WO2001027978A1 - Substrate, stage device, method of driving stage, exposure system and exposure method - Google Patents

Substrate, stage device, method of driving stage, exposure system and exposure method Download PDF

Info

Publication number
WO2001027978A1
WO2001027978A1 PCT/JP1999/005539 JP9905539W WO0127978A1 WO 2001027978 A1 WO2001027978 A1 WO 2001027978A1 JP 9905539 W JP9905539 W JP 9905539W WO 0127978 A1 WO0127978 A1 WO 0127978A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
exposure
wafer
substrate
mask
Prior art date
Application number
PCT/JP1999/005539
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Takahashi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to PCT/JP1999/005539 priority Critical patent/WO2001027978A1/en
Priority to AU60054/99A priority patent/AU6005499A/en
Priority to KR1020017016269A priority patent/KR100625625B1/en
Priority to CNB99816934XA priority patent/CN1260772C/en
Publication of WO2001027978A1 publication Critical patent/WO2001027978A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70766Reaction force control means, e.g. countermass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Definitions

  • the present invention relates to a substrate, a stage apparatus, a stage driving method, an exposure apparatus, and an exposure method.
  • the present invention relates to a substrate on which a mask pattern is exposed, such as a glass substrate or a wafer, a stage device in which a stage body holding the substrate moves in a plane on a surface plate, a driving method thereof, and a stage device.
  • the present invention relates to an exposure apparatus and an exposure method for performing an exposure process using a held mask and a substrate. Particularly, when manufacturing a device such as a semiconductor integrated circuit or a liquid crystal display, a substrate and a stage suitable for use in a lithography process are used.
  • the present invention relates to a laser device, a stage driving method, an exposure device, and an exposure method. Background art
  • a circuit pattern formed on a mask or reticle (hereinafter, referred to as a reticle) is formed on a wafer or glass plate coated with a resist (photosensitive agent).
  • a resist photosensitive agent
  • Various exposure apparatuses for transferring onto a substrate are used.
  • a pattern of a reticle is projected on a wafer using a projection optical system in accordance with the miniaturization of the minimum line width (device rule) of a pattern accompanying the high integration of an integrated circuit in recent years.
  • a reduction projection exposure apparatus that performs reduction transfer on the top is mainly used.
  • This reduction projection exposure apparatus is a step-and-repeat type static exposure reduction projection exposure apparatus (so-called stepper) that sequentially transfers a reticle pattern to a plurality of shot areas (exposure areas) on a wafer.
  • This stepper is an improvement on the reticle and wafer in a one-dimensional direction by synchronously moving the reticle and the wafer as disclosed in Japanese Patent Laid-Open No. 8-16643, etc.
  • a scanning exposure type exposure apparatus of the 'and' scan type (so-called scanning 'stepper').
  • a base plate serving as a reference for the apparatus is first installed on the floor as a stage apparatus, and a reticle stage, a wafer stage, and a projection apparatus are placed on the base plate via a vibration isolating table for isolating floor vibration.
  • Optical system projection lens
  • the one on which a main body column for supporting the like is mounted is often used.
  • Recent stage devices are equipped with an air mount that can control the internal pressure and an actuator such as a voice coil motor as the vibration isolator, and are mounted on the main body column (main frame).
  • An active anti-vibration table that controls the vibration of the main body column by controlling the voice coil module based on the measurement value of an accelerometer is employed.
  • the wafer stage in the case of a stepper
  • a reticle stage and a wafer stage The reaction force generated by the acceleration and deceleration movement (in the case of scanning 'stepper') caused vibration of the main body column, causing a relative position error between the projection optical system and the wafer.
  • the relative position error at the time of alignment and at the time of exposure may result in image blur (increase in pattern line width) when a pattern is transferred to a position different from the design value on the wafer as a result, or when the position error includes a vibration component. Or inconvenience).
  • the reaction force generated by the movement of the wafer stage is mechanically reduced by using a frame member.
  • the invention in which the reticle stage is moved to the floor (ground) the reaction force generated by the movement of the reticle stage is mechanically controlled by using a frame member.
  • the invention which escapes to the floor (ground) is known.
  • the conventional stage apparatus and exposure apparatus as described above have the following problems.
  • the present invention has been made in consideration of the above points, and has a stage device, a stage driving method, and an exposure method capable of maintaining the position controllability of a stage even when a large stage or a high-speed stage is used. It is an object to provide an apparatus and an exposure method. Another object of the present invention is to provide an exposure apparatus and an exposure method that can perform high-precision exposure while securing a certain level of throughput even when a large stage or a high-speed stage is used. Still another object of the present invention is to provide a substrate on which a pattern has been exposed with high precision. Disclosure of the invention
  • the present invention employs the following configuration corresponding to FIGS. 1 to 7 showing the embodiment.
  • the stage device of the present invention is a stage device (4, 7) including a stage body (2, 5) driven at least in one direction on a surface plate (3, 6), ), And a supporting portion (8, 10) which is arranged independently in vibration, and a reaction force generated by driving the stage body (2, 5) on the supporting portion (8, 10). And a reaction force stage (17, 37) that is movable in the direction.
  • the stage driving method of the present invention is a stage driving method including a first stage (2, 5) driven in at least one direction on a surface plate (3, 6), wherein the first stage
  • the reaction force (17, 37), which is the second stage is in the opposite direction to the stage body (2, 5) due to the reaction force accompanying the drive of the stage body (2, 5). Therefore, the law of conservation of momentum works between the stage body (2, 5) and the reaction force stage (17, 37).
  • the reaction force stage (17, 37) is connected to the surface plate (3, 6). In order to move on the vibration independent support parts (8, 10),
  • the vibration of (8, 10) is not transmitted to the surface plate (3, 6), and can prevent the position controllability of the stage body (2, 5) from being affected.
  • the exposure apparatus of the present invention exposes a pattern of a mask (R) held on a mask stage (2) to a substrate (W) held on a substrate stage (5).
  • the stage device (4, 7) according to any one of claims 1 to 9 is provided.
  • the exposure method of the present invention is a method of exposing a pattern of a mask (R) held on a mask stage (2) to a substrate (W) held on a substrate stage (5). 21.
  • the vibration caused by the drive of the mask stage (2) and the substrate stage (5) is reduced to the projection optical system (P).
  • FIG. 1 is a view showing a first embodiment of the present invention, and is a schematic configuration diagram of an exposure apparatus in which a reticle stage, a wafer stage, and a projection optical system are independently arranged with respect to vibration.
  • FIG. 2 is an external perspective view of a stage device having the reticle stage.
  • FIG. 3 is a view showing the first embodiment of the present invention, and is a side view of a stator having springs connected to both sides.
  • 114 is a partially enlarged view of a stage device having a wafer stage.
  • FIG. 5 is an enlarged view of the main part of the linear motor that drives the wafer stage.
  • FIG. 6 is a view showing the second embodiment of the present invention, and is a schematic configuration diagram of an exposure apparatus in which a reticle stage, a wafer stage, and a projection optical system are independently arranged with respect to vibration.
  • FIG. 7 is an external perspective view showing another embodiment of the stage device having the wafer stage.
  • FIG. 8 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 7 a description will be given using an example in which a scanning stepper is used as an exposure apparatus that transfers a circuit pattern of a semiconductor device formed on a reticle onto a wafer while simultaneously moving the reticle and the wafer. I do.
  • the stage apparatus of the present invention is applied to both a reticle stage and a wafer stage.
  • the exposure apparatus 1 shown in FIG. 1 includes an illumination optical system IU that illuminates a rectangular (or circular) illumination area on a reticle (mask) R with uniform illumination by exposure illumination light from a light source (not shown).
  • the direction of the optical axis of the projection optical system PL is defined as the Z direction
  • the direction of the synchronous movement of the reticle R and the wafer W in the direction perpendicular to the Z direction is defined as the Y direction
  • the direction of the asynchronous movement is defined as the X direction.
  • the rotation directions around each axis are ⁇ ⁇ , 6> ⁇ , 6> ⁇ .
  • the illumination optical system I U is supported by a support column 9 fixed to the upper surface of the reaction frame 8.
  • the illumination light for exposure includes, for example, ultraviolet bright lines (g-line, i-line) and KrF excimer laser light (wavelength) emitted from an ultra-high pressure mercury lamp.
  • Deep ultraviolet light such as 248 nm
  • ArF excimer laser light wavelength 19
  • the reaction frame 8 is installed on a base plate 10 placed horizontally on the floor surface, and the upper and lower sides thereof have stepped portions 8a and 8b protruding inward. Each is formed.
  • the reticle surface plate 3 is supported substantially horizontally by a step portion 8a of the reaction frame 8 at each corner via a vibration isolating unit (vibration isolating mechanism) 11 (see FIG. 1).
  • the anti-vibration unit on the back side of the drawing is not shown), and an opening 3a through which the pattern image formed on the reticle R passes is formed at the center.
  • the vibration proof unit 11 is configured such that an air mount 12 whose internal pressure is adjustable and a voice coil motor 13 are arranged in series on the step 8a. These anti-vibration units 11 allow reticulation via the base plate 10 and the reaction frame 8.
  • Micro vibration transmitted to the surface plate 3 is insulated at the micro G level.
  • a reticle stage 2 is supported on the reticle base 3 so as to be two-dimensionally movable along the reticle base 3.
  • a plurality of air bearings (air pads) 14 which are non-contact bearings are fixed to the bottom surface of the reticle stage 2, and the reticle stage 2 is mounted on the reticle surface plate 3 by the air bearings 14. It is levitated and supported through the clearance of about Kron.
  • the reticle stage 2 is driven by a pair of linear motors (driving mechanisms) 15 on the reticle surface plate 3 in the scanning direction in the Y direction within a predetermined stroke range.
  • the reticle stage 2 includes a reticle fine movement stage (not shown) that sucks and holds the reticle R and minutely drives the reticle R in the non-scanning direction (X direction) and 6> Z direction, and is connected to the fine movement stage and moves in the X and Y directions. It has a movable coarse movement stage, but these are shown here as one stage. Therefore, the reticle stage 2 is configured to be linearly driven with a long stroke in the Y direction and to be capable of minutely driving in the X and directions.
  • a pair of Y movable mirrors 18a and 18b each composed of a corner cube are fixed to one end of the reticle stage 2 in the Y direction, and the + X direction of the reticle stage 2 in the + X direction is fixed.
  • An X movable mirror 19 composed of a flat mirror extending in the Y direction is fixed to the end.
  • three laser interferometers that irradiate these movable mirrors 18a, 18b, and 19 with measuring beams measure the distance to each movable mirror, and the reticle stage The position in the X, Y, and (rotation around the ⁇ axis) direction of 2 is measured with high accuracy.
  • a movable element 16 having a built-in coil and extending in the ⁇ direction is provided integrally with the reticle stage 2 at approximately the center in the ⁇ direction on both sides in the X direction of the reticle stage 2.
  • a pair of stators 17 having a U-shaped cross section as reaction force stages (second stages) are arranged opposite to the mover 16.
  • the stator 17 is composed of a stator yoke and a large number of permanent magnets that generate an alternating magnetic field arranged at predetermined intervals along the extending direction of the stator yoke.
  • mover A moving coil type linear motor 15 is constituted by 16 and the stator 1 ⁇ , and the mover 16 is driven in the ⁇ direction (one direction) by electromagnetic interaction with the stator 17. It is supposed to be.
  • the weight ratio of the reticle stage 2 side including the mover 1 6 etc. and the stator 1 7 side is approximately 1: c that is set to 4
  • a rolling guide 20 is interposed between each stator 1 ⁇ and the upper surface of the reaction frame 8.
  • the rolling guide 20 has a configuration in which a plurality of rollers (rolling elements) 21 whose axis extends in the X direction and rotates around each axis are arranged at a certain interval in the Y direction.
  • the stator 17 is movable in the Y direction with respect to the reaction frame 8 by the rotation of the roller 21.
  • a pair of springs (biasing portions) 2 2, 2 2 constituting a return device for returning the stator 17 to the initial position are provided on both sides in the Y direction of each stator 17. One end of each is connected to T1.
  • each spring 22 has a sufficient amount of flexure to be deformed within the elastic range even when the stator 17 moves.
  • the reticle stage 2 is a guideless stage having no guide member for guiding the movement of the reticle stage 2 in the X and Y directions.
  • both the object plane (reticle R) side and the image plane (wafer W) side are telecentric and have a circular projection field, and quartz or fluorite is used as the optical glass material.
  • a 1/4 (or 1/5) refractive optical system composed of a refractive optical element (lens element) is used.
  • FIG. 4 shows an enlarged view below the projection optical system PL of the exposure apparatus 1.
  • a flange 23 integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL.
  • the projection optical system PL is mounted on a barrel base 25 composed of an object or the like that is supported substantially horizontally on a step 8 b of the reaction frame 8 via a vibration isolating unit 24. Is inserted from above in the Z direction, and the flanges 23 are engaged.
  • the material of the flange 23 is a material having a low thermal expansion, such as Invar (reduced by Invar; nickel 36%, manganese 0.25%, and iron containing trace amounts of carbon and other elements). Expansion alloy) is used.
  • the flange 23 constitutes a so-called kinematic support mount that supports the projection optical system PL at three points with respect to the barrel base 25 via points, surfaces, and V-grooves.
  • a kinematic support structure By adopting such a kinematic support structure, it is easy to assemble the projection optical system PL to the barrel base 25, and vibration, temperature change, etc. of the assembled barrel base 25 and the projection optical system PL. It has the advantage that the stresses caused by stress can be reduced most effectively:
  • the anti-vibration unit 24 is arranged at each corner of the lens barrel base 25 (the anti-vibration unit on the back side of the drawing is not shown), and the air mount 26 and the voice coil module whose internal pressure can be adjusted.
  • the configuration is such that overnight 27 is arranged in series on step 8b.
  • These vibration isolation units 24 insulate the micro-vibrations transmitted to the lens barrel base 25 (and, consequently, the projection optical system PL) via the base plate 10 and the reaction frame 8 at the microphone opening G level. ing.
  • the stage device 7 mainly includes a wafer stage 5 for holding a wafer W, and a wafer surface plate 6 for supporting the wafer stage 5 movably in a two-dimensional direction along the XY plane.
  • a plurality of air bearings (air pads) 28, which are non-contact bearings, are fixed to the bottom surface of the wafer stage 5, and the wafer stage 5 is fixed by the air bearings 28.
  • the wafer surface plate 6 is supported substantially horizontally above a base plate (support portion) 10 via a vibration isolating unit (vibration isolating mechanism) 29.
  • the anti-vibration units 29 are arranged at each corner of the wafer surface plate 6 (the anti-vibration unit on the back side of the drawing is not shown), and the air mount 30 and the voice coil motor 3 whose internal pressure can be adjusted. 1 and 1 It is configured to be arranged in parallel on the subnote 10.
  • the wafer stage 5 includes a pair of linear motors 32 that drive the wafer stage 5 in the X direction (a linear motor closer to the paper than the wafer stage 5 is not shown) and the wafer stage 5 that drives the wafer stage 5 in the Y direction.
  • the pair of linear motors (drive mechanisms) 33 makes it possible to freely move in the XY two-dimensional direction on the wafer surface plate 6.
  • the stator of the linear motor 32 is extended along the X direction on both outer sides of the wafer stage 5 in the Y direction, and both ends are connected to each other by a pair of connecting members 34. Body 35 is composed. The movers of the linear motor 32 project from both sides in the Y direction of the wafer stage 5 so as to face the stator.
  • movers 36 and 36 composed of armature units are provided, respectively.
  • the stators (reaction force stages) 37, 37 as the second stage having magnet units corresponding to the stators 36, 36 extend in the Y direction.
  • a rolling guide 38 is interposed between each stator 37 and the base plate 10.
  • the rolling guide 38 has a configuration in which a plurality of rollers (rolling elements) 39 whose axes extend in the X direction and rotate around each axis are arranged at regular intervals in the Y direction.
  • the stator 37 is movable in the Y direction with respect to the base plate 10 as a support by the rotation of the roller 39.
  • each spring 40 is set to have a sufficient radius so as to be deformed within the elastic range even when the stator 37 moves.
  • a moving coil type linear motor 33 is constituted by the mover 36 and the stator 3 7, and the mover 36 has an electromagnetic phase between the mover 36 and the stator 37. It is driven in the Y direction (one direction) by interaction. That is, the linear stage 33 drives the wafer stage 5 integrally with the frame 35 in the ⁇ direction. As is apparent from FIG. 4, the wafer stage 5 is a guided stage having no guide member for the movement in the vertical direction. It should be noted that the movement of the wafer stage 5 in the X direction can be appropriately set as a guide stage.
  • the wafer W is fixed on the upper surface of the wafer stage 5 via a wafer holder 41 by vacuum suction or the like.
  • the position of the wafer stage 5 in the X direction is based on the reference mirror 42 fixed to the lower end of the barrel of the projection optical system PL, and the position change of the movable mirror 43 fixed to a part of the wafer stage 5 is used as a reference.
  • Laser interferometer 44 which is a position measuring device for measurement, whereby measurement is performed in real time with a predetermined resolution, for example, a resolution of about 0.5 to 1 nm.
  • the position of the wafer stage 5 in the Y direction is determined by a reference mirror, a moving mirror, and a laser interferometer (not shown) arranged so as to be substantially orthogonal to the reference mirror 42, the moving mirror 43, and the laser interferometer 44. Measured. At least one of these laser interferometers is a multi-axis interferometer having two or more measuring axes. Based on the measurement values of these laser interferometers, the XY of the wafer stage 5 (and thus the wafer W) is determined. Not only the position, but also 9 rotations or the leveling amount in addition to them can be obtained.
  • the reticle surface plate 3, the wafer surface plate 6, and the lens barrel surface plate 25 include three vibration sensors (for example, an accelerometer; not shown) for measuring the vibration in the Z direction of each surface plate, and an XY plane. Three vibration sensors (for example, accelerometers; not shown) that measure inward vibration are attached to each. Two of the latter vibration sensors measure the vibration of each surface plate in the Y direction, and the remaining vibration sensors measure the vibration in the X direction (hereinafter referred to as the vibration sensor group for convenience). ).
  • the vibrations of the six degrees of freedom ( ⁇ , ⁇ , ⁇ , 0 ⁇ , ⁇ ⁇ ⁇ ⁇ ) of the reticle surface plate 3, the wafer surface plate 6, and the lens barrel surface plate 25 are obtained. It can be sought.
  • three laser interferometers 45 which are position detecting devices, are fixed to the flanges 23 of the projection optical system PL at three different places (however, in FIG. One of the laser interferometers is typically shown).
  • Each —Apertures 25a are formed in the part of the barrel base 25 facing the interferometer 45, and each laser interferometer 45 is moved in the Z direction through these openings 25a.
  • the measurement beam is applied to the wafer surface plate 6. Reflection surfaces are formed on the upper surface of the wafer surface plate 6 at positions facing the respective measurement beams. For this reason, three different Z positions of the wafer surface plate 6 are measured by the three laser interferometers 45 with reference to the flange 23 (however, in FIG.
  • a reflection surface may be formed on the upper surface of the wafer stage 5 and an interferometer for measuring three different Z-direction positions on the reflection surface with reference to the projection optical system PL or the flange 23 may be provided.
  • stage devices 4 and 7 having the above configuration First, the operation of the stage device 4 will be described.
  • the stator 17 rolls due to the reaction force of the driving, and moves in the opposite direction on the reaction frame 8 by the rolling guide 20. (Y direction). At this time, in the rolling guide 20, since the roller 21 rotates, the stator 17 moves smoothly.
