JPS6144429A - Alignment method - Google Patents

Alignment method

Info

Publication number
JPS6144429A
JPS6144429A JP59167020A JP16702084A JPS6144429A JP S6144429 A JPS6144429 A JP S6144429A JP 59167020 A JP59167020 A JP 59167020A JP 16702084 A JP16702084 A JP 16702084A JP S6144429 A JPS6144429 A JP S6144429A
Authority
JP
Japan
Prior art keywords
wafer
chip
alignment
mark
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59167020A
Other languages
Japanese (ja)
Other versions
JPH0447968B2 (en
Inventor
Toshikazu Umadate
稔和 馬立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59167020A priority Critical patent/JPS6144429A/en
Publication of JPS6144429A publication Critical patent/JPS6144429A/en
Priority to US06/915,027 priority patent/US4780617A/en
Publication of JPH0447968B2 publication Critical patent/JPH0447968B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable precise alignment with only stepping by calculating corrected arrangement coordinates based on designed arrangement coordinates and an error parameter which is determined with plural actually measured values and actual arrangement coordinates. CONSTITUTION:A wafer WA is placed on a stage, marks GY, Gtheta are detected and the wafer WA is rotated for correction. Then, the positions of the marks SXn, SYn of a specific chip Cn are detected. Then, an error parameter is determined to obtain a minimum mean deviation from an actually measured value and a designed value. Then, the arrangement map of a corrected chip due to a determined error parameter and designed arrangement coordinates is made. Then, the position of the stage is determined by a step and repeat system in accordance with the arrangement map. The above-mentioned method makes the mean error of positioning for all plural chip patterns smaller and enables precise alignment only with stepping.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置製造用のステップアンドリピート方
式の露光装置、又はステップアンドリピート方式で順次
検査を行なう装置に好適な位置合せ方法に関し、特に露
光用の原版となるマスクやレチクルと、露光対象である
半導体ウェハ等との精密な位置合せを行なう方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an alignment method suitable for a step-and-repeat type exposure apparatus for manufacturing semiconductor devices or an apparatus that performs sequential inspection in a step-and-repeat type, and particularly relates to The present invention relates to a method for precisely aligning a mask or reticle, which is an original plate, and a semiconductor wafer, etc., which is an exposure target.

(発明の背景) 近年、ICやLSI等の半導体装置は急速に微細化、高
密度化が進み、これを製造する装置、特にマスクやレチ
クルの回路パター/を半導体ウェハに形成された回路パ
ターンの上に重ね合せて転写する露光装置にも増々、高
精度なものが要求されてきている。マスクの回路パター
/とウェハ上の回路パター/とけ例えば0.1μm以内
の精度で重ね合せることが要求され、このため現在、そ
の種の露光装置はマスクの回路パター/をウェハ上の局
所領域(例えば1チップ分)に露光したら、ウェハを一
定距離だけ歩進(ステッピング)させては再びマスクの
回路パターンを露光することを繰り返す、所謂ステップ
アンドリピート方式の装置、特に縮小投影型の露光装置
(ステッパー)が主流になっている。このステップアン
ドリピート方式では、ウェハを2次元移動するステージ
に載置してマスクの回路パターンの投影像に対して位置
決めするため、その投影像とウェハ上の各チップとを精
密に重ね合せることができる。また縮小投影屋露光装置
の場合、マスクやレチクルに設けられた位置合せ用のマ
ークと、ウェハ上のチップに付随したマークとを投影し
/ズを介して直接観察又は検出して位置合せするスルー
ザレンズ方式のアライメント方法と、投影レンズから一
定距離たけ離して設けた位置合せ用の顕微鏡を使ってウ
ェハ全体の位置合せを行なった後、そのウェハを投影し
/ズの直下圧送り込むオアアクシス方式のアライメント
方法との2つの方法がある。一般にスルーザレンズ方式
はウェハ上の各チップ毎に位置合せすることから、重ね
合せ精度は高くなるものの1枚のウェハの露光処理時間
が長くなるという問題がある。オフアクシス方式の場合
は、一度つエバ全体の位置合ぜが完了したら、チップの
配列に従ってウェハをステツピングさせるだけなので、
露光処理時間は短縮される。しかしながら、各チップ毎
の位置合せ分けなわないため、ウェハの伸縮、ウェハの
ステージ上の回転誤差、ステージ自体の移動の直交度等
の影響で、必らずしも満足な重ね合せ精度が得られなか
った。
(Background of the Invention) In recent years, semiconductor devices such as ICs and LSIs have rapidly become finer and more dense, and the equipment that manufactures them, especially the circuit patterns of masks and reticles, has become more and more complex. Exposure devices that superimpose and transfer images are also required to be more precise. It is required that the circuit pattern on the mask and the circuit pattern on the wafer be overlapped with an accuracy of, for example, within 0.1 μm, and for this reason, currently, this type of exposure equipment is capable of overlapping the circuit pattern on the mask with the circuit pattern on the wafer in a local area ( For example, a so-called step-and-repeat system, in which the wafer is exposed a certain distance (for example, for one chip) and then the circuit pattern on the mask is exposed again, is used, especially a reduction projection type exposure device ( Steppers) have become mainstream. In this step-and-repeat method, the wafer is placed on a two-dimensionally moving stage and positioned relative to the projected image of the circuit pattern on the mask, making it possible to precisely overlap the projected image with each chip on the wafer. can. In addition, in the case of a reduction projection exposure system, the alignment marks provided on the mask or reticle and the marks attached to the chips on the wafer are projected and directly observed or detected through a lens for alignment. The alignment method is based on the lens method, and the or-axis method, in which the entire wafer is aligned using a positioning microscope placed a certain distance from the projection lens, and then the wafer is projected and fed under direct pressure. There are two methods: alignment method. Generally, in the through-the-lens method, each chip on the wafer is aligned, so although the overlay accuracy is high, there is a problem that the exposure processing time for one wafer becomes long. In the case of the off-axis method, once the alignment of the entire evaporator is completed, the wafer is simply stepped according to the chip arrangement.
Exposure processing time is shortened. However, since alignment is not performed separately for each chip, satisfactory overlay accuracy cannot always be obtained due to effects such as expansion and contraction of the wafer, rotation error of the wafer on the stage, orthogonality of movement of the stage itself, etc. There wasn't.

(発明の目的) 本発明はステップアンドリピート方式の位置合せにおい
て、ウェハ等の被処理基板上に配列された複数のチップ
の全てについて、マスクのパター/の投影位置等の基準
位置との位置合せをすることなく、単にステッピングだ
けでより精密な位置合せを可能とする方法を提供するこ
とを目的とする。
(Objective of the Invention) The present invention uses a step-and-repeat alignment method to align all of a plurality of chips arranged on a substrate to be processed such as a wafer with a reference position such as a projection position of a mask pattern. The purpose of the present invention is to provide a method that enables more precise alignment by simply stepping without having to perform any steps.

(発明の概要) 本発明は、被処理基板(ウェハや7オトマスク)に設計
上の配列座標(αβ)に沿って規則的に整列した複数の
チップパターンの夫々を、所定の基準位置(露光装置で
られはマスクやレチクルのパターン投影位置、検査装置
であれば検査視野や検査プローブ針等の検査位置)に対
してステップアンドリピート方式で順次位置合せする方
法において、チップバター/の設計上の配列座標値(D
xn。
(Summary of the Invention) The present invention provides a method for placing each of a plurality of chip patterns regularly arranged on a substrate to be processed (a wafer or a seven-dimensional mask) along the designed arrangement coordinates (αβ) at a predetermined reference position (an exposure device In the step-and-repeat method, the designed arrangement of the chip butter is used to sequentially align the pattern projection position of the mask or reticle, or the inspection field of view or inspection position of the inspection probe needle in the case of an inspection device. Coordinate value (D
xn.

Dyn ) K基づいて被処理基板を移動させ、複数の
チップパターンのいくりかを基準位置に合せたときの各
位置(Fxn 、■)を実測する工程(ステップ103
,104,105,106)と、その設計上の配列座標
値とステップアンドリピート方式で位置合せずべき実際
の配列座標値(Fxn 。
(Step 103
, 104, 105, 106) and the actual array coordinate values (Fxn) that should not be aligned with the designed array coordinate values and the step-and-repeat method.

Fyn )とが所定の誤差パラメータ(ウェハの残存回
転θ、ステージの直交度W、ウェハの線形伸縮Rを含む
変換行列Aと、ウェハの2次元的な位置のオフセント量
の行列O)を含んで一義的な関係(行列式Fn=A−D
n+O)にあるものとしたとき、複数の実測値(Fxn
 、 Fyn )と実際の配列座標値(Fxn 、 F
yn )との平均的な偏差(アドレス誤差E)が最小に
なるように、誤差パラメータ(A、O)を決定する工程
(ステップ107)と、その決定された誤差パラメータ
(A、O)と設計上の配列座標値(Dxn + Dyn
 )とに基づいて、上記一義的な関係式から実際の配列
座標値(Fxn 。
Fyn ) includes predetermined error parameters (transformation matrix A including residual rotation θ of the wafer, orthogonality W of the stage, linear expansion and contraction R of the wafer, and matrix O of the offset amount of the two-dimensional position of the wafer). Unique relationship (determinant Fn=A-D
n+O), multiple actual measured values (Fxn
, Fyn) and the actual array coordinate values (Fxn, F
yn ), the step of determining the error parameters (A, O) (step 107), and the process of determining the determined error parameters (A, O) and the design so that the average deviation (address error E) is minimized. The upper array coordinate value (Dxn + Dyn
), the actual array coordinate value (Fxn) is obtained from the above unique relational expression.

Fyn )を算出しくステップ108)、ステップアン
ドリピート方式の位置合せ時に、その算出された実際の
配列座標値(Fxn 、 Fyn )に応じて、被処理
基板を位置決めする工程(ステップ109゜110.1
12)とを含むことを技術的要点としている。
Step 108) of positioning the substrate to be processed according to the calculated actual array coordinate values (Fxn, Fyn) during step-and-repeat positioning (steps 109, 110.1)
12).

(実施例) 第1図は本発明の方法を実施するのに好適な縮小投影屋
露光装置の概略的な構成を示す斜視図である。投影原版
となるレチクルRは、その投影中心が投影レンズ10光
軸を通るように位置決めされて、装置に装着される。投
影レンズlはレチクルRに描かれた回路パター/像を1
15、又は”/10”’小して、ウェハWA上に投影す
る。
(Embodiment) FIG. 1 is a perspective view showing a schematic configuration of a reduction projection exposure apparatus suitable for carrying out the method of the present invention. The reticle R serving as a projection original is positioned so that its projection center passes through the optical axis of the projection lens 10, and is mounted on the apparatus. The projection lens l displays the circuit pattern/image drawn on the reticle R.
15, or "/10"' and projected onto the wafer WA.

ウェハホルダー2はウェハWAを真空吸着するとともに
X方向とX方向に2次元移動するステージ3に対して微
小回転可能に設けられている。駆動モータ4Iriステ
ージ3上に固定され、ウエノ・ホルダー2を回転させる
。またステージ3のX方向の移動はモータ5の駆動によ
って行なわれ、X方向の移動はモータ6の駆動によって
行なわれる。ステージ3の直交する2辺には、反射平面
がX方向に伸びた反射ミラー7と、反射平面がX方向に
伸びた反射ミラー8とが各々固設されている。レーザ光
波干渉測長器(以下単にレーザ干渉計と呼ぶ)9は反射
ミラー8にレーザ光を投射して、ステージ3のX方向の
位置(又は移動量)を検出し、レーザ干渉計10は反射
ミラー7にレーザ光を投射して、ステージ3のX方向の
位置(又は移動量)を検出する。投影し/ズ1の側方に
は、ウエノ・WAJ:の位置合せ用のマークを検出(又
は観察)するために、オフアクシス方式のウェハアライ
メント顕微鏡(以下、WAMと呼ぶ)20.21が設け
られている。尚、WAM21fl第1図では投影し/ズ
1の後にあり、図示されていない。WAM20.21は
それぞれ投影し/ズ1の光軸AXと平行な光軸を有し、
X方向に細長く伸びた帯状のレーザスポット光ysp、
θSPをウェハW入上に結像する。(スポット光YSP
は第1図では図示せず。)これらスポット光YSP、 
 θSPはウェハWA上の感光剤(フォトレジスト)を
感光させない波長の光でわシ、本実施例では微小な振暢
でX方向に振動しで1ン。そしてWAM20,21はマ
ークからの散乱光や回折光を受光する光電素子と、その
光電信号をスポット光の振動周期で同期整流する回路と
を有し、スポット光θ5P(YSP)のX方向の振動中
心に対するマークのX方向のずれ量(応じたアライメン
ト信号を出力する。
The wafer holder 2 vacuum-chucks the wafer WA and is provided so as to be minutely rotatable with respect to a stage 3 that moves two-dimensionally in the X direction and the X direction. A drive motor 4 is fixed on the stage 3 and rotates the ueno holder 2. Further, movement of the stage 3 in the X direction is performed by driving a motor 5, and movement in the X direction is performed by driving a motor 6. A reflecting mirror 7 with a reflecting plane extending in the X direction and a reflecting mirror 8 with a reflecting plane extending in the X direction are fixedly installed on two orthogonal sides of the stage 3, respectively. A laser beam interferometer (hereinafter simply referred to as a laser interferometer) 9 projects a laser beam onto a reflecting mirror 8 to detect the position (or amount of movement) of the stage 3 in the X direction, and a laser interferometer 10 detects the position (or amount of movement) of the stage 3 in the A laser beam is projected onto the mirror 7 to detect the position (or amount of movement) of the stage 3 in the X direction. An off-axis wafer alignment microscope (hereinafter referred to as WAM) 20.21 is installed on the side of the projection lens 1 in order to detect (or observe) Ueno/WAJ alignment marks. It is being Note that in FIG. 1 of the WAM 21fl, it is located after the projection/zoom 1 and is not shown. WAM20.21 each has an optical axis parallel to the optical axis AX of projection/z1,
A strip-shaped laser spot light ysp extending in the X direction,
θSP is imaged onto the wafer W. (spot light YSP
is not shown in Figure 1. ) These spot lights YSP,
θSP is light of a wavelength that does not sensitize the photosensitizer (photoresist) on the wafer WA, and in this embodiment, it vibrates minutely and fluently in the X direction. The WAMs 20 and 21 have a photoelectric element that receives scattered light and diffracted light from the mark, and a circuit that synchronously rectifies the photoelectric signal with the vibration period of the spot light, and the vibration of the spot light θ5P (YSP) in the X direction. The amount of deviation of the mark in the X direction from the center (outputs an alignment signal according to the amount of deviation of the mark in the X direction).

従ってWAM20.21は所謂スポット光振動走査型の
光電顕微鏡と同等の構成のものである。
Therefore, the WAM20.21 has a configuration equivalent to a so-called spot light vibration scanning type photoelectron microscope.

さて、本装置には投影し/ズ1を介してウエノ・W入玉
のマークを検出するレーザステツプアライメ/ト(以下
LSAと呼ぶ)光学系が設けられている。不図示のレー
ザ光源から→発生して、不図示のエクスバング−、シリ
/トリカルレンズ等を通ッテキたレーザ光束LBはフォ
トレジストを感光させない波長の光で、ビームスプリッ
タ−30に入射して2つの光束に分割される。その一方
のレーザ光束ハミラー31で反射され、ビームスプリッ
タ−32を通過して、結像レンズ群33で、横断面が帯
状のスポット光になるように、収束された後、レチクル
Rと投影レンズ1との間に回路パターンの投影光路を遮
光しないように配置された第1折り返しミラー34に入
射する。第1折り返しミラー34けレーザ光束をレチク
ルRに向けて上方に反射する。そのレーザ光束はレチク
ルRの下側に設けられて、レチクルRの表面と平行な反
射平面を有するミラー35に入射して、投影し睦 /ズ1の入射傍の中心に向けて反射される。ミラー35
からのレーザ光束は投影し/ズ1によって収束され、ウ
ェハWA上にX方向に細長く伸びた帯状のスポット光L
YSとして結像される。スポット光LysiウェハWA
上でX方向に伸びた回折格子状のマークを相対的にX方
向に走査して、そのマークの位置を検出するために使わ
れる。スポット光LYSがマークを照射すると、マーク
からは回折光が生じる。それら光情報は再び投影し/ズ
1、ミラー35、ミラー34、結偉し/ズ群33、及び
ビームスプリンター34に戻り、ビームスプリッタ−3
4で反射されて、集光レンズと空間フィルターから成る
光学素子36に入射する。
Now, this apparatus is provided with a laser step alignment (hereinafter referred to as LSA) optical system for detecting the mark of the Ueno W ball through the projection lens 1. A laser beam LB generated from a laser light source (not shown) and passed through an ex-bang, silica/trical lens, etc. (not shown) has a wavelength that does not expose the photoresist, and enters the beam splitter 30 to be split into two. It is divided into two beams. One of the laser beams is reflected by the mirror 31, passes through the beam splitter 32, and is converged by the imaging lens group 33 so that the cross section becomes a strip-shaped spot beam, and then the reticle R and the projection lens 1 The light enters the first folding mirror 34, which is arranged between the two and so as not to block the projection optical path of the circuit pattern. The first folding mirror 34 reflects the laser beam upward toward the reticle R. The laser beam is provided below the reticle R and is incident on a mirror 35 having a reflection plane parallel to the surface of the reticle R, where it is projected and reflected toward the center of the beam 1 near the incidence. mirror 35
The laser beam from
The image is formed as YS. Spot light Lysi wafer WA
It is used to detect the position of a diffraction grating mark extending in the X direction by relatively scanning it in the X direction. When the spot light LYS illuminates the mark, diffracted light is generated from the mark. The optical information is projected again and returns to the beam splitter 3, the mirror 35, the mirror 34, the beam splitter group 33, and the beam splitter 34.
4 and enters an optical element 36 consisting of a condenser lens and a spatial filter.

この光学素子36はマークからの回折光(1次回折光や
2次回折光)を透過させ、正反射光(0欠光)を遮断し
て、その回折光をミラー37を介して光電素子38の受
光面に集光する。光電素子38H集光した回折光の光量
に応じた光電信号を出力する。以上、ミラー31、ビー
ムスプリンター32、結像し/ズ群33、ミラー34.
35、光学素子36、ミラー37、及び光電素子38V
i、ウェハW入上のマークのX方向の位置を検出するス
ルーザレンズ方式のアライメント光学系(以下、Y−L
SN系と呼ぶ)を構成する。
This optical element 36 transmits diffracted light (first-order diffracted light and second-order diffracted light) from the mark, blocks specularly reflected light (zero missing light), and receives the diffracted light via a mirror 37 at a photoelectric element 38. Focuses light on a surface. The photoelectric element 38H outputs a photoelectric signal according to the amount of diffracted light collected. As described above, the mirror 31, the beam splinter 32, the imaging lens group 33, the mirror 34 .
35, optical element 36, mirror 37, and photoelectric element 38V
i. Through-the-lens alignment optical system (hereinafter referred to as Y-L) that detects the position of the mark on the wafer W in the X direction.
(referred to as an SN system).

一方、ビームスプリンター30で分割された別のレーザ
光束は、ウェハWA上のマークのX方向の位置を検出す
るスルーザレ/ズ方式のアライメント光学系(以下、X
−LSA系と呼ぶ)I’C入射する。X−LSASA系
Y−LSA系と全く同様に、ミラー41、ビームスプリ
ンター42、結像レンズ群43、ミラー44.45、光
学素子46、ミラー47、及び光電素子48から構成さ
れ、ウェハWA上にX方向に細長く伸びた帯状のスポッ
ト光LXSを結像する。
On the other hand, another laser beam split by the beam splinter 30 is transmitted to a through-the-laser alignment optical system (hereinafter referred to as
- I'C is input (referred to as LSA system). Just like the X-LSASA system and the Y-LSA system, it is composed of a mirror 41, a beam splinter 42, an imaging lens group 43, a mirror 44, 45, an optical element 46, a mirror 47, and a photoelectric element 48. A strip-shaped spot light LXS elongated in the X direction is imaged.

主制御装置50は、光電素子38.48からの光電信号
、WAM20.21からの7ライメ/ト信号、及びレー
ザ干渉計9.lOからの位置情報とを入力して、位置合
せのための各1演算処理を行なうとともに、モータ4,
5.6を駆動するための指令分出力する。この主制御装
置50はマイクロコノピュータやミニコノピユータ等の
演算処理部を備えておシ、その演算処理部にはウエノ・
WAに形成された複数のチップCPの設計位置情報(ウ
ェハWA上のチップ配列座標値等)が記憶されている。
The main controller 50 receives the photoelectric signal from the photoelectric element 38.48, the 7 time signal from the WAM 20.21, and the laser interferometer 9. The position information from lO is input, and one calculation process is performed for alignment, and the motors 4,
Outputs the command for driving 5.6. This main control device 50 is equipped with an arithmetic processing section such as a microcomputer or a minicomputer.
Design position information (such as chip arrangement coordinate values on the wafer WA) of a plurality of chips CP formed on the WA is stored.

第2図は上記WAM20,21とY−I、SA系、X−
LSA系によるスポット光θSP 、YSP 。
Figure 2 shows the above WAM20, 21, Y-I, SA system, X-
Spot light θSP, YSP by LSA system.

LYS 、LXSの投影し/ズ1の結像面(ウェハWA
の表面と同一)における配置関係を示す平面図である。
LYS, LXS projection/imaging plane (wafer WA
FIG.

第2図において、光軸AXを原点とする座標系xyを定
めたとき、y軸とy軸はそれぞれステージ3の移動方向
を表わす。第2図中、光軸AXを中心とする円形の領域
はイメージフィールドifであシ、その内側の矩形の領
域はレチクルRの有効パター/領域の投影像Prである
。スポット光LYSはイメージフィールドif内で投影
像Prの外側の位置で、かつX軸上に一致するように形
成され、スポット光LXSもイメージフィールドif内
で投影像Prの外側の位置で、X軸上に一致するように
形成される。一方、2つのスポット光θSr 、YSF
の振動中心Tdx軸からX方向に距離Yoだけ離れた線
分(y軸と平行)!上に一致するよう罠、かつそのX方
向の間隔DxがウェハWAの直径よシも小さな値になる
ように定められている。本装置ではスポット光θSP、
YSPはy軸に対して左右対称に配置されており、主制
御装置50は光軸AXの投影点に対するスポット光θS
P 、YSPの位置に関する情報を記憶している。また
主制御装置50は、光軸AXの投影点に対するスポット
光LYSのX方向の中心位置(距離XI)とスポット光
LXSのX方向の中心位置(距離Yl)に関する情報も
記憶している。
In FIG. 2, when a coordinate system xy is defined with the optical axis AX as the origin, the y-axis and the y-axis each represent the moving direction of the stage 3. In FIG. 2, the circular area centered on the optical axis AX is the image field if, and the rectangular area inside it is the projected image Pr of the effective pattern/area of the reticle R. The spot light LYS is formed at a position outside the projection image Pr within the image field if and coincident with the X-axis, and the spot light LXS is also formed at a position outside the projection image Pr within the image field if and aligned with the X-axis. Formed to match the top. On the other hand, two spotlights θSr, YSF
A line segment (parallel to the y-axis) that is a distance Yo from the vibration center Tdx axis in the X direction! The traps are set so as to coincide with the above, and the distance Dx in the X direction is set to a value smaller than the diameter of the wafer WA. In this device, the spot light θSP,
YSP is arranged symmetrically with respect to the y-axis, and the main controller 50 controls the spot light θS with respect to the projection point of the optical axis AX.
It stores information regarding the positions of P and YSP. The main controller 50 also stores information regarding the center position of the spot light LYS in the X direction (distance XI) and the center position of the spotlight LXS in the X direction (distance Yl) with respect to the projection point of the optical axis AX.

次に、この装置を使った本発明による位置合せ方法を装
置の動作とともに第3図の70−チャート図を使って説
明する。尚、この位置合せはウェハWAの第2膚目以降
について行なわれるもので1、ウェハWA上にはチップ
と位置合せ用のマークとがすでに形成されている。
Next, the alignment method according to the present invention using this device will be explained with reference to the operation of the device and the chart 70 in FIG. Note that this alignment is performed for the second and subsequent layers of the wafer WA, and chips and alignment marks have already been formed on the wafer WA.

まず、ウェハWAHステップ100で不図示のプリアラ
イメント装置を使って、ウェハWAの直線的な切欠き(
7ラツト)が一定の方向に向くように粗く位置決めされ
る。ウェハWAのフラットは第1図に示したように、y
軸と平行になるように位置決めされる。次にステップ1
01でウェハWAHステージ3のウェハホルダー2上に
搬送され、7ラツトがy軸と平行を保つようにウェハホ
ルダー2上に載置され、真空吸着される。そのウェハW
AI’Cは例えば第4図に示すように複数のテップCn
がウェハWA上の直交する配列座標αβに沿ってマトリ
ックス状に形成されている。配列座標αβのα軸はウェ
ハWAの7ラツトとほぼ平行である。第4図では複数の
チップCnのうち、代表して配列座標αβのウェハWA
のほぼ中心を通るα軸上に一列に並んだチップC0〜C
6のみを表わしである。各チップCo〜C6にはそれぞ
れ4つの位置合せ用のマークGY、Gθ、sx、syが
付随して設けられている。今、テップCo〜C6の中央
のチップC3の中心を配列座標αβの原点としたとき、
α軸上にはα方向に線状に伸びた回折格子状のマークS
Y0〜SY、が、夫々チップCo−C、の右脳に設けら
れている。またチップC3の中心を通るβ軸上にはβ方
向に線状に伸びた回折格子状のマークSX3がチップC
3の下方に設けられ、他のチップCOr Cl + C
21C4。
First, in the wafer WAH step 100, a linear notch (
7 rats) are roughly positioned so that they face in a certain direction. The flat of the wafer WA is y as shown in FIG.
positioned parallel to the axis. Next step 1
At step 01, the wafer is transferred onto the wafer holder 2 of the WAH stage 3, and seven rats are placed on the wafer holder 2 so as to remain parallel to the y-axis, and vacuum suction is carried out. The wafer W
For example, AI'C includes multiple steps Cn as shown in FIG.
are formed in a matrix along orthogonal arrangement coordinates αβ on the wafer WA. The α axis of the array coordinate αβ is approximately parallel to the 7 rats of the wafer WA. In FIG. 4, among the plurality of chips Cn, the wafer WA with the array coordinates αβ is representative.
Chips C0 to C lined up in a row on the α axis passing through almost the center of
It only represents 6. Each of the chips Co to C6 is provided with four alignment marks GY, Gθ, sx, and sy. Now, when the center of chip C3 in the center of chips Co to C6 is taken as the origin of the array coordinate αβ,
On the α axis, there is a diffraction grating mark S extending linearly in the α direction.
Y0 to SY are provided in the right brain of chip Co-C, respectively. Also, on the β axis passing through the center of the chip C3, there is a mark SX3 in the shape of a diffraction grating extending linearly in the β direction.
3 and the other chip COr Cl + C
21C4.

c5.C6Vcりいても同様−チップの中心を通りβ軸
と平行な線分上にマーク5Xo−8X2、SX4〜SX
6が設けられている。これらマークSYn、5XnUそ
れぞれスポット光LYS 、 LXSによって検出され
るものである。また各チップ00〜C6の下方にはウェ
ハWAの全体の位置合せ(グローパルアライメント)を
行なうために使われるマークGYo〜GY6.Gθ。〜
Gθ6が設けられている。これらマークGYn、Gθn
はα軸と平行な線分上にα方向に線状に伸ひた回折格子
状のパター/で形成されている。ざらにα方向に一列に
韮んだテップC、−C、のうち、例えは左端のテップC
8のマークGYoと右端のチップC6のマークGθ6と
のα方向の間隔が、WへM20.21によるスポット光
θsp 、yspの間隔DXと一致するように定められ
ている。すなわち本実施例では離れた2ケ所のマークG
Y。
c5. The same goes for C6Vc - mark 5Xo-8X2, SX4 to SX on the line passing through the center of the chip and parallel to the β axis
6 is provided. These marks SYn and 5XnU are detected by spot lights LYS and LXS, respectively. Also, below each chip 00-C6 are marks GYo-GY6. which are used to align the entire wafer WA (global alignment). Gθ. ~
Gθ6 is provided. These marks GYn, Gθn
is formed of a diffraction grating pattern extending linearly in the α direction on a line segment parallel to the α axis. Among the steps C and -C, which are roughly arranged in a line in the α direction, for example, the leftmost step C
The distance in the α direction between the mark GYo of No. 8 and the mark Gθ6 of the right-most chip C6 is determined to match the distance DX between the spot lights θsp and ysp of M20.21 to W. In other words, in this embodiment, marks G are placed at two separate locations.
Y.

とマークGθ6を使ってオアアクシス方式でウェハWA
のグローバルアライメントを行なう。このためその他の
マークGYユ〜GY6、マークGθ。
wafer WA using the or-axis method using mark Gθ6.
Perform global alignment. Therefore, the other marks GYY~GY6 and mark Gθ.

〜Gθ5V1本来不要であり、なくてもよい。要はウェ
ハWAのα軸と平行な(又は一致した)線分上にα方向
に細長く伸びた2つのマークが間隔DXだけ離れて存在
すればよい。
~Gθ5V1 is originally unnecessary and may be omitted. The point is that two marks extending long and thin in the α direction on a line segment parallel to (or coinciding with) the α axis of the wafer WA need only be present at a distance DX.

さて、主制御装置50はプリアライメント装置からウェ
ハWAを受は取るときのステージ3の位置情報、その位
置から、マークGYo、Gθ。がそれぞれWAM21.
20の検出(観察)視野内に位置するまでのステージ3
の移動方向と移動量等の情報を装置固有の定数として予
め記憶している。そこで次のステップ102において、
主制御装置50ti、まずモータ5,6を駆動して、マ
ークGY、がW入M21の検出視野内に位置するように
、ステージ3を位置決めする。その後、スポット光YS
Pの振動中心がマークGYOのX方向の中心と一致する
ように、主制御装置50はWAM21からのアライメン
ト信号とレーザ干渉計9からの位置情報とに基づいてス
テージ3をX方向に精密に位置決めする。スポット光Y
SPの振動中心とマークGYoの中心とが一致したら、
その状態が維持されるように主制御装置50V′iモー
タ6をWAM21からのアライメント信号でサーボ(フ
ィードバック)制御したまま、マークGθ6がWAM2
0のスポット光θSPによって検出されるようにモータ
4を駆動してウェハホルダー2を回転させる。さらに主
制御装置50V′iスポツト光θSPの振動中心とマー
クGθ6のX方向の中心とが一致するように、WAM2
0からのアライメント信号でモータ4をサーボ制御する
。以上の一連の動作によシ、スポット光YSPとマーク
GYoが一致し、スポット光θSPとマークGθ6が一
致し、ステージ3の移動座標系、すなわち座標系xyに
対するウェハW入の配列座標αβの回転ずれが補正され
るとともに、座標系xyと配列座標αβのX方向(β方
向)の位r1tVc関する対応付け(規定)が完了する
。次にウェハWAJ:の中心部分に位置するチップC3
のマークSX、がX−LSA系のスポット光LXSIC
よって走査されるように、ステージ3を位置決めした後
、X方向に移動させる。この際主制御装置50け光電素
子48からの時系列的な光電信号とレーザ干渉計10か
らの位置情報とに基づいて、マークSX3がスポット光
LXSと一致したときのウェハWAのX方向の位置を検
出して記憶する。これによって、座標系xyと配列座標
αβのX方向(α方向)の位置に関する対応付けが完了
する。尚、このX方向の対応付けは、露光動作の直前に
X−LSA系を使う場合は不要でわる。以上の動作によ
り、オフアクシス方式のアライメントを主としたウェハ
WAのグローバルアライメント(配列座標αβの座標系
xyへの対応付け)が終了する。そして従来の方法でわ
れはウェハWA上の各チップの配列設計値(配列座標α
βにおけるチップの中心座標値)Ic基づいて、主制御
装置50はレーザ干渉計9,10からの位置情報を読み
取ってレチクルRの投影像Prがチップに重なり合うよ
うにステージ3のステップアントリピート方式による位
置決め(アトレッジフグ)を行なった後そのチップに対
して露光(プリント)を行なう。
Now, the main controller 50 determines the position information of the stage 3 when receiving and taking the wafer WA from the pre-alignment device, and the marks GYo and Gθ from that position. are respectively WAM21.
Stage 3 until the position is within the detection (observation) field of view of 20
Information such as the direction of movement and amount of movement is stored in advance as constants specific to the device. Therefore, in the next step 102,
The main controller 50ti first drives the motors 5 and 6 to position the stage 3 so that the mark GY is located within the detection field of view of the W-input M21. After that, spot light YS
The main controller 50 precisely positions the stage 3 in the X direction based on the alignment signal from the WAM 21 and the position information from the laser interferometer 9 so that the vibration center of P coincides with the center of the mark GYO in the X direction. do. Spot light Y
When the vibration center of SP and the center of mark GYo match,
While the main controller 50V′i motor 6 is under servo (feedback) control using the alignment signal from the WAM 21 to maintain this state, the mark Gθ6 is set to the WAM 2.
The motor 4 is driven to rotate the wafer holder 2 so as to be detected by the zero spot light θSP. Furthermore, the WAM2
The motor 4 is servo controlled by the alignment signal from 0. Through the above series of operations, the spot light YSP and the mark GYo match, the spot light θSP and the mark Gθ6 match, and the rotation of the array coordinate αβ of the wafer W with respect to the moving coordinate system of the stage 3, that is, the coordinate system xy. The deviation is corrected, and the correspondence (regulation) regarding the position r1tVc in the X direction (β direction) of the coordinate system xy and the array coordinate αβ is completed. Next, chip C3 located at the center of wafer WAJ:
The mark SX is the X-LSA type spotlight LXSIC.
Therefore, after positioning the stage 3 so as to be scanned, it is moved in the X direction. At this time, the position of the wafer WA in the X direction when the mark SX3 coincides with the spot light LXS is determined based on the time-series photoelectric signals from the photoelectric element 48 of the main controller 50 and the position information from the laser interferometer 10. Detect and store. This completes the correspondence between the coordinate system xy and the array coordinate αβ regarding the position in the X direction (α direction). Note that this correspondence in the X direction is unnecessary if the X-LSA system is used immediately before the exposure operation. Through the above operations, the global alignment of the wafer WA (corresponding to the coordinate system xy of the array coordinates αβ), which is mainly an off-axis type alignment, is completed. Then, using the conventional method, we used the array design value (array coordinate α) of each chip on the wafer WA.
Based on Ic (center coordinate value of the chip at After positioning (attrage), the chip is exposed (printed).

ところがグローバルアライメントの完了までに、アライ
メント検出系の精度、各スポット光の設定精度、あるい
けウェハWA上の各マークの光学的、形状的な状態(7
0セスの影響)による位置検出精度のはらつき等によっ
て誤差を生じ、ウェハWAのチップは座標系xyに従っ
て精密に位置合せ(アドレツシング)されるとは限らな
い。そこで本発明の実施例においてはその誤差(以下シ
ョット・アドレス誤差と呼ぶ)を次の4つの要因から生
じたものとする。
However, by the time the global alignment is completed, the accuracy of the alignment detection system, the setting accuracy of each spot light, and the optical and geometrical state of each mark on the wafer WA (7
Errors occur due to fluctuations in position detection accuracy due to the effects of 0 process, etc., and the chips on the wafer WA are not always precisely aligned (addressed) in accordance with the xy coordinate system. Therefore, in the embodiment of the present invention, the error (hereinafter referred to as shot address error) is assumed to be caused by the following four factors.

(1)  ウェハの回転; これは例えばウェハWAを回転補正する際、位置合せの
基準となる2つのスポット光YSPとθSPとの位置関
係が正確でなかつたために生じるもので6D、座標系x
yVc対する配列座標αβの残存回転誤差量θで表わさ
れる。
(1) Rotation of the wafer: This occurs because, for example, when correcting the rotation of the wafer WA, the positional relationship between the two spot lights YSP and θSP, which serve as the reference for alignment, is not accurate.6D, coordinate system x
It is expressed as the residual rotational error amount θ of the array coordinate αβ with respect to yVc.

(2)座標系xyの直交度; これはステージ3のモータ5.6による送シ方向が正確
に直交していないことにより生じ、直交度誤差量Wで表
わされる。
(2) Orthogonality of the coordinate system xy; This occurs because the feeding directions of the motor 5.6 of the stage 3 are not exactly orthogonal, and is expressed by the orthogonality error amount W.

(3)  ウェハのX(α)方向とy(β)方向の線形
伸縮; これはウェハWAの加工プロセスによって、ウェハWA
が全体的に伸縮することである。このためチップの設計
上の配列座標値に対して実際のチップ位置がα、I方向
に微小量たけずれることになり、特にウェハWAの周辺
部で顕著になる。このウェハ全体の伸縮量はα(X)方
向とβ(y)方向とについてそれぞれRX 、 R3/
で表わされる。ただしRxはウェハWA上のX方向(α
方向)の2点間の距離の実測値と設計値の比、Ryはウ
ェハWA上のX方向(β方向)の2点間の距離の実測値
と設計値の比で表わすものとする。従ってRx 、Ry
がともVclのときは伸縮なしである。
(3) Linear expansion and contraction of the wafer in the X (α) direction and the y (β) direction;
is to expand and contract as a whole. For this reason, the actual chip position deviates by a minute amount in the α and I directions with respect to the designed arrangement coordinate values of the chip, which is particularly noticeable in the peripheral area of the wafer WA. The amount of expansion and contraction of the entire wafer is RX and R3/ in the α(X) direction and β(y) direction, respectively.
It is expressed as However, Rx is the X direction (α
The ratio of the measured value and the designed value of the distance between two points in the X direction (β direction) on the wafer WA, Ry is expressed as the ratio of the measured value and the designed value of the distance between the two points in the X direction (β direction) on the wafer WA. Therefore, Rx, Ry
When both are Vcl, there is no expansion or contraction.

(4)X(α)方向、y(β)方向のオフセット;これ
は、アライメント系の検出精度ウェハホルダー2の位置
決め精度等、九より、ウェハWAが全体的にX方向とX
方向に微小量だけずれることにより生じ、オフセント量
ox、oyで表わされる。
(4) Offset in the X (α) direction and the y (β) direction; this is due to the detection accuracy of the alignment system, the positioning accuracy of the wafer holder 2, etc.
This is caused by a slight deviation in the direction, and is expressed by offset amounts ox and oy.

さて、第4図にはウェハWAの残存回転誤差量θと、ス
テージ3の直交度誤差量Wを誇張して表わしである。
Now, in FIG. 4, the remaining rotation error amount θ of the wafer WA and the orthogonality error amount W of the stage 3 are exaggerated.

この場合、直交座標系xyは実際には微小量Wだけ傾い
た斜交座標系x y/ Kなり、ウェハWAは直交座標
系xyに対してθだけ回転したものになる。
In this case, the orthogonal coordinate system xy actually becomes an oblique coordinate system x y/K tilted by a minute amount W, and the wafer WA is rotated by θ with respect to the orthogonal coordinate system xy.

上記(1)〜(4)の誤差要因が加わった場合、設計上
で座標位置(D x n r D Y n )のショッ
ト(チップ)について実際に位置決めすべきショット位
置(FXn、Fyn)は以下のように表わされる。ただ
しnは整数でショット(チップ)瞥号を表わす。
When the above error factors (1) to (4) are added, the shot position (FXn, Fyn) that should actually be positioned for the shot (chip) at the design coordinate position (D x n r DY n ) is as follows: It is expressed as However, n is an integer and represents a shot (chip) number.

ここでWはもともと微小量であり、θもグローバルアラ
イメントにより微小量に追い込まれているから、−次近
似を行なうと式(1)V′i式(2)で表わされるO この式(2)より、各ショット位置における設計値から
の位置ずれ(εxt1 、εyn)は式(3)で表わさ
れる0 さて、式(2)を行列の演算式1ciFき直すと、以下
のようになる。
Here, W is originally an infinitesimal amount, and θ is also pushed to an infinitesimal amount by global alignment, so by performing −th order approximation, O is expressed by equation (1) V′i equation (2) This equation (2) Therefore, the positional deviation (εxt1, εyn) from the design value at each shot position is 0 expressed by equation (3).Now, when equation (2) is rearranged into the matrix calculation formula 1ciF, it becomes as follows.

Fn=入・Dn + O・”(4) ただし、 そこで実際のショット(チンプン位置がマークの検出に
より測定され、その実測値がFnとして検出されたとき
、位置決めすべきショット位置Fnとの位置ずれ、すな
わちアドレス誤差En(Fn−Fn)を最小にす、るよ
うに誤差パラメータ入(変換行列)、0(オフセット〕
を決定する。そこで評価関数として最小二乗誤差をとる
ものとすると、アドレス誤差EVi式(9)で表わされ
る。
Fn = ON・Dn + O・”(4) However, when the actual shot position (chip position is measured by mark detection and the actual measurement value is detected as Fn, the positional deviation from the shot position Fn to be positioned is , that is, the address error En(Fn-Fn) is minimized. Input the error parameter (transformation matrix), 0 (offset) so that
Determine. Therefore, if the least squares error is taken as the evaluation function, the address error EVi is expressed by equation (9).

・・・(9) そこで、アドレス誤差Eを最小にするように誤差パラメ
ータA、0を決定する。
(9) Therefore, the error parameters A and 0 are determined so as to minimize the address error E.

ただし式(9)でmはウェハWAの複数のチップのうち
実測したチップ(ショット)の数を表わす。
However, in equation (9), m represents the number of chips (shots) actually measured among the plurality of chips on the wafer WA.

さて誤差パラメータA、Oを求める際に、最小二乗法を
用いるものとすると、この′1筐では演算量が多いため
、誤差パラメータ0(Ox 、Oy )は別に前もって
決めておくものとする。オフセクトi(Ox 、 Oy
 YTdウェハWAのグローバルなオフセント値である
ので、ウェハWA上の実測した・−′− チップ位置Fnの数mで設計値(Dxn、Dyn)に対
するアドレス誤差を平均化した値にするとよいO Ox=□      ・・・αQ ところで位置決めすべきショット位置Fnと実測値丁1
との誤差Enのうち、X方向の成分Exnは、式(4)
〜(8)から、 Exn = Fxn −Fxn = Fxn −all
 Dxn −a12Dyn−Qx       ・・・
α3 となり、誤差EnのX方向の成分Eynは同様に、Ey
n = Fyn −Fyn = Fyn −a21 D
xn −a22Dyn  OY   −(13 となる。そこで式(9)の誤差Eを最lトにするように
誤差パラメータ八を決定すると、要素all l JL
121a211 a22は以下のようになる。
Now, if the least squares method is used to obtain the error parameters A and O, the amount of calculation is large in this '1 case, so the error parameters 0 (Ox, Oy) are determined separately in advance. Offsect i (Ox, Oy
Since this is the global offset value of the YTd wafer WA, it is best to use a value that averages the address error with respect to the design value (Dxn, Dyn) over several meters of the actually measured chip position Fn on the wafer WAO Ox= □ ...αQ By the way, the shot position Fn to be positioned and the actual measurement value 1
The component Exn in the X direction of the error En between
~(8), Exn = Fxn −Fxn = Fxn −all
Dxn-a12Dyn-Qx...
α3, and the component Eyn of the error En in the X direction is similarly Ey
n = Fyn - Fyn = Fyn - a21 D
xn −a22Dyn OY −(13) Therefore, if the error parameter 8 is determined so as to minimize the error E in equation (9), the element all l JL
121a211a22 is as follows.

II            II         
   II6c6Cd 要素a11 r al2 r a21 + a22が求
まれば、式(6)より線形伸縮量RX、R)l、残存回
転誤差量θ、直交度誤差量Wはただちに求められる。
II II
II6c6Cd Once the element a11 r al2 r a21 + a22 is determined, the linear expansion/contraction amount RX, R)l, the residual rotation error amount θ, and the orthogonality error amount W are immediately determined from equation (6).

RX = al 1−(i81 RY =az2”49 θ= a2x/RY、 = a21/a22     
 −anW”−(azx/R)’)  (a12/Rx
)=  (1121/a2g)  (axz/a1x)
        ・lu従って誤差パラメータ入、0を
決定するためには、グローパルアライメ/ト終了後つェ
ハWA上のいくりか(4つ以上)のチップについて、X
−LSA系、Y−LSA系を用いてマークSXn、SY
nの:位置を・実測−し−て実測値(Fxn、Fyn)
を求めるとともに、実測したチップの設計値(Dxn。
RX = al 1-(i81 RY = az2"49 θ = a2x/RY, = a21/a22
-anW"-(azx/R)') (a12/Rx
) = (1121/a2g) (axz/a1x)
・In order to determine the error parameter input, 0, it is necessary to
-Marks SXn and SY using LSA system and Y-LSA system
n: Actual measurement of position (Fxn, Fyn)
In addition to finding the actual measured chip design value (Dxn.

Dyn)を使って、式α(1、Ql) 、 (14)〜
(17)の演算を行なえばよい。
Dyn) using the formula α(1, Ql), (14)~
It is sufficient to perform the calculation in (17).

そこで、第3図のフローチャート図に戻って動作の説明
を続ける。主制御装置50はグローバルアライメントが
終了した後、ウェハW4の複数のチップの位置を計測す
る。まずステップ103で主制御装置50iX−LSA
系のスポット光LXSが第4図中の左端のチップcoV
C付随したマークS X oと平行に並ぷように、配列
設計値に基づいてステージ3を位置決めした後、マーク
S X 。
Therefore, the explanation of the operation will be continued by returning to the flowchart shown in FIG. After the global alignment is completed, the main controller 50 measures the positions of the plurality of chips on the wafer W4. First, in step 103, the main controller 50iX-LSA
The spot light LXS of the system is located at the leftmost chip coV in Figure 4.
After positioning the stage 3 based on the array design values so that it is lined up parallel to the mark S X o attached to the mark S X .

がスポット光LXSを横切るようにステージ3をX方向
に一定量だけ移動(走査)する。この移動の間、主制御
装置50は光電素子48の時系列的な光電信号の波形を
レーザ干渉計10からのX方向の位置情報に対応付けて
記憶し、波形状態からマークSXoとスポット光LXS
とがX方向に関して一致した時点の位置X□を検出する
The stage 3 is moved (scanned) by a certain amount in the X direction so that it crosses the spot light LXS. During this movement, the main controller 50 stores the time-series photoelectric signal waveform of the photoelectric element 48 in association with the position information in the X direction from the laser interferometer 10, and from the waveform state, marks SXo and spot light LXS
The position X□ at the time when the

次に主制御装[50はステップ104でY−LSA系の
スポット光LYSがチップcoに付随したマークSYo
と平行に並ぶように配列設計値に基づいてステージ3を
位置決めする。その後5、マークSY0がスポット光L
YSを横切るようにステージ3をX方向に一定量だけ移
動する。このとき主制御装置50は光電素子38の時系
列的な光電信号の波形をレーザ干渉計9からのX方向の
位置情報と対応付けて記憶し、波形状態からマークSY
oとスポット光LYSとがX方向に関して一致した時点
の位置yoを検出する。そして主制御装置50はステッ
プ105でm個のチップについて同様の位置検出を行な
ったか否かと判断して、否のときはステラ7’106に
進み、ウニISW人上の別のチップまで配列設計値に基
づいてステージ3を移動させ、ステップ103から再び
同様の位置検出動作を繰り返す。本実施例では例えば第
5図に示すように配列座標αβの各軸とに沿ってウェハ
W人の中心からほぼ等距離に位置する4りのチップCO
+ C6+ C7r C13と中央のチップC3の計5
つのチップの各々について、ステップ103゜104の
位置検出が行なわれるものとする。従ってステップ10
5でm=5と判断された時点で主制御装置50には、5
つの実測値(Fxn、F)’n)が記憶されることKな
る。すなわち、 (Fxl+F)’2)千(Xo+)’o)−チップC0
(FXz、FY2)=(Xa、)’3)−チップC3(
「51口)=(Xa、)’a)・・・チップC6(FX
++Fy4)=(x7+y7)・”チップC’y(F”
s、F)’5)=(xa、ys)・・・テップC8の5
つの実測値が順次検出される。尚、この5つの実測値を
検出するとき、あるチップの実測値がそのチップの設計
値(Dxn、Dyn)K<らべて大きく異っていた場合
、例えばクローバルアライメントによって決まる位置決
め精度の2倍以上、異なっていた場合には、そのチップ
での実測値を無視し、例えはそのチップの隣りのチップ
についてマーク位置の実測を行なうようにしてもよい。
Next, the main control unit [50 is a step 104 in which the Y-LSA spot light LYS is attached to the mark SYo attached to the chip co.
The stage 3 is positioned based on the array design values so that it is aligned parallel to the stage 3. After that 5, mark SY0 is spot light L
The stage 3 is moved by a certain amount in the X direction so as to cross the YS. At this time, the main controller 50 stores the waveform of the time-series photoelectric signal of the photoelectric element 38 in association with the position information in the X direction from the laser interferometer 9, and from the waveform state marks SY.
The position yo at which point o and the spot light LYS coincide in the X direction is detected. Then, in step 105, the main controller 50 determines whether or not similar position detection has been performed for m chips, and if not, proceeds to Stella 7'106, and moves to another chip on the sea urchin ISW with the array design value. The stage 3 is moved based on , and the same position detection operation is repeated again from step 103. In this embodiment, for example, as shown in FIG.
+ C6+ C7r C13 and center chip C3, total 5
It is assumed that the position detection in steps 103 and 104 is performed for each of the two chips. Therefore step 10
When it is determined that m=5 in 5, the main controller 50 has 5.
This means that two actual measured values (Fxn, F)'n) are stored. That is, (Fxl+F)'2) thousand (Xo+)'o) - chip C0
(FXz, FY2)=(Xa,)'3)-chip C3(
"51 shares) = (Xa,)'a)...Chip C6 (FX
++Fy4)=(x7+y7)・"Chip C'y(F"
s, F)'5) = (xa, ys)...Step C8 5
Two actual measured values are detected sequentially. When detecting these five measured values, if the measured value of a certain chip is significantly different from the design value (Dxn, Dyn)K of that chip, for example, the positioning accuracy determined by clobal alignment is twice as high. If the values are different from each other, the actual measurement value for that chip may be ignored and, for example, the actual measurement of the mark position may be performed for a chip adjacent to that chip.

これは実測しようとしたナツプのマークが加工プロセス
によってたまたま変形した場合、そのマークにゴミが付
着していた場合、そのマークの光学像のコントラスト(
回折光の発生強度)か弱く、光電信号のS/N比が低い
場合等に生じる位置計測の精度劣化を補うためである。
This is because if the mark on the nap you are trying to measure happens to be deformed during the processing process, or if there is dust attached to the mark, the contrast of the optical image of the mark (
This is to compensate for the deterioration in accuracy of position measurement that occurs when the generated intensity of the diffracted light is weak and the S/N ratio of the photoelectric signal is low.

尚、位置計測の精度劣化を補う方法としては、あらかじ
め6つ以上のチップ、例えば第5図中で配列座標αβの
4つの象現の各々に位置するチップを加えて、計9つの
チップについて位置計測分室ない、その9つの実測値の
中から各チップの設計値(Dxn。
In addition, as a method to compensate for the deterioration in the accuracy of position measurement, the positions of six or more chips, for example, the chips located in each of the four quadrants of array coordinates αβ in FIG. The design value (Dxn) of each chip is selected from the nine actual measured values in the measurement section.

Dyn)K最も近い順に5つの実測値を選び出す方法、
又は、単に設計値(Dxn、Dyn)と大きく異なる実
測値(Fxn、Fyn)を以降の演算処理で使わないよ
うにする方法等がある。
Dyn) K A method of selecting five actual measured values in order of closestness,
Alternatively, there is a method of simply not using measured values (Fxn, Fyn) that are significantly different from design values (Dxn, Dyn) in subsequent arithmetic processing.

′eKに主制御装置50はステップ107において先の
弐α1.αυ、及び式α心〜anに基づいて誤差パラメ
ータ八、0を決定する。この決定にあたつて、主制御装
置50は上記5つの実測値を検出した各チップの5つの
設計値を予め選出しており、その設計値(Dxn、Dy
n)を以下のように記憶しているものとする。
'eK, the main controller 50 in step 107 performs the previous two α1. The error parameter 8,0 is determined based on αυ and the formula α-an. In making this determination, the main controller 50 selects in advance five design values for each chip that has detected the five actual measurement values, and the design values (Dxn, Dy
n) is stored as follows.

(DXI ID)’1)=(Xo’+)’o’)”’チ
ップC0(D x2 + D Y 2ン=(x3′、y
3′ン・・・チップC3(Dxi+DYs)=(xa’
+y6’)”・チップC6(DX4 ID)’4)=(
X7’、Yt’) ・・・f7プC7(Dxs + D
Y 5)”(x13Z y e’) ”・チップC8ま
た実際の誤差パラメータA、Oの決定に先立つて、5つ
のチップの各位置計測(所謂、ステップアライメント)
が終る毎に、例えば第3図のステップ106でステージ
3を移動している間に、式Ql) 、 Ql) 、α(
〜<171の一部の演算を同時に実行(7ていくことが
できる。すなわち、式(11、aυ、Q4)〜卸の中で
各チップ毎のデータ(実測値、設計値)の代数和を表わ
す演算要素にりいては、1つのチップの実測(ステップ
アライメント)が終了する毎に順次加算する。その演算
要素は以下の通りである。
(DXI ID)'1) = (Xo'+)'o')"'Chip C0 (D x2 + D Y 2n = (x3', y
3'n...Chip C3 (Dxi+DYs) = (xa'
+y6')"・Chip C6 (DX4 ID)'4)=(
X7', Yt')...f7pC7(Dxs + D
Y 5)"(x13Z y e') "・Chip C8 Also, prior to determining the actual error parameters A and O, each position of the five chips is measured (so-called step alignment)
For example, while moving stage 3 in step 106 in FIG.
~ < 171 can be executed at the same time (7 can be performed. In other words, the algebraic sum of the data (actual value, design value) for each chip in the formula (11, aυ, Q4) ~ The calculation elements shown are sequentially added each time the actual measurement (step alignment) of one chip is completed.The calculation elements are as follows.

実施例で’rim=5) さらにこれら演算要素のうち、ウェハWA上の実測すべ
きチップが予め決まっていて、変更がない場合は、設計
値(Dxn、Dyn)のみを含む演算要素について13
図中のステップ103,104゜105.106の実行
前に算出しておくこともできる。このように実測値の計
測動作と並行して、一部の演算を行なっていけば、総合
的なアライメント時間はそれほど長くならない。そして
、5つの実測値が得られた段階で主制御装et50は上
記演算要素の結果を使って、式no 、 aυでオフセ
ット量(Ox、Oy)を算出した後、そのオフセント値
と上記演算要素の結果を使ってさらに式(14) −(
171で配列の要素a11 + alz l a31 
+ a22を算出する。
In the example, 'rim=5) Furthermore, among these calculation elements, if the chip to be measured on the wafer WA is determined in advance and there is no change, 13
It is also possible to calculate before executing steps 103, 104, 105, and 106 in the figure. If some calculations are performed in parallel with the actual measurement operation in this way, the overall alignment time will not be so long. Then, at the stage when the five actual measured values are obtained, the main control unit et50 uses the results of the above calculation elements to calculate the offset amount (Ox, Oy) using the formula no, aυ, and then calculates the offset value and the above calculation element. Using the result of , further formula (14) −(
171, array element a11 + alz l a31
+ a22 is calculated.

以上の演算動作により、誤差パラメータA、0が決定さ
れるので、主制御装置50V1次のステップ108で先
の式(4)を使って、ウェハWNの各チップについて位
置決めすべき位置、すなわち誤差パラメータによって補
正されたショットアドレス(Fxn、Fxy)を算出し
、記憶手段(半導体メモリ)上に、設計値(D x n
 + D Y n )に対して補正されたチップの配列
マツプ(ショットアドレス表)を作成する。この配列マ
ツプは例えばチップcoに対しては位置(FXo、F)
’o)、チップC1に対しては位置(Fxl、Fyx)
、・・・・・・という具合に、チップの番号に対応して
、各位置データを記憶している0 次に主制御装置50V1第3図のステップ109罠おい
て、記憶された配列マツプに従ってステップアンドリピ
ート方式でステージ3を位置決め(アトレッジフグ)す
る。これによってクエl5WA、、l:のチップとレチ
クルRの投影像Prとが正確に重なり合い、次のステッ
プ1゛10でそのチップに投影像Prを露光(プリ/上
)する。そしてステップ111でウニISW人上の全チ
ップの露光が完了していないときは、再びステップ10
9から同様にステップアンドリピート動作を繰り返す。
Through the above calculation operations, the error parameters A and 0 are determined, so in the next step 108 of the main controller 50V, the position to be positioned for each chip of the wafer WN is determined using the equation (4), that is, the error parameter The corrected shot address (Fxn, Fxy) is calculated, and the design value (D x n
A chip arrangement map (shot address table) corrected for +D Y n ) is created. For example, for chip co, this array map is the position (FXo, F).
'o), position (Fxl, Fyx) for chip C1
,..., etc., each position data is stored corresponding to the chip number. Next, the main controller 50V1 sets step 109 in FIG. Stage 3 is positioned using the step-and-repeat method (attrage blowfish). As a result, the chips of the queries 15WA, . If the exposure of all the chips on the sea urchin ISW is not completed in step 111, step 111 is performed again.
Repeat the step-and-repeat operation from 9 onwards.

このステップ111でウニノーWA上の全チップの露光
が終了したと判断されたら、次のステップ112でウェ
ハWAのアノロードを行ない、一枚のウェハの露光処理
が全て完了する。
If it is determined in this step 111 that the exposure of all chips on the UniNo WA has been completed, the wafer WA is anoroded in the next step 112, and the entire exposure process for one wafer is completed.

以上、本発明の実施例からも明らかなように、ウェハW
A上でステンプアライメノトするチップ。
As mentioned above, as is clear from the embodiments of the present invention, the wafer W
Tip for stamp alignment on A.

の数が多い程、計測精度は向上するが、それだけ計測時
間が増大する。そのため計測時間の短縮化と計測精度の
向上との兼ね合いから、ステップアライメノトするチッ
プは第5図に示したような配置の5つに選ぶことが望し
い。しかしながら、重ね合せ露光する回路パターンの最
小線幅がそれほど細くなく(例えば2〜5μm)、あま
り計測精度を上げる必要がない場合等には、ウエノ・W
A上の互いに離れた3つのチップ(例えばco1c6+
(、y)についてステンプアライメ/ト(チップの位置
計測)を行なえば十分でおり、計測時間はよシ短縮され
る。
As the number increases, the measurement accuracy improves, but the measurement time increases accordingly. Therefore, from the viewpoint of reducing measurement time and improving measurement accuracy, it is desirable to select five chips for step alignment as shown in FIG. However, if the minimum line width of the circuit patterns to be overlaidly exposed is not so thin (for example, 2 to 5 μm) and there is no need to improve measurement accuracy, Ueno-W
Three chips apart from each other on A (e.g. co1c6+
It is sufficient to perform stamp alignment (measurement of the position of the chip) for (, y), and the measurement time is considerably shortened.

また、ステップアライメントの際、各チップのX方向、
とX方向の位置をともに検出するのではなく、ステップ
アライメノトする複数のチップに付随したマークSXn
の夫々を、X−LSA系のスポット光LXSで一括に相
対走査(ステージスキャノンして、各チップのX方向の
位置のみを検出した後、各チップのマークSYnの夫々
をY−LSA系のスポット光LYSで一括に相対走査し
て各チップのX方向の位置を検出するようにしてもよい
Oこのようにすると、チップの配列土の同−列又は同一
行に実測すべきチップが複数個存在するときは、個々の
チップ毎VcX方向とX方向の位置検出をともに行なう
よりも高速な位置計測が期待できる。
Also, during step alignment, the X direction of each chip,
Marks SXn attached to multiple chips that perform step alignment, rather than detecting the positions in both the and X directions.
are scanned relative to each other at once using the X-LSA system's spotlight LXS (stage scanner is used to detect only the position of each chip in the X direction, and then each mark SYn of each chip is scanned by the Y-LSA system's spotlight It is also possible to detect the position of each chip in the X direction by performing relative scanning at once using the spot light LYS.In this way, there are multiple chips to be measured in the same column or row of the chip arrangement. When it exists, faster position measurement can be expected than when position detection is performed in both the VcX direction and the X direction for each individual chip.

また主制御装置50は不図示のキーボード装置から、ウ
ェハWA上のどのチップについてステンプアライメ/卜
するかを任意に選択するようなデータを入力するように
すれば、ウェハWAの処理条件により変化する表面状態
←特にマーク形状)に対して、よりフレキシブルに対応
でき、位置計測の精度向とが期待できる。筐だ、式翰、
卸を使ったオフセント量(Ox、Oy)の決定にあたっ
ては、例えばウェハWAの中心から指定範囲内にあるチ
ップの位置計測結果だけを用いるようにしてもよい。そ
の指定範囲としては例えばウェハWAの直径の半分の直
径を有する円内に定めた)、その範囲の大きさをウェハ
WAにチップやマークを形成したときの露光装置(縮/
」・投影型、等倍プロジェクション、プロキシミテイ等
のステッパー)の精度特性に応じて任意に可変したりす
るとよい。
In addition, if the main controller 50 inputs data from a keyboard device (not shown) to arbitrarily select which chip on the wafer WA is to be stamp aligned/aligned, data can be changed depending on the processing conditions of the wafer WA. It is possible to respond more flexibly to the surface condition (especially the shape of the mark), and it is expected that the accuracy of position measurement will improve. It's a box, a shikikan.
In determining the offset amount (Ox, Oy) using the offset, for example, only the position measurement results of chips within a specified range from the center of the wafer WA may be used. For example, the specified range is set within a circle with a diameter half the diameter of the wafer WA), and the size of the range is determined by the exposure device (reduced/
It is advisable to arbitrarily vary it according to the accuracy characteristics of the projector (projection type, same-magnification projection, proximity stepper, etc.).

また本実施例では、ウェハWAの全チップについて式(
4)を適用して、ステノプア/ドにビート方式のアトレ
ッジフグを行なうようにしたが、ウェハW入の表面をい
くつかの領域(ブロック)に分割し、個々のブロック毎
に最適なアライメントを行なう、所謂ブロックアライメ
/トにおいても全く同様に式(4)を適用することがで
きる。例えば第5図において、配列座標αβの各象現内
に位置する4つの;ソッと、図示の5つのチップCo、
C3゜C6,C7、CBとの計9つのチップについてス
テップアライメントを行なって、各チップの位置の実測
値を検出した後、配列座標αβの各象現毎に弐Qf) 
、 (11) 、 Q4)〜(lηを使って誤差)くラ
メータA。
Furthermore, in this embodiment, the formula (
4) was applied to perform beat-type attrition blowing on the stenopur/de.However, the surface of the wafer W is divided into several regions (blocks), and the optimal alignment is performed for each block. Equation (4) can be applied in exactly the same way to so-called block alignment. For example, in FIG. 5, the four chips Co located in each quadrant of the array coordinates αβ;
C3゜After performing step alignment for a total of nine chips, C6, C7, and CB, and detecting the actual measured value of the position of each chip, 2Qf) for each quadrant of the array coordinate αβ)
, (11), Q4) ~ (error using lη) Parameter A.

0を決定し、さらに式(4)を使って、位置(Fxn。0 and further use equation (4) to determine the position (Fxn.

Fyn)を算出するようにする0例えは配列座標αβの
第1象現のブロックについては、第1象現内の1つのチ
ップと、チップC3+ C6r C7との4つのチップ
の実測値を使って式(4)を決定し、第2象現内のブロ
ックについては第2象現内の1つのチップとチップCO
r C3+ C7との4つのチップの実測値を使って式
(4)を決定する。そして実際の露光のときは、各ブロ
ック毎に決定された式(4)からのショット位置(Fx
n、Fyn)に基づいて、ウェハWA上のチップを投影
像Prと位置合せする。このようにすると、ウェハ上で
の非線形要素による位置検出、位置合せの不良が低減す
るとともに、従来のブロックアライメントとは異なり、
平均化要素を残したま筐ブロック化できるので、各ブロ
ック内での重ね合せ精度がどのチップでもほぼ平均して
いるという利点がある。そればかりでなく、ステッパー
以外の露光装置、特にミラー投影露光装置との混用の際
にも大きな利点を得ることができる。一般にミラー投影
露光装置で焼かれたウェハのチップ配列は、湾曲してい
ることが多い。そこでステッパーにより、そのウェハに
重ね合せ露光を行なう場合(混用;ミックスφア/ド・
マツチ)、上記のようなブロックアライメントを行なえ
ば、各ブロック内ではチップ配列の湾曲が無視できる程
、小さくなるため、ウェハ全面に渡りて極めて重ね合せ
精度の高い焼き付けが5]能となる。
For example, for the block in the first quadrant with array coordinates αβ, use the actual measured values of one chip in the first quadrant and the four chips C3 + C6r C7. Determine equation (4), and for the block in the second quadrant, one chip in the second quadrant and the chip CO
Equation (4) is determined using the measured values of the four chips r C3+C7. During actual exposure, the shot position (Fx
n, Fyn), the chips on the wafer WA are aligned with the projected image Pr. In this way, position detection and alignment defects due to nonlinear elements on the wafer are reduced, and unlike conventional block alignment,
Since the housing blocks can be formed while leaving the averaging elements, there is an advantage that the overlay accuracy within each block is approximately averaged for all chips. In addition, great advantages can be obtained when the present invention is used in combination with an exposure apparatus other than a stepper, especially a mirror projection exposure apparatus. Generally, the chip array of a wafer printed with a mirror projection exposure apparatus is often curved. Therefore, when overlapping exposure is performed on the wafer using a stepper (mixed use; mix
If block alignment is performed as described above, the curvature of the chip arrangement within each block becomes negligibly small, making it possible to perform printing with extremely high overlay accuracy over the entire wafer surface.

以上、本発明の実施例に好適な露光装置においてげ、レ
ーザのスポット光をウェハWA上のマークに照射して、
マーク(チップ)の位置を検出したが、スポット光をウ
ェハWA上で単振動させたり、等速直線走査させたりす
るアライメント系、又はレチクルR上のマークとウェハ
WA上のマークとを、レチクルRの上方に配置した顕微
鏡対物レンズを介して観察(検出)して位置合せを行な
う、所謂グイ・パイ・ダイアライメント光学系を使った
露光装置でも全く同様に実施できる。この場合、グイ・
バイ・ダイアライメント時にレチクルRを位置合せのた
めにx、y方向に微動させないものとすれば、レチクル
R上のマークの投影像が、本実施例のスポット光LXS
 、LYSIC相当すること罠なる。またレチクルR&
微動させる方式のものでは、まずレチクルRを原点位置
に正確に合せて設定する。そして複数のチップのステン
プアライメ/ト(実測)の際、配列設計値に従ってステ
ージをステンピングさせた後、レチクルRのマークと実
測すべきチップのマークとが所定の位置関係になるよう
にレチクルRを微動し、レチクルRの原点からのx、y
方向への移動量を検出することによって、そのチップの
位置の実測値(rマユ1丁71)を算出することができ
る。
As described above, an exposure apparatus suitable for the embodiment of the present invention is used to irradiate a mark on a wafer WA with a laser spot light,
Although the position of the mark (chip) has been detected, an alignment system that makes the spot light vibrate in simple harmonic motion on the wafer WA or performs uniform linear scanning, or the mark on the reticle R and the mark on the wafer WA can be It can be carried out in exactly the same way with an exposure apparatus using a so-called Gui-Pai di-alignment optical system in which alignment is performed by observing (detecting) through a microscope objective lens placed above the microscope. In this case, Gui
If the reticle R is not slightly moved in the x and y directions for positioning during bi-die alignment, the projected image of the mark on the reticle R will be the same as the spot light LXS of this embodiment.
, it becomes a trap that corresponds to LYSIC. Also reticle R&
In the fine movement type, first, the reticle R is set to accurately match the origin position. When stamp aligning (actual measurement) multiple chips, after stamping the stage according to the array design values, move the reticle so that the mark on the reticle R and the mark on the chip to be measured are in a predetermined positional relationship. Slightly move R to adjust x, y from the origin of reticle R.
By detecting the amount of movement in the direction, it is possible to calculate the actual measured value of the position of the tip (r eyebrows 1 71).

また本実施例ではオフセント量(Ox、Oy)を側圧単
独に求めるようにして、演算処理の簡素化を計ったが、
式(9)のアドレス誤差Eを最小にするような誤差パラ
メータ人、0を、厳密な演算処理によって算出してもよ
いことは言うまでもない。
In addition, in this embodiment, the offset amount (Ox, Oy) is determined based on the lateral pressure alone to simplify the calculation process.
It goes without saying that the error parameter 0 that minimizes the address error E in equation (9) may be calculated by strict arithmetic processing.

(発明の効果) 以上本発明による方法によれば、ウェハ等の被処理基板
上の複数のチップパターンの全てに対して、位置合せの
誤差が平均的に小さくな9.1枚の被露光基板から取れ
る良品チップの数が多くなり、半導体素子の生産性を向
上させることができる。また、被露光基板とのいくつか
のチップについて、その位置を実測(ステップアライメ
ント)しているので、すなわち同形状のマークを使った
位置計測が複数回繰り返されるので、検出系の機械的、
電気的なランダム誤差が低減される利点もある。また位
置検出用のアライメントセンサー(顕微鏡〕の感度のバ
ラつきを統計的な処理で押えることになり、総合的なア
ライメント精度が向上する。
(Effects of the Invention) As described above, according to the method according to the present invention, 9.1 exposed substrates with small alignment errors on average for all of the plurality of chip patterns on the target substrates such as wafers can be used. The number of non-defective chips that can be obtained from this process increases, and the productivity of semiconductor devices can be improved. In addition, since the positions of several chips with respect to the substrate to be exposed are actually measured (step alignment), that is, position measurements using marks of the same shape are repeated multiple times, so the mechanical
There is also the advantage that electrical random errors are reduced. In addition, statistical processing suppresses variations in the sensitivity of the alignment sensor (microscope) for position detection, improving overall alignment accuracy.

さらに、実施例によれば誤差パラメータの決定にあたっ
て最小二乗法を使っているので、いくつかのチップに対
するステングアライメ/トの精度のバラツキも抑えるこ
とが可能である。尚、本発明は縮小投影型の露光装置に
限らず、ステップアンドリピート方式の露光装置、例え
ば等倍の投影型ステッパーやグロキシミテイタイプのス
テッパー(X線露光装置)等に広く応用できるものであ
る。
Furthermore, according to the embodiment, since the least squares method is used to determine the error parameters, it is possible to suppress variations in accuracy of steng alignment/alignment for several chips. The present invention is not limited to reduction projection type exposure apparatuses, but can be widely applied to step-and-repeat type exposure apparatuses, such as life-size projection type steppers and gloximity type steppers (X-ray exposure apparatuses). be.

また露光装置以外でも半導体ウェハや複数のチップパタ
ーンを有するフォトマスク等を検査する装置(欠陥検査
、プローパ等)で、各チップ毎にステップアンドリピー
ト方式で検査視野やグローブ針等の基準位置に対して位
置合せするものにおいても、同様に本発明を実施するこ
とができる。
In addition to exposure equipment, equipment (defect inspection, propper, etc.) that inspects semiconductor wafers and photomasks with multiple chip patterns, etc., uses a step-and-repeat method for each chip to adjust the inspection field of view and the reference position of a glove needle, etc. The present invention can be implemented in the same manner even in the case where the positioning is performed using the same method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に好適な縮小投影型露光装置の
概略的な構成を示す斜視図、第2図は第1図の装置にお
けるアライメント系の各検出中心の位置関係を示す平面
図、第3図は本発明の位置合せ方法を使った全体的な動
作手順を表わす70−チャート図、第4図は第1図の装
置を使って、位置合せ、及び露光するのに好適なウェハ
の平面図、第5図はステンプアライメントするチップの
位置を示すウェハの平面図である。 〔主要4p寸の符号のfL項〕 WA・・・ウニへ、CP、Cn・・・ナラ1゜αβ・・
・配列魚諌、 xo3. l0IJ−・・・ステヅアア
ライ1メントI=、裏′る。亥到二佳−,−7107・
・・頷差バクメ、−yet沃iする二(L) −、og
ノ109ノー10. III’・・・油゛上2れr;災
捩のナヅ7配列庚ill:坩フマステヅフ9アントリど
°−トオベマパ4は状のする審理。
FIG. 1 is a perspective view showing a schematic configuration of a reduction projection type exposure apparatus suitable for an embodiment of the present invention, and FIG. 2 is a plan view showing the positional relationship of each detection center of the alignment system in the apparatus shown in FIG. , FIG. 3 is a 70-chart diagram representing the overall operating procedure using the alignment method of the present invention, and FIG. 4 is a wafer suitable for alignment and exposure using the apparatus of FIG. 1. FIG. 5 is a plan view of the wafer showing the positions of chips to be stamp aligned. [fL term of the sign of the main 4p dimensions] WA...to the sea urchin, CP, Cn...to the oak 1°αβ...
・Sequence fish, xo3. 10IJ-...Stage alignment 1=, back.亥reach Nika-,-7107・
・・Nod difference Bakme, -yet o i suru 2 (L) -, og
No 109 No 10. III'...The first two chapters of the disaster; Nazu 7 sequence of disasters: The 9th anniversary of the disaster.

Claims (1)

【特許請求の範囲】[Claims] 被処理基板に設計上の配列座標に沿つて規則的に整列し
た複数のチップパターンの夫々を、所定の基準位置に対
してステップアンドリピート方式で順次位置合せする方
法において、該ステップアンドリピート方式の位置合せ
に先立つて、前記チップパターンの設計上の配列座標値
に基づいて前記被処理基板を移動させ、前記複数のチッ
プパターンのいくつかを前記基準位置に合せたときの各
位置を実測する工程と;前記設計上の配列座標値と前記
ステップアンドリピート方式で位置合せすべき実際の配
列座標値とが所定の誤差パラメータを含んで一義的な関
係にあるものとしたとき、前記複数の実測値と前記実際
の配列座標値との平均的な偏差が最小になるように前記
誤差パラメータを決定する工程と;該決定された誤差パ
ラメータと前記設計上の配列座標値とに基づいて前記実
際の配列座標値を算出し、ステップアンドリピート方式
の位置合せ時に、該算出された実際の配列座標値に応じ
て前記被処理基板を位置決めする工程とを含むことを特
徴とする位置合せ方法。
In a method of sequentially aligning each of a plurality of chip patterns regularly arranged on a substrate to be processed along designed arrangement coordinates with respect to a predetermined reference position by a step-and-repeat method, Prior to alignment, the step of moving the substrate to be processed based on the designed arrangement coordinate values of the chip patterns and actually measuring each position when some of the plurality of chip patterns are aligned with the reference position. and; When it is assumed that the designed array coordinate values and the actual array coordinate values to be aligned by the step-and-repeat method have a unique relationship including a predetermined error parameter, the plurality of actual measured values determining the error parameter so that an average deviation between the actual array coordinate value and the actual array coordinate value is minimized; An alignment method comprising the steps of: calculating coordinate values, and positioning the substrate to be processed according to the calculated actual array coordinate values during step-and-repeat alignment.
JP59167020A 1984-08-09 1984-08-09 Alignment method Granted JPS6144429A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59167020A JPS6144429A (en) 1984-08-09 1984-08-09 Alignment method
US06/915,027 US4780617A (en) 1984-08-09 1986-10-03 Method for successive alignment of chip patterns on a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59167020A JPS6144429A (en) 1984-08-09 1984-08-09 Alignment method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5201725A Division JPH0738376B2 (en) 1993-08-13 1993-08-13 Projection exposure device
JP6314725A Division JP2638528B2 (en) 1994-12-19 1994-12-19 Positioning method

Publications (2)

Publication Number Publication Date
JPS6144429A true JPS6144429A (en) 1986-03-04
JPH0447968B2 JPH0447968B2 (en) 1992-08-05

Family

ID=15841900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59167020A Granted JPS6144429A (en) 1984-08-09 1984-08-09 Alignment method

Country Status (1)

Country Link
JP (1) JPS6144429A (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232326A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPS63232322A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPS63232321A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPS63299122A (en) * 1987-05-29 1988-12-06 Canon Inc Aligner
JPH01207604A (en) * 1988-02-15 1989-08-21 Canon Inc Mark position detecting method
JPH01243419A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Position alignment method
JPH0432219A (en) * 1990-05-29 1992-02-04 Canon Inc Alignment method
JPH04271109A (en) * 1991-01-09 1992-09-28 Hitachi Ltd Position alignment method of semiconductor wafer
JPH08330394A (en) * 1996-06-13 1996-12-13 Nikon Corp Alignment method
US5792580A (en) * 1995-11-17 1998-08-11 Mitsubishi Denki Kabushiki Kaisha Method of aligning reticle pattern
US5856054A (en) * 1996-09-03 1999-01-05 Mitsubishi Denki Kabushiki Kaisha Method of alignment in exposure step through array error and shot error determinations
WO1999028220A1 (en) 1997-12-03 1999-06-10 Nikon Corporation Substrate transferring device and method
US6002487A (en) * 1995-06-20 1999-12-14 Nikon Corporation Alignment method for performing alignment between shot areas on a wafer
US6087053A (en) * 1997-05-09 2000-07-11 Canon Kabushiki Kaisha Device manufacturing method with transfer magnification adjustment to correct thermal distortion of substrate
US6171736B1 (en) 1997-07-23 2001-01-09 Nikon Corporation Projection-microlithography alignment method utilizing mask with separate mask substrates
US6204509B1 (en) 1997-11-11 2001-03-20 Nikon Corporation Projection-microlithography apparatus, masks, and related methods incorporating reticle-distortion measurement and correction
US6239858B1 (en) 1999-06-14 2001-05-29 Mitsubishi Denki Kabushiki Kaisha Exposure method, exposure apparatus and semiconductor device manufactured by using the exposure apparatus
US6304320B1 (en) 1999-02-26 2001-10-16 Nikon Corporation Stage device and a method of manufacturing same, a position controlling method, an exposure device and a method of manufacturing same, and a device and a method of manufacturing same
US6359678B1 (en) 1997-11-14 2002-03-19 Nikon Corporation Exposure apparatus, method for producing the same, and exposure method
US6576919B1 (en) 1997-02-28 2003-06-10 Nikon Corporation Method of determining movement sequence and apparatus for realizing it
US6662145B1 (en) 1998-12-08 2003-12-09 Mitsubishi Denki Kabushiki Kaisha Method, equipment, and recording medium for controlling exposure accuracy
US6788385B2 (en) 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
US6885430B2 (en) 2000-11-16 2005-04-26 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
US6885908B2 (en) 1997-02-14 2005-04-26 Nikon Corporation Method of determining movement sequence, alignment apparatus, method and apparatus of designing optical system, and medium in which program realizing the designing method
US6958808B2 (en) 2000-11-16 2005-10-25 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
JP2005328061A (en) * 2004-05-14 2005-11-24 Asml Netherlands Bv Alignment system, method, and device manufactured by same
JP2006140204A (en) * 2004-11-10 2006-06-01 Nikon Corp Measurement condition optimizing method, position measuring method using the same, positioning method using the same, device manufacturing method using the same, measurement condition optimizing system, position measuring device using the same, exposure device using the same
JP2006339303A (en) * 2005-05-31 2006-12-14 Nikon Corp Exposure apparatus and method, and manufacturing method of device
US7154583B2 (en) 2003-02-19 2006-12-26 Nikon Corporation Movement method, exposure method and exposure apparatus, and device manufacturing method
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007077925A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
WO2007083758A1 (en) 2006-01-19 2007-07-26 Nikon Corporation Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007113955A1 (en) 2006-03-30 2007-10-11 Nikon Corporation Mobile device, exposure device, exposure method, micro-motion body, and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
JP2008004358A (en) * 2006-06-22 2008-01-10 Tokki Corp Alignment method, alignment apparatus, and organic el element forming apparatus
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1944654A2 (en) 1996-11-28 2008-07-16 Nikon Corporation An exposure apparatus and an exposure method
EP1995769A1 (en) 2003-08-07 2008-11-26 Nikon Corporation Exposure method and exposure apparatus, stage unit, and device manufacturing method
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
US7557529B2 (en) 2005-01-11 2009-07-07 Nikon Corporation Stage unit and exposure apparatus
JP2009206143A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Alignment method
US7728953B2 (en) 2004-03-01 2010-06-01 Nikon Corporation Exposure method, exposure system, and substrate processing apparatus
EP2221866A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
US7852034B2 (en) 2004-04-09 2010-12-14 Nikon Corporation Drive method of moving body, stage unit, and exposure apparatus
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
JP2011029458A (en) * 2009-07-27 2011-02-10 Nikon Corp Method and apparatus for manufacturing multilayer semiconductor device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089616B2 (en) 2007-07-13 2012-01-03 Nikon Corporation Pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method and device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US8159650B2 (en) 2006-03-07 2012-04-17 Nikon Corporation Device manufacturing method, device manufacturing system, and measurement/inspection apparatus
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
EP2560192A2 (en) 2003-02-17 2013-02-20 Nikon Corporation Stage device, exposure apparatus, and method of manufacturing devices
US8400614B2 (en) 2005-12-28 2013-03-19 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure method and exposure apparatus, and device manufacturing method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8432534B2 (en) 2006-11-09 2013-04-30 Nikon Corporation Holding apparatus, position detection apparatus and exposure apparatus, moving method, position detection method, exposure method, adjustment method of detection system and device manufacturing method
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8982320B2 (en) 2004-08-19 2015-03-17 Nikon Corporation Alignment information display method and its program, alignment method, exposure method, device production process, display system, display device, and program and measurement/inspection system
JP2015525477A (en) * 2012-06-06 2015-09-03 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
JP2017049456A (en) * 2015-09-02 2017-03-09 キヤノン株式会社 Distortion detection method, exposure equipment, exposure method, and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
JP2017183735A (en) * 2017-05-10 2017-10-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Device and method for determining alignment error
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9915868B2 (en) 2011-11-30 2018-03-13 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and article manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US11947267B2 (en) 2021-10-01 2024-04-02 Canon Kabushiki Kaisha Method of obtaining array of plurality of shot regions on substrate, exposure method, exposure apparatus, method of manufacturing article, non-transitory computer-readable storage medium, and information processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531552A (en) * 1976-06-25 1978-01-09 Honda Motor Co Ltd Coordinate selffestimating calculation system with multiipoint measurement
JPS58103136A (en) * 1981-12-16 1983-06-20 Nippon Kogaku Kk <Nikon> Gap setter
JPS5954225A (en) * 1982-09-21 1984-03-29 Hitachi Ltd Projection exposure method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531552A (en) * 1976-06-25 1978-01-09 Honda Motor Co Ltd Coordinate selffestimating calculation system with multiipoint measurement
JPS58103136A (en) * 1981-12-16 1983-06-20 Nippon Kogaku Kk <Nikon> Gap setter
JPS5954225A (en) * 1982-09-21 1984-03-29 Hitachi Ltd Projection exposure method

Cited By (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232322A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPS63232321A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPH0421332B2 (en) * 1987-03-20 1992-04-09 Canon Kk
JPH0468767B2 (en) * 1987-03-20 1992-11-04 Canon Kk
JPS63232326A (en) * 1987-03-20 1988-09-28 Canon Inc Alignment
JPS63299122A (en) * 1987-05-29 1988-12-06 Canon Inc Aligner
JPH0437574B2 (en) * 1987-05-29 1992-06-19 Canon Kk
JPH01207604A (en) * 1988-02-15 1989-08-21 Canon Inc Mark position detecting method
JPH01243419A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Position alignment method
JPH0432219A (en) * 1990-05-29 1992-02-04 Canon Inc Alignment method
JPH04271109A (en) * 1991-01-09 1992-09-28 Hitachi Ltd Position alignment method of semiconductor wafer
US6002487A (en) * 1995-06-20 1999-12-14 Nikon Corporation Alignment method for performing alignment between shot areas on a wafer
US5792580A (en) * 1995-11-17 1998-08-11 Mitsubishi Denki Kabushiki Kaisha Method of aligning reticle pattern
JPH08330394A (en) * 1996-06-13 1996-12-13 Nikon Corp Alignment method
US5856054A (en) * 1996-09-03 1999-01-05 Mitsubishi Denki Kabushiki Kaisha Method of alignment in exposure step through array error and shot error determinations
EP1944654A2 (en) 1996-11-28 2008-07-16 Nikon Corporation An exposure apparatus and an exposure method
US6885908B2 (en) 1997-02-14 2005-04-26 Nikon Corporation Method of determining movement sequence, alignment apparatus, method and apparatus of designing optical system, and medium in which program realizing the designing method
US6844917B2 (en) 1997-02-28 2005-01-18 Nikon Corporation Method of determining movement sequence and apparatus for realizing it
US6576919B1 (en) 1997-02-28 2003-06-10 Nikon Corporation Method of determining movement sequence and apparatus for realizing it
US6087053A (en) * 1997-05-09 2000-07-11 Canon Kabushiki Kaisha Device manufacturing method with transfer magnification adjustment to correct thermal distortion of substrate
US6171736B1 (en) 1997-07-23 2001-01-09 Nikon Corporation Projection-microlithography alignment method utilizing mask with separate mask substrates
US6180289B1 (en) 1997-07-23 2001-01-30 Nikon Corporation Projection-microlithography mask with separate mask substrates
US6204509B1 (en) 1997-11-11 2001-03-20 Nikon Corporation Projection-microlithography apparatus, masks, and related methods incorporating reticle-distortion measurement and correction
US6359678B1 (en) 1997-11-14 2002-03-19 Nikon Corporation Exposure apparatus, method for producing the same, and exposure method
WO1999028220A1 (en) 1997-12-03 1999-06-10 Nikon Corporation Substrate transferring device and method
US6662145B1 (en) 1998-12-08 2003-12-09 Mitsubishi Denki Kabushiki Kaisha Method, equipment, and recording medium for controlling exposure accuracy
US6304320B1 (en) 1999-02-26 2001-10-16 Nikon Corporation Stage device and a method of manufacturing same, a position controlling method, an exposure device and a method of manufacturing same, and a device and a method of manufacturing same
US6239858B1 (en) 1999-06-14 2001-05-29 Mitsubishi Denki Kabushiki Kaisha Exposure method, exposure apparatus and semiconductor device manufactured by using the exposure apparatus
US6885430B2 (en) 2000-11-16 2005-04-26 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
US6958808B2 (en) 2000-11-16 2005-10-25 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
US6788385B2 (en) 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
EP2560192A2 (en) 2003-02-17 2013-02-20 Nikon Corporation Stage device, exposure apparatus, and method of manufacturing devices
EP3038138A1 (en) 2003-02-17 2016-06-29 Nikon Corporation Exposure apparatus, and method of manufacturing devices
EP3401947A1 (en) 2003-02-17 2018-11-14 Nikon Corporation Exposure apparatus, and method of manufacturing devices
US7154583B2 (en) 2003-02-19 2006-12-26 Nikon Corporation Movement method, exposure method and exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
EP2278401A2 (en) 2003-06-19 2011-01-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
EP1995769A1 (en) 2003-08-07 2008-11-26 Nikon Corporation Exposure method and exposure apparatus, stage unit, and device manufacturing method
EP3432073A1 (en) 2003-10-09 2019-01-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3410216A1 (en) 2003-10-09 2018-12-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3206083A1 (en) 2003-10-09 2017-08-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
EP2937734A1 (en) 2003-10-09 2015-10-28 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2014003342A (en) * 2004-01-07 2014-01-09 Nikon Corp Laminating apparatus
JP4935074B2 (en) * 2004-01-07 2012-05-23 株式会社ニコン Laminating apparatus and integrated circuit element laminating method
US8129201B2 (en) 2004-01-07 2012-03-06 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
US8440472B2 (en) 2004-01-07 2013-05-14 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
EP2221866A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
EP2221865A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3208658A1 (en) 2004-02-04 2017-08-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3093873A2 (en) 2004-02-04 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3252533A1 (en) 2004-02-04 2017-12-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP2765595A1 (en) 2004-02-04 2014-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3267469A1 (en) 2004-02-04 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7728953B2 (en) 2004-03-01 2010-06-01 Nikon Corporation Exposure method, exposure system, and substrate processing apparatus
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834977B2 (en) 2004-04-01 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7852034B2 (en) 2004-04-09 2010-12-14 Nikon Corporation Drive method of moving body, stage unit, and exposure apparatus
JP2005328061A (en) * 2004-05-14 2005-11-24 Asml Netherlands Bv Alignment system, method, and device manufactured by same
JP4557791B2 (en) * 2004-05-14 2010-10-06 エーエスエムエル ネザーランズ ビー.ブイ. Method for selecting alignment mark and lithographic apparatus
JP2009117872A (en) * 2004-05-14 2009-05-28 Asml Netherlands Bv Alignment system and method and device manufactured thereby
JP2009117870A (en) * 2004-05-14 2009-05-28 Asml Netherlands Bv Alignment system and method and device manufactured thereby
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
EP3318928A1 (en) 2004-06-09 2018-05-09 Nikon Corporation Exposure apparatus and method for producing a device
US8982320B2 (en) 2004-08-19 2015-03-17 Nikon Corporation Alignment information display method and its program, alignment method, exposure method, device production process, display system, display device, and program and measurement/inspection system
JP2006140204A (en) * 2004-11-10 2006-06-01 Nikon Corp Measurement condition optimizing method, position measuring method using the same, positioning method using the same, device manufacturing method using the same, measurement condition optimizing system, position measuring device using the same, exposure device using the same
US7557529B2 (en) 2005-01-11 2009-07-07 Nikon Corporation Stage unit and exposure apparatus
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006339303A (en) * 2005-05-31 2006-12-14 Nikon Corp Exposure apparatus and method, and manufacturing method of device
WO2007055237A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
CN102681368A (en) * 2005-12-28 2012-09-19 株式会社尼康 Pattern formation method, pattern formation device, and device fabrication method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8400614B2 (en) 2005-12-28 2013-03-19 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure method and exposure apparatus, and device manufacturing method
WO2007077925A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
EP3147710A1 (en) 2006-01-19 2017-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP2963498A1 (en) 2006-01-19 2016-01-06 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3171220A1 (en) 2006-01-19 2017-05-24 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007083758A1 (en) 2006-01-19 2007-07-26 Nikon Corporation Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
EP2752714A1 (en) 2006-01-19 2014-07-09 Nikon Corporation Exposure apparatus and exposure method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP2765458A2 (en) 2006-01-19 2014-08-13 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP2801864A2 (en) 2006-01-19 2014-11-12 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9423703B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
US9372414B2 (en) 2006-01-19 2016-06-21 Nikon Corporation Exposure method and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
US9423702B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method measuring position of substrate stage by switching between encoder and interferometer
EP3043208A1 (en) 2006-01-19 2016-07-13 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP2857902A1 (en) 2006-01-19 2015-04-08 Nikon Corporation Immersion exposure apparatus, immersion exposure method, and device fabricating method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007094414A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094470A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
EP3270226A1 (en) 2006-02-21 2018-01-17 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP3327507A1 (en) 2006-02-21 2018-05-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3293577A1 (en) 2006-02-21 2018-03-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3279739A1 (en) 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8027021B2 (en) 2006-02-21 2011-09-27 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US8054472B2 (en) 2006-02-21 2011-11-08 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
EP3267259A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3267258A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2813893A1 (en) 2006-02-21 2014-12-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
EP2541325A1 (en) 2006-02-21 2013-01-02 Nikon Corporation Exposure apparatus and exposure method
EP3115844A1 (en) 2006-02-21 2017-01-11 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8159650B2 (en) 2006-03-07 2012-04-17 Nikon Corporation Device manufacturing method, device manufacturing system, and measurement/inspection apparatus
US7696653B2 (en) 2006-03-30 2010-04-13 Nikon Corporation Movable-body apparatus, exposure apparatus and methods comprising same, and device-manufacturing methods
WO2007113955A1 (en) 2006-03-30 2007-10-11 Nikon Corporation Mobile device, exposure device, exposure method, micro-motion body, and device manufacturing method
US8125613B2 (en) 2006-04-21 2012-02-28 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
US8390780B2 (en) 2006-06-09 2013-03-05 Nikon Corporation Movable-body apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2008004358A (en) * 2006-06-22 2008-01-10 Tokki Corp Alignment method, alignment apparatus, and organic el element forming apparatus
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993688A2 (en) 2006-08-31 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3064999A1 (en) 2006-08-31 2016-09-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2991101A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2988320A1 (en) 2006-08-31 2016-02-24 Nikon Corporation Exposure apparatus, exposure method, and device manufactuing method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP3067748A1 (en) 2006-08-31 2016-09-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
EP2990872A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2738608A1 (en) 2006-08-31 2014-06-04 Nikon Corporation Method and system for driving a movable body in an exposure apparatus
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3291010A1 (en) 2006-08-31 2018-03-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
EP3279738A1 (en) 2006-08-31 2018-02-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
EP3361317A1 (en) 2006-09-01 2018-08-15 Nikon Corporation Exposure apparatus and exposure method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993524A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
EP2993523A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US9563116B2 (en) 2006-09-08 2017-02-07 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US8432534B2 (en) 2006-11-09 2013-04-30 Nikon Corporation Holding apparatus, position detection apparatus and exposure apparatus, moving method, position detection method, exposure method, adjustment method of detection system and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
US9239525B2 (en) 2007-07-13 2016-01-19 Nikon Corporation Pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method and device
US8089616B2 (en) 2007-07-13 2012-01-03 Nikon Corporation Pattern forming method and apparatus, exposure method and apparatus, and device manufacturing method and device
EP3447582A1 (en) 2007-07-18 2019-02-27 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2818926A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
US9316917B2 (en) 2007-07-18 2016-04-19 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9372410B2 (en) 2007-07-18 2016-06-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9804506B2 (en) 2007-07-18 2017-10-31 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP3246755A1 (en) 2007-07-18 2017-11-22 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP2933683A1 (en) 2007-07-18 2015-10-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2818927A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
JP5489068B2 (en) * 2007-07-24 2014-05-14 株式会社ニコン POSITION MEASUREMENT SYSTEM, EXPOSURE APPARATUS, POSITION MEASUREMENT METHOD, EXPOSURE METHOD, DEVICE MANUFACTURING METHOD, TOOL AND MEASUREMENT METHOD
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
JPWO2009013905A1 (en) * 2007-07-24 2010-09-30 株式会社ニコン POSITION MEASUREMENT SYSTEM, EXPOSURE APPARATUS, POSITION MEASUREMENT METHOD, EXPOSURE METHOD, DEVICE MANUFACTURING METHOD, TOOL AND MEASUREMENT METHOD
US8243257B2 (en) 2007-07-24 2012-08-14 Nikon Corporation Position measurement system, exposure apparatus, position measuring method, exposure method and device manufacturing method, and tool and measuring method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8767182B2 (en) 2007-08-24 2014-07-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US10310384B2 (en) 2007-12-28 2019-06-04 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9690205B2 (en) 2007-12-28 2017-06-27 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US10274831B2 (en) 2007-12-28 2019-04-30 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
US9229333B2 (en) 2007-12-28 2016-01-05 Nikon Corporation Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method
JP2009206143A (en) * 2008-02-26 2009-09-10 Seiko Instruments Inc Alignment method
JP2011029458A (en) * 2009-07-27 2011-02-10 Nikon Corp Method and apparatus for manufacturing multilayer semiconductor device
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
US10416573B2 (en) 2011-02-22 2019-09-17 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
US9915868B2 (en) 2011-11-30 2018-03-13 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and article manufacturing method
JP2015525477A (en) * 2012-06-06 2015-09-03 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Apparatus and method for determining alignment error
US10410896B2 (en) 2012-06-06 2019-09-10 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
US10134622B2 (en) 2012-06-06 2018-11-20 Ev Group E. Thallner Gmbh Apparatus and method for ascertaining orientation errors
JP2017049456A (en) * 2015-09-02 2017-03-09 キヤノン株式会社 Distortion detection method, exposure equipment, exposure method, and device manufacturing method
JP2017183735A (en) * 2017-05-10 2017-10-05 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Device and method for determining alignment error
US11947267B2 (en) 2021-10-01 2024-04-02 Canon Kabushiki Kaisha Method of obtaining array of plurality of shot regions on substrate, exposure method, exposure apparatus, method of manufacturing article, non-transitory computer-readable storage medium, and information processing apparatus

Also Published As

Publication number Publication date
JPH0447968B2 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
JPS6144429A (en) Alignment method
US4780617A (en) Method for successive alignment of chip patterns on a substrate
KR100306315B1 (en) A scanning exposure method, a scanning type exposure apparatus and a method of manufacturing a device
US5298761A (en) Method and apparatus for exposure process
JP2610815B2 (en) Exposure method
JPH0669017B2 (en) Alignment method
JP3451607B2 (en) Positioning method and apparatus, and exposure method and apparatus
JPH04324615A (en) Aligning device
JP2638528B2 (en) Positioning method
JP3651074B2 (en) Exposure method, semiconductor integrated circuit or liquid crystal display device manufacturing method using the same, and exposure apparatus
JP2629659B2 (en) Circuit pattern forming method
JP3491206B2 (en) Positioning method and apparatus, and exposure method and apparatus
JP2626637B2 (en) Positioning method
JPS59161815A (en) Device for detecting rotational deflection of exposing equipment
JP2794593B2 (en) Projection exposure equipment
JP2926331B2 (en) Exposure method
JPH06188171A (en) Projection exposure system
JPH0992591A (en) Aligning method
JPH1152545A (en) Reticle and pattern transferred by the same as well as method for aligning reticle and semiconductor wafer
JP2967974B2 (en) Circuit pattern formation method
JPH1064808A (en) Mask aligning method and projection exposing method
JP3042529B2 (en) Circuit pattern forming method and exposure apparatus
JPH0722099B2 (en) Accuracy inspection method and exposure apparatus having the inspection function
JPH0782390B2 (en) Stage positioning method
JPH02152220A (en) Alignment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees