JP2004101362A - Stage position measurement and positioning device - Google Patents

Stage position measurement and positioning device Download PDF

Info

Publication number
JP2004101362A
JP2004101362A JP2002263489A JP2002263489A JP2004101362A JP 2004101362 A JP2004101362 A JP 2004101362A JP 2002263489 A JP2002263489 A JP 2002263489A JP 2002263489 A JP2002263489 A JP 2002263489A JP 2004101362 A JP2004101362 A JP 2004101362A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
stage
position
measuring
laser interferometer
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263489A
Other languages
Japanese (ja)
Inventor
Hideo Matsumoto
松本 英雄
Original Assignee
Canon Inc
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70691Handling of masks or wafers
    • G03F7/70775Position control

Abstract

PROBLEM TO BE SOLVED: To reduce the effect of gas fluctuation and improve measurement accuracy, by eliminating both of positioning error of measurement with an interferometer and an error due to principles of Abbe by position detection sensor using diffraction grating.
SOLUTION: The device has stages 1 and 2 having a direct action guiding mechanism, laser interferometers 3a and 3b and two positioning measurement means in the axial direction of position detection sensors 8a, 9a; 8b, 9b, which are less likely to be affected by the variations in the refractivity of gas, as compared with the laser interferometer. For the shift of the target of stage positioning which is indicated by signals of two position measurement means, the position shift indicated by the opto-electric signal of the laser interferometers 3a and 3b is used for positioning control of the low-frequency region, and the position shift indicated by signals of the position detection sensors 8a, 9a; 8b, 9b is used for positioning control of the high-frequency region.
COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、半導体露光装置、精密計測機、精密加工機等のように高精度な加工、計測精度が要求される装置に適用され得るステージ位置計測および位置決め装置に関するものである。 The present invention relates to a semiconductor exposure apparatus, and a precision measuring machine, high-precision machining, the stage position measuring and positioning device can be applied to a device measuring accuracy is required as such a precision machine.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
精密計測機、半導体露光装置、精密加工機には、高いステージ位置決め精度が要求される。 Precision measuring machine, a semiconductor exposure apparatus, a precision machine, high stage positioning accuracy is required. こうした要求に対して、レーザー干渉計は、計測点や加工点に光軸を一致させることでアッベの原理に基づくステージの姿勢による計測誤差(サインエラー)を無くせるという利点を持ち、そのような高いステージ位置決め精度が要求される装置には広く利用されている。 Against such demands, a laser interferometer, has the advantage that Nakuseru measurement error (sign errors) due to the attitude of the stage based on the principle of Abbe by matching the optical axis to the measuring point and the processing point, such It is widely used in the apparatus where high stage positioning accuracy is required. しかし、レーザー干渉計は、測長光路中の気体の温度、湿度、圧力の変化に起因する屈折率変化(ゆらぎ)に影響されやすい欠点を持っている。 However, a laser interferometer, measuring the gas temperature in the long optical path, humidity, have been susceptible shortcomings affected by the refractive index change (fluctuation) due to changes in pressure. その為、通常、精密装置内には、装置構成体の温度を一定に保つ為の恒温化された雰囲気を必要とする。 Therefore, usually, in the precision equipment, it requires a constant temperature atmosphere for keeping the temperature of the device structure constant. その雰囲気を作り出す手段としては、装置内に、温度を一定にコントロールした気体を流すという方法が用いられている。 As a means to create the atmosphere, in the apparatus, a method is used that flows a gas having a controlled temperature constant. しかし、通常、装置内にはセンサーやモーターなどの多くの発熱体が存在しており、装置内構成部品に当って複雑に変化した気体流が、これらの発熱体にて暖められた気体と混ざり合っている為、測長光路の温度の分布は変化し続け一定にすることは難しい。 However, usually, is in the device are present a number of heating elements, such as sensors and motors, gas flow changes complicatedly hitting the device component is mixed with the gas that has been warmed by these heating elements since that match, it is difficult to the distribution of the temperature of the measuring optical path to certain continue to change. その結果、レーザー干渉計からの光電信号にはこの気体ゆらぎによる計測ノイズが流入しやすく、正確な位置計測を妨げる原因となる。 As a result, it is easy to measure noise flows by the gas fluctuation in the photoelectric signal from the laser interferometer causes that prevent accurate position measurement.
【0003】 [0003]
この光路中の気体のゆらぎによる計測精度の劣化を防ぐ従来技術の第一の方法として、次の方法がある(例えば、特許文献1参照)。 As a first method of the prior art prevent degradation of measurement accuracy due to fluctuation of the gas of the optical path, the following methods (e.g., see Patent Document 1). これは、光軸方向に伸縮可能なカバーを設けたり、2枚の平行平板で光路を挟んだりして、外部から光路内への気体の流入を防ぎカバー内の空気の流れを停止すること、または、その空間に気体を層流状態にて流すことで、光路内の気体の屈折率安定化を図る提案である。 This may be provided a retractable covering the optical axis direction, and pinch the optical path of the two parallel plates, to stop the flow of air in the cover prevents the flow of gas from the outside to the optical path, or, by flowing a gas at laminar flow conditions in the space, it is proposed to achieve refractive index stabilization of gas in the optical path.
【0004】 [0004]
また、第二の方法として、次の方法がある(例えば、特許文献2参照)。 Further, as the second method, the following methods (e.g., see Patent Document 2). これは、光路近傍に空気流を送る導風手段を配置し、所定の角度から光路に、直接、温度や湿度を一定に保った空気を局所的に送風して、光路内の気体の屈折率安定化を図る提案である。 This is the optical path near the place air guide means for sending an air flow, in the optical path from a predetermined angle, directly, by locally blowing air keeping the temperature and humidity constant, the refractive index of the gas in the optical path is a proposal to stabilize.
【0005】 [0005]
さらに、第三の方法として、回折格子と、回折格子にビームを当てて回折光を受光する光電検出手段で位置を計測する方法がある。 Further, as a third method, there is a method of measuring a diffraction grating, the position in the photoelectric detection means for receiving the diffracted light by applying a beam to the diffraction grating. この方法による装置は、1nm以下の高分解能を有する物を製作することが可能であることが知られ、広く市販されている。 Apparatus by this method, it is known it is possible to manufacture a material having a less high resolution 1 nm, it is widely available commercially. また、光源から回折格子までの光路長がレーザー干渉計に比べて非常に短い為、気体のゆらぎの影響を受け難い特徴がある。 Further, since the optical path length from the light source to the diffraction grating is very short compared to the laser interferometer, there is less susceptible characterized the influence of fluctuations in the gas.
【0006】 [0006]
【特許文献1】 [Patent Document 1]
特開平8−82509号公報【特許文献2】 JP 8-82509 [Patent Document 2]
特開平10−82610号公報【0007】 Japanese Unexamined Patent Publication No. 10-82610 [0007]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、上記第一の従来例では、光路カバーがステージの移動を制限してしまうという問題や、ステージの移動によりカバー内に周辺の気体が流入し、内部気体の屈折率を変化させてしまうという欠点があった。 However, in the first conventional example, and a problem that an optical path cover limits the movement of the stage, the periphery of the gas flows into the cover by the movement of the stage, it arises by changing the refractive index of the internal gas there is a drawback. また、上記第二の従来例では、ステージや装置の構造物が光路近傍に存在する場合や、送風口から光路までの距離が遠くなる場合、気体の流速が空間によって異なり、同一の屈折率を有する気体を全ての光路に均一に流すことは難しく乱流状態が発生し、そのことによって送風空間以外の周囲の気体を巻き込む為、光路内でゆらぎが発生する可能性が高い。 Further, in the second conventional example, and if the structure of the stage or the device is present in the optical path near when the distance from the blowing port to the optical path becomes longer, unlike the flow rate of gas through the space, the same refractive index all uniform flow that the optical path of the gas is difficult turbulent flow is generated having, for involving the gas surrounding the non blowing space by its likely fluctuations occur in the optical path. また、温度、湿度を高精度に一定に保った気体を送風するには、その為の大掛かりな気体コントロール供給装置が必要になり、高コストになるという欠点もあった。 Further, the temperature, the blowing gas was kept constant humidity with high precision, the large-scale gas control feeder for is required, there are drawbacks that it becomes costly.
【0008】 [0008]
以上のような従来技術の測長システムでは、光路中の気体のゆらぎによるノイズが干渉計に流入し、あたかもステージが動いているかのような光電信号が、目標位置に対する偏差成分として制御システムに流入し、結果として、ステージはその誤差分だけ動いてしまうということが問題となっている。 In the above-described prior art measuring systems, noise due to fluctuation of the gas in the optical path flows into the interferometer, as if the photoelectric signal as if the stage is moving, flowing to the control system as a deviation component from the target position and, as a result, the fact that the stage would move only the error component has become a problem.
【0009】 [0009]
一方、上記第三の従来例として、気体のゆらぎ成分に対して影響を受け難い測長手段である回折格子を用いた位置計測方法があることを述べた。 On the other hand, it said that the the third conventional example, there is a position measuring method using the diffraction grating is less susceptible measuring means effect on fluctuation component of the gas. しかし、この方法により精密な位置計測を行う為には、アッベの原理に基づいて、計測機ならば計測点、加工機ならば加工点での位置計測を行うことが不可欠であるので、回折格子と受光体は移動体と固定体が近接する位置に配置しなければならないが、その位置に配置するのは難しい。 However, in order to perform a precise position measurement by this method, based on the principle of Abbe, if the measuring machine measuring point, since it measures the position of the machining point if processing machine is essential, diffraction grating and photoreceptor must be disposed at a position fixed body and the moving body is close, it is difficult to place in that position. また、回折格子を用いた測長方法は、通常一方向の変位計測しかできないため、例えば、平面上を二次元的に稼動するXYステージで要請される様な計測必要点の2軸以上の同時計測は不可能である。 Further, measurement method using a diffraction grating, since usually only possible displacement measurement in one direction, for example, simultaneous two or more axes of such measurement should point is requested by the XY stage moving on a plane in two dimensions measurement is impossible. その為、回折格子を用いた位置計測では、ステージの傾き成分に比例した計測誤差を発生してしまう。 Therefore, the position measurement using a diffraction grating, thereby generating a measurement error that is proportional to the slope component of the stage.
【0010】 [0010]
本発明は、上記の課題に鑑み、上記第一と第二の従来例の干渉計による計測方法が抱えていたゆらぎによる計測位置決め誤差と、第三の従来例の回折格子による計測方法が抱えていたアッベの原理に基づく誤差(サインエラー)との両者を排除し、気体ゆらぎの影響低減と計測精度の向上を図ることができるステージ位置計測および位置決め装置を提供することを目的とする。 In view of the above problems, and the first and second conventional measuring positioning error by fluctuation measuring method was having due interferometer, not the counting method is faced by the diffraction grating of the third conventional example to eliminate both the error based on the principle of Abbe (sign error), and an object thereof is to provide a stage position measurement and positioning device which can improve the impact reduction and measurement accuracy of the gas fluctuations.
【0011】 [0011]
【課題を解決する為の手段および作用】 [Means and action to solve the problems]
上記目的を達成する本発明のステージ位置計測および位置決め装置は、直動案内機構を有するステージと、レーザー干渉計と、該レーザー干渉計よりも気体の屈折率変化に影響を受け難い位置検出センサーという一軸方向に2つの位置計測手段を有するステージにおいて、ステージ位置決め目標に対する前記2種類の位置計測手段の信号から得られるずれ量(偏差量)について、レーザー干渉計の光電信号から得られる位置ずれ量は、0Hzから所定の周波数までの低周波数領域のフィードバック位置決め制御に用い、また、位置検出センサーの信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いる様に構成されたことを特徴とする。 Stage position measurement and positioning system of the present invention to achieve the above object, a stage having a linear guide mechanism, a laser interferometer, that the position detection sensor less sensitive to the change in refractive index of the gas than the laser interferometer in stage having two position measuring means in a uniaxial direction, the deviation amount obtained from the signals of the two position measuring means with respect to the stage positioning targets for (deviation), the positional deviation amount obtained from the photoelectric signal of the laser interferometer , used in the feedback positioning control in the low frequency range from 0Hz to the predetermined frequency and the positional deviation amount obtained from the signal of the position detection sensor, as used in the feedback positioning control of the predetermined frequency or more high frequency range and characterized in that it is configured. この構成において、ステージの移動制御は、得られる共役関係にある2つの測長値の目標値に対する偏差成分のうち、レーザー干渉計の光電信号から得られる位置偏差成分は0Hzから低周波数領域のフィードバック位置決め制御に用い、位置検出センサーの、例えば、回折格子の光電信号から得られる位置偏差成分は高周波数領域のフィードバック位置決め制御に用いて行なわれる。 In this arrangement, the movement control of the stage, of the differential component with respect to the target value of the two measured values ​​in a conjugate relationship obtained, the feedback in the low frequency range from the position error component is 0Hz obtained from the photoelectric signal of the laser interferometer used for positioning control, the position sensor, for example, the position error component resulting from the photoelectric signal of the diffraction grating is carried out by using the feedback positioning control in the high frequency region.
【0012】 [0012]
上記基本構成において、前記位置検出センサーは、ステージ上に設けられた回折格子と、この回折格子にビームを照射し、発生する回折光をステージ外に設けられた受光体にて受光してステージ位置を計測する測長装置であったり、回転モーターの回転軸に設けられた円盤型回折格子と、この回折格子にビームを照射し、発生する回折光を非回転側に設けられた受光体にて受光して回転モーターの回転角度からステージ位置を計測する測長装置であったりする。 In the basic construction described above, the position detecting sensor includes a diffraction grating provided on the stage, and irradiates the beam to the diffraction grating, the stage position by receiving the generated diffracted light by the light receiving element provided outside the stage or a length measuring device which measures a, a disc-type diffraction grating provided on the rotating shaft of the rotating motor, irradiates the beam onto the diffraction grating, the generated diffracted light by the non-rotating side provided photoreceptor or a length measuring device for measuring the stage position from the rotation angle of the rotary motor by receiving. また、前記レーザー干渉計は、基準となる固定物上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光とステージ上ミラーからの参照光との干渉縞の光電信号によりステージ位置を計測するステージ上に設けられたレーザー干渉計であったり、ステージ上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光と基準となる固定物上に設けられたミラーからの参照光との干渉縞の光電信号によりステージ位置を計測する基準固定物上に設けられたレーザー干渉計であったりする。 Further, the laser interferometer, a mirror provided on a fixed object as a reference, the photoelectric signal of the interference fringe between the reference light from the measuring light and the stage on the mirror come reflected by irradiating a laser on the mirror a laser interferometer provided on the stage for measuring the stage position or the mirror provided on the stage, to a fixed object on which the measurement light and the reference coming reflected by irradiating a laser on the mirror by the photoelectric signal of the interference fringe between the reference light from the mirror provided by or a laser interferometer provided on the reference fixture for measuring the stage position.
【0013】 [0013]
また、非常に長い周期で変動する空気ゆらぎ成分に対しては、レーザー干渉計光路近傍の空気温度、湿度、圧力を各種センサにてモニターしたり、真空光路と空気中の波長差を検出して空気の屈折率変化を検知する波長トラッカーを用いたりして、レーザー干渉計の波長の補正を行ってもよい。 Further, with respect to the air fluctuation component that varies very long period, the laser interferometer optical paths near the air temperature, humidity, or monitored by the various sensors of pressure, by detecting the wavelength difference between the vacuum beam path and in the air and or using a wavelength tracker which detects a change in the refractive index of air, it may be corrected for the wavelength of the laser interferometer.
【0014】 [0014]
上記各構成の作用として、ステージの位置決め時において、床振動などの実際にステージを動かす外乱と、気体ゆらぎが原因となる干渉計ノイズとの分離が可能となり、光路上に存在している気体がゆらぎ成分を有していても、ステージ位置計測値への影響を取り除くことができる。 As a function of each of the above structures, when the positioning of the stage, the disturbance to move the actual stage such as floor vibration, it is possible to separate the interferometer noise gas fluctuation causes, the gas present in the optical path have a fluctuation component, it is possible to eliminate the influence of the stage position measurement value. その結果、極めて高精度な位置計測と位置決め制御が可能となる。 As a result, it is possible positioning control a very accurate position measurement.
【0015】 [0015]
また、前記手段を有し、かつ、光路を含む装置内雰囲気を撹拌する手段を有することを特徴としても良い。 Also it has the means, and may be characterized in that it comprises means for stirring the device in an atmosphere containing an optical path. その作用としては、レーザー干渉計に流入する空気のゆらぎ成分が原因のノイズ量は増大するが、そのノイズの周波数を上げることが可能となり、0Hzから低周波数領域を計測するレーザー干渉計を用いた位置計測時のフィードバック位置決め制御に用いる位置偏差量のサンプリングの時間間隔を、短くすることが可能となり、計測時間を短縮できる。 As the effect, but the fluctuation component of the air flowing to the laser interferometer amount of noise causes increased, it becomes possible to increase the frequency of the noise, using a laser interferometer for measuring the low-frequency range from 0Hz the time interval of the position deviation of the sampling to be used for feedback positioning control during position measurement, it is possible to shorten, thereby shortening the measurement time.