  • the stator 1 7 associated with the movement of the reticle stage 2 7 Is determined by the weight ratio of the reticle stage 2 side (including Y movable mirrors 18a and 18b, X movable mirror 19, mover 16 and reticle R) to the stator 17 side Is done.
  • the weight ratio between the reticle stage 2 side and the stator 17 side is about 1: 4, for example, a movement of 30 cm in the + Y direction of the reticle stage 2 causes the stator 17 to move one Y Move 7.5 cm in the direction.
  • the reaction force of the reticle stage 2 during acceleration / deceleration in the scanning direction is absorbed by the movement of the stator 17, and the position of the center of gravity of the stage device 4 is substantially determined in the Y direction.
  • the reaction frame 8 on which the stator 17 is supported supports the reticle surface plate 3 via the vibration isolation unit 11, so that these reaction The frame 8 and the reticle platen 3 are vibrationally independent. Therefore, even when the reticle stage 2 is driven, it is possible to effectively suppress the reticle surface plate 3 from vibrating due to the reaction force.
  • the stator 17 moves in the ⁇ Y direction, the urging force of the urging portion 22 shown in FIG.
  • stator 17 promptly returns to the position where the above-mentioned biasing force is balanced, that is, the initial position (initial position).
  • the anti-vibration unit 11 feeds a force (counter force) to cancel the influence of the change in the center of gravity due to the movement of the reticle stage 2 based on the measurement value of the laser interferometer, and generates this force.
  • the air mount 12 and the voice coil motor 13 are driven in such a manner as to operate. Also, the friction between the notch stage 2 and the '. SI constant 17 and the reticle surface 3 is not zero, or the moving direction between the reticle stage 2 and the stator 17 is slightly different. Therefore, even if minute vibrations of the reticle surface plate 3 in the directions of six degrees of freedom remain, the air mount 12 and the voice coil module 13 are used to remove the residual vibrations based on the measurement values of the vibration sensors. Feedback control.
  • stage device 7 the same operation as in the stage device 4 occurs.
  • the stator 37 When the wafer stage 5 is moved in the scanning direction (+ Y direction) by the driving of the linear motor 33, the stator 37 is rolled by the reaction force of the driving, and the guide 37 guides the stator 38 in the opposite direction on the base plate 10. (Y direction). At this time, in the rolling guide 38, since the roller 39 rotates, the stator 37 moves smoothly. When the friction between the wafer stage 5, the stator 37, and the wafer surface plate 6 is zero, the law of conservation of momentum works, and the movement of the stator 37 with the movement of the wafer stage 5 is performed. The momentum is determined by the weight ratio between the wafer stage 5 side and the stator 37 side.
  • the reaction force of the wafer stage 5 during acceleration / deceleration in the scanning direction is absorbed by the movement of the stator 37, and the position of the center of gravity of the stage device 7 is substantially fixed in the Y direction. Since the base plate 10 on which the base plate 37 is supported supports the wafer base plate 6 through the vibration isolating unit 29, the base plate 10 and the wafer base plate 6 vibrate. Become independent independently. Therefore, when the wafer stage 5 is driven, In addition, it is possible to effectively suppress the wafer surface plate 6 from vibrating due to the reaction force.
  • the stator 37 moves in the ⁇ Y direction, the balance of the urging force of the urging portion 40 shown in FIG. 3 with respect to the stator 37 is broken, and the stator 37 is urged in the + Y direction. Power increases. Therefore, the stator 37 quickly returns to the position where the urging force is balanced, that is, the initial position (initial position).
  • a count force for canceling the influence of the change in the center of gravity due to the movement of the wafer stage 5 is given in feed feed based on the measurement value of the laser interferometer 44, etc.
  • the air mount 33 and the voice coil motor 31 are driven to generate this force.
  • the friction between the three members of the wafer stage 5, the stator 37, and the wafer surface plate 6 is not zero, or the movement direction of the wafer stage 5 and the stator 37 is slightly different. Even if minute vibrations in the 6-DOF direction of the surface plate 6 remain, the air mount 30 and the voice coil motor 31 are fixed to remove the above-mentioned residual vibrations based on the measurement values of the vibration sensors. Control back.
  • the reaction frame A vibration proof unit 24 is interposed between the vibration control unit 8 and the vibration control unit 8 to be independent with respect to vibration. Also, even if a slight vibration occurs in the lens barrel base 25, vibration in six degrees of freedom is obtained based on the measurement values of the vibration sensors provided in the lens barrel base 25, and the air mount 26 and By performing feedback control on the voice coil motor 27, this minute vibration can be canceled, and the lens barrel base 25 can be constantly maintained at a stable position.
  • the projection optical system PL supported by the barrel base 25 can be maintained at a stable position, and the occurrence of displacement of the pattern transfer standing position and image blur due to the vibration of the projection optical system PL can be prevented. Exposure can be effectively prevented to improve exposure accuracy.
  • the linear motors 32 and 33 are controlled while monitoring the measurement values of the laser interferometer 44 based on the alignment results.
  • the wafer stage 5 is moved to the scanning start position for the exposure of the first shot of W.
  • the reticle stage 2 and the wafer stage 5 start scanning in the Y direction via the linear motors 15 and 33, and when both stages 2 and 5 reach their respective target scanning speeds, they are exposed.
  • the pattern area of reticle ⁇ ⁇ ⁇ ⁇ is illuminated by the illumination light, and scanning exposure is started.
  • the moving speed of the reticle stage 2 in the Y direction and the moving speed of the wafer stage 5 in the Y direction depend on the projection magnification (1/5 or 1 / 4 ⁇ ⁇ ) of the projection optical system PL.
  • the reticle stage 2 and the wafer stage 5 are synchronously controlled via the linear motors 15 and 33 so that the speed ratio is maintained.
  • different areas of the pattern area of the reticle R are sequentially illuminated with illumination light, and the illumination of the entire pattern area is completed, whereby the scanning exposure of the first shot on the wafer W is completed.
  • the pattern of the reticle R is reduced and transferred to the first shot area on the wafer W via the projection optical system PL.
  • the wafer stage 5 is stepped in the X and Y directions via the linear motors 32 and 33, and is moved to the scanning start position for the exposure of the second shot. Is done.
  • the position of the wafer stage 5 in the X, Y, and direction is measured in real time based on the measurement value of the laser interferometer 44 that detects the position of the wafer stage 5 (the position of the wafer W).
  • the linear motors 32 and 33 are controlled to control the position of the wafer stage 5 so that the X ⁇ position displacement of the wafer stage 5 is in a predetermined state.
  • the rotation of the reticle stage 2 is controlled so as to correct the error of the rotational displacement on the wafer W side based on this displacement information. Then, like the first shot area, the second shot area Scanning exposure.
  • the stators 17 and 37 move in opposite directions by the reaction force when the reticle stage 2 and the wafer stage 5 are driven.
  • the law works, and it is possible to prevent these reaction forces from being transmitted to the reaction frame 8, the base plate 10, and even the floor, and to avoid problems such as swinging back, so that the reticle R or wafer W becomes larger, Even when moving at high speed, the settling time is shortened, and the throughput and exposure accuracy can be improved.
  • the reaction frame 8 supports the reticle surface plate 3 via the vibration isolation unit 11 and the base plate 10 supports the wafer surface plate 6 via the vibration isolation unit 29. The transmission of the residual vibration of the sample 10 to the reticle platen 3 and the wafer platen 6 can be suppressed, and the standing controllability of each of the stages 2 and 5 can be maintained.
  • a part of the linear motors 15 and 33 for driving each of the stages 2 and 5 is replaced with a stator 17 and 37 for forming each of the stages 2 and 5. Since it is moved by the reaction force, there is no need to separately provide a mechanism for eliminating the reaction force, and it is possible to realize a reduction in size and cost of the device.
  • the stators 17 and 37 move by the above-described reaction force, the rollers 21 and 39 are rotated by a simple operation of rotating around the axis, so that the device can be simplified.
  • the stators 17 and 37 move by the reaction force. In this case, it can be easily returned to the initial position by a simple mechanism.
  • reticle stage 2, wafer stage 5, and projection optical system PL are vibrationally independent by anti-vibration units 11, 29, and 24. It is possible to prevent the vibration caused by the drive of the wafer stage 5 from being transmitted to the projection optical system PL, and to effectively prevent the displacement of the pattern transfer position and the occurrence of image blur due to the vibration of the projection optical system PL for exposure. Improve accuracy You can also plan.
  • FIG. 6 is a diagram showing a second embodiment of the stage apparatus and the exposure apparatus of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the second embodiment and the first embodiment is the configuration of the stage device 7, which will be described below.
  • the stage device 7 mainly includes a wafer stage 5, a wafer surface plate 6, and a support plate (reaction stage) 46 for supporting these from below.
  • the stator 37 is configured to move in the Y direction with respect to the support plate 46 by a rolling guide 38 interposed between the stator 37 and the support plate 46.
  • the wafer surface plate 6 also has a configuration independent of the vibration with respect to the support plate 46 by the vibration isolating unit 29 disposed between the wafer platen 6 and the support plate 46. Therefore, the support plate 46 plays a role as a support portion with respect to the reaction force movement of the stator 37.
  • a rolling guide 48 including a plurality of rollers (rolling elements) 47 is interposed between the support plate 46 and the base plate 10.
  • the rollers 47 are respectively rotated around an axis extending in the Y direction, and are arranged at regular intervals in the X direction.
  • the support plate 46 is movable around the axis of the roller 47 in the X direction relative to the base plate 10.
  • Other configurations are the same as those of the first embodiment.
  • the same operation and effect as those of the first embodiment can be obtained, and in addition, when the wafer stage 5 moves in the + X direction, The supporting plate 46 moves in the X direction due to the reaction force accompanying the movement of stage 5, and the law of conservation of momentum works. Therefore, not only when the wafer stage 5 is moved for scanning exposure, but also when the wafer stage 5 is step-moved to change the shot area, the wafer stage 5 may be rejected due to the reaction force caused by the step movement. Since the problem can be avoided, the settling time becomes shorter, and the throughput and the exposure accuracy can be further improved. Also in this embodiment, the base spray G and the residual vibration of the support plate 46 can be suppressed from being transmitted to the wafer surface plate 6, and the position controllability of the stage 5 and the stage 5 can be maintained.
  • FIG. 7 is a view showing a third embodiment of the stage apparatus and the exposure apparatus of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the third embodiment and the first embodiment is the configuration of the wafer stage 5, which will be described below.
  • each wafer stage 5 is provided with a magnet unit (not shown) that forms a moving coil type linear motor mover.
  • the wafer stage 5 is independently movable along a wafer platen 6 along a linear guide 50 extending in the X direction as a stator having an armature unit. .
  • each wafer stage 5 is configured to move in the X direction along the linear guide 50 and to independently move in the ⁇ direction along the stator 37. Note that, in FIG. 7, illustration of a movable mirror, an index member, and the like installed on the wafer stage 5 is omitted.
  • the wafer W on the wafer stage 5 located on the ⁇ side is moved to the + Y side during the exposure operation through the projection optical system PL.
  • Alignment is performed on the wafer W on the wafer stage 5 located. More specifically, first, an alignment mark (not shown) formed on the index member and the wafer W is measured using the + Y-side alignment sensor 49a, and the wafer W is determined based on the measurement result. Pre-alignment. Next, the alignment of each shot area on the wafer W, for example, by using the EGA, is performed while moving the wafer stage 5.
  • the wafer stage after the exposure sequence 5 is moved in the Y direction, the wafer is replaced immediately below the alignment sensor 49b, and then the above alignment sequence is executed.
  • the wafer stage 5 that has been aligned by the alignment sensor 49a also moves in the Y direction, and the exposure sequence is executed immediately below the projection optical system PL.
  • the two wafer stages 5, 5 are moved independently, and wafer exchange and alignment are performed on one of the stages. The operation is performed, and the exposure operation is performed in parallel on the other stage, so that the throughput can be greatly improved.
  • the stator 37 used when each stage moves in the Y direction is shared by the movers 36 of both stages, the number of parts is reduced, that is, the equipment is simplified and the price is reduced. Can be realized.
  • the cocoons 21, 39, 47 are provided as means for moving the stators 17, 37 in the Y direction.
  • a non-contact bearing such as an air bearing may be provided.
  • the stators 17 and 37 move without halving the friction, so the reaction frame 8 and the base plate 1 Disturbance due to friction, such as zero vibration, can be eliminated, and more accurate exposure processing can be performed.
  • the roller air bearing may be provided on the stator, or may be provided on the reaction frame 8 or the base plate 10 supporting the stator.
  • the reticle stage 2 may have a mechanism capable of supporting a plurality of reticles R as in the third embodiment. In this case, the reticle stage 2 may be provided with a common coarse movement stage and a plurality of fine movement stages holding the reticle R may be provided independently. Thus, the entire stage 2 can be made compact.
  • the stators 17 and 37 are configured to move by the reaction force in both the reticle stage 2 and the wafer stage 5, but the stator is configured to move in only one of the stages. It goes without saying that the reaction force may be moved.
  • all of the vibration isolating units are configured to actively perform vibration isolation. All of these, any one of them, or any plural of them passively perform vibration isolation. Such a configuration may be adopted.
  • the reticle stage 2 has a two-stage configuration of a coarse movement stage and a fine movement stage, and one or both of them is provided with a member (for example, a stator) that moves by a reaction force accompanying the movement of the stage. There may be.
  • the stage apparatus of the present invention is configured to be applied to the exposure apparatus 1.
  • the present invention is not limited to this, and other than the exposure apparatus 1, a transfer mask drawing apparatus, a mask
  • the present invention is also applicable to precision measuring devices such as a pattern position coordinate measuring device.
  • the substrate of the present embodiment includes not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) etc. are applied.
  • the exposure apparatus 1 includes a step of scanning and exposing a pattern of the reticle R by synchronously moving the reticle R and the wafers W and PW.
  • An AND scan type scanning exposure apparatus (scanning stepper; USP5, 473, 4i0)
  • a step-and-repeat type projection exposure apparatus (stepper) that exposes the pattern of the reticle R while the reticle R and the wafer W are stationary and sequentially moves the wafer W and the PW step by step.
  • the type of the exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element, a thin-film magnetic head, an image sensor (CCD), or the like. It can be widely applied to exposure equipment for manufacturing reticles and the like.
  • the emission lines (g-line (436 nm), h-line (404.7 nm), i-line (365 nm) :), KrF excimer laser ( 248 nm), a r F excimer one the (193 nm), not only the F 2 laser (157 nm) only, Ru can be uses charged particle beams such as X-ray or electron beam. If it is cool, thermionic emission type lanthanum hexaborite (LaB, tantalum (Ta)) can be used as an electron gun when using an electron beam, and a reticle R is used when using an electron beam. A configuration may be used, or a pattern may be directly formed on the wafer without using reticle R. A high frequency such as a YAG laser or a semiconductor laser may be used.
  • the magnification of the projection optical system PL is not limited to the reduction system, but can be either the same magnification system or the magnification system. Good.
  • a far ultraviolet ray such as an excimer laser
  • a material that transmits the far ultraviolet ray such as quartz or fluorite
  • a catadioptric system is used as a glass material
  • a refraction-type optical system may be used (the reticle R may be of a reflection type).
  • an electron optical system including an electron lens and a deflector may be used as the optical system.
  • the optical path through which the electron beam passes is in a vacuum state.
  • the present invention can be applied to an aperture exposure apparatus that exposes a reticle R pattern by bringing a reticle R and a wafer W into close contact with each other without using a projection optical system PL.
  • each of the stages 2 and 5 may be of a type that moves along a guide or a guideless type that does not have a guide.
  • the drive mechanism for each of the stages 2 and 5 is such that a magnet unit (permanent magnet) having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage 2 and 5 is driven by electromagnetic force.
  • a driven flat motor may be used.
  • one of the magnet unit and the armature unit may be connected to the stages 2 and 5, and the other of the magnet unit and the armature unit may be provided on the moving surface side (base) of the stages 2 and 5. .
  • the exposure apparatus 1 controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Manufactured by assembling Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems before and after assembly are adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connection, wiring connection of electric circuits, and piping connection of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure device. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. Exposure equipment It is desirable to manufacture the equipment in a clean room where temperature and cleanliness are controlled.
  • a semiconductor device has a step 201 for designing the function and performance of the device, a step 202 for fabricating a mask (reticle) based on the design step, and a wafer made of silicon material. Manufacturing step 203, wafer processing step 204 for exposing a reticle pattern to a wafer by exposure apparatus 1 of the above-described embodiment, device assembling step (including dicing step, bonding step, package step) 2 0 5, inspection step 206, etc.
  • the present invention relates to a substrate on which a mask pattern is exposed, such as a glass substrate or a wafer, a stage device in which a stage body holding the substrate moves in a plane on a surface plate, a driving method thereof, and a stage device.
  • Exposure processing using the held mask and substrate (1) Exposure apparatus and exposure method, particularly when manufacturing devices such as semiconductor integrated circuits and liquid crystal displays, suitable substrates for use in the lithographic process.
  • TECHNICAL FIELD The present invention relates to a stage device, a stage driving method, an exposure device, and an exposure method.
  • the support unit is provided independently and vibratingly with respect to the surface plate, and the reaction force stage moves on the support unit by the reaction force accompanying the driving of the stage body. Because of this, problems such as swing back can be avoided, the settling time can be shortened, the throughput can be improved, and the residual vibration of the support can be suppressed from being transmitted to the surface plate. Position controllability can be maintained. Further, since the surface plate is supported by the support portion via the vibration isolating mechanism, it is possible to suppress the transmission of the residual vibration of the support portion to the surface plate, and to maintain the position controllability of the stage body.
  • reaction stage forms at least a part of the driving mechanism for driving the stage body in the negative direction
  • the device can be made smaller and less expensive. Pricing is realized.
  • a rolling element that rotates around the axis and moves the reaction force stage relative to the support portion is interposed between the reaction force stage and the support portion, so that when the reaction force stage moves, The rolling element rotates around the axis in a simple operation, which simplifies the equipment.
  • the non-contact bearing is interposed between the reaction stage and the support, the reaction stage moves without friction, so that disturbance due to friction such as vibration of the support can be eliminated. .
  • the stage body is movable in a direction substantially perpendicular to the direction in which it moves, and the reaction force stage is provided in each direction substantially perpendicular to the stage. Since it is possible to avoid problems such as swaying due to the accompanying reaction force, the settling time becomes shorter, and the throughput can be further improved.
  • the stage apparatus according to any one of claims 1 to 9 is used as at least one of a mask stage and a substrate stage.
  • the stage driving method described in any one of claims 17 to 20 is used, the settling time is shortened, and throughput and exposure accuracy can be improved.
  • the residual vibration of the support part can be suppressed from being transmitted to the surface plate, and the position controllability of the stage body can be maintained.
  • the mask stage, substrate stage, and projection optical system are arranged so as to be vibrationally independent of each other.

