1実施例の投影露光装置の照明光学系を示す構成図である。 3 is a block diagram showing an illumination optical system of the projection exposure apparatus of the first embodiment of the present invention.

【図4】(a)は図3の空間フィルター24及び偏光板25A〜25Dを示す正面図、(b)は図4(a)のA 4 (a) is a front view showing a spatial filter 24 and the polarizer 25A~25D in FIG 3, A (b), FIG. 4 (a)
A線に沿う断面図である。 It is a sectional view taken along the line A.

【図5】本発明の第2実施例の投影露光装置を示す構成図である。 5 is a block diagram showing a projection exposure apparatus of the second embodiment of the present invention.

【図6】(a)は本発明の第3実施例の等価光源及び空間フィルター240を示す図、(b)は空間フィルター240を用いた事による投影光学系13の瞳での回折光の様子を示す図である。 6 (a) is a diagram showing an equivalent light source and spatial filter 240 of the third embodiment of the present invention, the (b) the state of diffracted light on the pupil of the projection optical system 13 caused by using a spatial filter 240 It illustrates.

【図7】(a)は第3実施例の等価光源からの照明光の偏光状態を示す図、(b)は第3実施例の変形例の等価光源を示す図である。 7 (a) is a diagram showing a polarization state of illumination light from an equivalent source of the third embodiment, (b) is a diagram showing an equivalent source of a modification of the third embodiment.

【図8】(a)は複数傾斜照明の等価光源を示す図、 8 (a) is a diagram showing an equivalent source of multiple oblique illumination,
(b)は図8(a)の等価光源を用いた場合の投影光学系13の瞳での回折光の様子を示す図である。 (B) is a diagram showing a state of diffracted light on the pupil of the projection optical system 13 in the case of using the equivalent source of FIG. 8 (a).

【図9】複数傾斜照明で特定のパターンを照明した場合を示す図である。 9 is a diagram showing a case of illuminating a particular pattern in multiple oblique illumination.

【符号の説明】 DESCRIPTION OF SYMBOLS

10 等価光源 11A〜11D 小光源 12 レチクル 13 投影光学系 14 ウエハ 20 光源 22 コリメータレンズ 23 フライアイレンズ 24 空間フィルター 24a〜24d 開口 25A〜25D 偏光板 26 コンデンサーレンズ系 10 equivalent light 11A~11D small light sources 12 reticle 13 projecting optical system 14 wafer 20 light source 22 collimator lens 23 fly-eye lens 24 spatial filter 24a~24d opening 25A~25D polarizer 26 a condenser lens system

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 照明光学系からの照明光によって物体上の所定領域を均一に照明する照明光学装置において、 前記照明光学系は、前記所定領域を斜め方向から照明する傾斜光を形成する傾斜光形成手段と、該傾斜光を変換して、前記所定領域を傾斜照明する前記傾斜光の入射面に対し直交した方向に直線偏光する照明光を形成する偏光手段とを有することを特徴とする照明光学装置。 1. A lighting optical apparatus for uniformly illuminating a predetermined area on the object by the illumination light from the illumination optical system, the illumination optical system is inclined light to form an inclined light for illuminating the predetermined area from the oblique direction and forming means converts the inclined oblique illumination, characterized in that it comprises a polarization means for forming an illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light which is inclined illuminating the predetermined area optical device.
  2. 【請求項2】 照明光を供給する光源と該照明光で物体上の所定領域を均一に照明する集光光学系とを有する照明光学装置において、 前記照明光によって前記集光光学系の光軸に対し偏心した2次光源を形成して前記所定領域を斜め方向から照明する傾斜光形成手段を前記光源と前記集光光学系との間に配置し、 該傾斜光を変換して、前記所定領域を傾斜照明する傾斜光の入射面に対し直交した方向に直線偏光する照明光を形成する偏光手段を前記傾斜光形成手段と前記集光光学系との間に配置したことを特徴とする照明光学装置。 2. A lighting optical apparatus having a focusing optical system for uniformly illuminating a predetermined area on the object by the light source and the illumination light supplying illumination light, the optical axis of the converging optical system by the illumination light the predetermined area to form a secondary light source that is eccentric inclined light forming means for illuminating obliquely disposed between the focusing optical system and the light source, converts the inclined oblique relative to the predetermined lighting characterized in that a polarization means for forming an illumination light linearly polarized in orthogonal directions with respect to the incident surface of the inclined light which is inclined illuminate an area between the focusing optical system and the inclined light forming means optical device.
JP21978292A 1992-07-27 1992-07-27 Illumination optical apparatus, exposure apparatus, and exposure method Expired - Lifetime JP3246615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical apparatus, exposure apparatus, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical apparatus, exposure apparatus, and exposure method