【0016】 [0016]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下に、本発明の位置計測および位置決め装置の実施の形態を明らかにすべく実施例を図面に沿って説明する。 Hereinafter, an embodiment in order to clarify the embodiments of the position measuring and positioning device of the present invention with reference to the drawings.
【0017】 [0017]
(第一の実施例) (First embodiment)
図1、図2は、本発明の第一の実施例に係る2軸ステージ装置を示す。 1 and 2 show a two-axis stage device according to a first embodiment of the present invention. 図1は正面図、図2は側面図である。 Figure 1 is a front view, FIG. 2 is a side view. このステージ装置は、2つの可動軸を有し、案内にはエアースライド10を用いている。 The stage device has two movable axes, and using an air slide 10 in the guide. 各軸にはアクチュエータであるリニアモーター6a,6b,7a,7bを備えている。 Each shaft is provided with a linear motor 6a is an actuator, 6b, 7a, and 7b.
【0018】 [0018]
第二軸ステージ2上には、HeNeレーザーを光源とする第一軸のレーザー干渉計3a、第二軸のレーザー干渉計3bが第二軸ステージ2上の位置計測点11に光軸4a,4bを一致させるように配置してあり、また、各軸には、位置計測の基準点に固定されたミラー5a,5bが配置してある。 On the second axis stage 2, first axis laser interferometer 3a, the second axis laser interferometer 3b is the optical axis 4a in position measurement points 11 on the second axis stage 2 as a light source HeNe laser, 4b Yes arranged to match the, also, the respective axes, mirror 5a which is fixed to the reference point of the position measurement, 5b are are arranged. これにより、レーザー干渉計3a,3bは、距離変動するミラー5a,5bとステージ2間の光軸4a,4bの光路と、第二軸ステージ2上または干渉計3a,3b内部に設けられた距離変動しない参照光路(不図示)とのビームの干渉縞の変化にて、第二軸ステージ2の移動量を検出することができる。 Thus, a laser interferometer 3a, 3b, the distance varying mirrors 5a, the optical axis 4a between 5b and stage 2, 4b and the optical path of the second axis stage 2 above or interferometer 3a, the distance provided in the 3b by the beam changes in interference fringes with the reference light path does not vary (not shown) can detect the amount of movement of the second axis stage 2.
【0019】 [0019]
一方、このステージ装置には、第一軸のリニアスケール8a,9aが第一軸ステージ1と固定部であるヨーイング方向案内面13の間に配置され、第二軸のリニアスケール8b,9bが第二軸ステージ2と第一軸ステージ1の間に配置されている。 On the other hand, in this stage device, the first axis of the linear scale 8a, 9a are disposed between the first axis stage 1 and the fixed portion in a yawing direction guide surface 13, the second axis of the linear scale 8b, 9b is the a two-axis stage 2 is disposed between the first axis stage 1. これらは、回折格子にレーザーを照射し、発生する回折光を受光して光電信号を得る測長装置で、回折格子と受光体の相対位置変化を検出することができる。 These irradiates a laser diffraction grating, with length measuring apparatus for obtaining a photoelectric signal by receiving the generated diffracted light, it is possible to detect the relative positional change of the diffraction grating and the photoreceptor.
【0020】 [0020]
そして、このステージ装置には、温度が或る範囲内で変動するゆらぎ成分を持つ空気を、送風口12からレーザー光路4a,4bを含むステージ装置の周辺空間へ向けて強制的に送風する機構を備え、ステージ構成部品であるリニアモーター6a,6b,7a,7bやセンサ類(不図示)の様な発熱体の周囲に存在する屈折率の違う空気の塊(空気ゆらぎ)を撹拌し、光路中に特定の屈折率の異なる空気が長時間留まることを防いでいる。 Then, in the stage apparatus, the air having a fluctuation component which temperature varies within a certain range, the laser beam path 4a from the air inlet 12, a mechanism for forcibly blowing toward the peripheral space of the stage device including 4b comprising, linear motor 6a is a stage component, 6b, 7a, 7b and sensors stirred chunks of different refractive index air present around the such a heating element (not shown) (air fluctuations), the optical path is different air specific refractive index is prevented to stay a long time. これの目的は、レーザー干渉計3a,3bに流入する空気ゆらぎに起因する計測ノイズ自体は軽減できず、むしろ増大させてしまうが、そのノイズ成分の周波数を或る一定以上の領域に上げることである。 The purpose of this is the measurement noise itself due to the air fluctuation entering laser interferometer 3a, and 3b can not be reduced, but would increase rather by increasing the frequency of the noise component to a certain or more regions is there.