Abstract

A stage device (4) comprises a support (8) isolated from a surface plate (3) in terms of vibration, and a reaction stage (17) that is allowed to move on the support (8) in one direction by the reaction force exerted when the stage body (2) is driven. Since yawing due to the reaction is eliminated, the setting time decreases and thus throughput improves. In addition, residual vibration is prevented from propagating from the support to the surface plate.

Description

明細書  Specification
基板、 ステージ装置、 ステージ駆動方法および露光装置並びに露光方法 技術分野  TECHNICAL FIELD The present invention relates to a substrate, a stage apparatus, a stage driving method, an exposure apparatus, and an exposure method.
本発明は、 ガラス基板やウェハ等、 マスクのパターンが露光される基板と、 こ の基板を保持するステージ本体が定盤上の平面内を移動するステージ装置とその 駆動方法、 およびこのステージ装置に保持されたマスクと基板とを用いて露光処 理を行う露光装置並びに露光方法に関し、 特に半導体集積回路や液晶ディスプレ ィ等のデバイスを製造する際に、 リソグラフイエ程で用いて好適な基板、 ステー ジ装置、 ステージ駆動方法および露光装置並びに露光方法に関するものである。 背景技術  The present invention relates to a substrate on which a mask pattern is exposed, such as a glass substrate or a wafer, a stage device in which a stage body holding the substrate moves in a plane on a surface plate, a driving method thereof, and a stage device. The present invention relates to an exposure apparatus and an exposure method for performing an exposure process using a held mask and a substrate. Particularly, when manufacturing a device such as a semiconductor integrated circuit or a liquid crystal display, a substrate and a stage suitable for use in a lithography process are used. The present invention relates to a laser device, a stage driving method, an exposure device, and an exposure method. Background art
従来より、 半導体デバイスの製造工程の 1つであるリソグラフィ工程において は、 マスク又はレチクル (以下、 レチクルと称する) に形成された回路パターン をレジスト (感光剤) が塗布されたウェハ又はガラスプレート等の基板上に転写 する種々の露光装置が用いられている。 例えば、 半導体デバイス用の露光装置と しては、 近年における集積回路の高集積化に伴うパターンの最小線幅 (デバイス ルール) の微細化に応じて、 レチクルのパターンを投影光学系を用いてウェハ上 に縮小転写する縮小投影露光装置が主として用いられている。  2. Description of the Related Art Conventionally, in a lithography process, which is one of the semiconductor device manufacturing processes, a circuit pattern formed on a mask or reticle (hereinafter, referred to as a reticle) is formed on a wafer or glass plate coated with a resist (photosensitive agent). Various exposure apparatuses for transferring onto a substrate are used. For example, as an exposure apparatus for a semiconductor device, a pattern of a reticle is projected on a wafer using a projection optical system in accordance with the miniaturization of the minimum line width (device rule) of a pattern accompanying the high integration of an integrated circuit in recent years. A reduction projection exposure apparatus that performs reduction transfer on the top is mainly used.
この縮小投影露光装置としては、 レチクルのパターンをウェハ上の複数のショ ッ ト領域 (露光領域) に順次転写するステップ 'アンド · リピート方式の静止露 光型の縮小投影露光装置 (いわゆるステツパ) や、 このステツパを改良したもの で、 特開平 8— 1 6 6 0 4 3号公報等に開示されるようなレチクルとウェハとを 一次元方向に同期移動してレチクルパターンをウェハ上の各ショット領域に転写 するステップ 'アンド 'スキャン方式の走査露光型の露光装置 (いわゆるスキヤ ニング 'ステツパ) が知られている。  This reduction projection exposure apparatus is a step-and-repeat type static exposure reduction projection exposure apparatus (so-called stepper) that sequentially transfers a reticle pattern to a plurality of shot areas (exposure areas) on a wafer. This stepper is an improvement on the reticle and wafer in a one-dimensional direction by synchronously moving the reticle and the wafer as disclosed in Japanese Patent Laid-Open No. 8-16643, etc. There is known a scanning exposure type exposure apparatus of the 'and' scan type (so-called scanning 'stepper').
これらの縮小投影露光装置においては、 ステージ装置として、 床面に先ず装置 の基準になるベースプレートが設置され、 その上に床振動を遮断するための防振 台を介してレチクルステージ、 ウェハステージおよび投影光学系 (投影レンズ) 等を支持する本体コラムが載置されたものが多く用いられている。 最近のステー ジ装置では、 前記防振台として、 内圧が制御可能なエアマウント、 ボイスコイル モ一夕等のァクチユエ一夕を備え、 本体コラム (メインフレーム) に取り付けら れた、 例えば 6個の加速度計の計測値に基づいて前記ボイスコイルモ一夕等を制 御することにより本体コラムの振動を制御するアクティブ防振台が採用されてい る。 In these reduction projection exposure apparatuses, a base plate serving as a reference for the apparatus is first installed on the floor as a stage apparatus, and a reticle stage, a wafer stage, and a projection apparatus are placed on the base plate via a vibration isolating table for isolating floor vibration. Optical system (projection lens) The one on which a main body column for supporting the like is mounted is often used. Recent stage devices are equipped with an air mount that can control the internal pressure and an actuator such as a voice coil motor as the vibration isolator, and are mounted on the main body column (main frame). An active anti-vibration table that controls the vibration of the main body column by controlling the voice coil module based on the measurement value of an accelerometer is employed.
ところが、 上記のステツパ等では、 ウェハ上のあるショッ ト領域に対する露光 の後、 他のショット領域に対して順次露光を繰り返すものであるから、 ウェハス テージ (ステヅパの場合) 、 あるいはレチクルステージおよびウェハステージ (スキャニング 'ステヅパの場合) の加速、 減速運動によって生じる反力が本体 コラムの振動要因となって、 投影光学系とウェハ等との相対位置誤差を生じさせ るという不都合があった。 ァライメント時ゃ露光時における上記相対位置誤差は、 結果的にウェハ上で設計値と異なる位置にパターンが転写されたり、 その位置誤 差に振動成分を含む場合には像ボケ (パターン線幅の増大) を招いたりする原因 になるという不都合があった。 従って、 係る不都合を抑制するためには、 上記の アクティブ防振台等により本体コラムの振動を十分に減衰させる必要がある。 例 えばステツバの場合には、 ウェハステージが所望の位置に位置決めされ十分に整 定されるのを待ってァライメント動作や露光動作を開始する必要がある。 また、 スキャニング ·ステツパの場合には、 レチクルステージとウェハステージとの同 期整定を十分に確保した状態で露光を行う必要があった。 このため、 スループッ ト (生産性) を悪化させる要因となっていた。  However, in the above-described stepper and the like, after exposing a certain shot area on a wafer and then sequentially exposing the other shot areas, the wafer stage (in the case of a stepper), or a reticle stage and a wafer stage The reaction force generated by the acceleration and deceleration movement (in the case of scanning 'stepper') caused vibration of the main body column, causing a relative position error between the projection optical system and the wafer. The relative position error at the time of alignment and at the time of exposure may result in image blur (increase in pattern line width) when a pattern is transferred to a position different from the design value on the wafer as a result, or when the position error includes a vibration component. Or inconvenience). Therefore, in order to suppress such inconvenience, it is necessary to sufficiently attenuate the vibration of the main body column by the above-mentioned active vibration isolator. For example, in the case of a stepper, it is necessary to start an alignment operation or an exposure operation after the wafer stage is positioned at a desired position and sufficiently adjusted. Further, in the case of a scanning stepper, it was necessary to perform exposure while ensuring that the reticle stage and the wafer stage were set in synchronization. For this reason, it was a factor that worsened throughput (productivity).
そこで、 このような不都合を改善するものとして、 例えば特開平 8— 1 6 6 4 7 5号公報等に記載されるように、 ウェハステージの移動により発生する反力を フレーム部材を用いて機械的に床 (大地) に逃がす発明や、 例えば特開平 8— 3 3 0 2 2 4号公報等に記載されるように、 レチクルステージの移動により発生す る反力をフレーム部材を用いて機械的に床 (大地) に逃がす発明が知られている。 しかしながら、 上述したような従来のステージ装置および露光装置には、 以下 のような問題が存在する。  In order to improve such inconvenience, for example, as described in Japanese Patent Application Laid-Open No. 8-166475, the reaction force generated by the movement of the wafer stage is mechanically reduced by using a frame member. In addition, as described in Japanese Patent Application Laid-Open No. H8-330224, for example, the invention in which the reticle stage is moved to the floor (ground), the reaction force generated by the movement of the reticle stage is mechanically controlled by using a frame member. The invention which escapes to the floor (ground) is known. However, the conventional stage apparatus and exposure apparatus as described above have the following problems.
近年におけるレチクルやウェハの大型化に伴い、 両ステージが大型化し、 上記 特閧平 8— 1 6 6 4 7 5号公報や特閧平 8— 3 3 0 2 2 4号公報に記載された発 明を用いても、 フレーム部材を伝わって床側に逃げる反力に起因してフレーム部 材自身が振動したり、 床に逃げた反力が防振台を介して投影光学系を保持する本 体コラム (メインボディ) に伝わってこれを加振する、 いわゆる揺れ返しが生じ る虞がある。 そのため、 スループットをある程度確保しつつ高精度な露光を行う こと:ま困難になっている。 With the recent increase in the size of reticles and wafers, both stages have become larger. Even if the invention described in Japanese Patent Publication No. 8—1 6 6 4 75 or Japanese Patent Publication No. 8-3330202 is used, the reaction force transmitted to the frame member and escaping to the floor side can be reduced. As a result, the frame member itself vibrates, or the reaction force escaping to the floor is transmitted to the main column (main body) that holds the projection optical system via the anti-vibration table, and excites it. May occur. Therefore, it is difficult to perform high-precision exposure while securing a certain level of throughput.
そこで、 例えば特開平 8— 6 3 2 3 1号公報には、 ベース上に浮揚支持される ステージ本体と駆動フレームとを設け、 ステージ本体の前進移動に伴う反力で駆 動フン一ムが後退する技術が開示されている。 この技術によれば、 ステージ本体 と駆動フレームとの間に運動量保存の法則が働き、 ベース上における装置の重心 の位置が維持されるため、 フレーム部材への振動の影響を小さくすることができ る。 ところが、 この技術を採用した場合でも、 ステージが大型化したり、 高速化 したりすると上記反力の影響を完全に除去することができなかった。  Therefore, for example, in Japanese Patent Application Laid-Open No. H08-632321, a stage body and a drive frame which are levitated and supported on a base are provided, and the driving fan is retracted by a reaction force accompanying the forward movement of the stage body. A technique for performing this is disclosed. According to this technology, the law of conservation of momentum acts between the stage body and the drive frame, and the position of the center of gravity of the device on the base is maintained, so that the influence of vibration on the frame member can be reduced. . However, even when this technology was adopted, the effects of the above-mentioned reaction force could not be completely eliminated if the stage was enlarged or speeded up.
本発明は、 以上のような点を考慮してなされたもので、 大型のステージもしく は高速のステージを用いた場合でも、 ステージの位置制御性を維持できるステー ジ装置、 ステージ駆動方法および露光装置並びに露光方法を提供することを目的 とする。 また、 本発明の別の目的は、 大型のステージもしくは高速のステージを 用いた場合でも、 スループットをある程度確保しつつ高精度な露光を行うことが できる露光装置、 露光方法を提供することである。 さらに、 本発明の別の目的は、 パターンが高精度に露光された基板を提供することである。 発明の開示  The present invention has been made in consideration of the above points, and has a stage device, a stage driving method, and an exposure method capable of maintaining the position controllability of a stage even when a large stage or a high-speed stage is used. It is an object to provide an apparatus and an exposure method. Another object of the present invention is to provide an exposure apparatus and an exposure method that can perform high-precision exposure while securing a certain level of throughput even when a large stage or a high-speed stage is used. Still another object of the present invention is to provide a substrate on which a pattern has been exposed with high precision. Disclosure of the invention
上記の目的を達成するために本発明は、 実施の形態を示す図 1ないし図 7に対 応付けした以下の構成を採用している。  In order to achieve the above object, the present invention employs the following configuration corresponding to FIGS. 1 to 7 showing the embodiment.
本発明のステージ装置は、 定盤 (3、 6 ) 上を少なくとも一方向に駆動される ステージ本体 (2、 5 ) を備えたステージ装置 (4、 7 ) であって、 定盤 (3、 6 ) に対して振動的に独立して配設された支持部 (8、 1 0 ) と、 ステージ本体 ( 2、 5 ) の駆動に伴う反力により支持部 (8、 1 0 ) 上を前記一方向に移動自 在な反力ステージ ( 1 7、 3 7 ) とを備えることを特徴とするものである。 また、 本発明のステージ駆動方法は、 定盤 (3、 6)上を少なくとも一方向に駆動され る第 1ステージ (2、 5) を備えたステージ駆動方法であって、 第 1ステージThe stage device of the present invention is a stage device (4, 7) including a stage body (2, 5) driven at least in one direction on a surface plate (3, 6), ), And a supporting portion (8, 10) which is arranged independently in vibration, and a reaction force generated by driving the stage body (2, 5) on the supporting portion (8, 10). And a reaction force stage (17, 37) that is movable in the direction. Also, The stage driving method of the present invention is a stage driving method including a first stage (2, 5) driven in at least one direction on a surface plate (3, 6), wherein the first stage
(2. 5) の駆動に伴う反力により前記一方向に移動自在な第 2ステージ (17、 37〗 を定盤 (3、 6) に対して振動的に独立した支持部 (8、 10) に支持さ せる二とを特徴とするものである。 従って、 本発明のステージ装置およびステ一 ジ駆動方法では、 第 1ステージであるステージ本体 (2、 5) が定盤 (3、 6) 上を一方向に駆動されたときに、 ステージ本体 (2、 5) の駆動に伴う反力によ り第 2ステージである反力ステージ ( 17、 37) がステージ本体 (2、 5) と 逆方向に移動するので、 ステージ本体 (2、 5) と反力ステージ (17、 37) との間に運動量保存の法則が働く。 反力ステージ (17、 37) は、 定盤 (3、 6) に対して振動的に独立した支持部 (8、 10) 上を移動するため、 支持部The second stage (17, 37〗), which is movable in one direction by the reaction force accompanying the driving of (2.5), makes the supporting parts (8, 10) that are vibrationally independent of the platen (3, 6) Therefore, in the stage apparatus and the stage driving method of the present invention, the stage body (2, 5) as the first stage is provided on the surface plate (3, 6). When the stage is driven in one direction, the reaction force (17, 37), which is the second stage, is in the opposite direction to the stage body (2, 5) due to the reaction force accompanying the drive of the stage body (2, 5). Therefore, the law of conservation of momentum works between the stage body (2, 5) and the reaction force stage (17, 37). The reaction force stage (17, 37) is connected to the surface plate (3, 6). In order to move on the vibration independent support parts (8, 10),
(8、 10) の振動は定盤 (3、 6) に伝わらず、 ステージ本体 (2、 5) の位 置制御性に影響を及ぼすことを防止できる。 The vibration of (8, 10) is not transmitted to the surface plate (3, 6), and can prevent the position controllability of the stage body (2, 5) from being affected.
また、 本発明の露光装置は、 マスクステージ (2) に保持されたマスク (R) のパターンを基板ステージ (5) に保持された基板 (W) に露光する露光装置 Further, the exposure apparatus of the present invention exposes a pattern of a mask (R) held on a mask stage (2) to a substrate (W) held on a substrate stage (5).
(1) において、 マスクステージ (2) と基板ステージ (5) との少なくとも一 方のステージとして、 請求の範囲第 1項から第 9項のいずれか 1項に記載された ステージ装置 (4、 7) が用いられることを特徴とするものである。 また、 本発 明の露光方法は、 マスクステージ (2) に保持されたマスク (R) のパターンを 基板ステージ (5) に保持された基板 (W) に露光する露光方法において、 マス クステージ (2) と基板ステージ (5) との少なくとも一方のステージの駆動方 法として請求の範囲第 17項から第 20項のいずれか 1項に記載されたステージ 駆動方法が用いられることを特徴とするものである。 従って、 本発明の露光装置 および露光方法では、 マスク (R) または基板 (W) を保持するステージ本体In (1), as at least one of the mask stage (2) and the substrate stage (5), the stage device (4, 7) according to any one of claims 1 to 9 is provided. ) Is used. The exposure method of the present invention is a method of exposing a pattern of a mask (R) held on a mask stage (2) to a substrate (W) held on a substrate stage (5). 21. A method for driving at least one of the stage (2) and the substrate stage (5), wherein the stage driving method described in any one of claims 17 to 20 is used. It is. Therefore, in the exposure apparatus and the exposure method of the present invention, the stage body holding the mask (R) or the substrate (W)
(2、 5) の整定時間が短くなりスループッ トが向上するとともに、 ステージ本 体 (2、 5) に加わる振動の影響を抑制して位置制御性を維持できるので、 高精 度の露光を行うことができる。 また、 マスクステージ (2) 、 基板ステージPerforms high-precision exposure because the settling time of (2, 5) is shortened, throughput is improved, and the position controllability can be maintained by suppressing the influence of vibration applied to the stage body (2, 5). be able to. Also, mask stage (2), substrate stage
(5) および投影光学系 (PL) を互いに振動的に独立させることで、 マスクス テージ (2) および基板ステージ (5) の駆動に起因する振動が投影光学系 (P L ) 伝わることも防止できるため、 マスク (R ) のパターンの結像特性も向上 させることができる。 そして、 これらの露光方法により露光された基板 (W) に は、 マスク (R ) のパターンが高精度に転写される。 図面の簡単な説明 By making the projection optical system (PL) and the projection optical system (PL) vibrationally independent of each other, the vibration caused by the drive of the mask stage (2) and the substrate stage (5) is reduced to the projection optical system (P). L) Since transmission can also be prevented, the imaging characteristics of the pattern of the mask (R) can be improved. Then, the pattern of the mask (R) is transferred with high precision onto the substrate (W) exposed by these exposure methods. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態を示す図であって、 レチクルステージ、 ウェハステージおよび投影光学系が振動に関して独立して配置された露光装置の 概略構成図である。  FIG. 1 is a view showing a first embodiment of the present invention, and is a schematic configuration diagram of an exposure apparatus in which a reticle stage, a wafer stage, and a projection optical system are independently arranged with respect to vibration.
図 2は、 同レチクルステージを有するステージ装置の外観斜視図である。 図 3は、 本発明の第 1の実施の形態を示す図であって、 両側にスプリングが 接続された固定子の側面図である。  FIG. 2 is an external perspective view of a stage device having the reticle stage. FIG. 3 is a view showing the first embodiment of the present invention, and is a side view of a stator having springs connected to both sides.
:114は、 ウェハステージを有するステージ装置の部分拡大図である。  : 114 is a partially enlarged view of a stage device having a wafer stage.
図 5は、 ウェハステージを駆動するリニアモー夕の要部の拡大図である。 図 6は、 本発明の第 2の実施の形態を示す図であって、 レチクルステージ、 ウェハステージおよび投影光学系が振動に関して独立して配置された露光装置の 概略構成図である。  Fig. 5 is an enlarged view of the main part of the linear motor that drives the wafer stage. FIG. 6 is a view showing the second embodiment of the present invention, and is a schematic configuration diagram of an exposure apparatus in which a reticle stage, a wafer stage, and a projection optical system are independently arranged with respect to vibration.
図 7は、 同ウェハステージを有するステージ装置の別の実施の形態を示す外 観斜視図である。  FIG. 7 is an external perspective view showing another embodiment of the stage device having the wafer stage.
図 8は、 半導体デバイスの製造工程の一例を示すフローチャート図である。 発明を実施するための最良の形態  FIG. 8 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の基板、 ステージ装置、 ステージ駆動方法および露光装置並びに 露光方法の実施の形態を、 図 1ないし図 7を参照して説明する。 ここでは、 例え ば露光装置として、 レチクルとウェハとを同期移動しつつ、 レチクルに形成され た半導体デバイスの回路パターンをウェハ上に転写する、 スキャニング ·ステツ パを使用する場合の例を用いて説明する。 また、 この露光装置においては、 本発 明のステージ装置をレチクルステージおよびウェハステージの双方に適用するも のとする。  Hereinafter, embodiments of a substrate, a stage apparatus, a stage driving method, an exposure apparatus, and an exposure method according to the present invention will be described with reference to FIGS. 1 to 7. Here, a description will be given using an example in which a scanning stepper is used as an exposure apparatus that transfers a circuit pattern of a semiconductor device formed on a reticle onto a wafer while simultaneously moving the reticle and the wafer. I do. In this exposure apparatus, the stage apparatus of the present invention is applied to both a reticle stage and a wafer stage.
[第 1の実施の形態] まず、 図 1ないし図 5により、 第 1の実施の形態について説明する。 図 1に示 す露光装置 1は、 光源 (不図示) からの露光用照明光によりレチクル (マスク) R上の矩形状 (あるいは円弧状) の照明領域を均一な照度で照明する照明光学系 I U レチクル Rを保持するマスクステージとしてのレチクルステージ (ステ一 ジ本体、 第 1ステージ) 2および該レチクルステージ 2を支持するレチクル定盤 (定盤) 3を含むステージ装置 4、 レチクル Rから射出される照明光をウェハ (基板) W上に投影する投影光学系 P L、 ウェハ Wを保持する基板ステージとし てのウェハステージ (ステージ本体、 第 1ステージ) 5および該ウェハステージ 5を保持するウェハ定盤 (定盤) 6を含むステージ装置 7、 上記ステージ装置 4 および投影光学系 P Lを支持するリアクションフレーム (支持部) 8とから概略 構成されている。 なお、 ここで投影光学系 P Lの光軸方向を Z方向とし、 この Z 方向と直交する方向でレチクル Rとウェハ Wの同期移動方向を Y方向とし、 非同 期移動方向を X方向とする。 また、 それそれの軸周りの回転方向を Θ Ζ、 6> Υ, 6> Χとする。 [First Embodiment] First, a first embodiment will be described with reference to FIGS. The exposure apparatus 1 shown in FIG. 1 includes an illumination optical system IU that illuminates a rectangular (or circular) illumination area on a reticle (mask) R with uniform illumination by exposure illumination light from a light source (not shown). A reticle stage (stage body, first stage) 2 as a mask stage for holding reticle R, and a reticle surface plate (surface plate) 3 for supporting reticle stage 2, a stage device 4 including a reticle R, which is ejected from reticle R Projection optical system PL that projects illumination light onto wafer (substrate) W, wafer stage (stage body, first stage) 5 as a substrate stage that holds wafer W, and wafer surface plate that holds wafer stage 5 ( A stage device 7 including a surface plate 6, a stage device 4, and a reaction frame (support portion) 8 for supporting the projection optical system PL. Here, the direction of the optical axis of the projection optical system PL is defined as the Z direction, the direction of the synchronous movement of the reticle R and the wafer W in the direction perpendicular to the Z direction is defined as the Y direction, and the direction of the asynchronous movement is defined as the X direction. Also, the rotation directions around each axis are Θ Ζ, 6> Υ, 6> Χ.
照明光学系 I Uは、 リアクションフレーム 8の上面に固定された支持コラム 9 によって支持される。 なお、 露光用照明光としては、 例えば超高圧水銀ランプか ら射出される紫外域の輝線 (g線、 i線) および K r Fエキシマレ一ザ光 (波長 The illumination optical system I U is supported by a support column 9 fixed to the upper surface of the reaction frame 8. The illumination light for exposure includes, for example, ultraviolet bright lines (g-line, i-line) and KrF excimer laser light (wavelength) emitted from an ultra-high pressure mercury lamp.
2 4 8 nm) 等の遠紫外光 (D U V光) や、 A r Fエキシマレーザ光 (波長 1 9Deep ultraviolet light (DUV light) such as 248 nm) or ArF excimer laser light (wavelength 19
3 n m) および F 2レーザ光 (波長 1 5 7 nm) 等の真空紫外光 (V U V ) などが 用いられる。 リアクションフレーム 8は、 床面に水平に載置されたベースプレ一 ト 1 0上に設置されており、 その上部側および下部側には、 内側に向けて突出す る段部 8 aおよび 8 bがそれそれ形成されている。 3 nm) and F 2 laser beam (wavelength: 1 5 7 nm) vacuum ultraviolet light such as (VUV) and the like. The reaction frame 8 is installed on a base plate 10 placed horizontally on the floor surface, and the upper and lower sides thereof have stepped portions 8a and 8b protruding inward. Each is formed.
ステージ装置 4の中、 レチクル定盤 3は、 各コーナ一においてリアクションフ レーム 8の段部 8 aに防振ユニッ ト (防振機構) 1 1を介してほぼ水平に支持さ れており (なお、 紙面奥側の防振ユニットについては図示せず) 、 その中央部に はレチクル Rに形成されたパターン像が通過する開口 3 aが形成されている。 防 振ュニッ ト 1 1は、 内圧が調整可能なエアマウント 1 2とボイスコイルモー夕 1 3とが段部 8 a上に直列に配置された構成になっている。 これら防振ュニット 1 1によって、 ベースプレート 1 0およびリアクションフレーム 8を介してレチク ル定盤 3に伝わる微振動がマイクロ Gレベルで絶縁されるようになっている。 レチクル定盤 3上には、 レチクルステージ 2が該レチクル定盤 3に沿って 2次 元的に移動可能に支持されている。 レチクルステージ 2の底面には、 非接触ベア リングである複数のエアベアリング (エアパッド) 1 4が固定されており、 これ らのエアべァリング 1 4によってレチクルステージ 2がレチクル定盤 3上に数ミ クロン程度のクリアランスを介して浮上支持されている。 また、 レチクルステー ジ 2の中央部には、 レチクル定盤 3の開口 3 aと連通し、 レチクル Rのパターン 像が通過する開口 2 aが形成されている。 また、 レチクルステージ 2は、 2組の リニアモー夕 (駆動機構) 1 5によってレチクル定盤 3上を走査方向である Y方 向に所定ストローク範囲で駆動されるようになっている。 なお、 レチクルステ一 ジ 2は、 レチクル Rを吸着保持して非走査方向 (X方向) および 6> Z方向に微少 駆動する不図示のレチクル微動ステージと、 この微動ステージと接続され X、 Y 方向に移動可能な粗動ステージとを有しているが、 ここではこれらを 1つのステ —ジとして図示する。 従って、 レチクルステージ 2は、 Y方向に長いストローク で直線駆動されるとともに、 X方向および 方向に微小駆動が可能な構成にな つし ヽる In the stage device 4, the reticle surface plate 3 is supported substantially horizontally by a step portion 8a of the reaction frame 8 at each corner via a vibration isolating unit (vibration isolating mechanism) 11 (see FIG. 1). The anti-vibration unit on the back side of the drawing is not shown), and an opening 3a through which the pattern image formed on the reticle R passes is formed at the center. The vibration proof unit 11 is configured such that an air mount 12 whose internal pressure is adjustable and a voice coil motor 13 are arranged in series on the step 8a. These anti-vibration units 11 allow reticulation via the base plate 10 and the reaction frame 8. Micro vibration transmitted to the surface plate 3 is insulated at the micro G level. A reticle stage 2 is supported on the reticle base 3 so as to be two-dimensionally movable along the reticle base 3. A plurality of air bearings (air pads) 14 which are non-contact bearings are fixed to the bottom surface of the reticle stage 2, and the reticle stage 2 is mounted on the reticle surface plate 3 by the air bearings 14. It is levitated and supported through the clearance of about Kron. At the center of the reticle stage 2, there is formed an opening 2a which communicates with the opening 3a of the reticle surface plate 3 and through which the pattern image of the reticle R passes. The reticle stage 2 is driven by a pair of linear motors (driving mechanisms) 15 on the reticle surface plate 3 in the scanning direction in the Y direction within a predetermined stroke range. The reticle stage 2 includes a reticle fine movement stage (not shown) that sucks and holds the reticle R and minutely drives the reticle R in the non-scanning direction (X direction) and 6> Z direction, and is connected to the fine movement stage and moves in the X and Y directions. It has a movable coarse movement stage, but these are shown here as one stage. Therefore, the reticle stage 2 is configured to be linearly driven with a long stroke in the Y direction and to be capable of minutely driving in the X and directions.
図 2に示すように、 レチクルステージ 2の一 Y方向の端部には、 コーナキュー ブからなる一対の Y移動鏡 1 8 a、 1 8 bが固定され、 またレチクルステージ 2 の + X方向の端部には、 Y方向に延びる平面ミラ一からなる X移動鏡 1 9が固定 されている。 そして、 これら移動鏡 1 8 a、 1 8 b、 1 9に対して測長ビームを 照射する 3つのレーザ干渉計 (いずれも不図示) が各移動鏡との距離を計測する ことにより、 レチクルステージ 2の X、 Y、 ( Ζ軸周りの回転) 方向の位置 が高精度に計測される。  As shown in FIG. 2, a pair of Y movable mirrors 18a and 18b each composed of a corner cube are fixed to one end of the reticle stage 2 in the Y direction, and the + X direction of the reticle stage 2 in the + X direction is fixed. An X movable mirror 19 composed of a flat mirror extending in the Y direction is fixed to the end. Then, three laser interferometers (all not shown) that irradiate these movable mirrors 18a, 18b, and 19 with measuring beams measure the distance to each movable mirror, and the reticle stage The position in the X, Y, and (rotation around the Ζ axis) direction of 2 is measured with high accuracy.
図 1に示すように、 レチクルステージ 2の X方向両側面の Ζ方向ほぼ中心位置 には、 コイルを内蔵し Υ方向に延びる可動子 1 6がそれそれ一体的に設けられて いるつ そして、 これらの可動子 1 6にそれそれ対向して反力ステージ (第 2ステ —ジ) としての断面コ字状の一対の固定子 1 7が配置されている。 固定子 1 7は、 固定子ヨークとこの固定子ヨークの延設方向に沿って所定間隔で配置された交番 磁界を生じさせる多数の永久磁石とによって構成されている。 すなわち、 可動子 1 6と固定子 1 Ίとによってム一ビングコイル型のリニアモー夕 1 5が構成され、 可動子 1 6は固定子 1 7との間の電磁気的相互作用により Υ方向 (一方向) に駆 動されるようになっている。 また、 可動子 1 6等を含めたレチクルステージ 2側 と固定子 1 7側との重量比は、 およそ 1 : 4に設定されている c As shown in FIG. 1, a movable element 16 having a built-in coil and extending in the Υ direction is provided integrally with the reticle stage 2 at approximately the center in the Ζ direction on both sides in the X direction of the reticle stage 2. A pair of stators 17 having a U-shaped cross section as reaction force stages (second stages) are arranged opposite to the mover 16. The stator 17 is composed of a stator yoke and a large number of permanent magnets that generate an alternating magnetic field arranged at predetermined intervals along the extending direction of the stator yoke. That is, mover A moving coil type linear motor 15 is constituted by 16 and the stator 1 、, and the mover 16 is driven in the Υ direction (one direction) by electromagnetic interaction with the stator 17. It is supposed to be. The weight ratio of the reticle stage 2 side including the mover 1 6 etc. and the stator 1 7 side is approximately 1: c that is set to 4
図 2に示すように、 各固定子 1 Ίとリアクションフレーム 8の上面との間には、 転がりガイ ド 2 0がそれそれ介装されている。 転がりガイド 2 0は、 軸線が X方 向に延在し各軸線周りに回転する複数のコロ (転動体) 2 1が Y方向に一定の間 隔をおいて配置された構成になっており、 固定子 1 7はコロ 2 1の回転によりリ アクションフレーム 8に対して Y方向に移動自在になっている。 また、 図 3に示 すように、 各固定子 1 7の Y方向両側には、 固定子 1 7を初期位置に復帰させる 復帰装置を構成する一対のスプリング (付勢部) 2 2、 2 2の一端がそれそれ接 続さ T1ている。 これらのスプリング 2 2は、 他端がリアクションフレーム 8に固 定されており、 固定子 1 7を Y方向に沿った互いに相反する方向に、 ほぼ同じ力 でそ それ付勢する (例えば引っ張る) ものである。 なお、 各スプリング 2 2は、 固定子 1 7が移動した際にも弾性範囲で変形するように十分な撓み量が設定され ている。 なお、 このレチクルステージ 2は、 図 1、 2から明らかなように、 X、 Y方向の移動にはレチクルステージ 2の移動をガイドするガイド部材を有さない ガイ ドレスステージとなっている。  As shown in FIG. 2, a rolling guide 20 is interposed between each stator 1 Ί and the upper surface of the reaction frame 8. The rolling guide 20 has a configuration in which a plurality of rollers (rolling elements) 21 whose axis extends in the X direction and rotates around each axis are arranged at a certain interval in the Y direction. The stator 17 is movable in the Y direction with respect to the reaction frame 8 by the rotation of the roller 21. Also, as shown in FIG. 3, a pair of springs (biasing portions) 2 2, 2 2 constituting a return device for returning the stator 17 to the initial position are provided on both sides in the Y direction of each stator 17. One end of each is connected to T1. The other ends of these springs 22 are fixed to the reaction frame 8, and urge (for example, pull) the stators 17 with substantially the same force in directions opposite to each other along the Y direction. It is. In addition, each spring 22 has a sufficient amount of flexure to be deformed within the elastic range even when the stator 17 moves. As is apparent from FIGS. 1 and 2, the reticle stage 2 is a guideless stage having no guide member for guiding the movement of the reticle stage 2 in the X and Y directions.
図 1に戻り、 投影光学系 P Lとして、 ここでは物体面 (レチクル R ) 側と像面 (ウェハ W) 側の両方がテレセントリックで円形の投影視野を有し、 石英や蛍石 を光学硝材とした屈折光学素子 (レンズ素子) からなる 1 / 4 (または 1ノ5 ) 縮小倍率の屈折光学系が使用されている。 このため、 レチクル Rに照明光が照射 されると、 レチクル R上の回路パターンのうち、 照明光で照明された部分からの 結像光束が投影光学系 P Lに入射し、 その回路パターンの部分倒立像が投影光学 系 P Lの像面側の円形視野の中央にスリット状に制限されて結像される。 これに より、 投影された回路パターンの部分倒立像は、 投影光学系 P Lの結像面に配置 されたウェハ W上の複数のショット領域のうち、 1つのショット領域表面のレジ スト層に縮小転写される。  Returning to Fig. 1, as the projection optical system PL, here, both the object plane (reticle R) side and the image plane (wafer W) side are telecentric and have a circular projection field, and quartz or fluorite is used as the optical glass material. A 1/4 (or 1/5) refractive optical system composed of a refractive optical element (lens element) is used. For this reason, when illumination light is irradiated on reticle R, of the circuit pattern on reticle R, an image forming light beam from a portion illuminated by the illumination light is incident on projection optical system PL, and the circuit pattern is partially inverted. The image is limited to a slit at the center of the circular field on the image plane side of the projection optical system PL and is formed. As a result, the partial inverted image of the projected circuit pattern is reduced and transferred to the resist layer on one of the shot areas out of a plurality of shot areas on the wafer W arranged on the imaging plane of the projection optical system PL. Is done.
図 4には、 露光装置 1の投影光学系 P Lより下方が拡大して示されている。 こ の図に示すように、 投影光学系 P Lの鏡筒部の外周には、 該鏡筒部に一体化され たフランジ 2 3が設けられている。 そして、 投影光学系 P Lは、 リアクションフ レーム 8の段部 8 bに防振ュニット 2 4を介してほぼ水平に支持された錶物等で 構成された鏡筒定盤 2 5に、 光軸方向を Z方向として上方から挿入されるととも に、 フランジ 2 3が係合している。 フランジ 2 3の素材としては、 低熱膨張の材 質、 '冽えばィンバー (I n v e r ;ニッケル 3 6 %、 マンガン 0 . 2 5 %、 およ び微量の炭素と他の元素を含む鉄からなる低膨張の合金) が用いられている。 こ のフランジ 2 3は、 投影光学系 P Lを鏡筒定盤 2 5に対して点と面と V溝とを介 して 3点で支持する、 いわゆるキネマティック支持マウントを構成している。 こ のようなキネマティック支持構造を採用すると、 投影光学系 P Lの鏡筒定盤 2 5 に対する組み付けが容易で、 しかも組み付け後の鏡筒定盤 2 5および投影光学系 P Lの振動、 温度変化等に起因する応力を最も効果的に軽減できるという利点が ある: FIG. 4 shows an enlarged view below the projection optical system PL of the exposure apparatus 1. This As shown in the figure, a flange 23 integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL. The projection optical system PL is mounted on a barrel base 25 composed of an object or the like that is supported substantially horizontally on a step 8 b of the reaction frame 8 via a vibration isolating unit 24. Is inserted from above in the Z direction, and the flanges 23 are engaged. The material of the flange 23 is a material having a low thermal expansion, such as Invar (reduced by Invar; nickel 36%, manganese 0.25%, and iron containing trace amounts of carbon and other elements). Expansion alloy) is used. The flange 23 constitutes a so-called kinematic support mount that supports the projection optical system PL at three points with respect to the barrel base 25 via points, surfaces, and V-grooves. By adopting such a kinematic support structure, it is easy to assemble the projection optical system PL to the barrel base 25, and vibration, temperature change, etc. of the assembled barrel base 25 and the projection optical system PL. It has the advantage that the stresses caused by stress can be reduced most effectively:
防振ュニッ ト 2 4は、 鏡筒定盤 2 5の各コーナーに配置され (なお、 紙面奥側 の防振ュニッ トについては図示せず) 、 内圧が調整可能なエアマウント 2 6とボ イスコイルモ一夕 2 7とが段部 8 b上に直列に配置された構成になっている。 こ れら防振ュニット 2 4によって、 ベースプレート 1 0およびリアクションフレー ム 8を介して鏡筒定盤 2 5 (ひいては投影光学系 P L ) に伝わる微振動がマイク 口 Gレベルで絶縁されるようになっている。  The anti-vibration unit 24 is arranged at each corner of the lens barrel base 25 (the anti-vibration unit on the back side of the drawing is not shown), and the air mount 26 and the voice coil module whose internal pressure can be adjusted. The configuration is such that overnight 27 is arranged in series on step 8b. These vibration isolation units 24 insulate the micro-vibrations transmitted to the lens barrel base 25 (and, consequently, the projection optical system PL) via the base plate 10 and the reaction frame 8 at the microphone opening G level. ing.
ステージ装置 7は、 ウェハ Wを保持するウェハステージ 5、 このウェハステー ジ 5を X Y平面に沿った 2次元方向に移動可能に支持するウェハ定盤 6を主体に 構成されている。 図 4に示すように、 ウェハステージ 5の底面には、 非接触ベア リングである複数のエアベアリング (エアパッド) 2 8が固定されており、 これ らのエアベアリング 2 8によってウェハステージ 5がウェハ定盤 6上に、 例えば 数ミクロン程度のクリアランスを介して浮上支持されている。  The stage device 7 mainly includes a wafer stage 5 for holding a wafer W, and a wafer surface plate 6 for supporting the wafer stage 5 movably in a two-dimensional direction along the XY plane. As shown in FIG. 4, a plurality of air bearings (air pads) 28, which are non-contact bearings, are fixed to the bottom surface of the wafer stage 5, and the wafer stage 5 is fixed by the air bearings 28. On the board 6, for example, it is levitated and supported by a clearance of about several microns.
ウェハ定盤 6は、 ベースプレート (支持部) 1 0の上方に、 防振ユニット (防 振機構) 2 9を介してほぼ水平に支持されている。 防振ユニッ ト 2 9は、 ウェハ 定盤 6の各コーナーに配置され (なお、 紙面奥側の防振ュニッ 卜については図示 せず) 、 内圧が調整可能なエアマウント 3 0とボイスコイルモータ 3 1とがべ一 スブノート 1 0上に並列に配置された構成になっている。 これら防振ュニット 2 9によって、 ベ一スプレート 1 0を介してウェハ定盤 6に伝わる微振動がマイク 口 Gンベルで絶縁されるようになっている。 The wafer surface plate 6 is supported substantially horizontally above a base plate (support portion) 10 via a vibration isolating unit (vibration isolating mechanism) 29. The anti-vibration units 29 are arranged at each corner of the wafer surface plate 6 (the anti-vibration unit on the back side of the drawing is not shown), and the air mount 30 and the voice coil motor 3 whose internal pressure can be adjusted. 1 and 1 It is configured to be arranged in parallel on the subnote 10. By these vibration isolating units 29, the micro vibration transmitted to the wafer surface plate 6 via the base plate 10 is insulated by the microphone opening G bell.
ウェハステージ 5は、 該ウェハステージ 5を X方向に駆動する一対のリニアモ 一夕 3 2 (ウェハステージ 5よりも紙面手前側のリニアモー夕は図示せず) と、 ウェハステージ 5を Y方向に駆動する一対のリニアモー夕 (駆動機構) 3 3とに よってウェハ定盤 6上を X Y 2次元方向に移動自在になっている。 リニアモ一夕 3 2の固定子は、 ウェハステージ 5の Y方向両外側に X方向に沿って延設されて おり、 一対の連結部材 3 4によって両端部相互間が連結されて、. 矩形の枠体 3 5 が構成されている。 リニアモー夕 3 2の可動子は、 ウェハステージ 5の Y方向両 側面に固定子に対向するように突設されている。  The wafer stage 5 includes a pair of linear motors 32 that drive the wafer stage 5 in the X direction (a linear motor closer to the paper than the wafer stage 5 is not shown) and the wafer stage 5 that drives the wafer stage 5 in the Y direction. The pair of linear motors (drive mechanisms) 33 makes it possible to freely move in the XY two-dimensional direction on the wafer surface plate 6. The stator of the linear motor 32 is extended along the X direction on both outer sides of the wafer stage 5 in the Y direction, and both ends are connected to each other by a pair of connecting members 34. Body 35 is composed. The movers of the linear motor 32 project from both sides in the Y direction of the wafer stage 5 so as to face the stator.
また、 枠体 3 5を構成する一対の連結部材 3 4またはリニアモ一夕 3 2の下端 面に:ま、 電機子ユニットからなる可動子 3 6, 3 6がそれぞれ設けられており、 これらの可動子 3 6, 3 6に対応する磁石ュニットを有する第 2ステージとして の固定子 (反力ステージ) 3 7, 3 7が Y方向に延設されている。 図 5に示すよ うに、 各固定子 3 7とべ一スプレート 1 0との間には、 転がりガイ ド 3 8がそれ それ介装されている。 転がりガイ ド 3 8は、 軸線が X方向に延在し各軸線周りに 回転する複数のコロ (転動体) 3 9が Y方向に一定の間隔をおいて配置された構 成になっており、 固定子 3 7はコロ 3 9の回転により支持部としてのベースプレ ―ト 1 0に対して Y方向に移動自在になっている。  Further, on the lower end surfaces of the pair of connecting members 34 or the linear motors 32 constituting the frame 35, movers 36 and 36 composed of armature units are provided, respectively. The stators (reaction force stages) 37, 37 as the second stage having magnet units corresponding to the stators 36, 36 extend in the Y direction. As shown in FIG. 5, a rolling guide 38 is interposed between each stator 37 and the base plate 10. The rolling guide 38 has a configuration in which a plurality of rollers (rolling elements) 39 whose axes extend in the X direction and rotate around each axis are arranged at regular intervals in the Y direction. The stator 37 is movable in the Y direction with respect to the base plate 10 as a support by the rotation of the roller 39.
また、 図 3に示すように、 固定子 1 7と同様に、 各固定子 3 7の Y方向両側に は、 固定子 3 7を初期位置に復帰させる復帰装置を構成する一対のスプリング (付勢部) 4 0、 4 0の一端がそれそれ接続されている。 これらのスプリング 4 0は、 他端がベースプレート 1 0に固定されており、 固定子 3 7を Y方向に沿つ た互いに相反する方向に、 ほぼ同じ力でそれそれ付勢する (例えば引っ張る) も のである。 なお、 各スプリング 4 0は、 固定子 3 7が移動した際にも弾性範囲で 変形するように十分な橈み量が設定されている。  As shown in FIG. 3, similarly to the stator 17, on both sides in the Y direction of each of the stators 37, a pair of springs (biasing members) constituting a return device for returning the stator 37 to the initial position is provided. Part) One end of 40, 40 is connected to each. The other ends of these springs 40 are fixed to the base plate 10, and urge (eg, pull) the stators 37 with substantially the same force in opposite directions along the Y direction. It is. In addition, each spring 40 is set to have a sufficient radius so as to be deformed within the elastic range even when the stator 37 moves.
そして、 これら可動子 3 6および固定子 3 7によってム一ビングコイル型のリ 二ァモ一夕 3 3が構成されており、 可動子 3 6は固定子 3 7との間の電磁気的相 互作用により Y方向 (一方向) に駆動されるようになっている。 すなわち、 この リニアモー夕 3 3によって枠体 3 5と一体的にウェハステージ 5が Υ方向に駆動 されるようになつている。 なお、 図 4から明らかなように、 ウェハステージ 5は、 Υ方向の移動にはガイ ド部材を有さないガイ ドレスステージとなっている。 なお、 ウェハステージ 5の X方向の移動に関しても適宜ガイ ドレスステージとすること ができる。 A moving coil type linear motor 33 is constituted by the mover 36 and the stator 3 7, and the mover 36 has an electromagnetic phase between the mover 36 and the stator 37. It is driven in the Y direction (one direction) by interaction. That is, the linear stage 33 drives the wafer stage 5 integrally with the frame 35 in the Υ direction. As is apparent from FIG. 4, the wafer stage 5 is a guided stage having no guide member for the movement in the vertical direction. It should be noted that the movement of the wafer stage 5 in the X direction can be appropriately set as a guide stage.
ウェハステージ 5の上面には、 ウェハホルダ 4 1を介してウェハ Wが真空吸着 等によって固定される。 また、 ウェハステージ 5の X方向の位置は、 投影光学系 P Lの鏡筒下端に固定された参照鏡 4 2を基準として、 ウェハステージ 5の一部 に固定された移動鏡 4 3の位置変化を計測する位置計測装置であるレーザ干渉計 4 4 :こよって所定の分解能、 例えば 0 . 5〜 1 n m程度の分解能でリアルタイム に計測される。 なお、 上記参照鏡 4 2、 移動鏡 4 3、 レーザ干渉計 4 4とほぼ直 交するように配置された不図示の参照鏡、 移動鏡、 レーザ干渉計によってウェハ ステージ 5の Y方向の位置が計測される。 なお、 これらレーザ干渉計の中、 少な くとも一方は、 測長軸を 2軸以上有する多軸干渉計であり、 これらレーザ干渉計 の計測値に基づいてウェハステージ 5 (ひいてはウェハ W) の X Y位置のみなら ず、 9回転量あるいはこれらに加え、 レべリング量をも求めることができるよう になっている。  The wafer W is fixed on the upper surface of the wafer stage 5 via a wafer holder 41 by vacuum suction or the like. In addition, the position of the wafer stage 5 in the X direction is based on the reference mirror 42 fixed to the lower end of the barrel of the projection optical system PL, and the position change of the movable mirror 43 fixed to a part of the wafer stage 5 is used as a reference. Laser interferometer 44, which is a position measuring device for measurement, whereby measurement is performed in real time with a predetermined resolution, for example, a resolution of about 0.5 to 1 nm. Note that the position of the wafer stage 5 in the Y direction is determined by a reference mirror, a moving mirror, and a laser interferometer (not shown) arranged so as to be substantially orthogonal to the reference mirror 42, the moving mirror 43, and the laser interferometer 44. Measured. At least one of these laser interferometers is a multi-axis interferometer having two or more measuring axes. Based on the measurement values of these laser interferometers, the XY of the wafer stage 5 (and thus the wafer W) is determined. Not only the position, but also 9 rotations or the leveling amount in addition to them can be obtained.
また、 上記レチクル定盤 3、 ウェハ定盤 6、 鏡筒定盤 2 5には、 各定盤の Z方 向の振動を計測する 3つの振動センサ (例えば加速度計;不図示) と、 X Y面内 方向の振動を計測する 3つの振動センサ (例えば加速度計;不図示) とがそれそ れ取り付けられている。 後者の振動センサのうち 2つは、 各定盤の Y方向の振動 を計測し、 残りの振動センサは X方向の振動を計測するものである (以下、 便宜 上これらの振動センサを振動センサ群と称する) 。 そして、 これらの振動センサ 群の計測値に基づいてレチクル定盤 3、 ウェハ定盤 6、 鏡筒定盤 2 5の 6自由度 ( Χ、 Υ、 Ζ、 0 Χ、 Θ Ύ Θ Ζ ) の振動をそれそれ求めることができる。  The reticle surface plate 3, the wafer surface plate 6, and the lens barrel surface plate 25 include three vibration sensors (for example, an accelerometer; not shown) for measuring the vibration in the Z direction of each surface plate, and an XY plane. Three vibration sensors (for example, accelerometers; not shown) that measure inward vibration are attached to each. Two of the latter vibration sensors measure the vibration of each surface plate in the Y direction, and the remaining vibration sensors measure the vibration in the X direction (hereinafter referred to as the vibration sensor group for convenience). ). Then, based on the measured values of these vibration sensors, the vibrations of the six degrees of freedom (Χ, Υ, Ζ, 0Χ, Θ Ύ Θ の) of the reticle surface plate 3, the wafer surface plate 6, and the lens barrel surface plate 25 are obtained. It can be sought.
さらに、 図 4に示すように、 投影光学系 P Lのフランジ 2 3には、 異なる 3力 所に位置検出装置である 3つのレーザ干渉計 4 5が固定されている (ただし、 図 4においてはこれらのレーザ干渉計のうち 1つが代表的に示されている) 。 各レ —ザ干渉計 4 5に対向する鏡筒定盤 2 5の部分には、 開口 2 5 aがそれそれ形成 されており、 これらの開口 2 5 aを介して各レーザ干渉計 4 5から Z方向の測長 ビームがウェハ定盤 6に向けて照射される。 ウェハ定盤 6の上面の各測長ビーム の対向位置には、 反射面がそれそれ形成されている。 このため、 上記 3つのレー ザ干渉計 4 5によってウェハ定盤 6の異なる 3点の Z位置がフランジ 2 3を基準 としてそれそれ計測される (ただし、 図 4においては、 ウェハステージ 5上のゥ ェハ Wの中央のショット領域が投影光学系 P Lの光軸の直下にある状態が示され ているため、 測長ビームがウェハステージ 5で遮られた状態になっている) 。 な お、 ウェハステージ 5の上面に反射面を形成して、 この反射面上の異なる 3点の Z方向位置を投影光学系 P Lまたはフランジ 2 3を基準として計測する干渉計を 設けてもよい。 Further, as shown in FIG. 4, three laser interferometers 45, which are position detecting devices, are fixed to the flanges 23 of the projection optical system PL at three different places (however, in FIG. One of the laser interferometers is typically shown). Each —Apertures 25a are formed in the part of the barrel base 25 facing the interferometer 45, and each laser interferometer 45 is moved in the Z direction through these openings 25a. The measurement beam is applied to the wafer surface plate 6. Reflection surfaces are formed on the upper surface of the wafer surface plate 6 at positions facing the respective measurement beams. For this reason, three different Z positions of the wafer surface plate 6 are measured by the three laser interferometers 45 with reference to the flange 23 (however, in FIG. Since the shot area at the center of the wafer W is shown immediately below the optical axis of the projection optical system PL, the measurement beam is blocked by the wafer stage 5). A reflection surface may be formed on the upper surface of the wafer stage 5 and an interferometer for measuring three different Z-direction positions on the reflection surface with reference to the projection optical system PL or the flange 23 may be provided.
次二、 上記の構成のステージ装置 4、 7うち、 まずステージ装置 4の動作につ いて説明する。  Next, among the stage devices 4 and 7 having the above configuration, first, the operation of the stage device 4 will be described.
レチクルステージ 2がリニアモー夕 1 5の駆動により走査方向 (例えば + Y方 向) に移動すると、 駆動による反力で固定子 1 7が転がりガイ ド 2 0によってリ アクションフレーム 8上を逆方向 (一 Y方向) に相対移動する。 このとき、 転が りガイ ド 2 0においては、 コロ 2 1が回転するため、 固定子 1 7は円滑に移動す る  When the reticle stage 2 moves in the scanning direction (for example, in the + Y direction) by driving the linear motor 15, the stator 17 rolls due to the reaction force of the driving, and moves in the opposite direction on the reaction frame 8 by the rolling guide 20. (Y direction). At this time, in the rolling guide 20, since the roller 21 rotates, the stator 17 moves smoothly.
ここで、 レチクルステージ 2と固定子 1 Ίとレチクル定盤 3との 3者間の摩擦 が零である場合には、 運動量保存の法則が働き、 レチクルステージ 2の移動に伴 う固定子 1 7の移動量はレチクルステージ 2側 (Y移動鏡 1 8 a、 1 8 b、 X移 動鏡 1 9、 可動子 1 6、 レチクル R等を含む) と固定子 1 7側との重量比で決定 される。 具体的には、 レチクルステージ 2側と固定子 1 7側との重量比は約 1 : 4であるので、 例えばレチクルステージ 2の + Y方向における 3 0 c mの移動が 固定子 1 7を一 Y方向に 7 . 5 c m移動させる。  Here, when the friction between the reticle stage 2 and the stator 1 Ί and the reticle surface plate 3 is zero, the law of conservation of momentum works, and the stator 1 7 associated with the movement of the reticle stage 2 7 Is determined by the weight ratio of the reticle stage 2 side (including Y movable mirrors 18a and 18b, X movable mirror 19, mover 16 and reticle R) to the stator 17 side Is done. Specifically, since the weight ratio between the reticle stage 2 side and the stator 17 side is about 1: 4, for example, a movement of 30 cm in the + Y direction of the reticle stage 2 causes the stator 17 to move one Y Move 7.5 cm in the direction.
このため、 レチクルステージ 2の走査方向の加減速時の反力は、 固定子 1 7の 移動'、こより吸収され、 ステージ装置 4における重心の位置が Y方向において実質 的に a定される。 また、 固定子 1 7が支持されるリアクションフレーム 8は、 レ チクル定盤 3を防振ュニヅ ト 1 1を介して支持しているので、 これらリアクショ ンフレーム 8とレチクル定盤 3とは振動的に独立状態になる。 したがって、 レチ クルステージ 2が駆動された際にも、 上記反力によってレチクル定盤 3が振動す ることを効果的に抑制することができる。 なお、 固定子 1 7がー Y方向に移動す ることで、 図 3に示す付勢部 2 2の固定子 1 7に対する付勢力の均衡が崩れ、 固 定子 1 7を + Y方向に付勢する力が増加する。 そのため、 固定子 1 7は、 上記付 勢力が均衡する位置、 すなわち初期位置 (イニシャル位置) へ速やかに復帰する こと.こなる。 Therefore, the reaction force of the reticle stage 2 during acceleration / deceleration in the scanning direction is absorbed by the movement of the stator 17, and the position of the center of gravity of the stage device 4 is substantially determined in the Y direction. Also, the reaction frame 8 on which the stator 17 is supported supports the reticle surface plate 3 via the vibration isolation unit 11, so that these reaction The frame 8 and the reticle platen 3 are vibrationally independent. Therefore, even when the reticle stage 2 is driven, it is possible to effectively suppress the reticle surface plate 3 from vibrating due to the reaction force. When the stator 17 moves in the −Y direction, the urging force of the urging portion 22 shown in FIG. 3 with respect to the stator 17 is lost, and the stator 17 is urged in the + Y direction. The power to do increases. Therefore, the stator 17 promptly returns to the position where the above-mentioned biasing force is balanced, that is, the initial position (initial position).
そして、 防振ユニット 1 1では、 レーザ干渉計の計測値に基づいて、 レチクル ステージ 2の移動に伴う重心の変化による影響をキャンセルする力 (カウンター フォース) がフィードフォワードで与えられ、 この力を発生するようにエアマウ ント 1 2およびボイスコイルモー夕 1 3が駆動される。 また、 ノチクルステージ 2と'. SI定子 1 7とレチクル定盤 3との 3者間の摩擦が零でなかったり、 レチクル ステージ 2と固定子 1 7との移動方向が僅かに異なる等の理由で、 レチクル定盤 3の 6自由度方向の微少な振動が残留した場合にも、 振動センサ群の計測値に基 づいて上記残留振動を除去すべく、 エアマウント 1 2およびボイスコイルモ一夕 1 3をフィードバック制御する。  The anti-vibration unit 11 feeds a force (counter force) to cancel the influence of the change in the center of gravity due to the movement of the reticle stage 2 based on the measurement value of the laser interferometer, and generates this force. The air mount 12 and the voice coil motor 13 are driven in such a manner as to operate. Also, the friction between the notch stage 2 and the '. SI constant 17 and the reticle surface 3 is not zero, or the moving direction between the reticle stage 2 and the stator 17 is slightly different. Therefore, even if minute vibrations of the reticle surface plate 3 in the directions of six degrees of freedom remain, the air mount 12 and the voice coil module 13 are used to remove the residual vibrations based on the measurement values of the vibration sensors. Feedback control.
一方、 ステージ装置 7においてもステージ装置 4と同様の動作が生じる。  On the other hand, in the stage device 7, the same operation as in the stage device 4 occurs.
ウェハステージ 5がリニアモー夕 3 3の駆動により走査方向 (+ Y方向) に移 動すると、 駆動による反力で固定子 3 7が転がりガイ ド 3 8によってベースプレ ート 1 0上を逆方向 (― Y方向) に相対移動する。 このとき、 転がりガイ ド 3 8 においては、 コロ 3 9が回転するため、 固定子 3 7は円滑に移動する。 そして、 ウェハステージ 5と固定子 3 7とウェハ定盤 6との 3者間の摩擦が零である場合 には、 運動量保存の法則が働き、 ウェハステージ 5の移動に伴う固定子 3 7の移 動量はウェハステージ 5側と固定子 3 7側との重量比で決定される。 このため、 ウェハステージ 5の走査方向の加減速時の反力は、 固定子 3 7の移動により吸収 され、 ステージ装置 7における重心の位置が Y方向において実質的に固定される c また、 固定子 3 7が支持されるべ一スプレート 1 0は、 ウェハ定盤 6を防振ュニ ッ ト 2 9を介して支持しているので、 これらベースプレ一ト 1 0とウェハ定盤 6 とは振動的に独立状態になる。 したがって、 ウェハステージ 5が駆動された際に も、 上記反力によってウェハ定盤 6が振動することを効果的に抑制することがで きる。 なお、 固定子 3 7が— Y方向に移動することで、 図 3に示す付勢部 4 0の 固定子 3 7に対する付勢力の均衡が崩れ、 固定子 3 7を + Y方向に付勢する力が 増加する。 そのため、 固定子 3 7は、 上記付勢力が均衡する位置、 すなわち初期 位置 (イニシャル位置) へ速やかに復帰する。 When the wafer stage 5 is moved in the scanning direction (+ Y direction) by the driving of the linear motor 33, the stator 37 is rolled by the reaction force of the driving, and the guide 37 guides the stator 38 in the opposite direction on the base plate 10. (Y direction). At this time, in the rolling guide 38, since the roller 39 rotates, the stator 37 moves smoothly. When the friction between the wafer stage 5, the stator 37, and the wafer surface plate 6 is zero, the law of conservation of momentum works, and the movement of the stator 37 with the movement of the wafer stage 5 is performed. The momentum is determined by the weight ratio between the wafer stage 5 side and the stator 37 side. For this reason, the reaction force of the wafer stage 5 during acceleration / deceleration in the scanning direction is absorbed by the movement of the stator 37, and the position of the center of gravity of the stage device 7 is substantially fixed in the Y direction. Since the base plate 10 on which the base plate 37 is supported supports the wafer base plate 6 through the vibration isolating unit 29, the base plate 10 and the wafer base plate 6 vibrate. Become independent independently. Therefore, when the wafer stage 5 is driven, In addition, it is possible to effectively suppress the wafer surface plate 6 from vibrating due to the reaction force. When the stator 37 moves in the −Y direction, the balance of the urging force of the urging portion 40 shown in FIG. 3 with respect to the stator 37 is broken, and the stator 37 is urged in the + Y direction. Power increases. Therefore, the stator 37 quickly returns to the position where the urging force is balanced, that is, the initial position (initial position).
そ て、 防振ユニット 2 9では、 レーザ干渉計 4 4等の計測値に基づいて、 ゥ ェハステージ 5の移動に伴う重心の変化による影響をキャンセルするカウン夕一 フォースがフィードフォヮ一ドで与えられ、 この力を発生するようにエアマウン ト 3 3およびボイスコイルモー夕 3 1が駆動される。 また、 ウェハステージ 5と 固定子 3 7とウェハ定盤 6との 3者間の摩擦が零でなかったり、 ウェハステージ 5と固定子 3 7との移動方向が僅かに異なる等の理由で、 ウェハ定盤 6の 6自由 度方向の微少な振動が残留した場合にも、 振動センサ群の計測値に基づいて上記 残留振動を除去すべく、 エアマウント 3 0およびボイスコイルモー夕 3 1をフィ 一ドバック制御する。  Then, in the anti-vibration unit 29, a count force for canceling the influence of the change in the center of gravity due to the movement of the wafer stage 5 is given in feed feed based on the measurement value of the laser interferometer 44, etc. The air mount 33 and the voice coil motor 31 are driven to generate this force. In addition, the friction between the three members of the wafer stage 5, the stator 37, and the wafer surface plate 6 is not zero, or the movement direction of the wafer stage 5 and the stator 37 is slightly different. Even if minute vibrations in the 6-DOF direction of the surface plate 6 remain, the air mount 30 and the voice coil motor 31 are fixed to remove the above-mentioned residual vibrations based on the measurement values of the vibration sensors. Control back.
また、 鏡筒定盤 2 5においては、 レチクルステージ 2、 ウェハステージ 5の移 動による反力で固定子 1 7、 3 7が移動し、 リアクションフレーム 8に微振動が 発生しても、 リアクションフレーム 8との間に防振ュニヅト 2 4が介装されて振 動に関して独立している。 また、 鏡筒定盤 2 5に微振動が発生^ても、 鏡筒定盤 2 5二設けられた振動センサ群の計測値に基づいて 6自由度方向の振動を求め、 エアマウント 2 6およびボイスコイルモー夕 2 7をフィードバヅク制御すること によりこの微振動をキャンセルして、 鏡筒定盤 2 5を定常的に安定した位置に維 持することができる。 したがって、 鏡筒定盤 2 5に支持された投影光学系 P Lを 安定^た位置に維持することができ、 投影光学系 P Lの振動に起因するパターン 転写立置のずれや像ボケ等の発生を効果的に防止して露光精度の向上を図ること ができる。  Also, in the lens barrel base 25, even if the stators 17 and 37 move due to the reaction force due to the movement of the reticle stage 2 and the wafer stage 5, even if slight vibrations occur in the reaction frame 8, the reaction frame A vibration proof unit 24 is interposed between the vibration control unit 8 and the vibration control unit 8 to be independent with respect to vibration. Also, even if a slight vibration occurs in the lens barrel base 25, vibration in six degrees of freedom is obtained based on the measurement values of the vibration sensors provided in the lens barrel base 25, and the air mount 26 and By performing feedback control on the voice coil motor 27, this minute vibration can be canceled, and the lens barrel base 25 can be constantly maintained at a stable position. Therefore, the projection optical system PL supported by the barrel base 25 can be maintained at a stable position, and the occurrence of displacement of the pattern transfer standing position and image blur due to the vibration of the projection optical system PL can be prevented. Exposure can be effectively prevented to improve exposure accuracy.
続いて、 上記の構成の露光装置 1における露光動作について以下に説明する。 予め、 ウェハ W上のショッ ト領域を適正露光量 (目標露光量) で走査露光するた めの各種の露光条件が設定されているものとする。 そして、 いずれも不図示のレ チクル顕微鏡およびオファクシス ·ァライメントセンサ等を用いたレチクルァラ ィメント、 ベースライン計測等の準備作業が行われ、 その後ァライメントセンサ を用いたウェハ Wのフアインァライメント (E G A;ェンハンスト ·グロ一バル 'ァライメント等) が終了し、 ウェハ W上の複数のショット領域の配列座標が求 めら τιる。 Subsequently, the exposure operation in the exposure apparatus 1 having the above configuration will be described below. It is assumed that various exposure conditions for scanning and exposing a shot area on the wafer W with an appropriate exposure amount (target exposure amount) are set in advance. Each of them uses a reticle microscope (not shown) and an optics alignment sensor. Preparations such as alignment and baseline measurement are performed, and then the alignment of the wafer W using alignment sensors (EGA; Enhanced Global) is completed, and multiple shots on the wafer W are completed. The array coordinates of the area can be determined.
このようにして、 ウェハ Wの露光のための準備動作が完了すると、 ァライメン ト結果に基づいてレーザ干渉計 4 4の計測値をモニタしつつ、 リニアモ一夕 3 2、 3 3を制御してウェハ Wの第 1ショッ 卜の露光のための走査開始位置にウェハス テ一ジ 5を移動する。 そして、 リニアモ一夕 1 5、 3 3を介してレチクルステー ジ 2とウェハステージ 5との Y方向の走査を開始し、 両ステージ 2、 5がそれそ れの目標走査速度に達すると、 露光用照明光によってレチクル Ϊ のパターン領域 が照.明され、 走査露光が開始される。  In this way, when the preparatory operation for exposure of the wafer W is completed, the linear motors 32 and 33 are controlled while monitoring the measurement values of the laser interferometer 44 based on the alignment results. The wafer stage 5 is moved to the scanning start position for the exposure of the first shot of W. Then, the reticle stage 2 and the wafer stage 5 start scanning in the Y direction via the linear motors 15 and 33, and when both stages 2 and 5 reach their respective target scanning speeds, they are exposed. The pattern area of reticle パ タ ー ン is illuminated by the illumination light, and scanning exposure is started.
この走査露光時には、 レチクルステージ 2の Y方向の移動速度と、 ウェハステ —ジ 5の Y方向の移動速度とが投影光学系 P Lの投影倍率 ( 1 / 5倍あるいは 1 / 4 ι咅) に応じた速度比に維持されるように、 リニアモー夕 1 5、 3 3を介して レチクルステージ 2およびウェハステージ 5を同期制御する。 そして、 レチクル Rのパターン領域の異なる領域が照明光で逐次照明され、 パターン領域全面に対 する照明が完了することにより、 ウェハ W上の第 1ショッ卜の走査露光が完了す る。 これにより、 レチクル Rのパターンが投影光学系 P Lを介 てウェハ W上の 第 1ショット領域に縮小転写される。  During this scanning exposure, the moving speed of the reticle stage 2 in the Y direction and the moving speed of the wafer stage 5 in the Y direction depend on the projection magnification (1/5 or 1 / 4ι 咅) of the projection optical system PL. The reticle stage 2 and the wafer stage 5 are synchronously controlled via the linear motors 15 and 33 so that the speed ratio is maintained. Then, different areas of the pattern area of the reticle R are sequentially illuminated with illumination light, and the illumination of the entire pattern area is completed, whereby the scanning exposure of the first shot on the wafer W is completed. Thus, the pattern of the reticle R is reduced and transferred to the first shot area on the wafer W via the projection optical system PL.
このようにして、 第 1ショットの走査露光が終了すると、 リニアモー夕 3 2、 3 3を介してウェハステージ 5が X、 Y方向にステップ移動され、 第 2ショット の露光のため走査開始位置に移動される。 このステップ移動の際に、 ウェハステ ージ 5の位置 (ウェハ Wの位置) を検出するレーザ干渉計 4 4の計測値に基づい て、 ウェハステージ 5の X、 Y、 方向の位置をリアルタイムで計測する。 そ して.. この計測結果に基づき、 リニアモ一夕 3 2、 3 3を制御してウェハステー ジ 5の X Υ位置変位が所定の状態になるようにウェハステージ 5の位置を制御す る。 また、 ウェハステージ 5の 6> Ζ方向の変位に関しては、 この変位の情報に基 づいてウェハ W側の回転変位の誤差を補正するように、 レチクルステージ 2を回 転制御する。 この後、 上記第 1ショット領域と同様に、 第 2ショット領域に対し て走査露光を行う。 In this way, when the scanning exposure of the first shot is completed, the wafer stage 5 is stepped in the X and Y directions via the linear motors 32 and 33, and is moved to the scanning start position for the exposure of the second shot. Is done. During this step movement, the position of the wafer stage 5 in the X, Y, and direction is measured in real time based on the measurement value of the laser interferometer 44 that detects the position of the wafer stage 5 (the position of the wafer W). . Then, based on the measurement results, the linear motors 32 and 33 are controlled to control the position of the wafer stage 5 so that the XΥ position displacement of the wafer stage 5 is in a predetermined state. Further, with respect to the displacement of the wafer stage 5 in the direction 6> Ζ, the rotation of the reticle stage 2 is controlled so as to correct the error of the rotational displacement on the wafer W side based on this displacement information. Then, like the first shot area, the second shot area Scanning exposure.
このようにして、 ウェハ W上のショヅト領域の走査露光と次ショヅト露光のた めのステップ移動とが繰り返し行われ、 ウェハ W上の露光対象ショット領域の全 てにノチクル Rのパターンが順次転写される。  In this manner, the scanning exposure of the short area on the wafer W and the step movement for the next short exposure are repeatedly performed, and the pattern of the notch R is sequentially transferred to the entire exposure target shot area on the wafer W. You.
本実施の形態のステージ装置および露光装置では、 レチクルステージ 2、 ゥェ ハステージ 5が駆動されるときの反力で固定子 1 7、 3 7が逆方向にそれそれ移 動するため運動量保存の法則が働き、 これらの反力がリアクションフレーム 8や ベースプレート 1 0、 さらには床に伝わることを防止でき、 揺れ返し等の問題を 回避することができるため、 レチクル Rやウェハ Wが大型化したり、 高速移動す る場合でも、 整定時間が短くなりスループットおよび露光精度の向上を図ること ができる。 また、 リアクションフレーム 8が防振ユニット 1 1を介してレチクル 定盤 3を支持し、 ベースプレート 1 0が防振ュニット 2 9を介 てウェハ定盤 6 を支持するので、 リアクションフレーム 8およびべ一スプレー卜 1 0の残留振動 がレチクル定盤 3およびウェハ定盤 6に伝わることを抑制でき、 各ステージ 2、 5の立置制御性を維持することができる。  In the stage apparatus and the exposure apparatus of the present embodiment, the stators 17 and 37 move in opposite directions by the reaction force when the reticle stage 2 and the wafer stage 5 are driven. The law works, and it is possible to prevent these reaction forces from being transmitted to the reaction frame 8, the base plate 10, and even the floor, and to avoid problems such as swinging back, so that the reticle R or wafer W becomes larger, Even when moving at high speed, the settling time is shortened, and the throughput and exposure accuracy can be improved. In addition, the reaction frame 8 supports the reticle surface plate 3 via the vibration isolation unit 11 and the base plate 10 supports the wafer surface plate 6 via the vibration isolation unit 29. The transmission of the residual vibration of the sample 10 to the reticle platen 3 and the wafer platen 6 can be suppressed, and the standing controllability of each of the stages 2 and 5 can be maintained.
また、 本実施の形態では、 上記各ステージ 2、 5を駆動するリニアモ一夕 1 5、 3 3の一部をそれそれ構成する固定子 1 7、 3 7が各ステージ 2、 5の駆動に伴 う反力で移動するため、 この反力を排除するための機構を別途設ける必要がなく、 装置の小型化および低価格化を実現するも可能である。 そして、 これら固定子 1 7、 3 7が上記反力で移動する際には、 コロ 2 1、 3 9が軸線周りに回転すると いう簡単な動作で行われるため、 装置の簡素化を実現できる。  In the present embodiment, a part of the linear motors 15 and 33 for driving each of the stages 2 and 5 is replaced with a stator 17 and 37 for forming each of the stages 2 and 5. Since it is moved by the reaction force, there is no need to separately provide a mechanism for eliminating the reaction force, and it is possible to realize a reduction in size and cost of the device. When the stators 17 and 37 move by the above-described reaction force, the rollers 21 and 39 are rotated by a simple operation of rotating around the axis, so that the device can be simplified.
さらに、 本実施の形態では、 スプリング 2 2、 4 0が互いに相反する方向に固 定子 1 7、 3 7をそれそれ付勢しているので、 各固定子 1 7、 3 7が反力で移動 した際にも、 簡単な機構で容易に初期位置に復帰させることができる。  Further, in the present embodiment, since the springs 22 and 40 urge the stators 17 and 37 in directions opposite to each other, the stators 17 and 37 move by the reaction force. In this case, it can be easily returned to the initial position by a simple mechanism.
また、 本実施の形態の露光装置では、 レチクルステージ 2、 ウェハステージ 5 および投影光学系 P Lが防振ユニット 1 1、 2 9、 2 4によって振動的に独立し ているので、 レチクルステージ 2および上ウェハステージ 5の駆動に起因する振 動が投影光学系 P Lに伝わることを防止でき、 投影光学系 P Lの振動に起因する パターン転写位置のずれや像ボケ等の発生を効果的に防止して露光精度の向上を 図ることもできる。 Further, in the exposure apparatus of the present embodiment, reticle stage 2, wafer stage 5, and projection optical system PL are vibrationally independent by anti-vibration units 11, 29, and 24. It is possible to prevent the vibration caused by the drive of the wafer stage 5 from being transmitted to the projection optical system PL, and to effectively prevent the displacement of the pattern transfer position and the occurrence of image blur due to the vibration of the projection optical system PL for exposure. Improve accuracy You can also plan.
[第 2の実施の形態]  [Second embodiment]
図 6は、 本発明のステージ装置および露光装置の第 2の実施の形態を示す図で ある。 この図において、 図 1ないし図 5に示す第 1の実施の形態の構成要素と同 一の要素については同一符号を付し、 その説明を省略する。 第 2の実施の形態と 上記の第 1の実施の形態とが異なる点は、 ステージ装置 7の構成であるので、 以 下これについて説明する。  FIG. 6 is a diagram showing a second embodiment of the stage apparatus and the exposure apparatus of the present invention. In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted. The difference between the second embodiment and the first embodiment is the configuration of the stage device 7, which will be described below.
この図に示されるように、 ステージ装置 7は、 ウェハステージ 5、 ウェハ定盤 6およびこれらを下方から支持する支持プレート (反力ステージ) 4 6を主体に 構成されている。 そして、 上記固定子 3 7は、 支持プレート 4 6との間に介装さ れた転がりガイ ド 3 8によって、 支持プレート 4 6に対して Y方向に移動する構 成に っている。 また、 ウェハ定盤 6も支持プレート 4 6との間に配置された防 振ュニット 2 9によって、 支持プレート 4 6に対して振動に関して独立した構成 になっている。 従って、 支持プレート 4 6は、 固定子 3 7の反力移動に関しては 支持部としての役割を担っている。  As shown in this figure, the stage device 7 mainly includes a wafer stage 5, a wafer surface plate 6, and a support plate (reaction stage) 46 for supporting these from below. The stator 37 is configured to move in the Y direction with respect to the support plate 46 by a rolling guide 38 interposed between the stator 37 and the support plate 46. Further, the wafer surface plate 6 also has a configuration independent of the vibration with respect to the support plate 46 by the vibration isolating unit 29 disposed between the wafer platen 6 and the support plate 46. Therefore, the support plate 46 plays a role as a support portion with respect to the reaction force movement of the stator 37.
支持プレート 4 6とベースプレート 1 0との間には、 複数のコロ (転動体) 4 7からなる転がりガイ ド 4 8が介装されている。 コロ 4 7は、 Y方向に延在する 軸線周りにそれそれ回転し、 X方向に一定の間隔をおいて配置されている。 そし て、 支持プレート 4 6はコロ 4 7の軸線周りの回転により、 ベ一スプレート 1 0 に対して X方向に移動自在になっている。 他の構成は、 上記第 1の実施の形態と 同様である。  A rolling guide 48 including a plurality of rollers (rolling elements) 47 is interposed between the support plate 46 and the base plate 10. The rollers 47 are respectively rotated around an axis extending in the Y direction, and are arranged at regular intervals in the X direction. The support plate 46 is movable around the axis of the roller 47 in the X direction relative to the base plate 10. Other configurations are the same as those of the first embodiment.
本実施の形態のステージ装置および露光装置では、 上記第 1の実施の形態と同 様の作用 ·効果が得られることに加えて、 ウェハステージ 5が + X方向に移動し た際にも、 ウェハステージ 5の移動に伴う反力で支持ブレート 4 6がー X方向に 移動^て運動量保存の法則が働く。 そのため、 走査露光のためにウェハステージ 5が移動するときだけでなく、 ショッ ト領域の変更のためにウェハステージ 5を ステツプ移動させる際にも、 ステツプ移動に伴う反力に起因する揺れ返し等の問 題を回避することができるため、 整定時間がより短くなりスループットおよび露 光精度の向上を一層図ることができる。 また、 本実施の形態でも、 ベ一スプレー ト 1 0や支持プレート 4 6の残留振動がウェハ定盤 6に伝わることを抑制でき、 ゥェ '、ステージ 5の位置制御性を維持することができる。 In the stage apparatus and the exposure apparatus of the present embodiment, the same operation and effect as those of the first embodiment can be obtained, and in addition, when the wafer stage 5 moves in the + X direction, The supporting plate 46 moves in the X direction due to the reaction force accompanying the movement of stage 5, and the law of conservation of momentum works. Therefore, not only when the wafer stage 5 is moved for scanning exposure, but also when the wafer stage 5 is step-moved to change the shot area, the wafer stage 5 may be rejected due to the reaction force caused by the step movement. Since the problem can be avoided, the settling time becomes shorter, and the throughput and the exposure accuracy can be further improved. Also in this embodiment, the base spray G and the residual vibration of the support plate 46 can be suppressed from being transmitted to the wafer surface plate 6, and the position controllability of the stage 5 and the stage 5 can be maintained.
[第 3の実施の形態]  [Third Embodiment]
図 7は、 本発明のステージ装置および露光装置の第 3の実施の形態を示す図で ある。 この図において、 図 1ないし図 5に示す第 1の実施の形態の構成要素と同 一の要素については同一符号を付し、 その説明を省略する。 第 3の実施の形態と 上記の第 1の実施の形態とが異なる点は、 ウェハステージ 5の構成であるので、 以下これについて説明する。  FIG. 7 is a view showing a third embodiment of the stage apparatus and the exposure apparatus of the present invention. In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted. The difference between the third embodiment and the first embodiment is the configuration of the wafer stage 5, which will be described below.
この図に示すように、 投影光学系 P Lの Y方向両側には、 所定の間隔をあけて オファクシス 'ァライメントセンサ 4 9 a、 4 9 bが配設されており、 このァラ ィメントセンサ 4 9 a、 4 9 bが並ぶ方向に沿って 2つのウェハステージ 5、 5 が設けられている。 各ウェハステージ 5には、 ム一ビングコイル型のリニアモー 夕の可動子を構成する磁石ユニット (付図示) が内装されている。 そして、 ゥェ ハステージ 5は、 電機子ュニットを有する固定子として X方向に延設されたリニ ァガ ί ド 5 0に沿ってそれぞれ独立してウェハ定盤 6上を移動自在になっている。 リニアガイ ド 5 0の両端には、 電機子ュニッ卜からなる上記可動子 3 6が下方 に向けて突設されており、 両ウェハステージ 5、 5の可動子 3 6、 3 6双方に対 応ずる固定子 3 7が Υ方向に延設されている。 従って、 各ウェハステージ 5はリ ニァガイ ド 5 0に沿って X方向に移動するとともに、 固定子 3 7に沿って Υ方向 にそれそれ独立して移動する構成になっている。 なお、 図 7においては、 ウェハ ステージ 5上に設置される移動鏡、 指標部材等の図示を省略している。  As shown in the figure, on both sides of the projection optical system PL in the Y direction, there are provided, at predetermined intervals, the opacity alignment sensors 49a and 49b, and the alignment sensors 49a are provided. , 49b are provided along the direction in which the wafer stages are arranged. Each wafer stage 5 is provided with a magnet unit (not shown) that forms a moving coil type linear motor mover. The wafer stage 5 is independently movable along a wafer platen 6 along a linear guide 50 extending in the X direction as a stator having an armature unit. . At both ends of the linear guide 50, the above-mentioned mover 36 composed of an armature unit is provided so as to protrude downward, and is fixed to both the movers 36, 36 of both wafer stages 5, 5. The child 37 extends in the Υ direction. Accordingly, each wafer stage 5 is configured to move in the X direction along the linear guide 50 and to independently move in the Υ direction along the stator 37. Note that, in FIG. 7, illustration of a movable mirror, an index member, and the like installed on the wafer stage 5 is omitted.
上記の構成の露光装置では、 図 7に示すように、 —Υ側に位置するウェハステ ージ 5上のウェハ Wを投影光学系 P Lを介して露光動作を行っている間に、 + Y 側に位置するウェハステージ 5上のウェハ Wに対してァライメン卜が実行される。 具体的には、 まず指標部材、 ウェハ W上に形成されたァライメントマーク (不図 示) を + Y側のァライメントセンサ 4 9 aを用いて計測し、 その計測結果に基づ いてウェハ Wのプリアライメントを行う。 次に、 ウェハ W上の各ショッ ト領域の 配列を、 例えば E G Aを使って求めるフアインァライメン卜がウェハステージ 5 を移動させながら行われる。 そして、 露光シーケンスが終了したウェハステージ 5は一 Y方向に移動してァライメントセンサ 4 9 bの直下でウェハ交換がなされ た後、 上記ァライメントシーケンスが実行される。 また、 ァライメントセンサ 4 9 aでァライメントが行われたウェハステージ 5も一 Y方向に移動して、 投影光 学系 P Lの直下で露光シーケンスが実行される。 In the exposure apparatus having the above configuration, as shown in FIG. 7, the wafer W on the wafer stage 5 located on the −Υ side is moved to the + Y side during the exposure operation through the projection optical system PL. Alignment is performed on the wafer W on the wafer stage 5 located. More specifically, first, an alignment mark (not shown) formed on the index member and the wafer W is measured using the + Y-side alignment sensor 49a, and the wafer W is determined based on the measurement result. Pre-alignment. Next, the alignment of each shot area on the wafer W, for example, by using the EGA, is performed while moving the wafer stage 5. And the wafer stage after the exposure sequence 5 is moved in the Y direction, the wafer is replaced immediately below the alignment sensor 49b, and then the above alignment sequence is executed. The wafer stage 5 that has been aligned by the alignment sensor 49a also moves in the Y direction, and the exposure sequence is executed immediately below the projection optical system PL.
本実施の形態では、 上記第 1の実施の形態と同様の効果が得られることに加え て、 2つのウェハステージ 5、 5を独立して移動させ、 一方のステージ上でゥェ ハ交換およびァライメント動作を行い、 他方のステージで露光動作を並行して行 つてハるので、 スループッ トを大幅に向上させることができる。 しかも、 各ステ ージが Y方向に移動する際に用いられる固定子 3 7を、 両ステージの可動子 3 6 が共用しているので、 部品の削減、 すなわち、 装置の簡素化、 低価格化を実現す ることが可能になる。  In the present embodiment, in addition to obtaining the same effects as those of the first embodiment, the two wafer stages 5, 5 are moved independently, and wafer exchange and alignment are performed on one of the stages. The operation is performed, and the exposure operation is performed in parallel on the other stage, so that the throughput can be greatly improved. In addition, since the stator 37 used when each stage moves in the Y direction is shared by the movers 36 of both stages, the number of parts is reduced, that is, the equipment is simplified and the price is reduced. Can be realized.
なお、 上記実施の形態において、 固定子 1 7、 3 7の Y方向への移動手段とし てココ 2 1、 3 9、 4 7を設ける構成としたが、 これに限定されるものではなく、 例え:まエアベアリング等の非接触ベアリングを設けてもよい。 この場合、 コロを 用い Γこときと同様の作用 ·効果が得られることに加えて、 固定子 1 7、 3 7が摩 擦を''半わないで移動するため、 リアクションフレーム 8やベースプレート 1 0の 振動等、 摩擦に伴う外乱を排除することができ、 より高精度の露光処理を実施す ることができる。 なお、 上記コロゃエアベアリングは、 固定子に設けても、 固定 子を支持するリアクションフレーム 8やべ一スプレート 1 0に設けてもどちらの 構成でもよい。 なお、 図示省略するものの、 レチクルステージ 2も第 3の実施の 形態のように、 複数枚のレチクル Rを支持できる機構にしてもよい。 なお、 この 場合、 レチクルステージ 2を構成する粗動ステージは共通にし、 レチクル Rを保 持する微動ステージを独立に複数設ければよい。 これにより、 ンチクルステージ 2全体をコンパク卜な構成にすることができる。  In the above embodiment, the cocoons 21, 39, 47 are provided as means for moving the stators 17, 37 in the Y direction. However, the present invention is not limited to this. A non-contact bearing such as an air bearing may be provided. In this case, in addition to obtaining the same action and effect as using the rollers, the stators 17 and 37 move without halving the friction, so the reaction frame 8 and the base plate 1 Disturbance due to friction, such as zero vibration, can be eliminated, and more accurate exposure processing can be performed. The roller air bearing may be provided on the stator, or may be provided on the reaction frame 8 or the base plate 10 supporting the stator. Although not shown, the reticle stage 2 may have a mechanism capable of supporting a plurality of reticles R as in the third embodiment. In this case, the reticle stage 2 may be provided with a common coarse movement stage and a plurality of fine movement stages holding the reticle R may be provided independently. Thus, the entire stage 2 can be made compact.
また、 上記実施の形態では、 レチクルステージ 2、 ウェハステージ 5の双方に おいて固定子 1 7、 3 7が反力で移動する構成としたが、 どちらか一方のステ一 ジのみにおいて固定子が反力移動してもよいことはいうまでもない。 さらに、 上 記実施の形態では、 防振ュニッ卜の全てがアクティブに防振を行う構成とした力 これらの全て、 これらのいずれか、 あるいは任意の複数がパッシブに防振を行う ような構成であってもよい。 また、 レチクルステージ 2を粗動ステージ、 微動ス テ一ジの 2段構成とし、 どちらか一方または両方に、 ステージの移動に伴う反力 で移動する部材 (例えば固定子) を設けるような構成であってもよい。 また、 上 記実施の形態では、 本発明のステージ装置を露光装置 1に適用する構成としたが、 これ:こ限定されるものではなく、 露光装置 1以外にも転写マスクの描画装置、 マ スクパターンの位置座標測定装置等の精密測定機器にも適用可能である。 Further, in the above embodiment, the stators 17 and 37 are configured to move by the reaction force in both the reticle stage 2 and the wafer stage 5, but the stator is configured to move in only one of the stages. It goes without saying that the reaction force may be moved. Further, in the above-described embodiment, all of the vibration isolating units are configured to actively perform vibration isolation. All of these, any one of them, or any plural of them passively perform vibration isolation. Such a configuration may be adopted. In addition, the reticle stage 2 has a two-stage configuration of a coarse movement stage and a fine movement stage, and one or both of them is provided with a member (for example, a stator) that moves by a reaction force accompanying the movement of the stage. There may be. In the above embodiment, the stage apparatus of the present invention is configured to be applied to the exposure apparatus 1. However, the present invention is not limited to this, and other than the exposure apparatus 1, a transfer mask drawing apparatus, a mask The present invention is also applicable to precision measuring devices such as a pattern position coordinate measuring device.
なお、 本実施の形態の基板としては、 半導体デバイス用の半導体ウェハ Wのみ ならず、 液晶ディスプレイデバイス用のガラス基板や、 薄膜磁気ヘッド用のセラ ミックウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合 成石英、 シリコンウェハ) 等が適用される。 露光装置 1としては、 レチクル Rと ウェハ W、 PWとを同期移動してレチクル Rのパターンを走査露光するステップ •アンド 'スキャン方式の走査型露光装置 (スキャニング ·ステッパー; USP5,4 73,4i0) の他に、 レチクル Rとウェハ Wとを静止した状態でレチクル Rのパター ンを露光し、 ウェハ W、 PWを順次ステップ移動させるステップ ·アンド · リピ ート方式の投影露光装置 (ステッパー) にも適用することができる。 露光装置 1 の種類としては、 ウェハ Wに半導体デバイスパターンを露光する半導体デバイス 製造用の露光装置に限られず、 液晶表示素子製造用の露光装置や、 薄膜磁気へッ ド、 撮像素子 (CCD) あるいはレチクルなどを製造するための露光装置などに も広く適用できる。  The substrate of the present embodiment includes not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) etc. are applied. The exposure apparatus 1 includes a step of scanning and exposing a pattern of the reticle R by synchronously moving the reticle R and the wafers W and PW. • An AND scan type scanning exposure apparatus (scanning stepper; USP5, 473, 4i0) In addition, a step-and-repeat type projection exposure apparatus (stepper) that exposes the pattern of the reticle R while the reticle R and the wafer W are stationary and sequentially moves the wafer W and the PW step by step. Can be applied. The type of the exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element, a thin-film magnetic head, an image sensor (CCD), or the like. It can be widely applied to exposure equipment for manufacturing reticles and the like.
また、 露光用照明光の光源として、 超高圧水銀ランプから発生する輝線 (g線 (436 nm) 、 h線 (404. 7nm) 、 i線 (365 nm) :) 、 KrFェキ シマレ一ザ ( 248 nm) 、 A r Fエキシマレ一ザ ( 193 nm) 、 F2レーザ ( 157 nm) のみならず、 X線や電子線などの荷電粒子線を用いることができ る。 冽えば、 電子線を用いる場合には電子銃として、 熱電子放射型のランタンへ キサボライ ト (LaB 、 タンタル (Ta) を用いることができる。 さらに、 電 子線を用いる場合は、 レチクル Rを用いる構成としてもよいし、 レチクル Rを用 いず;:こ直接ウェハ上にパターンを形成する構成としてもよい。 また、 YAGレー ザや半導体レーザ等の高周波などを用いてもよい。 In addition, the emission lines (g-line (436 nm), h-line (404.7 nm), i-line (365 nm) :), KrF excimer laser ( 248 nm), a r F excimer one the (193 nm), not only the F 2 laser (157 nm) only, Ru can be uses charged particle beams such as X-ray or electron beam. If it is cool, thermionic emission type lanthanum hexaborite (LaB, tantalum (Ta)) can be used as an electron gun when using an electron beam, and a reticle R is used when using an electron beam. A configuration may be used, or a pattern may be directly formed on the wafer without using reticle R. A high frequency such as a YAG laser or a semiconductor laser may be used.
投影光学系 P Lの倍率は、 縮小系のみならず等倍系および拡大系のいずれでも よい。 また、 投影光学系 P Lとしては、 エキシマレ一ザなどの遠紫外線を用いる 場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、 F 2レーザや X線を用いる場合は反射屈折系または屈折系の光学系にし (レチクル Rも反射型 タイプのものを用いる) 、 また電子線を用いる場合には光学系として電子レンズ および偏向器からなる電子光学系を用いればよい。 なお、 電子線が通過する光路 は、 真空状態にすることはいうまでもない。 また、 投影光学系 P Lを用いること なく、. レチクル Rとウェハ Wとを密接させてレチクル Rのパターンを露光するプ 口キシミティ露光装置にも適用可能である。 The magnification of the projection optical system PL is not limited to the reduction system, but can be either the same magnification system or the magnification system. Good. In addition, as the projection optical system PL, when a far ultraviolet ray such as an excimer laser is used, a material that transmits the far ultraviolet ray such as quartz or fluorite is used as a glass material, and when a F2 laser or X-ray is used, a catadioptric system is used. Alternatively, a refraction-type optical system may be used (the reticle R may be of a reflection type). When an electron beam is used, an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state. Also, the present invention can be applied to an aperture exposure apparatus that exposes a reticle R pattern by bringing a reticle R and a wafer W into close contact with each other without using a projection optical system PL.
ウェハステージ 5ゃレチクルステージ 2にリニアモ一夕 (USP5,623,853または USP5, 528,118参照) を用いる場合は、 エアベアリングを用いたエア浮上型および ローンンッ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。 また. 各ステージ 2、 5は、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを 設けないガイ ドレスタイプであってもよい。 各ステージ 2、 5の駆動機構として は、 二次元に磁石を配置した磁石ユニット (永久磁石) と、 二次元にコイルを配 置した電機子ュニットとを対向させ電磁力により各ステージ 2、 5を駆動する平 面モータを用いてもよい。 この場合、 磁石ユニットと電機子ユニットとのいずれ か一方をステージ 2、 5に接続し、 磁石ユニットと電機子ユニットとの他方をス テージ 2、 5の移動面側 (ベース) に設ければよい。  If a linear stage (see USP5,623,853 or USP5,528,118) is used for the wafer stage 5 ゃ reticle stage 2, an air levitation type using an air bearing and a magnetic levitation type using a lone or reactance force Either one may be used. Each of the stages 2 and 5 may be of a type that moves along a guide or a guideless type that does not have a guide. The drive mechanism for each of the stages 2 and 5 is such that a magnet unit (permanent magnet) having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil are opposed to each other, and each stage 2 and 5 is driven by electromagnetic force. A driven flat motor may be used. In this case, one of the magnet unit and the armature unit may be connected to the stages 2 and 5, and the other of the magnet unit and the armature unit may be provided on the moving surface side (base) of the stages 2 and 5. .
以上のように、 本願実施形態の露光装置 1は、 本願特許請求の範囲に挙げられ た各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学 的精度を保つように、 組み立てることで製造される。 これら各種精度を確保する ために、 この組み立ての前後には、 各種光学系については光学的精度を達成する ための調整、 各種機械系については機械的精度を達成するための調整、 各種電気 系については電気的精度を達成するための調整が行われる。 各種サブシステムか ら露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回 路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露 光装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があること はいうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装 置の製造は温度およびクリ一ン度等が管理されたクリーンルームで行うことが望 まし、'、。 As described above, the exposure apparatus 1 according to the embodiment of the present invention controls various subsystems including the respective components listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems before and after assembly Are adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connection, wiring connection of electric circuits, and piping connection of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure device. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. Exposure equipment It is desirable to manufacture the equipment in a clean room where temperature and cleanliness are controlled.
半導体デバイスは、 図 8に示すように、 デバイスの機能 ·性能設計を行うステ ヅプ 2 0 1、 この設計ステップに基づいたマスク (レチクル) を製作するステツ プ 2 0 2、 シリコン材料からウェハを製造するステップ 2 0 3、 前述した実施形 態の露光装置 1によりレチクルのパターンをウェハに露光するウェハ処理ステヅ プ 2 0 4、 デバイス組み立てステップ (ダイシング工程、 ボンディング工程、 パ ヅケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造される。 産業上の利用可能性  As shown in Fig. 8, a semiconductor device has a step 201 for designing the function and performance of the device, a step 202 for fabricating a mask (reticle) based on the design step, and a wafer made of silicon material. Manufacturing step 203, wafer processing step 204 for exposing a reticle pattern to a wafer by exposure apparatus 1 of the above-described embodiment, device assembling step (including dicing step, bonding step, package step) 2 0 5, inspection step 206, etc. Industrial applicability
本発明は、 ガラス基板やウェハ等、 マスクのパターンが露光される基板と、 こ の基板を保持するステージ本体が定盤上の平面内を移動するステージ装置とその 駆動方法、 およびこのステージ装置に保持されたマスクと基板とを用いて露光処 理を:亍ぅ露光装置並びに露光方法に関し、 特に半導体集積回路や液晶ディスプレ ィ等のデバイスを製造する際に、 リソグラフイエ程で用いて好適な基板、 ステー ジ装置、 ステージ駆動方法および露光装置並びに露光方法に関する。  The present invention relates to a substrate on which a mask pattern is exposed, such as a glass substrate or a wafer, a stage device in which a stage body holding the substrate moves in a plane on a surface plate, a driving method thereof, and a stage device. Exposure processing using the held mask and substrate: (1) Exposure apparatus and exposure method, particularly when manufacturing devices such as semiconductor integrated circuits and liquid crystal displays, suitable substrates for use in the lithographic process. TECHNICAL FIELD The present invention relates to a stage device, a stage driving method, an exposure device, and an exposure method.
本発明のステージ装置およびステージ駆動方法によれば、 定盤に対して振動的 に独立して配置された支持部と、 ステージ本体の駆動に伴う反力により支持部上 を移動する反力ステージとを備えるので、 揺れ返し等の問題を回避することがで き、 整定時間が短くなりスループットの向上を図ることができるとともに、 支持 部の残留振動が定盤に伝わることを抑制でき、 ステージ本体の位置制御性を維持 できる。 また、 定盤が防振機構を介して支持部に支持されるので、 支持部の残留 振動が定盤に伝わることを抑制でき、 ステージ本体の位置制御性を維持できると いう効果も得られる。 さらに、 反力ステージがステージ本体を- 方向に駆動する 駆動機構の少なくとも一部をなす構成となっているので、 反力を排除するための 機構を別途設ける必要がなく、 装置の小型化および低価格化が実現する。 そして、 反力ステージと支持部との間に、 軸線周りに回転して反力ステージを支持部に対 して移動させる転動体が介装されるので、 反力ステージが移動する際には、 転動 体が軸線周りに回転するという簡単な動作で行われ、 装置の簡素化を実現できる また、. 反力ステージと支持部との間に非接触ベアリングが介装されることで、 反 力ステージが摩擦を伴わないで移動するため、 支持部の振動等、 摩擦に伴う外乱 を排除できる。 さらに、 反力ステージを互いに相反する方向にそれそれ付勢する 付勢部等の復帰装置により、 簡単な機構で容易に反力ステージを初期位置に復帰 させることができるという効果も得られる。 また、 ステージ本体が移動する略直 交する方向に移動自在とされ、 反力ステージがこの略直交する方向ごとに設けら れる構成になっているので、 ステージ本体が 2次元移動する場合でも移動に伴う 反力に起因する揺れ返し等の問題を回避することができるため、 整定時間がより 短くなりスループッ卜の向上を一層図ることができる。 According to the stage device and the stage driving method of the present invention, the support unit is provided independently and vibratingly with respect to the surface plate, and the reaction force stage moves on the support unit by the reaction force accompanying the driving of the stage body. Because of this, problems such as swing back can be avoided, the settling time can be shortened, the throughput can be improved, and the residual vibration of the support can be suppressed from being transmitted to the surface plate. Position controllability can be maintained. Further, since the surface plate is supported by the support portion via the vibration isolating mechanism, it is possible to suppress the transmission of the residual vibration of the support portion to the surface plate, and to maintain the position controllability of the stage body. Furthermore, since the reaction stage forms at least a part of the driving mechanism for driving the stage body in the negative direction, there is no need to provide a separate mechanism for eliminating the reaction force, and the device can be made smaller and less expensive. Pricing is realized. A rolling element that rotates around the axis and moves the reaction force stage relative to the support portion is interposed between the reaction force stage and the support portion, so that when the reaction force stage moves, The rolling element rotates around the axis in a simple operation, which simplifies the equipment. In addition, since the non-contact bearing is interposed between the reaction stage and the support, the reaction stage moves without friction, so that disturbance due to friction such as vibration of the support can be eliminated. . Further, by using a return device such as an urging unit for urging the reaction force stages in directions opposite to each other, it is possible to easily return the reaction force stage to the initial position with a simple mechanism. In addition, the stage body is movable in a direction substantially perpendicular to the direction in which it moves, and the reaction force stage is provided in each direction substantially perpendicular to the stage. Since it is possible to avoid problems such as swaying due to the accompanying reaction force, the settling time becomes shorter, and the throughput can be further improved.
そして、 本発明の露光装置および露光方法によれば、 マスクステージと基板ス テージとの少なくとも一方のステージとして、 請求の範囲第 1項から第 9項のい ずれか 1項に記載されたステージ装置や、 請求の範囲第 1 7項から第 2 0項のい ずれか 1項に記載されたステージ駆動方法が用いられるので、 整定時間が短くな りスループッ トおよび露光精度の向上を図ることができるとともに、 支持部の残 留振動が定盤に伝わることを抑制でき、 ステージ本体の位置制御性を維持できる また、 マスクステージ、 基板ステージおよび投影光学系が互いに振動的に独立し て配設されることで、 ステージの駆動に起因する振動が投影光学系に伝わること を防止できるので、 投影光学系の振動に起因するパターン転写位置のずれゃ像ボ ケ等の発生を効果的に防止して露光精度の向上を図れる。 さらに、 マスクステー ジが複数枚のマスクを、 基板ステージが複数枚の基板を保持することで、 交換お よびァライメント動作と露光動作を並行して行えるので、 スループットを大幅に 向上させることができる。 しかも、 固定子を複数の可動子で共用させれば、 部品 の削減、 すなわち、 装置の簡素化、 低価格化を実現することが可能になる。 一方、 本発明の基板によれば、 上記露光方法を用いてパターンが露光されるの で、 パターンの重ね合わせ、 線幅等が高精度に維持されることになり、 所定のデ バイス特性を発現することが可能になる。  According to the exposure apparatus and the exposure method of the present invention, the stage apparatus according to any one of claims 1 to 9 is used as at least one of a mask stage and a substrate stage. In addition, since the stage driving method described in any one of claims 17 to 20 is used, the settling time is shortened, and throughput and exposure accuracy can be improved. In addition, the residual vibration of the support part can be suppressed from being transmitted to the surface plate, and the position controllability of the stage body can be maintained.The mask stage, substrate stage, and projection optical system are arranged so as to be vibrationally independent of each other. As a result, it is possible to prevent the vibration caused by the drive of the stage from being transmitted to the projection optical system, so that the displacement of the pattern transfer position due to the vibration of the projection optical system and the occurrence of image blur etc. can be prevented. Exposure can be improved by effectively preventing exposure. Furthermore, since the mask stage holds a plurality of masks and the substrate stage holds a plurality of substrates, the exchange, alignment, and exposure operations can be performed in parallel, so that the throughput can be significantly improved. In addition, if the stator is shared by a plurality of movers, it is possible to reduce the number of parts, that is, to simplify the device and reduce the cost. On the other hand, according to the substrate of the present invention, since the pattern is exposed using the above-described exposure method, the pattern overlap, the line width, and the like are maintained with high accuracy, and the predetermined device characteristics are exhibited. It becomes possible to do.