Publications (2)

Publication Number Publication Date
JPH0653120A true JPH0653120A (en) 1994-02-25
JP3246615B2 JP3246615B2 (en) 2002-01-15

Family

ID=16740926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978292A Expired - Lifetime JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical apparatus, exposure apparatus, and exposure method

Country Status (1)

Country Link
JP (1) JP3246615B2 (en)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2005050718A1 (en) * 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
WO2005076045A1 (en) * 2004-02-06 2005-08-18 Nikon Corporation Polarization conversion element, lighting optical device, exposure system, and exposure method
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
EP1577709A2 (en) * 2004-03-18 2005-09-21 Canon Kabushiki Kaisha Illumination apparatus exposure apparatus and device manufacturing method
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
JP2006106392A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Symmetrically rotating polarizer and manufacturing method thereof
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
JP2006345005A (en) * 2004-02-06 2006-12-21 Nikon Corp Lighting optical device, exposure device, and device manufacturing method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
KR100676576B1 (en) * 2003-10-28 2007-01-30 주식회사 하이닉스반도체 Polarized manual blade and method of manufacturing the same
JP2007053390A (en) * 2004-02-06 2007-03-01 Nikon Corp Illumination optical device, exposure system, exposure method, and method of manufacturing micro device
JP2007524247A (en) * 2004-02-26 2007-08-23 カール・ツァイス・エスエムティー・アーゲー Illumination system for microlithography projection exposure equipment
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2009009143A (en) * 2003-02-27 2009-01-15 Asml Netherlands Bv Stationary and dynamic radial transverse electric polarizer for high numerical aperture system
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
EP2037489A2 (en) 2004-01-15 2009-03-18 Nikon Corporation Exposure apparatus and device producing method
WO2009084409A1 (en) * 2007-12-28 2009-07-09 Canon Kabushiki Kaisha Computer generated hologram, generation method, and exposure apparatus
EP2079100A1 (en) 2003-10-22 2009-07-15 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing decive
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithographic projection exposure apparatus and a microlithographic exposure method
US7667829B2 (en) 2004-08-09 2010-02-23 Nikon Corporation Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US7692769B2 (en) 2005-10-07 2010-04-06 Kabushiki Kaisha Toshiba Exposure apparatus, exposure method, and semiconductor device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
EP2226682A2 (en) 2004-08-03 2010-09-08 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP2325866A1 (en) 2004-09-17 2011-05-25 Nikon Corporation Substrate holding device, exposure apparatus and device manufacturing method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2466616A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
EP2490248A2 (en) 2004-04-19 2012-08-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8253924B2 (en) 2005-05-24 2012-08-28 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP5021645B2 (en) * 2006-07-17 2012-09-12 株式会社フォトニックラティス Polarizer, and a microscope with a polarizer
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US20130242280A1 (en) * 2003-10-28 2013-09-19 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2014056255A (en) * 2013-10-28 2014-03-27 Nikon Corp Projection optical system, exposure device and exposure method
EP2717295A1 (en) 2003-12-03 2014-04-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2738792A2 (en) 2003-06-13 2014-06-04 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
JP2015132843A (en) * 2015-03-02 2015-07-23 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
US9116303B2 (en) 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
JP2015180936A (en) * 2004-01-16 2015-10-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Polarization modulating optical element
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2016136273A (en) * 2016-03-07 2016-07-28 株式会社ニコン Projection optical system, exposure device, exposure method and device fabrication method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP3098835A1 (en) 2004-06-21 2016-11-30 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method
JP2018010303A (en) * 2017-08-03 2018-01-18 株式会社ニコン Light exposure device and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
TWI617841B (en) * 2014-10-22 2018-03-11 Intel Corp Anti-moire pattern diffuser for optical systems
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538256B (en) 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective
JP3718511B2 (en) 2003-10-07 2005-11-24 株式会社東芝 Exposure apparatus inspection mask, an exposure apparatus inspection method and an exposure apparatus
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
US8270077B2 (en) 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
DE602005003665T2 (en) 2004-05-17 2008-11-20 Carl Zeiss Smt Ag Catadioptric projection objective with between images
JPWO2006016469A1 (en) 2004-08-10 2008-05-01 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP4675745B2 (en) * 2005-10-25 2011-04-27 株式会社東芝 Screening method of a substrate for a photomask, the photomask manufacturing method and a semiconductor device manufacturing method
US20110037962A1 (en) 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP6020834B2 (en) 2011-06-07 2016-11-02 株式会社ニコン An illumination optical system, exposure apparatus, and device manufacturing method
TWI519816B (en) 2011-06-13 2016-02-01 尼康股份有限公司 Illumination optical system, exposure apparatus, and device manufacturing method

Cited By (274)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
US7126667B2 (en) 2002-12-10 2006-10-24 Canon Kk Exposure apparatus and method
JP2009009143A (en) * 2003-02-27 2009-01-15 Asml Netherlands Bv Stationary and dynamic radial transverse electric polarizer for high numerical aperture system
JP2008072129A (en) * 2003-04-09 2008-03-27 Nikon Corp Exposure method and apparatus, and device manufacturing method
US8675177B2 (en) * 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
JP2015092604A (en) * 2003-04-09 2015-05-14 株式会社ニコン Exposure method and device, illumination optical device, and device manufacturing method
US9164393B2 (en) * 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
JP2016103025A (en) * 2003-04-09 2016-06-02 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
JP2018106179A (en) * 2003-04-09 2018-07-05 株式会社ニコン Exposure method and device, illumination optical device, and device production method
JP2012164993A (en) * 2003-04-09 2012-08-30 Nikon Corp Exposure method and device, illumination optical device, and device manufacturing method
JP2009212540A (en) * 2003-04-09 2009-09-17 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
JP4735258B2 (en) * 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
KR101124179B1 (en) * 2003-04-09 2012-03-27 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
JP2011097076A (en) * 2003-04-09 2011-05-12 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US7446858B2 (en) 2003-04-09 2008-11-04 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2017097372A (en) * 2003-04-09 2017-06-01 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
EP2157480A1 (en) * 2003-04-09 2010-02-24 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
EP2270597B1 (en) * 2003-04-09 2017-11-01 Nikon Corporation Exposure method and apparatus and device manufacturing method
EP3226073A3 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
EP3229077A1 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
JP2014116611A (en) * 2003-04-09 2014-06-26 Nikon Corp Exposure method, device, illumination optical device, and device manufacturing method
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
EP2466617A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466618A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2498131A2 (en) 2003-05-23 2012-09-12 Nikon Corporation Exposure apparatus and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
EP2535769A2 (en) 2003-05-23 2012-12-19 Nikon Corporation Exposure apparatus and method for producing device
EP2466620A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466619A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466616A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466615A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP3032572A1 (en) 2003-05-23 2016-06-15 Nikon Corporation Exposure apparatus and method for producing a device
EP2738792A2 (en) 2003-06-13 2014-06-04 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
EP3401946A1 (en) 2003-06-13 2018-11-14 Nikon Corporation Exposure apparatus and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
EP2937893A1 (en) 2003-06-13 2015-10-28 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
EP3104396A1 (en) 2003-06-13 2016-12-14 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP2320273A1 (en) 2003-09-29 2011-05-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2837969A1 (en) 2003-09-29 2015-02-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3093710A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
EP3093711A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
EP3432073A1 (en) 2003-10-09 2019-01-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3410216A1 (en) 2003-10-09 2018-12-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3206083A1 (en) 2003-10-09 2017-08-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2937734A1 (en) 2003-10-09 2015-10-28 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7643129B2 (en) 2003-10-22 2010-01-05 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US8896813B2 (en) 2003-10-22 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US9581913B2 (en) 2003-10-22 2017-02-28 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
EP2079100A1 (en) 2003-10-22 2009-07-15 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing decive
US7973906B2 (en) 2003-10-22 2011-07-05 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US9829807B2 (en) 2003-10-22 2017-11-28 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US7948608B2 (en) 2003-10-22 2011-05-24 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US20130242280A1 (en) * 2003-10-28 2013-09-19 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) * 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) * 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645406A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645407A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
TWI569308B (en) * 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TWI511179B (en) * 2003-10-28 2015-12-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
EP2927935A3 (en) * 2003-10-28 2016-01-27 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
KR100676576B1 (en) * 2003-10-28 2007-01-30 주식회사 하이닉스반도체 Polarized manual blade and method of manufacturing the same
EP2654073A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
TWI573175B (en) * 2003-10-28 2017-03-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
EP2645405A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP3229076A3 (en) * 2003-10-28 2017-12-13 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US20130250268A1 (en) * 2003-10-28 2013-09-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP1681710B1 (en) * 2003-10-28 2015-09-16 Nikon Corporation Lighting optical device and projection aligner