【0021】 [0021]
以上の構成にて、ステージの位置決めにおいて、目標値に対する偏差成分のうち、或る周波数以上の高周波数領域はリニアスケール8a,8b,9a,9bの光電信号から得られる位置偏差量を用いてフィードバック制御し、0Hzから或る周波数以下の低周波数領域はレーザー干渉計3a,3bの光電信号から得られる位置偏差量を用いてフィードバック制御を行う。 Through the above configuration, the positioning of the stage, of the differential component with respect to the target value, the high-frequency range above a certain frequency by using linear scale 8a, 8b, 9a, the positional deviation amount obtained from the photoelectric signals 9b feedback controlled, performs feedback control using a certain frequency below the low frequency range is a laser interferometer 3a, the positional deviation amount obtained from the photoelectric signal 3b from 0 Hz. この或る周波数とは、レーザー干渉計3a,3bに流入する空気ゆらぎに起因するノイズを周波数変換して、ノイズレベルが大きくなり始める周波数を意味し、その周波数は、レーザー干渉計3a,3b光路上のゆらぎ成分を撹拌する風速に左右される因子であり、その時の風速に合わせて変更する。 And the certain frequency, a laser interferometer 3a, and frequency conversion of the noise due to air fluctuation entering the 3b, means the frequency at which the noise level starts to increase, the frequency of the laser interferometer 3a, 3b light a dependent factor wind stirring the fluctuation component of the path is changed in accordance with the wind speed at that time. もしくは、送風口12の風速を調整することにより、ノイズの発生する周波数を変更してもよい。 Or, by adjusting the velocity of the air blowing port 12, it may change the occurrence frequency of the noise. これら高周波数領域と低周波数領域は明確に区別できる領域であるので、第一軸及び第二軸について各フィードバック制御は、各位置偏差量を各々適当間隔でサンプリングして、独立的に行われ得て、目標値に向かって各位置偏差量を無くす方向にステージの位置決め制御ができる。 Because these high frequency region and the low-frequency region is a region which can be clearly distinguished, each feedback control for the first and second axes is sampled at each appropriate intervals each position deviation, obtained is independently performed Te can positioning control of the stage in a direction to eliminate the position deviation amount toward the target value.
【0022】 [0022]
また、非常に長い周期で変動する空気ゆらぎ成分に対しては、レーザー干渉計光路4a,4b近傍の空気温度、湿度、圧力を各種センサ(不図示)にてモニターしたり、レーザー干渉計で用いるレーザーから分岐させて別光路を設けて真空光路とその光路との波長差を検出して空気の屈折率変化を検知する波長トラッカー14a,14bを用いたりして、波長の補正を適当な期間を置いて行うこともできる。 Further, with respect to the air fluctuation component that varies very long period, the laser interferometer optical paths 4a, 4b near the air temperature, humidity, or monitored by the various sensors of pressure (not shown), used in laser interferometers wavelength Tracker 14a for detecting the detected change in the refractive index of the air wavelength difference between the vacuum optical path is provided another optical path is branched from the laser and its optical path, and or with 14b, and appropriate period to correct the wavelength It can also be carried out at. これにより、非常に長い周期で変動するレーザー干渉計3a,3bの測長ノイズが補正できる。 Thus, a laser interferometer 3a that varies very long period, 3b of the measurement noise can be corrected.
【0023】 [0023]
以上のように、リニアスケール8a,8b,9a,9bとレーザー干渉計3a,3bからの信号を周波数によって使い分けて夫々独立的にフィードバック位置決め制御に用いることにより、第二軸ステージ2の実際の挙動によるリニアスケール8a,8b,9a,9bのノイズと、空気ゆらぎの影響によるレーザー干渉計3a,3bのノイズを分離することが可能になり、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。 As described above, the linear scale 8a, 8b, 9a, 9b and the laser interferometer 3a, by using a signal by selectively by the frequency each independently feedback positioning control from 3b, the actual behavior of the second axis stage 2 linear scale 8a by, 8b, 9a, and 9b of the noise, the laser interferometer 3a due to the influence of air fluctuation, it is possible to separate the noise 3b, the position measurement and position control to minimize the influence of air fluctuation It can become.
【0024】 [0024]
なお、上述の実施例では、送風方向は第一軸ステージ1の可動方向に平行にしているが、レーザー干渉計光路4a,4bのゆらぎを撹拌することが目的である為、任意の方向からステージ装置へ向けて送風を行ってもよい。 Incidentally, in the above embodiment, the air blowing direction is parallel to the first axis movable direction of the stage 1, since the laser interferometer optical paths 4a, be stirred fluctuations 4b is an object, stage from any direction it may be performed blowing toward the apparatus.
【0025】 [0025]
また、上述の実施例では、空気ゆらぎの周波数を上げる為に送風を行っているが、これはステージ位置決め時のレーザー干渉計3a,3bでの計測時間を短縮するのが目的であり、短縮する必要が無ければ、上記送風口12のような、ステージ周辺空間の空気を撹拌する手段は必要としない。 Further, in the above embodiment, is performed blowing in order to increase the frequency of the air fluctuations, which a laser interferometer 3a during stage positioning, it is to shorten the measurement time in 3b the purpose, to shorten without necessary, the above air blowing port 12, means for stirring the air in the stage space around is not needed.
【0026】 [0026]
(第二の実施例) (Second embodiment)
図3、図4は本発明の第二の実施例に係るステージ装置を示す図であり、図1、図2と同一用途部分には同一の符号を付けている。 3, FIG. 4 is a diagram showing a stage device according to a second embodiment of the present invention, FIG. 1, the same application parts as in FIG. 2 are denoted by the same reference numerals. 図3が正面図であり、図4が側面図である。 Figure 3 is a front view, FIG. 4 is a side view. このステージ装置では、案内に転動スライド20を用い、第二のステージ位置計測手段として、リニアスケールではなく、ロータリーエンコーダー21a,21bにて回転モーター22a,22bの回転を検知し、送りねじ23a,23bにて回転を直動変換してステージ1,2を駆動している点が、前述の第一の実施例との相違点である。 In this stage apparatus, using a rolling slide 20 on the guide, as the second stage position measurement unit is not in linear scale, it detects the rotation of the rotary motor 22a, 22b by a rotary encoder 21a, 21b, feed screw 23a, rotating at 23b is a point that is driving the stages 1 and linear motion converting a difference from the first embodiment described above.
【0027】 [0027]
このロータリーエンコーダー21a,21bからの光電信号を、前述のリニアスケールの光電信号と同様に、或る周波数以上の高周波数領域のみのステージ1,2の位置偏差量として用いて、ステージ位置をフィードバック制御し、0Hzから或る周波数以下の低周波数領域はレーザー干渉計3a,3bの光電信号から得られる位置偏差量を用いてフィードバック制御を行う。 The rotary encoder 21a, a photoelectric signal from 21b, similarly to the photoelectric signal of the linear scale described above, using as the positional deviation amount of the stage 1 and 2 of a certain frequency or more high frequency range only, the feedback control of the stage position and performs feedback control using the low-frequency range of the certain frequency or less from 0Hz laser interferometer 3a, the positional deviation amount obtained from the photoelectric signal 3b. このことにより、前述の実施例と同様の効果が得られ、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。 Thus, to obtain the same effect as the foregoing embodiment, it is possible to position measurement and positioning control to minimize the influence of air fluctuations.
【0028】 [0028]
(第三の実施例) (Third embodiment)
図5、図6は本発明の第三の実施例に係るステージ装置を示す図であり、図1、図2と同一部分には同一の符号を付けている。 5, FIG. 6 is a diagram showing a stage device according to a third embodiment of the present invention, FIG. 1, are denoted by the same reference numerals to the same portions as FIG. 図5が正面図であり、図6が側面図である。 Figure 5 is a front view, FIG. 6 is a side view. これは、加工機や半導体露光装置で好適に用いられる、加工物や計測対象物をステージ1,2にて可動させる用途で用いられる構成である。 This is suitably used in the processing machine or a semiconductor exposure apparatus, a configuration used in applications for moving the workpiece and the measurement object in stages 1. 基準の固定側にレーザー干渉計3a,3bを設け、第二ステージ軸2上にミラー5a,5bを設けている点が前述の実施例と異なっている。 Reference of the fixed laser interferometer 3a, 3b and provided, mirror 5a on the second stage shaft 2, the point is provided with the 5b is different from the previous embodiments. この構成でも前述の第一、第二の実施例と同様の効果を得られ、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。 The aforementioned first in this configuration, obtain the same effect as the second embodiment, it is possible to position measurement and positioning control to minimize the influence of air fluctuations.
【0029】 [0029]
【発明の効果】 【Effect of the invention】
以上のように、本発明によれば、レーザー干渉計光路の空気ゆらぎの影響を低減でき、nm単位での位置計測と位置決めの高精度化を実現することが可能になる。 As described above, according to the present invention can reduce the influence of air fluctuation of a laser interferometer light path, it is possible to realize a high accuracy of positioning and position measurement in nm. また、気体を層流状態にて流す工夫や、温度、湿度を高精度に一定に保った気体を送風するのに必要な大掛かりな気体コントロール供給装置が必要でなくなり、コスト削減も実現できる。 Also, ingenuity and flowing a gas at laminar flow conditions, temperature, large-scale gas control supply apparatus necessary to blow the gas was kept constant humidity with high precision is not required, cost reduction can be realized.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の第1の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。 1 is a front view for explaining a stage position measurement and positioning device according to a first embodiment of the present invention.
【図2】本発明の第1の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。 2 is a side view for explaining a stage position measurement and positioning device according to a first embodiment of the present invention.
【図3】本発明の第2の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。 3 is a front view for explaining a stage position measurement and positioning device according to a second embodiment of the present invention.
【図4】本発明の第2の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。 4 is a side view for explaining a stage position measurement and positioning device according to a second embodiment of the present invention.
【図5】本発明の第3の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。 5 is a front view for explaining a stage position measurement and positioning device according to a third embodiment of the present invention.
【図6】本発明の第3の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。 6 is a side view for explaining a stage position measurement and positioning device according to a third embodiment of the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
1:第一軸ステージ2:第二軸ステージ3a:第一軸レーザー干渉計3b:第二軸レーザー干渉計4a:第一軸レーザー測長光軸4b:第二軸レーザー測長光軸5a:第一軸レーザー測長用ミラー5b:第二軸レーザー測長用ミラー6a、6b:第二軸リニアモーター7a、7b:第一軸リニアモーター8a:第一軸リニアスケール用投光受光体8b:第二軸リニアスケール用投光受光体9a:第一軸リニアスケール回折格子9b:第二軸リニアスケール回折格子10:エアースライド11:計測対象点12:気体送風装置13:第一軸ヨーイング方向静圧案内面14a:第一軸波長トラッカー14b:第二軸波長トラッカー20:転動スライド21a:第一軸ロータリーエンコーダー21b:第二軸ロータリーエンコーダー22a:第一軸 1: The first axis stage 2: the second axis stage 3a: first axis laser interferometer 3b: second axis laser interferometer 4a: first axis laser measuring optical axis 4b: second axis laser measuring optical axis 5a: first axis laser length mirror 5b: second axis laser length mirror 6a, 6b: second axis linear motor 7a, 7b: the first axis linear motors 8a: the first axis linear scale for light projecting and receiving member 8b: second axis linear scale for light projecting and receiving member 9a: first axis linear scale grating 9b: second axis linear scale grating 10: air slide 11: the measurement object point 12: gas blower 13: first axis yawing direction static guiding surface 14a: first shaft wavelength tracker 14b: second shaft wavelength tracker 20: roll slide 21a: first axis rotary encoder 21b: second axis rotary encoders 22a: first shaft 転モーター22b:第二軸回転モーター23a:第一軸送りねじ23b:第二軸送りねじ Rolling motor 22b: second axis rotating motor 23a: first axis feed screw 23b: second axis feed screw

Claims (7)

  1. 直動案内機構を有するステージと、レーザー干渉計と、該レーザー干渉計よりも気体の屈折率変化に影響を受け難い位置検出センサーという一軸方向に2つの位置計測手段を有するステージにおいて、ステージ位置決め目標に対する前記2種類の位置計測手段の信号から得られるずれ量について、レーザー干渉計の光電信号から得られる位置ずれ量は、0Hzから所定の周波数までの低周波数領域のフィードバック位置決め制御に用い、また、位置検出センサーの信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いる様に構成されたことを特徴とするステージ位置計測および位置決め装置。 A stage having a linear guide mechanism, a laser interferometer, at stage having two position measuring means in a uniaxial direction that not susceptible position sensor influences the refractive index change of the gas than the laser interferometer stage positioning target wherein the shift amount obtained from the signals of the two position measuring means, the positional deviation amount obtained from the photoelectric signal of the laser interferometer, used in the feedback positioning control in the low frequency range from 0Hz to a predetermined frequency and relative, positional positional deviation amount obtained from the signal of the detection sensor, the predetermined stage position measuring and positioning device, characterized in that it is constructed as used in the feedback positioning control over the high frequency range frequencies.
