JP3984841B2 - Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method - Google Patents

Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
JP3984841B2
JP3984841B2 JP2002062303A JP2002062303A JP3984841B2 JP 3984841 B2 JP3984841 B2 JP 3984841B2 JP 2002062303 A JP2002062303 A JP 2002062303A JP 2002062303 A JP2002062303 A JP 2002062303A JP 3984841 B2 JP3984841 B2 JP 3984841B2
Authority
JP
Japan
Prior art keywords
strain
distortion
transmission member
fixed
suppressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002062303A
Other languages
Japanese (ja)
Other versions
JP2003262501A (en
JP2003262501A5 (en
Inventor
裕史 磯部
博仁 伊藤
浩太郎 堆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002062303A priority Critical patent/JP3984841B2/en
Publication of JP2003262501A publication Critical patent/JP2003262501A/en
Publication of JP2003262501A5 publication Critical patent/JP2003262501A5/ja
Application granted granted Critical
Publication of JP3984841B2 publication Critical patent/JP3984841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は歪み計測装置、歪み抑制装置、及び露光装置、並びにデバイス製造方法に関する。
【0002】
【従来の技術】
近年、微細加工技術によって、物体、例えば、プロセスに用いられる試料等を高精度で移動させる技術が求められている。例えば、半導体製造プロセスで用いられる露光装置においては、露光線幅の微細化に伴い、露光装置のウエハステージに求められる位置制御精度は数nmのオーダーに達している。また、生産性の向上の観点から、ステージの移動加速度および移動速度は年々増大の傾向にある。
【0003】
このような高速・高精度の位置制御を実現するためには、ウエハステージ位置制御系のサーボ帯域が高いことが必要である。高いサーボ帯域は目標値への応答性が高く、外乱などの影響にも頑健なシステムを実現する。従って、可能な限り高いサーボ帯域を実現する、ウエハステージ、本体構造体等の設計が行われている。
【0004】
図9は、従来の露光装置のウエハステージの構成を示す概略図である。なお、以下では基準座標系に対する並進3軸(X,Y,Z)と並進3軸の各軸周りの回転3軸(θx、θy、θz)を合わせて6自由度位置と呼ぶことにする。この例を用いて、従来の位置制御系の構成とその動作を説明する。
【0005】
定盤41は床Fからダンパを介して支持されている。Yステージ43は、定盤41に固定された固定ガイド42に沿ってY方向に推力を発生するYリニアモータ46により、定盤41の基準面上をY方向に移動可能である。定盤41および固定ガイド42とYステージ43との間は静圧軸受であるエアパッド44a、44bを介してエアで結合されており非接触である。Yステージ43はX方向のガイドを備えており、Yステージに搭載されたXステージ45をX方向に案内する。また、Yステージ43にはX方向に力を発生するXリニアモータ固定子が設けられ、Xステージに設けられたXリニアモータ可動子と共に、Xステージ45をX方向に駆動させる。定盤41及びXガイドとXステージ45との間は静圧軸受であるエアパッド44cを介してエアで結合されており、非接触である。
【0006】
Xステージ45にはチルトステージ48が搭載されている。チルトステージ48は不図示のリニアモータによる推力でZ方向の移動と3軸(θx、θy、θz)方向の回転とを行う。チルトステージ48上にウエハチャックを備えたステージ基板51が搭載され、被露光体であるウエハ53を保持する。また、ステージ基板51上にはX方向およびY方向の位置計測に用いる計測ミラー49a、bが設けられる。
【0007】
露光装置のステージ装置は、定盤41の基準面に対して面内方向(X、Y、θz)および垂直(チルト)方向(Z、θx、θy)の6自由度の位置決めを行い、1チップ分の露光を行う。面内方向(X、Y、θz)の位置の計測は不図示のレンズ鏡筒と一体であるレーザ干渉計50を用いて測定され、垂直(チルト)方向(Z、θx、θy)の計測はレンズ鏡筒と一体のアライメント計測系(不図示)によりZ方向の位置と回転成分の角度が計測される。
【0008】
図9ではレンズ鏡筒と定盤41は一体であると仮定して、レーザ干渉計50は定盤41に取り付けられている。また、Z方向の位置計測は図示を省略しているが、ステージ基板もしくはウエハ上の3点をレンズ鏡筒から計測することにより垂直(チルト)方向(Z、θx、θy)の計測が可能である。
【0009】
ステージ43、45、チルトステージ48のこれら6自由度位置方向への位置決めは、各XYZ軸にサーボ系を構成することにより行われる。すなわち、レーザ干渉計50により計測された位置情報をもとに補償器(不図示)がXステージ45をX方向に駆動する。XリニアモータとYステージ43をY方向に駆動するYリニアモータ46への駆動指令値を演算し、X、Yリニアモータが該駆動指令値に基づいて各々Xステージ45、Yステージ43を駆動する。また、補償器はZ方向の位置と回転方向(θx、θy)の角度と前記のθz方向の計測値に応じて、チルトステージ48への駆動指令値を演算し、リニアモータによりチルトステージ48が駆動される。
【0010】
このように構成された従来の位置制御系によれば、ウエハステージは与えられた目標位置に高速・高精度に移動させることができる。しかしながら、上記のように構成されたウエハステージをさらに高速に動かそうとすると、ウエハステージが持つ弾性特性に起因する弾性振動が発生し、位置決め精度や速度が低下することがある。このような課題を解決するために、ウエハステージの弾性振動の腹となるところに歪み計測装置(例えば圧電素子センサ)を取り付け、ウエハステージの弾性振動による歪みを計測し、逆に、またウエハステージの弾性振動の腹となるところに取り付けた圧電素子に通電して力(歪)を発生させ、歪み抑制装置(例えばアクチュエータ)として弾性振動を抑制する技術が知られている。
【0011】
【発明が解決しようとする課題】
しかしながら、圧電素子センサは、ウエハステージ面に接着などの手段で直接貼り付けられるため、ウエハステージ面の弾性振動の方向を正確に計測できないという問題がある。この点について図7を用いて説明する。図7はウエハステージのステージ面に圧電素子センサを直接接着した状態を示す図である。ウエハステージが弾性振動してステージ面上に歪みが生じると、圧電素子は下記式(1)に示すように、図中のX方向、Y方向の歪み量εx、εyの和に比例した電圧V0を出力する。このように圧電素子センサを直接ウエハステージ面に接着すると、圧電素子は2方向(X方向とY方向)の歪み成分の和は計測できるが、各々の方向の歪み成分を正確に計測できないのである。
【0012】
【数1】

Figure 0003984841
また、上記圧電素子センサと同様にアクチュエータとして用いる場合も、圧電素子をウエハステージ面に直接貼り付けているので、ウエハステージ面の弾性振動を正確に抑制することは難しい。このことも図7を用いて説明する。ウエハステージが図中のX方向に弾性振動を生じているとする。この弾性振動を抑制するために圧電素子に電圧Viを印加させたとすると、下記式(2)、式(3)のように、X方向とY方向に同時に歪みによる力が発生する。つまり、圧電素子はX方向のみの弾性振動を抑制したい場合でも不要なY方向の力(歪)も発生してしまう。このために、圧電素子をアクチュエータとして用いてもウエハステージの弾性振動を高精度に低減できないのである。
【0013】
【数2】
Figure 0003984841
本発明は、上記の問題点に鑑みてなされたものであり、例えば、物体に発生する歪みを正確に計測する歪み計測装置、並びにその物体の歪みを大幅に低減する歪み抑制装置、露光装置、デバイス製造方法の提供を目的とする。
【0014】