TWI474132B (en) * 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
JPWO2005050718A1 (en) * 2003-11-20 2007-12-06 株式会社ニコン Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP4976015B2 (en) * 2003-11-20 2012-07-18 株式会社ニコン Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
KR20140029543A (en) * 2003-11-20 2014-03-10 가부시키가이샤 니콘 Illuminating optical apparatus
KR20100005131A (en) * 2003-11-20 2010-01-13 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
EP3118890A3 (en) * 2003-11-20 2017-02-15 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
EP2251896A1 (en) * 2003-11-20 2010-11-17 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
WO2005050718A1 (en) * 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
TWI612338B (en) * 2003-11-20 2018-01-21 Nikon Corp Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
EP2117034A1 (en) * 2003-11-20 2009-11-11 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
EP1926129A1 (en) * 2003-11-20 2008-05-28 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
TWI512335B (en) * 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
TWI385414B (en) * 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
EP2717295A1 (en) 2003-12-03 2014-04-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3139214A2 (en) 2003-12-03 2017-03-08 Nikon Corporation Exposure apparatus, exposure method, device producing method, and optical component
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9910369B2 (en) 2004-01-05 2018-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP3376523A1 (en) 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9588436B2 (en) 2004-01-05 2017-03-07 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP2037489A2 (en) 2004-01-15 2009-03-18 Nikon Corporation Exposure apparatus and device producing method
JP2015180936A (en) * 2004-01-16 2015-10-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Polarization modulating optical element
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
EP3208658A1 (en) 2004-02-04 2017-08-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3093873A2 (en) 2004-02-04 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3252533A1 (en) 2004-02-04 2017-12-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3267469A1 (en) 2004-02-04 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2765595A1 (en) 2004-02-04 2014-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP2618188B1 (en) * 2004-02-06 2015-10-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR20140056387A (en) * 2004-02-06 2014-05-09 가부시키가이샤 니콘 Lighting optical device
JP2007053390A (en) * 2004-02-06 2007-03-01 Nikon Corp Illumination optical device, exposure system, exposure method, and method of manufacturing micro device
JP2006345005A (en) * 2004-02-06 2006-12-21 Nikon Corp Lighting optical device, exposure device, and device manufacturing method
TWI494972B (en) * 2004-02-06 2015-08-01 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
TWI511182B (en) * 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014098917A (en) * 2004-02-06 2014-05-29 Nikon Corp Polarization conversion element, illumination optical device, exposure device and exposure method
WO2005076045A1 (en) * 2004-02-06 2005-08-18 Nikon Corporation Polarization conversion element, lighting optical device, exposure system, and exposure method
EP2615479A1 (en) * 2004-02-06 2013-07-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP4747844B2 (en) * 2004-02-06 2011-08-17 株式会社ニコン Polarization converting element, illumination optical apparatus, exposure apparatus, and exposure method
JP2011100150A (en) * 2004-02-06 2011-05-19 Nikon Corp Polarization conversion element, lighting optical device, exposure device, and exposure method
KR101244282B1 (en) * 2004-02-06 2013-03-18 가부시키가이샤 니콘 Lighting optical device, exposure system, exposure method and manufacturing method of device
JPWO2005076045A1 (en) * 2004-02-06 2008-04-24 株式会社ニコン Polarization converting element, illumination optical apparatus, exposure apparatus, and exposure method
JP2012168546A (en) * 2004-02-06 2012-09-06 Nikon Corp Polarization conversion element, illumination optical system, exposure apparatus and exposure method
EP2615480B1 (en) * 2004-02-06 2017-05-03 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method
JP2017142517A (en) * 2004-02-06 2017-08-17 株式会社ニコン Polarization conversion element, illumination optical device, exposure apparatus, and exposure method
US8115902B2 (en) 2004-02-10 2012-02-14 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
EP2256790A2 (en) 2004-02-10 2010-12-01 Nikon Corporation exposure apparatus, device manufacturing method and maintenance method
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
JP2007524247A (en) * 2004-02-26 2007-08-23 カール・ツァイス・エスエムティー・アーゲー Illumination system for microlithography projection exposure equipment
JP2005268489A (en) * 2004-03-18 2005-09-29 Canon Inc Lighting device, aligner, and device manufacturing method
US7130025B2 (en) 2004-03-18 2006-10-31 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
EP1577709A3 (en) * 2004-03-18 2007-01-17 Canon Kabushiki Kaisha Illumination apparatus exposure apparatus and device manufacturing method
US7239375B2 (en) 2004-03-18 2007-07-03 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
EP1577709A2 (en) * 2004-03-18 2005-09-21 Canon Kabushiki Kaisha Illumination apparatus exposure apparatus and device manufacturing method
JP4497968B2 (en) * 2004-03-18 2010-07-07 キヤノン株式会社 Illumination device, an exposure apparatus and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2490248A2 (en) 2004-04-19 2012-08-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
EP3318928A1 (en) 2004-06-09 2018-05-09 Nikon Corporation Exposure apparatus and method for producing a device
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
EP2966670A1 (en) 2004-06-09 2016-01-13 Nikon Corporation Exposure apparatus and device manufacturing method
EP3203498A1 (en) 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US8704999B2 (en) 2004-06-10 2014-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9778580B2 (en) 2004-06-10 2017-10-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2624282A2 (en) 2004-06-10 2013-08-07 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10203614B2 (en) 2004-06-10 2019-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3203321A1 (en) 2004-06-10 2017-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067749A2 (en) 2004-06-10 2016-09-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067750A2 (en) 2004-06-10 2016-09-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9134621B2 (en) 2004-06-10 2015-09-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9529273B2 (en) 2004-06-10 2016-12-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3190605A1 (en) 2004-06-21 2017-07-12 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3462241A1 (en) 2004-06-21 2019-04-03 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
EP3098835A1 (en) 2004-06-21 2016-11-30 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3255652A1 (en) 2004-06-21 2017-12-13 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9470984B2 (en) 2004-06-21 2016-10-18 Nikon Corporation Exposure apparatus
US9904182B2 (en) 2004-06-21 2018-02-27 Nikon Corporation Exposure apparatus
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
US9063436B2 (en) 2004-08-03 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3048485A1 (en) 2004-08-03 2016-07-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2226682A2 (en) 2004-08-03 2010-09-08 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3258318A1 (en) 2004-08-03 2017-12-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3267257A1 (en) 2004-08-03 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7667829B2 (en) 2004-08-09 2010-02-23 Nikon Corporation Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US9958785B2 (en) 2004-09-17 2018-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2325866A1 (en) 2004-09-17 2011-05-25 Nikon Corporation Substrate holding device, exposure apparatus and device manufacturing method
US9341959B2 (en) 2004-09-17 2016-05-17 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
JP2006106392A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Symmetrically rotating polarizer and manufacturing method thereof
JP4595481B2 (en) * 2004-10-06 2010-12-08 凸版印刷株式会社 Rotationally symmetric polarizing plate and a manufacturing method thereof
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
US7929116B2 (en) 2004-12-28 2011-04-19 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
US8830446B2 (en) 2005-01-12 2014-09-09 Asml Netherlands B.V. Exposure apparatus
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8253924B2 (en) 2005-05-24 2012-08-28 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
US7692769B2 (en) 2005-10-07 2010-04-06 Kabushiki Kaisha Toshiba Exposure apparatus, exposure method, and semiconductor device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8223318B2 (en) 2006-07-07 2012-07-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
JP5021645B2 (en) * 2006-07-17 2012-09-12 株式会社フォトニックラティス Polarizer, and a microscope with a polarizer
US8675178B2 (en) 2006-08-17 2014-03-18 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithographic projection exposure apparatus and a microlithographic exposure method
JP4730675B2 (en) * 2006-08-17 2011-07-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithographic projection exposure apparatus and a microlithographic exposure method
US8749755B2 (en) 2006-11-17 2014-06-10 Nikon Corporation Stage apparatus and exposure apparatus
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
TWI391989B (en) * 2007-12-28 2013-04-01 Canon Kk Hologram, generation method, and exposure apparatus
US8373914B2 (en) 2007-12-28 2013-02-12 Canon Kabushiki Kaisha Computer generated hologram including plural isotropic and anisotropic cells for forming combined intensity distribution, generation method, and exposure apparatus
JP2009164297A (en) * 2007-12-28 2009-07-23 Canon Inc Computer hologram, generating method, and exposure device
WO2009084409A1 (en) * 2007-12-28 2009-07-09 Canon Kabushiki Kaisha Computer generated hologram, generation method, and exposure apparatus
US20120038983A1 (en) * 2008-03-17 2012-02-16 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP4553066B2 (en) * 2010-01-14 2010-09-29 株式会社ニコン Polarization conversion member, illumination optical apparatus, projection exposure apparatus, exposure method and device manufacturing method
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
US9116303B2 (en) 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014056255A (en) * 2013-10-28 2014-03-27 Nikon Corp Projection optical system, exposure device and exposure method
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
TWI617841B (en) * 2014-10-22 2018-03-11 Intel Corp Anti-moire pattern diffuser for optical systems
US9927560B2 (en) 2014-10-22 2018-03-27 Intel Corporation Anti-moiré pattern diffuser for optical systems
JP2015132843A (en) * 2015-03-02 2015-07-23 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
JP2016136273A (en) * 2016-03-07 2016-07-28 株式会社ニコン Projection optical system, exposure device, exposure method and device fabrication method
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method
JP2018010303A (en) * 2017-08-03 2018-01-18 株式会社ニコン Light exposure device and device manufacturing method