  2. 前記位置検出センサーは、ステージ上に設けられた回折格子と、この回折格子にビームを照射し、発生する回折光をステージ外に設けられた受光体にて受光してステージ位置を計測する測長装置であり、回折格子の光電信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いることを特徴とする請求項1記載のステージ位置計測および位置決め装置。 The position detection sensor measurement to measure a diffraction grating provided on the stage, the diffraction grating irradiated with the beam, the stage position by receiving the generated diffracted light by the light receiving element provided outside the stage an apparatus, the positional deviation amount obtained from the photoelectric signal of the diffraction grating, the predetermined stage position measuring and positioning device according to claim 1, characterized by using the feedback positioning control over the high frequency range frequencies.
  3. 前記位置検出センサーは、回転モーターの回転軸に設けられた円盤型回折格子と、この回折格子にビームを照射し、発生する回折光を非回転側に設けられた受光体にて受光して回転モーターの回転角度からステージ位置を計測する測長装置であり、回折格子の光電信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いることを特徴とする請求項1記載のステージ位置計測および位置決め装置。 The position detection sensor is rotated by receiving a disk-type diffraction grating provided on the rotating shaft of the rotating motor, irradiates the beam onto the diffraction grating, the generated diffracted light by the non-rotating side provided photoreceptor a length measuring device for measuring the stage position from the rotation angle of the motor, the positional deviation amount obtained from the photoelectric signal of the diffraction grating is characterized by using the feedback positioning control of the predetermined frequency or more high frequency range according stage position measuring and positioning device of claim 1, wherein.
  4. 前記レーザー干渉計は、基準となる固定物上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光とステージ上ミラーからの参照光との干渉縞の光電信号によりステージ位置を計測するステージ上に設けられたレーザー干渉計であることを特徴とする請求項1、2または3記載のステージ位置計測および位置決め装置。 The laser interferometer includes a mirror provided on a fixed object as a reference, stage by photoelectric signal of the interference fringe between the reference light from the measuring light and the stage on the mirror come reflected by irradiating a laser on the mirror stage position measuring and positioning device according to claim 1, 2 or 3, wherein the position is a laser interferometer provided on the stage for measuring the.
  5. 前記レーザー干渉計は、ステージ上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光と基準となる固定物上に設けられたミラーからの参照光との干渉縞の光電信号によりステージ位置を計測する基準固定物上に設けられたレーザー干渉計であることを特徴とする請求項1、2または3記載のステージ位置計測および位置決め装置。 The laser interferometer includes a mirror provided on the stage, the interference fringes of the reference light from the mirror provided to a fixed object on which the measurement light and the reference coming reflected by irradiating a laser on the mirror stage position measuring and positioning device according to claim 1, 2 or 3, wherein the is a laser interferometer provided on the reference fixture for measuring the stage position by photoelectric signal.
  6. 前記レーザー干渉計光路を含むステージ空間に存在する気体を撹拌する手段を備えることを特徴とする請求項1乃至5の何れかに記載のステージ位置計測および位置決め装置。 Stage position measuring and positioning device according to any one of claims 1 to 5, characterized in that it comprises means for stirring the gas present in the stage space containing the laser interferometer light path.
  7. 前記攪拌手段は、気体を任意の方向から流入させ、レーザー干渉計光路を含むステージ空間に存在する気体を撹拌することを特徴とする請求項7記載のステージ位置計測および位置決め装置。 The stirring means, gas was flowed from any direction, the stage position measuring and positioning device according to claim 7, wherein stirring the gas present in the stage space, including a laser interferometer light path.
JP2002263489A 2002-09-10 2002-09-10 Stage position measurement and positioning device Pending JP2004101362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263489A JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263489A JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Publications (1)

Publication Number Publication Date
JP2004101362A true true JP2004101362A (en) 2004-04-02

Family

ID=32263189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263489A Pending JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Country Status (1)

Country Link
JP (1) JP2004101362A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008038752A1 (en) 2006-09-29 2008-04-03 Nikon Corporation Mobile unit system, pattern forming device, exposing device, exposing method, and device manufacturing method
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
JP2011091298A (en) * 2009-10-26 2011-05-06 Canon Inc Stage device
JP2011211173A (en) * 2010-03-03 2011-10-20 Asml Netherlands Bv Lithographic apparatus and method for measuring position
JP2012002731A (en) * 2010-06-18 2012-01-05 Nuflare Technology Inc Inspection apparatus and inspection method
WO2013100202A1 (en) * 2011-12-29 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2015105829A (en) * 2013-11-28 2015-06-08 株式会社ニコン Scale for encoder, encoder, driving device, and stage device
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9529280B2 (en) 2013-12-06 2016-12-27 Kla-Tencor Corporation Stage apparatus for semiconductor inspection and lithography systems
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
JP4614929B2 (en) * 2005-09-15 2011-01-19 エーエスエムエル ネザーランズ ビー.ブイ. Position measurement unit, the measurement system, and the lithographic apparatus provided with the position measuring unit
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
US8390780B2 (en) 2006-06-09 2013-03-05 Nikon Corporation Movable-body apparatus, exposure apparatus, exposure method, and device manufacturing method
EP2993688A2 (en) 2006-08-31 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8203697B2 (en) 2006-08-31 2012-06-19 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP3291010A1 (en) 2006-08-31 2018-03-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
EP3279738A1 (en) 2006-08-31 2018-02-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20170007549A (en) 2006-08-31 2017-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2738608A1 (en) 2006-08-31 2014-06-04 Nikon Corporation Method and system for driving a movable body in an exposure apparatus
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
EP3067748A1 (en) 2006-08-31 2016-09-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
KR20160006238A (en) 2006-08-31 2016-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20150092342A (en) 2006-08-31 2015-08-12 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006237A (en) 2006-08-31 2016-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2990872A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006804A (en) 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006805A (en) 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2988320A1 (en) 2006-08-31 2016-02-24 Nikon Corporation Exposure apparatus, exposure method, and device manufactuing method
EP2991101A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
EP3064999A1 (en) 2006-08-31 2016-09-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2015111695A (en) * 2006-09-01 2015-06-18 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
EP2993523A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP5035247B2 (en) * 2006-09-01 2012-09-26 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, an exposure method and apparatus, device manufacturing method, and a calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2015008306A (en) * 2006-09-01 2015-01-15 株式会社ニコン Exposure method, exposure apparatus and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2012169655A (en) * 2006-09-01 2012-09-06 Nikon Corp Mobile body driving method
EP2993524A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JPWO2008029757A1 (en) * 2006-09-01 2010-01-21 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, an exposure method and apparatus, device manufacturing method, and a calibration method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US7999918B2 (en) 2006-09-29 2011-08-16 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
WO2008038752A1 (en) 2006-09-29 2008-04-03 Nikon Corporation Mobile unit system, pattern forming device, exposing device, exposing method, and device manufacturing method
US8514373B2 (en) 2006-09-29 2013-08-20 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8760622B2 (en) 2007-12-11 2014-06-24 Nikon Corporation Movable body apparatus, exposure apparatus and pattern formation apparatus, and device manufacturing method
JP5403263B2 (en) * 2007-12-11 2014-01-29 株式会社ニコン Mobile device, an exposure apparatus and a pattern forming apparatus, and device manufacturing method
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
JP5344180B2 (en) * 2008-02-08 2013-11-20 株式会社ニコン Position measuring system and a position measuring method, mobile device, movable body drive method, an exposure apparatus and an exposure method, the pattern forming apparatus, and device manufacturing method
CN101796614B (en) 2008-02-08 2012-01-18 株式会社尼康 Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
US8208128B2 (en) 2008-02-08 2012-06-26 Nikon Corporation Position measuring system and position measuring method, Movable body apparatus, movable body drive method, exposure apparatus and exposure method, pattern forming apparatus, and device manufacturing method
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
JP2011091298A (en) * 2009-10-26 2011-05-06 Canon Inc Stage device
JP2011211173A (en) * 2010-03-03 2011-10-20 Asml Netherlands Bv Lithographic apparatus and method for measuring position
US9746312B2 (en) 2010-03-03 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and method for measuring a position
JP2012002731A (en) * 2010-06-18 2012-01-05 Nuflare Technology Inc Inspection apparatus and inspection method
WO2013100202A1 (en) * 2011-12-29 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9207549B2 (en) 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
JP2015105829A (en) * 2013-11-28 2015-06-08 株式会社ニコン Scale for encoder, encoder, driving device, and stage device
US9529280B2 (en) 2013-12-06 2016-12-27 Kla-Tencor Corporation Stage apparatus for semiconductor inspection and lithography systems

Similar Documents

Publication Publication Date Title
US6281679B1 (en) Web thickness measurement system
US5734108A (en) System for sensing shaft displacement and strain
US4629886A (en) High resolution digital diffraction grating scale encoder
US4998821A (en) Projection apparatus
US5179863A (en) Method and apparatus for setting the gap distance between a mask and a wafer at a predetermined distance
US6791693B2 (en) Multiple-pass interferometry
US6774355B2 (en) Optical encoder
US5402680A (en) Velocity sensor and semiconductor exposing apparatus using such a sensor
US4433585A (en) Device for measurement of the torsional angular deviation of a loaded rotating or static shaft
US6172373B1 (en) Stage apparatus with improved positioning capability
US6401349B1 (en) Surface measuring apparatus
Chen et al. Nanometer-accurate grating fabrication with scanning beam interference lithography
JP2000304529A (en) Probe device and shape measuring device
US6674066B1 (en) Encoder
Gao et al. Development of an optical probe for profile measurement of mirror surfaces
US4674882A (en) Precision optical displacement measuring instrument using servo controlled fiber optic sensor
US4758065A (en) Fiber optic sensor probe
JP2003130688A (en) Rotary encoder device
JP2007057522A (en) Laser tracking interferometer
US4869110A (en) Laser strain extensometer for material testing
US3930734A (en) Process and apparatus for sensing magnitude and direction of lateral displacement
US20070024861A1 (en) Laser tracking interferometer
Gao et al. A dual-mode surface encoder for position measurement
US4395123A (en) Interferometric angle monitor
Zhang et al. A linear/angular interferometer capable of measuring large angular motion