【課題を解決するための手段】
本発明の第1の側面は、物体の歪みを計測する歪み計測装置に係り、前記物体に生じる歪みを検出する歪み検出素子と、前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、前記伝達部材は、前記物体の所定方向に平行な直線上の離間する複数点で前記物体に固定されていることを特徴とする。
【0015】
本発明の第2の側面は、物体の歪みを計測する歪み計測装置に係り、前記物体に生じる歪みを検出する歪み検出素子と、前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、前記伝達部材は、前記物体の所定方向に平行な複数のスリットを有することを特徴とする。
【0016】
本発明の第3の側面は、物体の歪みを計測する歪み計測装置に係り、物体に生じる歪みを検出する複数の歪み検出素子と、前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、前記複数の歪み検出素子は、前記物体の所定方向に平行な直線を挟んで離間して前記伝達部材に配置され、前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする。
【0017】
本発明の第4の側面は、物体の歪みを計測する歪み計測装置に係り、物体に生じる歪みを検出する複数の歪み検出素子と、前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、前記複数の歪み検出素子は、前記物体の所定方向に平行な複数の直線の各直線上に離間して前記伝達部材に配置され、前記伝達部材は前記直線上の複数点で前記物体に固定されていることを特徴とする
【0018】
本発明の好適な実施の形態によれば、前記伝達部材、前記伝達部材に形成された台座を介して前記物体に固定されている。
【0019】
本発明の好適な実施の形態によれば、前記歪み検出素子は、圧電素子である
【0020】
本発明の第5の側面は、露光装置に係り、前記物体は、半導体製造工程において基板又は原版を移動させる移動ステージであることを特徴とし、上記の歪み計測装置を備えている
【0021】
本発明の第6の側面は、物体に発生する歪みを抑制する歪み抑制装置に係り、前記物体に対して歪みによる力を発生する歪み発生素子と、前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、前記伝達部材は、前記物体の所定方向に平行な直線上の離間する複数点で前記物体に固定されていることを特徴とする
【0022】
本発明の第の側面は、物体に発生する歪みを抑制する歪み抑制装置に係り、前記物体に対して歪みによる力を発生する歪み発生素子と、前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、前記伝達部材は、前記物体の所定方向に平行な複数のスリットを有することを特徴とする
【0023】
本発明の第8の側面は、物体に発生する歪みを抑制する歪み抑制装置に係り、前記物体に対して歪みによる力を発生する複数の歪み発生素子と、前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、前記複数の歪み抑制素子は、前記物体の所定方向に平行な直線を挟んで離間して前記伝達部材に配置され、前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする歪み抑制装置
【0024】
本発明の第9の側面は、物体に発生する歪みを抑制する歪み抑制装置に係り、前記物体に対して歪みによる力を発生する複数の歪み発生素子と、前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、前記歪み抑制素子は、前記物体の所定方向に平行な複数の直線の各直線上に離間して前記伝達部材に配置され、前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする
【0025】
本発明の好適な実施の形態によれば、前記伝達部材は、前記伝達部材に形成された台座を介して前記物体に固定されている
【0026】
本発明の好適な実施の形態によれば、前記歪み抑制素子は、圧電素子である
【0027】
本発明の第10の側面は、露光装置に係り、前記物体は、半導体製造工程において基板又は原版を移動させる移動ステージであることを特徴とし、上記の歪み抑制装置を備えている
【0028】
本発明の第10の側面は、基板に感光材を塗布する塗布工程と、前記塗布工程で前記感光材が塗布された前記基板に上記の露光装置を利用してパターンを転写する露光工程と、前記露光工程で前記パターンが転写された前記基板の前記感光材を現像する現像工程と、を有することを特徴とする
【0034】
【発明の実施の形態】
以下、添付図面を参照しながら本発明の好適な実施の形態について説明する。
【0035】
本発明は以下の実施形態に限られず、例えば、移動ステージは弾性特性を有する構造物の弾性歪み計測及び弾性歪み抑制に有効である。また、例えば、半導体露光装置に用いられるウエハステージの構造物の弾性歪み計測及び弾性歪み抑制にも有効である。
【0036】
(第1実施形態)
図1は、本発明の好適な実施の形態に係る歪み計測装置及び/又は歪み抑制装置の概観を示す斜視図である。所定の方向をX方向として、圧電素子1の短手方向の略中心を通る長手方向に沿う直線3a上に拘束点2、3がある。計測したい歪みの方向もしくは発生させたい力の方向は、例えばX方向であるとする。この場合、圧電素子1を接着した伝達部材4は、拘束点2及び拘束点3のみで物体面5に固定されている。
【0037】
圧電素子1を歪み計測装置として使用する場合、物体面5が弾性振動による歪みを生じたとき、弾性歪みのY方向成分は伝達部材4には伝わらず、X方向の歪みのみが伝達部材4に伝わり、圧電素子1によってX方向の歪みが計測される。さらに、圧電素子1を移動ステージ面5の弾性歪みを抑制制御する歪み抑制装置として使用する場合、圧電素子1に電圧を印加した際、伝達部材4にはX、Y両方向の力が伝わるが、物体面5にはX方向のみの力が伝わる。図8は、図1に示す歪み抑制装置及び/又は計測装置を移動ステージに適用した一例を示す図である。図1及び図8において、圧電素子1は、歪み計測装置801、歪み抑制装置802として伝達部材4を介して移動ステージ面800に取り付けられている。歪み計測装置801によって計測された歪み量に従って、移動ステージ面800の弾性振動を抑制するように歪み抑制装置802に電圧が印加される。このようにして移動ステージ面800の弾性振動が低減されるため、移動ステージ装置803を高速且つ高精度に位置決めすることができる。また、本発明に係る好適な実施の形態の歪み抑制装置及び/又は計測装置は、移動ステージのみに適用が限定されるものではない。例えば、図9に示す従来の半導体露光装置のウエハステージにも適用することができる。図9において、レーザ干渉計50は、定盤41に接続されている。よって定盤41の弾性振動はレーザ干渉計50に伝わり、定盤41とレーザ干渉計50との接続部が弾性歪みを生じるため、ウエハステージの位置計測が正確に行えない。この場合、定盤41とレーザ干渉計50との接続部に伝達部材4を介して圧電素子1を取り付けることによって、弾性振動による歪みを低減するといった適用も考えられる。
【0038】
さらに、図1において、伝達部材4を物体面5に固定する拘束点は上記の2点に限るものではない。図1のX軸に平行な一直線を示す点線3a上であれば、無限に拘束点を設けても、歪み計測装置が計測する移動ステージの歪みと、歪み抑制装置が弾性振動を抑制すべく物体に与える力はX方向成分のみとなる。よって、伝達部材4は、所定の方向に対して任意の間隔に配置された1つまたは複数の拘束点を含みうる。これらの拘束点での拘束方法としては、例えば、拘束点に設けた穴にネジまたはピンで固定する方法がある。この固定方法の長所は取り外しが容易であるという点である。
【0039】
(第2実施形態)
図2は、本発明の第2の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。所定の方向をX方向として、伝達部材9の短手方向の略中心を通る長手方向に沿う直線3aに平行な複数のスリットが形成されている。図2に示すように、不図示の圧電素子は、X方向に溝が形成され、Y方向に配列された複数のスリットからなるスリット群6を有する伝達部材9上の一点鎖線部分8に接着される。この伝達部材9は、多数の拘束点7で物体(例えば移動ステージ)に固定される。この構成において、圧電素子を歪み計測装置として使用する場合、圧電素子はX方向の歪みは計測するが、Y方向の歪みはX軸に平行に切られたスリット群6によって圧電素子には伝わらないために計測されない。圧電素子を歪み抑制装置として使用した場合も同様に、X方向のみの力を物体(例えば移動ステージ)に与える。伝達部材9の物体(例えば移動ステージ)への拘束点の数は、伝達部材9上のスリットが切られていない部分であれば何点でもよい。