Also Published As

Publication number Publication date
JP3246615B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
KR100418281B1 (en) Hybrid illumination system for use in photolithography
CN101866058B (en) Polarization conversion device
US5661601A (en) Projection method and projection system and mask therefor
JP4719781B2 (en) The method for supplying a pattern of polarization
CA2061499C (en) Imaging method for manufacture of microdevices
CN103777345B (en) An illumination optical apparatus, exposure apparatus, an illumination method, exposure method and device manufacturing method
US6310679B1 (en) Projection exposure method and apparatus
CN101685265B (en) Illumination optical apparatus, exposure apparatus and exposure method
JP2658051B2 (en) Alignment device, the projection exposure apparatus and the projection exposure method using the device
KR101163435B1 (en) Exposure method and apparatus, and device manufacturing method
KR101578312B1 (en) Lighting optical device
CN100481325C (en) Projection exposure apparatus, exposure method, and element producing method
KR100694072B1 (en) Illumination system eliminating laser speckle and projection system employing the same
US20050083507A1 (en) Projection exposure system for microlithography and method for generating microlithographic images
JP3005203B2 (en) Illumination device, an exposure apparatus and device manufacturing method
EP0507487B1 (en) Optical projection exposure method and system using the same
JP4419141B2 (en) Illumination optical apparatus, and exposure method
KR100681852B1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2698521B2 (en) Catadioptric optical system and a projection exposure apparatus including an optical system
CN1101007C (en) Illumination method and apapratus for formation of micro patterns
JP2536023B2 (en) Exposure apparatus, and exposure method
US6094305A (en) Exposure method and apparatus therefor
JP4795745B2 (en) Illumination system for a microlithographic projection exposure apparatus
JP4323903B2 (en) An illumination optical system and an exposure apparatus using the same
KR0166612B1 (en) Method and apparatus for exposing pattern, mask used therefor and semiconductor integrated circuit formed by using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11