Claims

請求の範囲 The scope of the claims
1 . 定盤上を少なくとも一方向に駆動されるステージ本体を備えたステージ 装置であって、 1. A stage device having a stage body driven in at least one direction on a surface plate,
前記定盤に対して振動的に独立して配設された支持部と、  A support portion that is arranged independently vibrationally with respect to the surface plate,
前記ステージ本体の駆動に伴う反力により前記支持部上を前記一方向に移動自 在な反力ステージとを備えることを特徴とするステージ装置。  A stage device, comprising: a reaction force stage which is movable in the one direction on the support portion by a reaction force accompanying the driving of the stage body.
2 . 前記定盤は、 防振機構を介して前記支持部に支持されていることを特徴 とする請求の範囲第 1項記載のステージ装置。 2. The stage device according to claim 1, wherein the surface plate is supported by the support portion via a vibration isolation mechanism.
3 . 前記反力ステージは、 前記ステージ本体を前記一方向に駆動する駆動機 構の少なくとも一部を構成することを特徴とする請求の範囲第 1項または第 2項 記載のステージ装置。 3. The stage device according to claim 1, wherein the reaction force stage forms at least a part of a driving mechanism that drives the stage body in the one direction.
4 . 前記駆動機構は、 前記ステージ本体に設けられた可動子と、 該可動子と の間の電磁気的相互作用により該可動子を前記一方向に駆動する固定子とを備え、 前 Ϊ己反力ステージは、 前記固定子を有することを特徴とする請求の範囲第 3項 記載のステージ装置。 4. The drive mechanism includes: a mover provided on the stage main body; and a stator that drives the mover in the one direction by electromagnetic interaction between the mover and the mover. The stage device according to claim 3, wherein the force stage has the stator.
5 . 前記反力ステージと前記支持部との間には、 軸線周りに回転して前記反 力ステージを前記支持部に対して前記一方向に移動させる転動体が介装されるこ とを特徴とする請求の範囲第 1項記載のステージ装置。 5. A rolling element that rotates around an axis to move the reaction stage in the one direction with respect to the support portion is interposed between the reaction stage and the support portion. 2. The stage device according to claim 1, wherein:
6 前記反力ステージと前記支持部との間には、 非接触ベアリングが介装さ れることを特徴とする請求の範囲第 1項記載のステージ装置。 6. The stage device according to claim 1, wherein a non-contact bearing is interposed between the reaction force stage and the support portion.
7 . 前記反力ステージを初期位置に復帰させる復帰装置を備えていることを 特徴とする請求の範囲第 1項記載のステージ装置。 7. The stage device according to claim 1, further comprising a return device that returns the reaction force stage to an initial position.
8 . 前記復帰装置は、 前記反力ステージを前記一方向に沿った互いに相反す る方向にそれそれ付勢する付勢部を備えることを特徴とする請求の範囲第 7項記 載のステージ装置。 8. The stage device according to claim 7, wherein the return device includes an urging portion for urging the reaction force stage in directions opposite to each other along the one direction. .
9 . 前記ステージ本体は、 互いに略直交する方向に移動自在とされ、 前記反力ステージは、 前記直交する方向の各方向毎に設けられていることを特 徴とする請求の範囲第 1項記載のステージ装置。 9. The stage according to claim 1, wherein the stage main body is movable in directions substantially orthogonal to each other, and the reaction force stage is provided in each of the orthogonal directions. Stage equipment.
1 0 . マスクステージに保持されたマスクのパターンを基板ステージに保持 され 基板に露光する露光装置において、 10. In an exposure apparatus for exposing a substrate pattern held on a substrate stage by a mask pattern held on a mask stage,
前』己マスクステージと前記基板ステージとの少なくとも一方のステージとして、 請求の範囲第 1項から第 9項のいずれか 1項に記載されたステージ装置が用いら れることを特徴とする露光装置。  10. An exposure apparatus, wherein the stage apparatus according to any one of claims 1 to 9 is used as at least one of the self-mask stage and the substrate stage.
1 1 . 前記マスクステージと前記基板ステージとの間に配設され、 前記マス クのパターンを前記基板に投影する投影光学系を備えたことを特徴とする請求の 範囲第 1 0項記載の露光装置。 11. The exposure according to claim 10, further comprising a projection optical system disposed between said mask stage and said substrate stage, said projection optical system projecting said mask pattern onto said substrate. apparatus.
1 2 . 前記マスクステージ、 前記基板ステージおよび前記投影光学系が互い に振動的に独立して配設されることを特徴とする請求の範囲第 1 1項記載の露光 12. The exposure according to claim 11, wherein the mask stage, the substrate stage, and the projection optical system are vibrationally independent of each other.
1 3 . 前記マスクステージは、 前記マスクを保持して第 1方向に移動可能な 微動ステージと、 前記微動ステージと接続され前記第 1方向と異なる第 2方向に 移動可能な粗動ステージとを有していることを特徴とする請求の範囲第 1 0項記 載の露光装置。 13. The mask stage has a fine movement stage that holds the mask and can move in a first direction, and a coarse movement stage that is connected to the fine movement stage and that can move in a second direction different from the first direction. The exposure apparatus according to claim 10, wherein the exposure apparatus is configured to:
1 4 . 前記マスクステージと前記基板ステージとの少なくとも一方は、 ガイ ドレスステージであることを特徴とする請求の範囲第 1 0項記載の露光装置 c 14. At least one of the mask stage and the substrate stage is a guide The exposure apparatus c according to claim 10, wherein the exposure apparatus c is a dress stage.
1 5 . 前記マスクステージは、 複数枚のマスクを保持可能であることを特徴 とする請求の範囲第 1 0項記載の露光装置。 15. The exposure apparatus according to claim 10, wherein the mask stage is capable of holding a plurality of masks.
1 6 . 前記基板ステージは、 複数枚の基板を保持可能であることを特徴とす る請求の範囲第 1 0項記載の露光装置。 16. The exposure apparatus according to claim 10, wherein the substrate stage is capable of holding a plurality of substrates.
1 7 . 定盤上を少なくとも一方向に駆動される第 1ステージを備えたステ一 ジ駆動方法であって、 17. A stage driving method including a first stage driven in at least one direction on a surface plate,
前記第 1ステージの駆動に伴う反力により前記一方向に移動自在な第 2ステー ジを前記定盤に対して振動的に独立した支持部に支持させることを特徴とするス テ一ジ駆動方法。  A stage driving method comprising: supporting a second stage that is movable in one direction by a reaction force accompanying the driving of the first stage on a support that is vibrationally independent of the surface plate. .
1 8 . 前記第 2ステージは、 前記第 1ステージとは逆方向に移動することを 特徴とする請求の範囲第 1 7項記載のステージ駆動方法。 18. The stage driving method according to claim 17, wherein the second stage moves in a direction opposite to the first stage.
1 9 . 前記第 2ステージを初期位置に復帰させるステップを含むことを特徴 とする請求の範囲第 1 7項記載のステージ駆動方法。 19. The stage driving method according to claim 17, further comprising a step of returning the second stage to an initial position.
2 0 . 前記第 2ステージの重量は、 前記第 1ステージの重量よりも重いこと を特徴とする請求の範囲第 1 7項記載のステージ駆動方法。 20. The stage driving method according to claim 17, wherein the weight of the second stage is heavier than the weight of the first stage.
2 1 . マスクステージに保持されたマスクのパターンを基板ステージに保持 された基板に露光する露光方法において、 21. In an exposure method for exposing a pattern of a mask held on a mask stage to a substrate held on a substrate stage,
前記マスクステージと前記基板ステージとの少なくとも一方のステージの駆動 方法として請求の範囲第 1 7項から第 2 0項のいずれか 1項に記載されたステー ジ駆動方法が用いられることを特徴とする露光方法。 The stage driving method according to any one of claims 17 to 20 is used as a driving method of at least one of the mask stage and the substrate stage. Exposure method.
2 2 . 前記マスクステージと前記基板ステージとの移動中に前記パターンを 露光するステップを含むことを特徴とする請求の範囲第 2 1項記載の露光方法。 22. The exposure method according to claim 21, further comprising a step of exposing said pattern during movement of said mask stage and said substrate stage.
2 3 . 前記マスクステージに複数のマスクを保持させるステップを含むこと を特徴とする請求の範囲第 2 1項記載の露光方法。 23. The exposure method according to claim 21, further comprising a step of holding a plurality of masks on the mask stage.
2 4 . 前記基板ステージに複数の基板を保持させるステップを含むことを特 徴とする請求の範囲第 2 1項記載の露光方法。 24. The exposure method according to claim 21, further comprising a step of holding a plurality of substrates on the substrate stage.
2 5 . 請求の範囲第 2 1項記載の露光方法を用いてパターンが露光されるこ とを特徴とする基板。 25. A substrate whose pattern is exposed using the exposure method according to claim 21.
PCT/JP1999/005539 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method WO2001027978A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP1999/005539 WO2001027978A1 (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method
AU60054/99A AU6005499A (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method
KR1020017016269A KR100625625B1 (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method
CNB99816934XA CN1260772C (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005539 WO2001027978A1 (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method

Publications (1)

Publication Number Publication Date
WO2001027978A1 true WO2001027978A1 (en) 2001-04-19

Family

ID=14236940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005539 WO2001027978A1 (en) 1999-10-07 1999-10-07 Substrate, stage device, method of driving stage, exposure system and exposure method

Country Status (4)

Country Link
KR (1) KR100625625B1 (en)
CN (1) CN1260772C (en)
AU (1) AU6005499A (en)
WO (1) WO2001027978A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059797A (en) * 2001-08-09 2003-02-28 Canon Inc Movement apparatus, stage device, and exposure system
US6686991B1 (en) 2000-11-06 2004-02-03 Nikon Corporation Wafer stage assembly, servo control system, and method for operating the same
WO2004032212A1 (en) * 2002-10-04 2004-04-15 Nikon Corporation Stage device and exposure device
US6741332B2 (en) 2001-08-08 2004-05-25 Nikon Corporation Stage system, exposure apparatus, and device manufacturing method
JP2005286321A (en) * 2004-03-04 2005-10-13 Asml Netherlands Bv Movable object carrier, lithographic apparatus including movable object carrier, and device manufacturing method
CN100433253C (en) * 2003-02-26 2008-11-12 株式会社尼康 Exposure apparatus, exposure method, and method for producing device
US7453550B2 (en) 2003-02-26 2008-11-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2009135507A (en) * 1999-12-21 2009-06-18 Asml Netherlands Bv Balanced positioning system for use in lithography projection equipment
JP2010016369A (en) * 2008-06-18 2010-01-21 Asml Netherlands Bv Lithographic apparatus having feed forward pressure pulse compensation for metrology frame
US7696653B2 (en) 2006-03-30 2010-04-13 Nikon Corporation Movable-body apparatus, exposure apparatus and methods comprising same, and device-manufacturing methods
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548819A4 (en) * 2002-07-30 2007-05-02 Tamura Seisakusho Kk Precision processing stage apparatus
KR101324818B1 (en) * 2003-04-11 2013-11-01 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
US20050128449A1 (en) * 2003-12-12 2005-06-16 Nikon Corporation, A Japanese Corporation Utilities transfer system in a lithography system
JP2005331402A (en) * 2004-05-20 2005-12-02 Sumitomo Heavy Ind Ltd Stage device
TW200815935A (en) * 2006-05-31 2008-04-01 Nsk Ltd Exposure device and method
US8544317B2 (en) * 2009-10-09 2013-10-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor processing apparatus with simultaneously movable stages
CN102880013B (en) * 2012-09-28 2015-02-18 清华大学 Reticle stage worktable
CN103543612B (en) * 2013-09-25 2015-09-30 清华大学 A kind of moving-iron type with vacuum (-tight) housing is without cable six-freedom-degree maglev motion platform
CN110089209B (en) * 2016-09-29 2022-03-29 安必昂公司 Component placement device and driving method thereof
CN107450284B (en) * 2017-09-27 2019-06-07 武汉华星光电技术有限公司 The exposure method of exposure sources and transparent substrate
US10254659B1 (en) 2017-09-27 2019-04-09 Wuhan China Star Optoelectronics Technology Co., Ltd Exposure apparatus and method for exposure of transparent substrate
WO2019071040A1 (en) * 2017-10-04 2019-04-11 Leica Biosystems Imaging, Inc. Opposing edges system for scanning and processing glass slides
EP3625567A4 (en) 2017-12-01 2021-04-21 Leica Biosystems Imaging, Inc. Fixed reference edge system for slide loading and unloading
CN113488950B (en) * 2021-07-12 2022-09-16 上海隐冠半导体技术有限公司 Cable table mechanism and moving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149974A (en) * 1996-11-15 1998-06-02 Canon Inc Stage device, aligner, and manufacture of device
JPH10326747A (en) * 1997-03-25 1998-12-08 Canon Inc Aligner, manufacture of device using the same and stage device
EP0917004A2 (en) * 1997-11-11 1999-05-19 Canon Kabushiki Kaisha Stage system and exposure apparatus with the same
US5909272A (en) * 1996-08-02 1999-06-01 Canon Kabushiki Kaisha Stage and exposure apparatus using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909272A (en) * 1996-08-02 1999-06-01 Canon Kabushiki Kaisha Stage and exposure apparatus using same
JPH10149974A (en) * 1996-11-15 1998-06-02 Canon Inc Stage device, aligner, and manufacture of device
JPH10326747A (en) * 1997-03-25 1998-12-08 Canon Inc Aligner, manufacture of device using the same and stage device
EP0917004A2 (en) * 1997-11-11 1999-05-19 Canon Kabushiki Kaisha Stage system and exposure apparatus with the same

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135507A (en) * 1999-12-21 2009-06-18 Asml Netherlands Bv Balanced positioning system for use in lithography projection equipment
JP4621765B2 (en) * 1999-12-21 2011-01-26 エーエスエムエル ネザーランズ ビー.ブイ. Balanced positioning system for use in a lithographic projection apparatus
JP2009141371A (en) * 1999-12-21 2009-06-25 Asml Netherlands Bv Balanced positioning system for use in lithographic apparatus
US6686991B1 (en) 2000-11-06 2004-02-03 Nikon Corporation Wafer stage assembly, servo control system, and method for operating the same
US6741332B2 (en) 2001-08-08 2004-05-25 Nikon Corporation Stage system, exposure apparatus, and device manufacturing method
JP2003059797A (en) * 2001-08-09 2003-02-28 Canon Inc Movement apparatus, stage device, and exposure system
WO2004032212A1 (en) * 2002-10-04 2004-04-15 Nikon Corporation Stage device and exposure device
US7907254B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN106873316A (en) * 2003-02-26 2017-06-20 株式会社尼康 Exposure device, exposure method and device making method
US7453550B2 (en) 2003-02-26 2008-11-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8736809B2 (en) 2003-02-26 2014-05-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9182684B2 (en) 2003-02-26 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9348239B2 (en) 2003-02-26 2016-05-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN100433253C (en) * 2003-02-26 2008-11-12 株式会社尼康 Exposure apparatus, exposure method, and method for producing device
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7911583B2 (en) 2003-02-26 2011-03-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7932991B2 (en) 2003-02-26 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102504B2 (en) 2003-02-26 2012-01-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7542128B2 (en) 2003-02-26 2009-06-02 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US8879043B2 (en) 2003-07-09 2014-11-04 Nikon Corporation Exposure apparatus and method for manufacturing device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634056B2 (en) 2003-11-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005286321A (en) * 2004-03-04 2005-10-13 Asml Netherlands Bv Movable object carrier, lithographic apparatus including movable object carrier, and device manufacturing method
JP4560426B2 (en) * 2004-03-04 2010-10-13 エーエスエムエル ネザーランズ ビー.ブイ. Movable article carrying apparatus, lithographic apparatus including movable article carrying apparatus, and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7696653B2 (en) 2006-03-30 2010-04-13 Nikon Corporation Movable-body apparatus, exposure apparatus and methods comprising same, and device-manufacturing methods
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2010016369A (en) * 2008-06-18 2010-01-21 Asml Netherlands Bv Lithographic apparatus having feed forward pressure pulse compensation for metrology frame

Also Published As

Publication number Publication date
CN1260772C (en) 2006-06-21
CN1373900A (en) 2002-10-09
KR20020038592A (en) 2002-05-23
KR100625625B1 (en) 2006-09-20
AU6005499A (en) 2001-04-23

Similar Documents

Publication Publication Date Title
WO2001027978A1 (en) Substrate, stage device, method of driving stage, exposure system and exposure method
JP4362862B2 (en) Stage apparatus and exposure apparatus
JP2020016903A (en) Conveyance system, exposure apparatus, conveyance method, exposure method, and device production method
US20020080339A1 (en) Stage apparatus, vibration control method and exposure apparatus
JP2012099850A (en) Patterning method and patterning device, and method of manufacturing device
JP2002043213A (en) Stage device and exposure system
JP2001148341A (en) Aligner
JP2001307983A (en) Stage device and aligner
US6917412B2 (en) Modular stage with reaction force cancellation
JP2004014915A (en) Stage apparatus and aligner
WO2003063212A1 (en) Stage device and exposure device
WO2005048325A1 (en) Stage drive method, stage apparatus, and exposure apparatus
JP2004228473A (en) Movable stage device
JP2002343850A (en) Stage apparatus and exposure system
CN105493237B (en) Movable body apparatus, exposure apparatus, and device manufacturing method
WO1999066542A1 (en) Exposure method and exposure apparatus
JP2002198285A (en) Stage device and its damping method and projection aligner
US20040145751A1 (en) Square wafer chuck with mirror
JP2005285881A (en) Stage device and exposure apparatus
JP2011244608A (en) Linear motor, mobile device, exposure device, device manufacturing method, and flat panel display manufacturing method
JP2001023894A (en) Stage device and aligner
JP2001102279A (en) Stage device and aligner
JP2001023896A (en) Stage device and aligner
JP2002217082A (en) Stage system and aligner
JP2002175963A (en) Stage system and method of controlling position thereof, and aligner and method of exposure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017016269

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 99816934X

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 530901

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020017016269

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020017016269

Country of ref document: KR