【0040】
(第3実施形態)
図3は、本発明の第3の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。所定の方向をX方向として、伝達部材10の短手方向の略中心を通る長手方向に沿う直線14に重ならないように複数の歪み抑制装置及び/又は計測装置(例えば圧電素子)が離間して配置されている。図3に示したように、伝達部材10は、複数の圧電素子12が取り付けられている。点線14上の拘束点11で物体面、例えば、移動ステージ面13を拘束すれば、前述の第1実施形態と同様に、これらの圧電素子12はX方向のみの歪みを計測する歪み計測装置、またはX方向のみに力を発生する歪み抑制装置となる。この伝達部材10の長所は、複数の圧電素子12に分けることによって点線14上にスペースを形成し、この開放されたスペースに伝達部材10の拘束点11を形成することにより、圧電素子12を移動ステージ面13へ容易に固定できることである。特に、伝達部材10をネジで固定する場合には、第1実施形態では物体側からネジで固定するもしくは圧電素子1に穴をあけてネジで物体に固定するなどの方法で行われるが、伝達部材10の場合は、移動ステージ面13に対する固定部分が面上に開放されていることによって、伝達部材10側から移動ステージ面13にネジで固定できるようになり、取り付けが容易になる。
【0041】
(第4実施形態)
図4、5は、本発明の第4の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。伝達部材18、21と物体、例えば移動ステージ19、24とは、伝達部材18、21に形成された台座18a、21aを介して当接している。図4、5はそれぞれ、図1、3に示した第1、第3実施形態の伝達部材4、10を改良したものである。図1、3に示した伝達部材4、10は、拘束点2、3、11付近以外にも物体、例えば移動ステージと接している部分が多数ありうる。これによって摩擦接触する部分が存在し、圧電素子の発生力が移動ステージ面に伝達される際、非線形な特性が含まれる可能性がある。同様の問題は移動ステージの歪みを計測する場合にも発生する。このことは、弾性振動を抑制する制御系を組む際に制御性能が劣化するので好ましくない。一方、図4、5に示す伝達部材18、21は拘束点16、17、22付近に台座18a、21aがついているため、拘束点付近以外は移動ステージと接触しない。このことによって摩擦接触する部分が減少し、非線形な特性によって制御系の制御性能が劣化することが少なくなる。
【0042】
(第5実施形態)
図6は、本発明の第5の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。所定の方向をX方向として、伝達部材26の短手方向の略中心を通る長手方向に沿う直線30と交差するように複数の歪み検出素子が離間して配置されている。図6に示す伝達部材26は、第3の実施形態で説明した図3の伝達部材10と同様に、複数の圧電素子27を用いて、物体、例えば移動ステージとの拘束点部分を開放したことによって、移動ステージへの取り付けを容易にするものである。この伝達部材26が図3の伝達部材10と違う点は、圧電素子27を複数の拘束点28の間に接着した点である。その結果、接着する圧電素子27は発生したい力の向きと直行する方向(図6ではY方向)に長細い形状にすることができる。式(2)に示したように圧電素子のX方向の発生力はY軸方向の長さに比例する。よって、伝達部材26のように圧電素子27を接着するとX方向の発生力を大きくする効果が得られる。また、この伝達部材26も第4の実施形態で述べた図4、5のように拘束点付近に台座を取り付ければ、非線形な特性を少なくすることができ、弾性歪みの制御性能が劣化することが少なくなる。
【0043】
次に、本発明の歪み計測装置、歪み抑制装置を半導体デバイスの製造プロセスで用いられる露光装置に適用した場合の実施の形態について説明する。
【0044】
図10は、本発明の歪み計測装置、歪み抑制装置を半導体デバイスの製造プロセスに適用した場合に用いられる露光装置の概念図を示したものである。
【0045】
本発明の好適な実施形態における露光装置100は、照明光学系101、レティクル102、投影光学系103、基板104、移動ステージ105で構成される。照明光学系101は、例えば、エキシマレーザ、フッ素エキシマレーザなどを光源とした紫外光を露光光として用いることができる。照明光学系101からの光は、レティクル102に照射される。レティクル102を通った光は、投影光学系103を通して、基板104上に焦点を結び、基板104表面に塗布された感光材を露光する。基板104は、本発明の歪み計測装置、歪み抑制装置を適用した移動ステージ105を用いて所定の位置へ移動する。
【0046】
図11は、上記の露光装置を用いた半導体デバイスの全体的な製造プロセスのフローである。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク作製)では設計した回路パターンに基づいてマスクを作製する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記のマスクとウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。
【0047】
図12は、上記ウエハプロセスの詳細なフローを示す。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では上記の露光装置を用いて、ウエハを移動するときに生じる移動ステージの歪みを正確に計測し、その物体の歪みを大幅に低減しながらウエハを精密に移動させ、回路パターンをウエハに転写する。ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
【0048】
【発明の効果】
本発明によれば、例えば、物体に発生する歪みを正確に計測する歪み計測装置、並びにその物体の歪みを大幅に低減する歪み抑制装置、露光装置、デバイス製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の好適な実施の形態に係る歪み計測装置及び/又は歪み抑制装置の概観を示す斜視図である。
【図2】本発明の第2の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。
【図3】本発明の第3の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。
【図4】本発明の第4の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。
【図5】本発明の第4の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。
【図6】本発明の第5の好適な実施形態に係る歪み抑制装置及び/又は計測装置の概観を示す斜視図である。
【図7】ウエハステージのステージ面に圧電素子センサを直接接着した状態を示す図である。
【図8】図1に示す歪み抑制装置及び/又は計測装置を移動ステージに適用した一例を示す図である。
【図9】従来の半導体露光装置のウエハステージの構成を示す概略図である。
【図10】本発明の歪み計測装置、歪み抑制装置を半導体デバイスの製造プロセスに適用した場合に用いられる露光装置の概念図である。
【図11】半導体デバイスの全体的な製造プロセスのフローを示す図である。
【図12】ウエハプロセスの詳細なフローを示す図である。
【符号の説明】
1 圧電素子、2、3 伝達部材拘束点、3a伝達部材中心軸線、46 伝達部材、5 物体面、6 スリット群、7 拘束点、8 圧電素子取り付け位置、9 伝達部材、10 伝達部材、11 拘束点、12 圧電素子、13 移動ステージ面、14 伝達部材中心軸線、15 圧電素子、16、17 伝達部材拘束点、18伝達部材、19 移動ステージ面、20 伝達部材中心軸線、21 伝達部材、22 伝達部材拘束点、23 圧電素子、24 移動ステージ面、25 伝達部材中心軸線、26 伝達部材、27 圧電素子、28 伝達部材拘束点、41 定盤、42 Y方向ガイド、43 Yステージ、44 エアパッド、45 Xステージ、46 リニアモータ、48 チルトステージ、49 ミラー、50 レーザ干渉計、51 ステージ基板、53 ウエハ、800 移動ステージ面、801 歪み抑制装置、802 歪み計測装置、803 移動ステージ装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distortion measuring apparatus, a distortion suppressing apparatus, an exposure apparatus, and a device manufacturing method.
[0002]
[Prior art]
In recent years, there has been a demand for a technique for moving an object, for example, a sample used in a process, with high accuracy by a fine processing technique. For example, in an exposure apparatus used in a semiconductor manufacturing process, the position control accuracy required for the wafer stage of the exposure apparatus has reached the order of several nm as the exposure line width is reduced. Further, from the viewpoint of improving productivity, the moving acceleration and moving speed of the stage tend to increase year by year.
[0003]
In order to realize such high-speed and high-accuracy position control, it is necessary that the wafer stage position control system has a high servo band. A high servo band realizes a system that has high responsiveness to the target value and is robust against the influence of disturbances. Therefore, a wafer stage, a main body structure and the like are designed to realize a servo band as high as possible.
[0004]
FIG. 9 is a schematic diagram showing the configuration of a wafer stage of a conventional exposure apparatus. In the following description, the three translational axes (X, Y, Z) with respect to the reference coordinate system and the three rotation axes (θx, θy, θz) around the three translational axes are collectively referred to as a six-degree-of-freedom position. The configuration and operation of a conventional position control system will be described using this example.
[0005]
The surface plate 41 is supported from the floor F via a damper. The Y stage 43 is movable in the Y direction on the reference surface of the surface plate 41 by a Y linear motor 46 that generates thrust in the Y direction along a fixed guide 42 fixed to the surface plate 41. The surface plate 41 and the fixed guide 42 and the Y stage 43 are coupled by air via air pads 44a and 44b, which are hydrostatic bearings, and are not in contact with each other. The Y stage 43 includes a guide in the X direction, and guides the X stage 45 mounted on the Y stage in the X direction. The Y stage 43 is provided with an X linear motor stator that generates a force in the X direction, and drives the X stage 45 in the X direction together with the X linear motor movable element provided on the X stage. The surface plate 41 and the X guide and the X stage 45 are coupled by air via an air pad 44c, which is a static pressure bearing, and are not in contact with each other.
[0006]
A tilt stage 48 is mounted on the X stage 45. The tilt stage 48 moves in the Z direction and rotates in three axes (θx, θy, θz) by a thrust force from a linear motor (not shown). A stage substrate 51 having a wafer chuck is mounted on the tilt stage 48 and holds a wafer 53 as an object to be exposed. On the stage substrate 51, measurement mirrors 49a and 49b used for position measurement in the X direction and the Y direction are provided.
[0007]
The stage device of the exposure apparatus performs positioning with six degrees of freedom in the in-plane direction (X, Y, θz) and the vertical (tilt) direction (Z, θx, θy) with respect to the reference surface of the surface plate 41. Minutes of exposure. The position in the in-plane direction (X, Y, θz) is measured using a laser interferometer 50 that is integral with a lens barrel (not shown), and the measurement in the vertical (tilt) direction (Z, θx, θy) is performed. The position in the Z direction and the angle of the rotation component are measured by an alignment measurement system (not shown) integrated with the lens barrel.
[0008]
In FIG. 9, it is assumed that the lens barrel and the surface plate 41 are integrated, and the laser interferometer 50 is attached to the surface plate 41. Although the Z-direction position measurement is not shown, measurement in the vertical (tilt) direction (Z, θx, θy) is possible by measuring three points on the stage substrate or wafer from the lens barrel. is there.
[0009]
The positioning of the stages 43 and 45 and the tilt stage 48 in the direction of these six degrees of freedom is performed by configuring a servo system on each XYZ axis. That is, a compensator (not shown) drives the X stage 45 in the X direction based on the position information measured by the laser interferometer 50. A drive command value to the Y linear motor 46 that drives the X linear motor and the Y stage 43 in the Y direction is calculated, and the X and Y linear motors drive the X stage 45 and the Y stage 43, respectively, based on the drive command value. . The compensator calculates a drive command value for the tilt stage 48 according to the position in the Z direction, the angle in the rotation direction (θx, θy), and the measured value in the θz direction. Driven.
[0010]
According to the conventional position control system configured as described above, the wafer stage can be moved to a given target position at high speed and with high accuracy. However, if an attempt is made to move the wafer stage configured as described above at a higher speed, elastic vibration due to the elastic characteristics of the wafer stage may occur, and positioning accuracy and speed may decrease. In order to solve such a problem, a strain measuring device (for example, a piezoelectric element sensor) is attached to the place where the anti-vibration of the wafer stage is caused, and the distortion due to the elastic vibration of the wafer stage is measured. 2. Description of the Related Art A technique for suppressing elastic vibration is known as a distortion suppression device (for example, an actuator) that generates a force (strain) by energizing a piezoelectric element that is attached to an antinode of elastic vibration.
[0011]
[Problems to be solved by the invention]
However, since the piezoelectric element sensor is directly attached to the wafer stage surface by means such as adhesion, there is a problem that the direction of elastic vibration of the wafer stage surface cannot be measured accurately. This point will be described with reference to FIG. FIG. 7 is a view showing a state where the piezoelectric element sensor is directly bonded to the stage surface of the wafer stage. When the wafer stage is elastically vibrated and strain is generated on the stage surface, the piezoelectric element has a voltage V0 proportional to the sum of strain amounts εx and εy in the X and Y directions in the figure, as shown in the following formula (1). Is output. When the piezoelectric element sensor is directly bonded to the wafer stage surface in this way, the piezoelectric element can measure the sum of the distortion components in two directions (X direction and Y direction), but cannot accurately measure the distortion components in each direction. .
[0012]
[Expression 1]
Figure 0003984841
In addition, when used as an actuator in the same manner as the piezoelectric element sensor, it is difficult to accurately suppress elastic vibration of the wafer stage surface because the piezoelectric element is directly attached to the wafer stage surface. This will also be described with reference to FIG. It is assumed that the wafer stage generates elastic vibration in the X direction in the figure. If the voltage Vi is applied to the piezoelectric element in order to suppress this elastic vibration, a force due to strain is generated simultaneously in the X direction and the Y direction as in the following formulas (2) and (3). That is, the piezoelectric element generates unnecessary force (strain) in the Y direction even when it is desired to suppress elastic vibration only in the X direction. For this reason, even if a piezoelectric element is used as an actuator, the elastic vibration of the wafer stage cannot be reduced with high accuracy.
[0013]
[Expression 2]
Figure 0003984841
The present invention has been made in view of the above-described problems. For example, a distortion measuring apparatus that accurately measures distortion generated in an object, a distortion suppression apparatus that significantly reduces distortion of the object, an exposure apparatus, and the like. An object is to provide a device manufacturing method.
[0014]
[Means for Solving the Problems]
A first aspect of the present invention relates to a strain measurement apparatus that measures strain of an object, and includes a strain detection element that detects strain generated in the object, and is fixed to the object, and the strain detection element is fixed. A transmission member that transmits strain of the object to the strain detection element, and the transmission member is fixed to the object at a plurality of points spaced apart on a straight line parallel to a predetermined direction of the object. To do.
[0015]
A second aspect of the present invention relates to a strain measuring apparatus that measures strain of an object, and includes a strain detection element that detects strain generated in the object, and is fixed to the object and the strain detection element is fixed. A transmission member configured to transmit strain of the object to the strain detection element, and the transmission member includes a plurality of slits parallel to a predetermined direction of the object.
[0016]
According to a third aspect of the present invention, there is provided a strain measuring apparatus for measuring a strain of an object, and a plurality of strain detecting elements for detecting a strain generated in the object, and being fixed to the object and the strain detecting element being fixed. A transmission member that transmits strain of the object to the strain detection element, and the plurality of strain detection elements are arranged on the transmission member with a straight line parallel to a predetermined direction of the object being spaced apart, The transmission member is fixed to the object at a plurality of points on the straight line.
[0017]
According to a fourth aspect of the present invention, there is provided a strain measuring apparatus for measuring a strain of an object. The strain measuring element detects a strain generated in the object, and is fixed to the object, and the strain detecting element is fixed. A transmission member configured to transmit strain of the object to the strain detection element, and the plurality of strain detection elements are spaced apart from each other of a plurality of straight lines parallel to a predetermined direction of the object to the transmission member. It is arranged, and the transmission member is fixed to the object at a plurality of points on the straight line .
[0018]
According to a preferred embodiment of the present invention, the transmission member is fixed to the object via a pedestal formed on the transmission member.
[0019]
According to a preferred embodiment of the present invention, the strain detection element is a piezoelectric element .
[0020]
According to a fifth aspect of the present invention, there is provided an exposure apparatus, wherein the object is a moving stage for moving a substrate or an original plate in a semiconductor manufacturing process, and includes the distortion measuring apparatus described above .
[0021]
A sixth aspect of the present invention relates to a strain suppression device that suppresses strain generated in an object. The strain generation element generates a force due to strain on the object; and the strain generation device is fixed to the object and generates the strain. And a transmission member that transmits the force generated by the distortion of the strain generating element to the object, and the transmission member is fixed to the object at a plurality of points separated on a straight line parallel to a predetermined direction of the object. It is characterized by being .
[0022]
A seventh aspect of the present invention relates to a strain suppression device that suppresses strain generated in an object. The strain generation element generates a force caused by strain on the object, and the strain generation device is fixed to the object. And a transmission member configured to transmit a force generated by strain of the strain generating element to the object, and the transmission member includes a plurality of slits parallel to a predetermined direction of the object .
[0023]
An eighth aspect of the present invention relates to a distortion suppression device that suppresses distortion generated in an object, and a plurality of distortion generating elements that generate a force due to distortion on the object, and being fixed to the object, And a transmission member that transmits a force generated by the distortion of the strain generating element to the object, and the plurality of strain suppressing elements are separated from each other with a straight line parallel to a predetermined direction of the object. The distortion suppressing device, wherein the distortion suppressing device is disposed on the transmission member, and the transmission member is fixed to the object at a plurality of points on the straight line .
[0024]
A ninth aspect of the present invention relates to a strain suppression device that suppresses strain generated in an object, a plurality of strain generating elements that generate a force caused by strain on the object, and being fixed to the object, A transmission member to which the strain generating element is fixed and transmits a force generated by the strain of the strain generating element to the object, and the strain suppressing element is separated on each of a plurality of straight lines parallel to a predetermined direction of the object. The transmission member is disposed on the transmission member, and the transmission member is fixed to the object at a plurality of points on the straight line .
[0025]
According to a preferred embodiment of the present invention, the transmission member is fixed to the object via a pedestal formed on the transmission member .
[0026]
According to a preferred embodiment of the present invention, the strain suppression element is a piezoelectric element .
[0027]
A tenth aspect of the present invention relates to an exposure apparatus, wherein the object is a moving stage that moves a substrate or an original plate in a semiconductor manufacturing process, and includes the distortion suppressing apparatus described above .
[0028]
The tenth aspect of the present invention is an application step of applying a photosensitive material to a substrate, an exposure step of transferring a pattern to the substrate on which the photosensitive material has been applied in the application step, using the exposure apparatus described above, And a developing step of developing the photosensitive material of the substrate onto which the pattern has been transferred in the exposure step .
[0034]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
[0035]
The present invention is not limited to the following embodiments. For example, the moving stage is effective for measuring elastic strain and suppressing elastic strain of a structure having elastic characteristics. Further, for example, it is effective for measuring elastic strain and suppressing elastic strain of a wafer stage structure used in a semiconductor exposure apparatus.
[0036]
(First embodiment)
FIG. 1 is a perspective view showing an overview of a strain measurement device and / or a strain suppression device according to a preferred embodiment of the present invention. There are restraining points 2 and 3 on a straight line 3a along the longitudinal direction passing through the approximate center in the short direction of the piezoelectric element 1 with the predetermined direction as the X direction. It is assumed that the direction of strain to be measured or the direction of force to be generated is, for example, the X direction. In this case, the transmission member 4 to which the piezoelectric element 1 is bonded is fixed to the object plane 5 only at the restraint points 2 and 3.
[0037]
When the piezoelectric element 1 is used as a strain measuring device, when the object surface 5 is distorted by elastic vibration, the Y direction component of the elastic strain is not transmitted to the transmission member 4, and only the strain in the X direction is applied to the transmission member 4. The distortion in the X direction is measured by the piezoelectric element 1. Furthermore, when the piezoelectric element 1 is used as a strain suppression device that suppresses and controls the elastic strain of the moving stage surface 5, when a voltage is applied to the piezoelectric element 1, forces in both the X and Y directions are transmitted to the transmission member 4. A force only in the X direction is transmitted to the object plane 5. FIG. 8 is a diagram illustrating an example in which the distortion suppression apparatus and / or measurement apparatus illustrated in FIG. 1 is applied to a moving stage. 1 and 8, the piezoelectric element 1 is attached to the moving stage surface 800 via the transmission member 4 as a strain measuring device 801 and a strain suppressing device 802. In accordance with the amount of strain measured by the strain measuring device 801, a voltage is applied to the strain suppressing device 802 so as to suppress elastic vibration of the moving stage surface 800. Since the elastic vibration of the moving stage surface 800 is reduced in this way, the moving stage device 803 can be positioned at high speed and with high accuracy. In addition, the application of the distortion suppression device and / or measurement device according to a preferred embodiment of the present invention is not limited to only the moving stage. For example, the present invention can be applied to the wafer stage of the conventional semiconductor exposure apparatus shown in FIG. In FIG. 9, the laser interferometer 50 is connected to the surface plate 41. Therefore, the elastic vibration of the surface plate 41 is transmitted to the laser interferometer 50, and the connecting portion between the surface plate 41 and the laser interferometer 50 is elastically strained, so that the wafer stage position cannot be measured accurately. In this case, the application of reducing distortion due to elastic vibration by attaching the piezoelectric element 1 to the connecting portion between the surface plate 41 and the laser interferometer 50 via the transmission member 4 is also conceivable.
[0038]
Further, in FIG. 1, the restraining points for fixing the transmission member 4 to the object plane 5 are not limited to the above two points. As long as it is on the dotted line 3a indicating a straight line parallel to the X-axis in FIG. 1, even if an infinite constraint point is provided, the distortion of the moving stage measured by the strain measuring device and the object for the strain suppressing device to suppress elastic vibration The force applied to is only the X direction component. Therefore, the transmission member 4 can include one or a plurality of restraint points arranged at arbitrary intervals with respect to a predetermined direction. As a restraining method at these restraint points, for example, there is a method of fixing to a hole provided at the restraint point with a screw or a pin. The advantage of this fixing method is that it is easy to remove.
[0039]
(Second Embodiment)
FIG. 2 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a second preferred embodiment of the present invention. A plurality of slits parallel to the straight line 3a along the longitudinal direction passing through the approximate center in the short direction of the transmission member 9 is defined with the predetermined direction as the X direction. As shown in FIG. 2, a piezoelectric element (not shown) is bonded to a one-dot chain line portion 8 on a transmission member 9 having a slit group 6 formed of a plurality of slits arranged in the Y direction. The The transmission member 9 is fixed to an object (for example, a moving stage) at a number of constraint points 7. In this configuration, when the piezoelectric element is used as a strain measuring device, the piezoelectric element measures the strain in the X direction, but the strain in the Y direction is not transmitted to the piezoelectric element by the slit group 6 cut parallel to the X axis. Because of not being measured. Similarly, when a piezoelectric element is used as a strain suppression device, a force only in the X direction is applied to an object (for example, a moving stage). The number of restriction points on the object (for example, the moving stage) of the transmission member 9 may be any number as long as the slit on the transmission member 9 is not cut.
[0040]
(Third embodiment)
FIG. 3 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a third preferred embodiment of the present invention. A plurality of strain suppression devices and / or measurement devices (for example, piezoelectric elements) are separated so as not to overlap a straight line 14 along the longitudinal direction passing through the approximate center in the short direction of the transmission member 10 with the predetermined direction as the X direction. Has been placed. As shown in FIG. 3, the transmission member 10 has a plurality of piezoelectric elements 12 attached thereto. If the object surface, for example, the moving stage surface 13 is constrained by the constraining point 11 on the dotted line 14, the piezoelectric element 12 measures a strain only in the X direction, as in the first embodiment, Or it becomes a distortion suppression apparatus which generate | occur | produces force only to a X direction. The advantage of the transmission member 10 is that a space is formed on the dotted line 14 by dividing it into a plurality of piezoelectric elements 12, and the piezoelectric element 12 is moved by forming a restraint point 11 of the transmission member 10 in this open space. It can be easily fixed to the stage surface 13. Particularly, when the transmission member 10 is fixed with a screw, in the first embodiment, the transmission member 10 is fixed with a screw from the object side, or a hole is formed in the piezoelectric element 1 and fixed to the object with a screw. In the case of the member 10, since the fixed portion with respect to the moving stage surface 13 is opened on the surface, the member 10 can be fixed to the moving stage surface 13 with screws from the transmission member 10 side, and attachment is easy.
[0041]
(Fourth embodiment)
4 and 5 are perspective views showing an overview of a distortion suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention. The transmission members 18 and 21 and an object, for example, the moving stages 19 and 24 are in contact with each other via pedestals 18a and 21a formed on the transmission members 18 and 21. 4 and 5 show improvements on the transmission members 4 and 10 of the first and third embodiments shown in FIGS. The transmission members 4 and 10 shown in FIGS. 1 and 3 can have many portions in contact with an object, for example, a moving stage, in addition to the vicinity of the restraint points 2, 3 and 11. As a result, there is a portion that makes frictional contact, and when the generated force of the piezoelectric element is transmitted to the moving stage surface, there is a possibility that nonlinear characteristics may be included. The same problem occurs when measuring the distortion of the moving stage. This is not preferable because the control performance deteriorates when a control system for suppressing elastic vibration is assembled. On the other hand, since the transmission members 18 and 21 shown in FIGS. 4 and 5 are provided with pedestals 18a and 21a in the vicinity of the restraint points 16, 17, and 22, they do not contact the moving stage except near the restraint points. As a result, the frictional contact portion is reduced, and the control performance of the control system is less likely to deteriorate due to non-linear characteristics.
[0042]
(Fifth embodiment)
FIG. 6 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a fifth preferred embodiment of the present invention. A plurality of strain detection elements are arranged apart from each other so as to intersect with a straight line 30 along the longitudinal direction passing through the approximate center in the short direction of the transmission member 26 with the predetermined direction as the X direction. The transmission member 26 shown in FIG. 6 uses a plurality of piezoelectric elements 27 to open a restraint point portion with an object, for example, a moving stage, similarly to the transmission member 10 shown in FIG. 3 described in the third embodiment. This facilitates attachment to the moving stage. The transmission member 26 is different from the transmission member 10 in FIG. 3 in that the piezoelectric element 27 is bonded between a plurality of restraining points 28. As a result, the piezoelectric element 27 to be bonded can be elongated in the direction (Y direction in FIG. 6) perpendicular to the direction of the force to be generated. As shown in Expression (2), the generated force in the X direction of the piezoelectric element is proportional to the length in the Y-axis direction. Therefore, when the piezoelectric element 27 is bonded like the transmission member 26, an effect of increasing the generated force in the X direction can be obtained. Further, if this transmission member 26 is also provided with a pedestal in the vicinity of the restraint point as shown in FIGS. 4 and 5 described in the fourth embodiment, nonlinear characteristics can be reduced and the control performance of elastic strain is deteriorated. Less.
[0043]
Next, an embodiment in which the distortion measuring apparatus and distortion suppressing apparatus of the present invention are applied to an exposure apparatus used in a semiconductor device manufacturing process will be described.
[0044]
FIG. 10 shows a conceptual diagram of an exposure apparatus used when the distortion measuring apparatus and distortion suppressing apparatus of the present invention are applied to a semiconductor device manufacturing process.
[0045]
An exposure apparatus 100 according to a preferred embodiment of the present invention includes an illumination optical system 101, a reticle 102, a projection optical system 103, a substrate 104, and a moving stage 105. The illumination optical system 101 can use, for example, ultraviolet light using an excimer laser, a fluorine excimer laser, or the like as a light source as exposure light. Light from the illumination optical system 101 is applied to the reticle 102. The light passing through the reticle 102 is focused on the substrate 104 through the projection optical system 103 and exposes the photosensitive material coated on the surface of the substrate 104. The substrate 104 moves to a predetermined position using a moving stage 105 to which the strain measuring device and strain suppressing device of the present invention are applied.
[0046]
FIG. 11 is a flow of an overall manufacturing process of a semiconductor device using the above exposure apparatus. In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask fabrication), a mask is fabricated based on the designed circuit pattern. On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the mask and wafer. The next step 5 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer produced in step 4, and is an assembly process (dicing, bonding), packaging process (chip encapsulation), etc. Process. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
[0047]
FIG. 12 shows a detailed flow of the wafer process. In step 11 (oxidation), the wafer surface is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface. In step 13 (electrode formation), an electrode is formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. In step 15 (resist process), a photosensitive agent is applied to the wafer. In step 16 (exposure), the above-described exposure apparatus is used to accurately measure the distortion of the moving stage that occurs when the wafer is moved, and the wafer is precisely moved while greatly reducing the distortion of the object. Is transferred to the wafer. In step 17 (development), the exposed wafer is developed. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
[0048]
【The invention's effect】
According to the present invention, for example, it is possible to provide a distortion measurement apparatus that accurately measures distortion generated in an object, and a distortion suppression apparatus, exposure apparatus, and device manufacturing method that significantly reduce distortion of the object.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overview of a strain measurement device and / or a strain suppression device according to a preferred embodiment of the present invention.
FIG. 2 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a second preferred embodiment of the present invention.
FIG. 3 is a perspective view showing an overview of a distortion suppression device and / or a measurement device according to a third preferred embodiment of the present invention.
FIG. 4 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention.
FIG. 5 is a perspective view showing an overview of a distortion suppressing device and / or a measuring device according to a fourth preferred embodiment of the present invention.
FIG. 6 is a perspective view showing an overview of a distortion suppression device and / or a measurement device according to a fifth preferred embodiment of the present invention.
FIG. 7 is a view showing a state where a piezoelectric element sensor is directly bonded to a stage surface of a wafer stage.
8 is a diagram showing an example in which the distortion suppressing device and / or measuring device shown in FIG. 1 is applied to a moving stage.
FIG. 9 is a schematic view showing a configuration of a wafer stage of a conventional semiconductor exposure apparatus.
FIG. 10 is a conceptual diagram of an exposure apparatus used when the distortion measuring apparatus and distortion suppressing apparatus of the present invention are applied to a semiconductor device manufacturing process.
FIG. 11 is a diagram showing a flow of an entire manufacturing process of a semiconductor device.
FIG. 12 is a diagram showing a detailed flow of a wafer process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric element, 2, 3 Transmission member restraint point, 3a Transmission member center axis, 46 Transmission member, 5 Object surface, 6 Slit group, 7 Restriction point, 8 Piezoelectric element attachment position, 9 Transmission member, 10 Transmission member, 11 Restraint Point, 12 Piezoelectric element, 13 Moving stage surface, 14 Transmission member central axis, 15 Piezoelectric element, 16, 17 Transmission member restraint point, 18 transmission member, 19 Moving stage surface, 20 Transmission member central axis, 21 Transmission member, 22 Transmission Member restraint point, 23 piezoelectric element, 24 moving stage surface, 25 transmission member central axis, 26 transmission member, 27 piezoelectric element, 28 transmission member restraint point, 41 surface plate, 42 Y direction guide, 43 Y stage, 44 air pad, 45 X stage, 46 linear motor, 48 tilt stage, 49 mirror, 50 laser interferometer, 51 stage substrate, 53 wafer, 800 moving stage Stage surface, 801 strain suppression device, 802 strain measurement device, 803 moving stage device

Claims (15)

物体の歪みを計測する歪み計測装置であって、
前記物体に生じる歪みを検出する歪み検出素子と、
前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、
前記伝達部材は、前記物体の所定方向に平行な直線上の離間する複数点で前記物体に固定されていることを特徴とする歪み計測装置
A strain measurement device that measures the distortion of an object,
A strain detecting element for detecting strain generated in the object;
A transmission member that is fixed to the object, and that transmits the distortion of the object to the distortion detection element by fixing the distortion detection element;
The strain measuring device, wherein the transmission member is fixed to the object at a plurality of points spaced apart on a straight line parallel to a predetermined direction of the object .
物体の歪みを計測する歪み計測装置であって、
前記物体に生じる歪みを検出する歪み検出素子と、
前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、
前記伝達部材は、前記物体の所定方向に平行な複数のスリットを有することを特徴とする歪み計測装置
A strain measurement device that measures the distortion of an object,
A strain detecting element for detecting strain generated in the object;
A transmission member that is fixed to the object, and that transmits the distortion of the object to the distortion detection element by fixing the distortion detection element;
The transmission member has a plurality of slits parallel to a predetermined direction of the object .
物体の歪みを計測する歪み計測装置であって、
物体に生じる歪みを検出する複数の歪み検出素子と、
前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、
前記複数の歪み検出素子は、前記物体の所定方向に平行な直線を挟んで離間して前記伝達部材に配置され、
前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする歪み計測装置
A strain measurement device that measures the distortion of an object,
A plurality of strain detection elements for detecting strain generated in the object;
A transmission member that is fixed to the object, and that transmits the distortion of the object to the distortion detection element by fixing the distortion detection element;
The plurality of strain detection elements are arranged on the transmission member so as to be spaced apart across a straight line parallel to a predetermined direction of the object,
The transmission member is strain measuring apparatus characterized by being fixed to the object at a plurality of points on the straight line.
物体の歪みを計測する歪み計測装置であって、
物体に生じる歪みを検出する複数の歪み検出素子と、
前記物体に固定されると共に、前記歪み検出素子が固着されて前記物体の歪みを前記歪み検出素子に伝達する伝達部材とを備え、
前記複数の歪み検出素子は、前記物体の所定方向に平行な直線上に離間して前記伝達部材に配置され、
前記伝達部材は前記直線上の複数点で前記物体に固定されていることを特徴とする歪み計測装置
A strain measurement device that measures the distortion of an object,
A plurality of strain detection elements for detecting strain generated in the object;
A transmission member that is fixed to the object, and that transmits the distortion of the object to the distortion detection element by fixing the distortion detection element;
The plurality of strain detection elements are arranged on the transmission member so as to be separated from each other on a straight line parallel to a predetermined direction of the object,
The strain measuring device, wherein the transmission member is fixed to the object at a plurality of points on the straight line .
前記伝達部材は、前記伝達部材に形成された台座を介して前記物体に固定されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の歪み計測装置。The distortion measuring apparatus according to claim 1, wherein the transmission member is fixed to the object via a pedestal formed on the transmission member. 前記歪み検出素子は、圧電素子であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の歪み計測装置。The strain detecting element, the strain measuring device according to any one of claims 1 to 5, characterized in that a piezoelectric element. 前記物体は、半導体製造工程において基板又は原版を移動させる移動ステージであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の歪み計測装置を備えた露光装置The exposure apparatus provided with the distortion measuring apparatus according to claim 1 , wherein the object is a moving stage that moves a substrate or an original in a semiconductor manufacturing process. 物体に発生する歪みを抑制する歪み抑制装置であって、
前記物体に対して歪みによる力を発生する歪み発生素子と、
前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、
前記伝達部材は、前記物体の所定方向に平行な直線上の離間する複数点で前記物体に固定されていることを特徴とする歪み抑制装置
A distortion suppression device for suppressing distortion generated in an object,
A strain generating element that generates a force due to strain on the object;
A transmission member that is fixed to the object, and that transmits the force due to the distortion of the strain generating element to the object with the strain generating element fixed thereto;
The distortion suppressing device, wherein the transmission member is fixed to the object at a plurality of points spaced apart on a straight line parallel to a predetermined direction of the object .
物体に発生する歪みを抑制する歪み抑制装置であって、
前記物体に対して歪みによる力を発生する歪み発生素子と、
前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、
前記伝達部材は、前記物体の所定方向に平行な複数のスリットを有することを特徴とする歪み抑制装置
A distortion suppression device for suppressing distortion generated in an object,
A strain generating element that generates a force due to strain on the object;
A transmission member that is fixed to the object, and that transmits the force due to the distortion of the strain generating element to the object with the strain generating element fixed thereto;
The distortion suppressing device, wherein the transmission member includes a plurality of slits parallel to a predetermined direction of the object .
物体に発生する歪みを抑制する歪み抑制装置であって、
前記物体に対して歪みによる力を発生する複数の歪み発生素子と、
前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、
前記複数の歪み抑制素子は、前記物体の所定方向に平行な直線を挟んで離間して前記伝達部材に配置され、
前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする歪み抑制装置。
A distortion suppression device for suppressing distortion generated in an object,
A plurality of strain generating elements for generating a force due to strain on the object;
A transmission member that is fixed to the object, and that transmits the force due to the distortion of the strain generating element to the object with the strain generating element fixed thereto;
The plurality of strain suppression elements are arranged on the transmission member and spaced apart with a straight line parallel to a predetermined direction of the object,
The distortion suppressing device, wherein the transmission member is fixed to the object at a plurality of points on the straight line.
物体に発生する歪みを抑制する歪み抑制装置であって、
前記物体に対して歪みによる力を発生する複数の歪み発生素子と、
前記物体に固定されると共に、前記歪み発生素子が固着されて前記歪み発生素子の歪みによる力を前記物体に伝達する伝達部材とを備え、
前記歪み抑制素子は、前記物体の所定方向に平行な直線上に離間して前記伝達部材に配置され、
前記伝達部材は、前記直線上の複数点で前記物体に固定されていることを特徴とする歪み抑制装置
A distortion suppression device for suppressing distortion generated in an object,
A plurality of strain generating elements for generating a force due to strain on the object;
A transmission member that is fixed to the object, and that transmits the force due to the distortion of the strain generating element to the object with the strain generating element fixed thereto;
The strain suppression element is disposed on the transmission member so as to be separated on a straight line parallel to a predetermined direction of the object,
The distortion suppressing device, wherein the transmission member is fixed to the object at a plurality of points on the straight line .
前記伝達部材は、前記伝達部材に形成された台座を介して前記物体に固定されていることを特徴とする請求項8乃至請求項11のいずれか1項に記載の歪み抑制装置。The distortion suppressing device according to any one of claims 8 to 11 , wherein the transmission member is fixed to the object via a pedestal formed on the transmission member. 前記歪み抑制素子は、圧電素子であることを特徴とする請求項8乃至請求項12のいずれか1項に記載の歪み抑制装置。The strain suppression device according to any one of claims 8 to 12 , wherein the strain suppression element is a piezoelectric element. 前記物体は、半導体製造工程において基板又は原版を移動させる移動ステージであることを特徴とする請求項8乃至請求項13のいずれか1項に記載の歪み抑制装置を備えた露光装置The exposure apparatus provided with the distortion suppressing apparatus according to claim 8, wherein the object is a moving stage that moves a substrate or an original in a semiconductor manufacturing process. 半導体デバイスの製造方法であって、
基板に感光材を塗布する塗布工程と、
前記塗布工程で前記感光材が塗布された前記基板に請求項7または請求項14に記載の露光装置を利用してパターンを転写する露光工程と、
前記露光工程で前記パターンが転写された前記基板の前記感光材を現像する現像工程と、
を有することを特徴とする半導体デバイスの製造方法。
A method for manufacturing a semiconductor device, comprising:
An application process for applying a photosensitive material to the substrate;
An exposure step of transferring a pattern using the exposure apparatus according to claim 7 or 14, to the substrate on which the photosensitive material is applied in the application step;
A developing step of developing the photosensitive material of the substrate on which the pattern has been transferred in the exposure step;
A method for manufacturing a semiconductor device, comprising:
JP2002062303A 2002-03-07 2002-03-07 Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method Expired - Fee Related JP3984841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062303A JP3984841B2 (en) 2002-03-07 2002-03-07 Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062303A JP3984841B2 (en) 2002-03-07 2002-03-07 Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method

Publications (3)

Publication Number Publication Date
JP2003262501A JP2003262501A (en) 2003-09-19
JP2003262501A5 JP2003262501A5 (en) 2006-12-28
JP3984841B2 true JP3984841B2 (en) 2007-10-03

Family

ID=29196141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062303A Expired - Fee Related JP3984841B2 (en) 2002-03-07 2002-03-07 Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP3984841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921719B2 (en) 2016-09-30 2021-02-16 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Optical measurement device and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484435B1 (en) 2003-04-09 2015-01-19 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI360158B (en) 2003-10-28 2012-03-11 Nikon Corp Projection exposure device,exposure method and dev
TWI385414B (en) 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
TWI437618B (en) 2004-02-06 2014-05-11 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
EP2660854B1 (en) 2005-05-12 2017-06-21 Nikon Corporation Projection optical system, exposure apparatus and exposure method
US8681314B2 (en) 2005-10-24 2014-03-25 Nikon Corporation Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method
TWI433210B (en) * 2005-10-24 2014-04-01 尼康股份有限公司 An exposure apparatus, an exposure method, and an element manufacturing method
US7710540B2 (en) * 2007-04-05 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2010005081A1 (en) * 2008-07-10 2010-01-14 株式会社ニコン Deformation measuring apparatus, exposure apparatus, jig for deformation measuring apparatus, position measuring method and device manufacturing method
KR101383041B1 (en) * 2012-06-15 2014-04-17 전자부품연구원 Board type strain gauge sensor and board body thereof
KR101393593B1 (en) 2012-06-15 2014-05-27 (주)미래컴퍼니 Strain gauge sensor, strain gauge sensor structure and manufacturing method thereof
EP3901565B1 (en) * 2018-12-17 2023-10-18 Alps Alpine Co., Ltd. Tire sensor module and tire sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921719B2 (en) 2016-09-30 2021-02-16 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Optical measurement device and method

Also Published As

Publication number Publication date
JP2003262501A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US7443619B2 (en) Optical element holding apparatus, exposure apparatus and device manufacturing method
JP3634483B2 (en) Stage apparatus, and exposure apparatus and device production method using the same
JP3984841B2 (en) Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method
EP1652003B1 (en) Wafer table for immersion lithography
JP3814453B2 (en) Positioning apparatus, semiconductor exposure apparatus, and device manufacturing method
US7119879B2 (en) Stage alignment apparatus and its control method, exposure apparatus, and semiconductor device manufacturing method
JP3919560B2 (en) Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method
WO2001027978A1 (en) Substrate, stage device, method of driving stage, exposure system and exposure method
JP3155936B2 (en) Linear motor and stage apparatus, and scanning exposure apparatus and device manufacturing method using the same
JP2005046941A (en) Stage device with cable jogging unit
US7133115B2 (en) Positioning device, exposure apparatus using the positioning device, and device production method
CN105493237B (en) Movable body apparatus, exposure apparatus, and device manufacturing method
JP4386293B2 (en) Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method
JP2004134456A (en) Moving device, aligner, and method of manufacturing device
US20030169412A1 (en) Reaction frame for a wafer scanning stage with electromagnetic connections to ground
JP2004281654A (en) Drive mechanism, aligner employing it, and process for fabricating device
JP2004111653A (en) Positioning device, exposure device applying the locating device thereto and manufacturing method of semiconductor device
US20070115451A1 (en) Lithographic System with Separated Isolation Structures
JP2004152902A (en) Positioning device
JPH11297613A (en) Stage equipment, aligner using the equipment, and device-manufacturing method
JP4011919B2 (en) Moving apparatus, exposure apparatus, and semiconductor device manufacturing method
JP2003324056A (en) Vibration suppression device, control method therefor, aligner and method of manufacturing semiconductor device
JP2000223411A (en) Positioner and aligner, and device manufacture
JPH09306815A (en) Aligner and device producing method utilizing thereof
JP2000353736A (en) Stage device, aligner using the same and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3984841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees