JPH07190741A - Measuring error correction method - Google Patents

Measuring error correction method

Info

Publication number
JPH07190741A
JPH07190741A JP33301793A JP33301793A JPH07190741A JP H07190741 A JPH07190741 A JP H07190741A JP 33301793 A JP33301793 A JP 33301793A JP 33301793 A JP33301793 A JP 33301793A JP H07190741 A JPH07190741 A JP H07190741A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
stage
measured
measuring
axis
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33301793A
Other languages
Japanese (ja)
Inventor
Kunio Koyabu
Koji Matsunaga
国夫 小薮
光司 松永
Original Assignee
Nippon Telegr & Teleph Corp <Ntt>
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To enhance measuring accuracy in a simple constitution by measuring in advance a relation between the position of each stage, and each image at the aforesaid positions, or each error in posture for a measured object, and thereby removing errors made at the time of measurement based on the aforesaid relation.
CONSTITUTION: Each coordinate of three marks MA through MC in the Z direction out of marks for the four corners of a two dimensional measuring reference scale 4, is obtained with X and Y axis stages 8 and 6 driven, based on the obtained coordinates, a parallel adjustment for the X Y scanning surface of the scale 4 and a photographing optical system is carried out, and the adjustment of a rotating angle around a Z axis for a Z axis (a Y axis) is also carried out, so that the relative error in posture between the stages 6 and 8 is thereby corrected. Next, the positional coordinate of each mark in the X direction from the mark MA is measured the difference between each aforesaid measured coordinate and the coordinate of each mark which is accurately measured in advance, is stored as measuring errors which depend on the posture of each stage 6 and 8 at the positions of the respective marks. In a practical measurement, a corrected value where each corresponding measuring error is added to each measured value at the measuring positions of the stages 6 and measured value where each measuring error due to the posture of each stage 6 and 8 is removed.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は画像処理とステージを組み合わせた光学的測定法において、簡易な装置構成により高精度測定を可能にするための測定誤差補正法に関するものである。 The present invention relates in an optical measuring method that combines image processing and the stage, to a measurement error correcting method for enabling high-precision measurement by a simple device configuration.

【0002】 [0002]

【従来の技術】従来、高精度で広い範囲を対象とする測定装置では、被測定物の像情報等を得る測定手段(例えば撮像用光学系と画像処理を行う光学的方法)と被測定物又は測定手段を移動するための高精度ステージの組合せは必須で、さらに測定を自動化するためにパソコン等を用いた構成となっている。 Conventionally, a measuring device intended for a wide range with high accuracy, measuring means for obtaining such image information of the object and the object to be measured (e.g., optical methods of performing imaging optical system and the image processing) or a combination of high-precision stage for moving the measuring unit is required and has a configuration using a personal computer or the like to automate further measurements. このような装置の高精度測定では、レーザ干渉計やリニアエンコーダでステージの移動方向における移動量を高精度で測定する方法が採用されていたが、ステージの移動に伴う姿勢の変化に依存した測定誤差の影響については、その補正が行われていなかった。 The high-precision measurement of such a device, measuring a method of measuring the movement amount in the movement direction of the stage with a laser interferometer or linear encoder with high precision has been adopted, which depends on a change in posture due to the movement of the stage the effect of the error, the correction has not been done.

【0003】 [0003]

【発明が解決しようとする課題】ステージの移動で生じるステージ姿勢の変化による測定誤差への影響を図2に示す。 Figure 2 shows the influence of the measurement error due to the change of the stage position caused by movement of the stage [0005]. ここで、ステージ2の姿勢ベクトルをP、撮像用光学系1の光軸姿勢ベクトルをSとし、移動前と移動後に対応する各ベクトルにはそれぞれ添字( A )( B )をつけて表示した。 Here, the attitude vector of the stage 2 and P, and optical axis orientation vector of the imaging optical system 1 and S, in each vector corresponding to before and after the movement and displayed with the suffix (A) (B), respectively.

【0004】撮像用光学系1を搭載したステージ2は、 [0004] Stage 2 equipped with an imaging optical system 1,
被測定物3のマークM Aが撮像用光学系1の光軸S Aと一致するように位置Aで静止していて、ステージ2の姿勢ベクトルP AはY軸と平行とする。 Mark M A of the object 3 is not stationary at position A to coincide with the optical axis S A of the imaging optical system 1, the posture vector P A stage 2 is parallel to the Y axis. 次に、二つのマークM AとM Bに対して、M AとM Bの間隔と同じ距離だけ平行にステージ2が移動して位置Bで静止したとき、 Next, for the two marks M A and M B, when M A and M equal distance parallel to the stage 2 to the distance B is stationary at the position B to move,
姿勢ベクトルP Bは姿勢ベクトルP Aに対して角度θ傾いているので、光軸ベクトルS BはマークM Bと一致しない。 Since the posture vectors P B is inclined an angle θ with respect to the posture vector P A, the optical axis vector S B do not coincide with the mark M B. この原因はステージ構成部品の加工精度や組立精度の影響、荷重重心に対する駆動力の作用位置のずれ、 This causes the influence of the machining accuracy and assembly accuracy of the stage components, displacement of the working position of the drive force with respect to the load center of gravity,
摺動部での摩擦力の不均一性、等の機械的要因に基づくステージ移動の非直線性によるものである。 Non-uniformity of the frictional force at the sliding portion, is due to non-linearity of the stage movement based on mechanical factors and the like.

【0005】このときの姿勢変化による測定誤差をベクトルで表したものを図3に示す。 [0005] indicates a measurement error caused by a change in the posture of the case in Figure 3 a representation vector. いま、移動前の姿勢ベクトルP AはY軸と、光軸ベクトルS AはZ軸とそれぞれ一致しており、ステージ2の移動後の姿勢ベクトルP Now, posture vector P A before moving the Y-axis, the optical axis vector S A are consistent respectively and the Z-axis, the attitude vector P after the movement of the stage 2
BはベクトルP Aに対して角度θ傾き、この結果として光軸ベクトルS BもベクトルS Aに対して同じ角度傾斜したとすると、マークM Bは、姿勢ベクトルP Bと光軸ベクトルS Bとの合成で決まる位置に存在するように見える。 B is an angle θ inclined relative vector P A, this results in an even optical axis vector S B were the same angle inclined with respect to the vector S A, the mark M B is the attitude vector P B and the optical axis vector S B It appears to be present in determined positions of the synthesis. すなわち、マークM Bの測定誤差は座標原点Oと合成ベクトルの先端を結ぶ誤差ベクトルRに等しく、このときのX,Y,Z方向のずれ量は次式で与えられる。 That is, the measurement error of the mark M B is equal to the error vector R connecting the tip of the coordinate origin O and the resultant vector, X in this case, Y, the deviation amount in the Z direction is given by the following equation.

【0006】 R X =R cosβ sinα …(1) R Y =R cosβ …(2) R Z =R cosβ cosα …(3) ここで、角度βは誤差ベクトルRとXZ面の交差角を、 [0006] R X = R cosβ sinα ... ( 1) R Y = R cosβ ... (2) R Z = R cosβ cosα ... (3) where the angle β the angle of intersection error vector R and the XZ plane,
角度αは誤差ベクトルRのXZ面への写像ベクトルR′ Angle α is the mapping vector R to the XZ plane of the error vector R '
と光軸ベクトルS Aの交差角である。 That the intersection angle of the optical axis vector S A.

【0007】一方、撮像用光学系を固定して被測定物を移動させても、ステージの移動に伴う被測定物の姿勢変化は起きる。 On the other hand, be moved object to be measured by fixing the optical system for imaging, the posture change of the object caused by the movement of the stage occurs. 撮像用光学系の移動と被測定物を移動させたときの相違は、ステージの回転中心(図2のP点)から被測定対象までの距離(前述の誤差ベクトルRの長さに対応する)が異なり、それは前者の方が後者よりも長くなることである。 Difference when moving the moving and the object to be measured of the imaging optics (corresponding to the length of the error vector R described above) the distance to the object to be measured from the rotational center of the stage (P point of Fig. 2) is different, it is that the former is longer than the latter. 測定誤差の観点からは被測定物を移動させる方が有利であるが、反面、被測定物を移動することが好ましくない場合もあるので、一概にどちらが良いとは言えない。 Although from the point of view of measurement errors it is advantageous to move the object to be measured, the other hand, since it is sometimes not desirable to move the object to be measured, it can not be said categorically Which is better. いずれにしても、ステージの移動に伴う姿勢変化の影響による測定誤差は避けられない。 In any case, the measurement error can not be avoided due to the influence of the attitude change with the movement of the stage.

【0008】本発明は上記の事情に鑑みてなされたもので、リニアエンコーダとステージを組み合わせた従来の簡易構成のまま、新たに高精度の基準スケールを用いてステージの停止位置とその位置に対応したステージの姿勢変化を読み取ってその値をパソコンに記憶しておき、 [0008] The present invention has been made in view of the above circumstances, we remain of the conventional simple configuration which combines the linear encoder and the stage, corresponding to a stop position of the stage and its location using the reference scale new high precision stores the value to the computer to read the change in the posture of the stage,
実際の測定ではこの値を使って測定誤差を補正する測定誤差補正法を提供することを目的とする。 In actual measurement and to provide a measurement error correcting method for correcting a measurement error using this value.

【0009】 [0009]

【課題を解決するための手段】上記目的を達成するために本発明は、撮像用光学系、ステージおよび制御用パソコンを含んで構成される光学的測定法において、該撮像用光学系もしくは被測定物を搭載したステージの移動で生じる該撮像用光学系で捕らえた像もしくは被測定物の姿勢誤差に対し、該ステージの位置とその位置における像もしくは被測定物の姿勢誤差の関係を予め測定し、この関係により測定における誤差を制御用パソコンで除去することを特徴とする。 To accomplish the above object In order to achieve the above, the imaging optical system in the optical measuring method configured to include a stage and a control computer, the optical system or the measured for imaging things to attitude error of captured image or the object to be measured is for imaging optical system caused by the movement of the mounted stage, previously measured relationship attitude error of the image or object to be measured at the location and the location of the stage , and removing the control PC of the error in the measurement by this relationship.

【0010】 [0010]

【作用】上記手段により本発明は、マークM Bの測定誤差は、Rと角度α,βの値が明らかになれば(1)〜 SUMMARY OF invention by the means, the measurement error of the mark M B is, if the apparent value of R and the angle α, β (1) ~
(3)式から計算で求められるが、これらの値を実測で求めることは困難である。 (3) it is calculated from equation, it is difficult to obtain these values ​​in the actual measurement. そこで、複数のマークを有する基準スケールを置いてこのマーク位置を測定することにより、予め他の方法で高精度に測定された既知のマーク位置と本装置で測定したマーク位置を比較した両者の差が、ステージの停止位置での姿勢による測定誤差として求められる。 Therefore, by measuring this mark located at a reference scale having a plurality of marks, a difference between the two comparing mark position measured in advance another known mark position and the apparatus is measured with high accuracy in a way There is obtained as a measurement error due to the attitude in the stop position of the stage.

【0011】この方法では、測定のために停止するステージの位置とその位置におけるステージの姿勢が1対1 [0011] In this way, the attitude of the stage 1 pair in position and its position of the stage to be stopped for measurement 1
に対応しているので、ステージ停止位置をできるだけ小さな間隔で測定することが重要である。 Since then corresponds to, it is important to measure the stage stop positions possible by a small distance.

【0012】 [0012]

【実施例】以下図面を参照して本発明の一実施例を詳細に説明する。 An embodiment of the present invention with reference to the EXAMPLES Hereinafter drawings will be described in detail.

【0013】図1は二次元配列の位置測定を行うための装置構成で、4は二次元測定用基準スケール、5は互いに直交する三つの角度を調整できるゴニオステージ、1 [0013] Figure 1 is a device arrangement for performing position measurements of a two-dimensional array, two-dimensional measurement reference scale 4, goniometer can be adjusted to three angles orthogonal to each other 5, 1
は撮像用光学系、6はY軸ステージ、7はY軸リニアエンコーダ、8はX軸ステージ、9はX軸リニアエンコーダ、10はZ軸ステージ、11はZ軸リニアエンコーダ、である。 The imaging optical system 6 is Y-axis stage, the 7 Y axis linear encoders, the 8 X-axis stage, the 9 X axis linear encoder, the 10 Z-axis stage, the 11 is the Z-axis linear encoder.

【0014】ステージの姿勢誤差補正を行うには、まず始めに二次元測定用基準スケール3と撮像用光学系1のXY走査面との平行調整、およびX軸(又はY軸)のZ [0014] To perform the attitude error compensation of the stage, first Z of Introduction parallel adjustment of the two-dimensional measurement reference scale 3 and the XY scanning plane of the imaging optical system 1, and the X-axis (or Y-axis)
軸(撮像用光学系1と平行)回りの回転角の調整を行い、両者の相対的な姿勢誤差を補正する必要がある。 To adjust the axis (parallel to the imaging optical system 1) around the rotation angle, it is necessary to correct the relative attitude errors of both.

【0015】平行度の調整は、X軸ステージ8とY軸ステージ6を駆動して二次元測定用基準スケール4の四隅に形成された四つのうち三つのマーク(M A ,M B ,M [0015] Adjustment of the parallelism, X-axis stage 8 and Y-axis stage 6 is driven to the two-dimensional measurement reference scale 4 of four corners formed four of three marks (M A, M B, M
c :マーク間隔は30mm)について、Z方向の位置座標を求める。 c: mark spacing for 30 mm), obtaining the position coordinates in the Z direction. もしマークが撮像用光学系1の焦点深度から外れている場合には焦点深度内にマークをとらえるようにZ軸ステージを移動し、その移動量をZ軸リニアエンコーダで読み取る。 If the mark is moved in the Z-axis stage to capture the mark within the depth of focus when deviates from the focal depth of the imaging optical system 1, read the amount of movement in the Z-axis linear encoder. この3つのマークのZ座標から、 This three marks of Z coordinates,
撮像用光学系1のXY走査面に対する二次元測定用基準スケール4の平行度の誤差とその方向を知ることができる。 It is possible to know the error and its direction of the two-dimensional parallelism of the measurement reference scale 4 against XY scanning plane of the optical system 1 for imaging. 一方、Z軸回りの回転角も、三つのマーク測定で3 On the other hand, the rotation angle of the Z axis, 3 in three mark measurement
0mmのX方向(又はY方向)の移動で生じるY方向(又はX方向)の位置ずれから求められる。 Obtained from positional displacement in the Y direction caused by movement of 0mm in the X direction (or Y direction) (or X direction).

【0016】このようにして求められた平行度の誤差とZ軸回りの回転角は、ゴニオステージ5を駆動して二次元測定用基準スケール4の姿勢を直接調整する。 The error and Z axis of the rotation angle of parallelism obtained in this way, by driving the goniometer 5 for adjusting the attitude of the two-dimensional measurement reference scale 4 directly. この測定装置には、撮像用光学系1の焦点深度が約20μm、 The measuring device, the depth of focus of about 20μm of the imaging optical system 1,
ステージの最大姿勢誤差は約2μm程度存在するので、 Since the maximum attitude error of the stage is present in about 2μm,
この調整段階で平行度が0.7mrad(20/300 Parallelism In this adjustment step 0.7mrad (20/300
00)、回転角は0.02mrad(2/30000) 00), the angle of rotation 0.02mrad (2/30000)
の誤差を含むことになる。 It will contain the error.

【0017】次に、マークM AからX(+)方向に沿ってマークを測定していき、端のマークM Bに到達するとY方向にマーク一つ移動して、今度はX(−)方向に再びマーク位置を測定する。 Next, we measured the marks along the mark M A to X (+) direction, mark one moves in the Y direction and reaches the mark M B of the end turn X (-) direction again to measure the mark position to. この操作を順次繰り返し、全てのマーク位置を測定することによって、それぞれのマークに対応した位置におけるステージの姿勢に依存した測定誤差が求められる。 This operation is sequentially repeated, and by measuring all the mark position measurement error that is dependent on the attitude of the stage at the position corresponding to the respective marks are determined.

【0018】ここで用いた二次元測定用基準スケールは、LSI半導体プロセスで使われているホトマスクと同じ方法で作製し、250μm間隔で二次元に配列されているマークの位置は高精度のレーザ干渉計で0.1μ [0018] Here, two-dimensional measurement reference scale used is prepared in the same manner as the photomask being used in LSI semiconductor process, the position of the mark are arranged two-dimensionally at 250μm intervals laser interferometer precision 0.1μ a total of
mの精度で測定されたものである。 Those measured in m accuracy. この基準スケールを用いたステージの姿勢による具体的な測定誤差の求め方は、次のようにして行う。 Specific Determination of the measurement error due to the attitude of the stage using the reference scale is performed as follows.

【0019】最初のマークM Aが撮像用光学系1の中心と一致するように位置決めして、この位置における測定誤差のない基準点とする。 [0019] The first mark M A is positioned to coincide with the center of the imaging optical system 1, and the reference point with no measurement error in this position. 次に2番目のマークM 2を測定するためにステージはX(+)方向に250μm移動して、撮像用光学系1でマークM 2の位置座標(X 2 Then the stage for measuring the second mark M 2 to 250μm moved in X (+) direction, the position coordinates (X 2 of the mark M 2 by the imaging optical system 1,
2 )を測定する。 Y 2) is measured. この位置座標(X 2 ,Y 2 )には、 The position coordinates (X 2, Y 2),
Z軸回りの回転角の調整で除去できなかった誤差0.0 Error could not be removed by adjusting the rotation angle around the Z-axis 0.0
2mradの影響が含まれているが、その量は約0.0 Although the influence of 2mrad is included, the amount is about 0.0
2μm(250μm×2/30000)と小さく問題にはならない。 2μm (250μm × 2/30000) and small not a problem. マークM 2の位置座標(X 2 ,Y 2 )を二次元測定用基準スケールを予め高精度のレーザ干渉計で測定しておいた座標(x 2 ,y 2 )と比較し、両者の差Δ x2 (=X 2 −x 2 ),Δ y2 (=Y 2 −y 2 )が前記(1)〜(3)式で説明したステージの姿勢による測定誤差R x ,R yと同じである。 Compared with the mark M 2 coordinates (X 2, Y 2) coordinates had been determined a two-dimensional measurement reference scale advance with high precision laser interferometer (x 2, y 2), the difference therebetween Δ x2 (= X 2 -x 2) , the same as the Δ y2 (= Y 2 -y 2 ) is the (1) to (3) measurement error R x according to the posture of the stage described by the formula, R y. 3番目以降のマークについても同様にして、それぞれの位置(X n ,Y n )とその位置に対応した測定誤差(Δ Xn ,Δ Yn )が求められる。 For the third and subsequent marked in the same manner, each position (X n, Y n) and the measurement error corresponding to the position (Δ Xn, Δ Yn) are obtained. この位置座標(X n ,Y n )と測定誤差(Δ Xn ,Δ The position coordinates (X n, Y n) and the measurement error (Δ Xn, Δ
Yn )を1セットにして、全てのマークについてこれらの値をパソコンに記憶する。 The Yn) in the one set, and stores these values in the computer for all of the mark.

【0020】この後は実際に測定を行い、例えばステージが位置座標(X j ,Y j )で測定値(x j ,y j )を得たとすると、この位置座標に対応する測定誤差(Δ Xj ,Δ Yj )を測定値(x j ,y j )に加えた補正値(x j +Δ Xj ,y j +Δ Yj )が、ステージの姿勢による測定誤差を除去した測定値となる。 [0020] performs the actually measured after this, for example, a stage position coordinate (X j, Y j) measured value (x j, y j) When was obtained, the measurement error (delta Xj corresponding to the position coordinates , delta Yj) measured values (x j, the correction value added to y j) (x j + Δ Xj, is y j + Δ Yj), a measure to remove the measurement error due to the posture of the stage. ステージが測定のために停止する位置が、予め測定したマークの位置座標と一致しない場合、例えば実際の測定位置座標(X i ,Y Position the stage is stopped for measurement does not match with the position coordinates of the marks measured in advance, for example, the actual measurement position coordinates (X i, Y
i )がマークM j [(X j ,Y j )(Δ Xj ,Δ Yj )]とM K [(X k ,Y k )(Δ Xk ,Δ Yk )]の間で、マークM jとM kの間隔をm対nに内分する位置であるとすれば、内挿法により測定位置座標(X i ,Y i )の測定誤差(Δ Xi ,Δ Yi )は次の式で与えられる。 i) the mark M j [(X j, Y j) (Δ Xj, Δ Yj)] and M K [(X k, Y k) (Δ Xk, Δ Yk)] between the mark M j and M if the distance k between the position which internally divides m pairs n, the measurement error (Δ Xi, Δ Yi) of the measurement position coordinates by interpolation (X i, Y i) is given by the following equation.

【0021】Δ Xi ={m/(m+n)}×Δ Xk +{n/ [0021] Δ Xi = {m / (m + n)} × Δ Xk + {n /
(m+n)}×Δ Xj …(4)Δ Yi ={m/(m+ (M + n)} × Δ Xj ... (4) Δ Yi = {m / (m +
n)}×Δ Yk +{n/(m+n)}×Δ Yj …(5) n)} × Δ Yk + { n / (m + n)} × Δ Yj ... (5)
図4は試作した測定装置の姿勢変化による測定誤差の影響を補正した場合としない場合の二次元配列(図は一次元表示で、X方向の移動に対するY成分の測定値)の測定結果の一例である。 Figure 4 (in Figure one-dimensional display, the measured value of the Y component with respect to the movement in the X-direction) two-dimensional array with and without correcting the influence of a measurement error caused by a change in the posture of the measuring device a prototype example of the measurement results of it is. ステージの姿勢による測定誤差の補正を行わない場合の精度は±1μmであるが、本補正法では±0.3μmの精度が得られ、測定精度の改善効果が確認された。 Although accuracy when not corrected measurement error due to the attitude of the stage is ± 1 [mu] m, in this correction method to obtain the accuracy of ± 0.3 [mu] m, the effect of improving the measurement accuracy was confirmed.

【0022】 [0022]

【発明の効果】以上、説明したように本発明の補正法を用いれば、ステージとリニアエンコーダを組み合わせた簡単な構成で測定精度を大幅に改善することが可能で、 Effect of the Invention above, using the correction method of the present invention, as described, can be greatly improved measurement accuracy with a simple structure that combines the stage and the linear encoder,
これは装置の小型化や製作費の軽減に効果が期待できる。 This can be expected to reduce the size and production cost of the device.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例に係り、二次元配列の測定で姿勢変化による測定誤差補正法を検討するために試作した装置構成を示す斜視図である。 [1] relates to an embodiment of the present invention, is a perspective view showing a prototype device constructed to study the measurement error correction method according to the posture change in the measurement of the two-dimensional array.

【図2】従来の測定装置に係り、ステージの移動に伴う姿勢変化による測定誤差への影響を示す斜視図である。 [2] relates to a conventional measuring apparatus is a perspective view showing the effect of the measurement errors due to the attitude change accompanying the movement of the stage.

【図3】従来の姿勢変化による測定誤差をベクトルで表示した説明図である。 3 is an explanatory diagram displaying the measurement error vector by conventional posture change.

【図4】補正法の有無による測定結果を比較した特性図である。 4 is a characteristic diagram comparing the measurement results with and without the correction method.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…撮像用光学系、2…ステージ、3…被測定物、4… 1 ... an imaging optical system, 2 ... stage, 3 ... DUT, 4 ...
二次元測定用基準スケール、5…ゴニオステージ、6… Two-dimensional measurement reference scale, 5 ... goniometer stage, 6 ...
Y軸ステージ、7…Y軸リニアエンコーダ、8…X軸ステージ、9…X軸リニアエンコーダ、10…Z軸ステージ、11…Z軸リニアエンコーダ。 Y-axis stage, 7 ... Y axis linear encoders, 8 ... X-axis stage, 9 ... X-axis linear encoder, 10 ... Z-axis stage, 11 ... Z axis linear encoder.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 撮像用光学系、ステージおよび制御用パソコンを含んで構成される光学的測定法において、該撮像用光学系もしくは被測定物を搭載したステージの移動で生じる該撮像用光学系で捕らえた像もしくは被測定物の姿勢誤差に対し、該ステージの位置とその位置における像もしくは被測定物の姿勢誤差の関係を予め測定し、 1. A imaging optical system in the optical measuring method configured to include a stage and control PC, in a imaging optical system caused by movement of the stage equipped with imaging optical system or the measured object to attitude error of captured image or object to be measured, it is measured in advance the relationship between the attitude error of the image or object to be measured at the location and the location of the stage,
    この関係により測定における誤差を制御用パソコンで除去することを特徴とする測定誤差補正法。 Measurement error correction method, and removing a computer for controlling the error in the measurement by this relationship.
JP33301793A 1993-12-27 1993-12-27 Measuring error correction method Pending JPH07190741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33301793A JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33301793A JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Publications (1)

Publication Number Publication Date
JPH07190741A true true JPH07190741A (en) 1995-07-28

Family

ID=18261363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33301793A Pending JPH07190741A (en) 1993-12-27 1993-12-27 Measuring error correction method

Country Status (1)

Country Link
JP (1) JPH07190741A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899536A2 (en) * 1997-09-01 1999-03-03 Carl Zeiss Coordinate measuring apparatus or working machine
WO2008026732A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008029758A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
JPWO2008026742A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, exposure method and apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
KR101444735B1 (en) * 2013-05-23 2014-09-26 한국전기연구원 Jig device for measuring displacement of rotor
JP2016502070A (en) * 2012-10-24 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. Object positioning system, a lithographic apparatus, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408530B1 (en) 1997-01-09 2002-06-25 Carl-Zeiss-Stiftung Coordinate measuring instrument or machining equipment
EP0899536A3 (en) * 1997-09-01 1999-11-03 Carl Zeiss Coordinate measuring apparatus or working machine
EP0899536A2 (en) * 1997-09-01 1999-03-03 Carl Zeiss Coordinate measuring apparatus or working machine
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP2013048288A (en) * 2006-08-31 2013-03-07 Nikon Corp System and method of driving movable body, device and method for forming pattern, equipment and method for exposure, device manufacturing method, and determination method
JP2013065866A (en) * 2006-08-31 2013-04-11 Nikon Corp Mobile drive method and mobile drive system, patterning method and device, exposure method and device, and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP5035245B2 (en) * 2006-08-31 2012-09-26 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, exposure method and apparatus, and device manufacturing method
JP2012147012A (en) * 2006-08-31 2012-08-02 Nikon Corp Movable body driving system and movable body driving method, apparatus and method of forming pattern, exposure apparatus and exposure method, device manufacturing method, and determination method
KR101479347B1 (en) * 2006-08-31 2015-01-05 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
KR101493661B1 (en) * 2006-08-31 2015-02-13 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JPWO2008026742A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, exposure method and apparatus, and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
WO2008026739A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006803A (en) * 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026732A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
KR20160043123A (en) * 2006-08-31 2016-04-20 가부시키가이샤 니콘 Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
JPWO2008026732A1 (en) * 2006-08-31 2010-01-21 株式会社ニコン The movable body drive system and the movable body drive method, a pattern forming apparatus and method, an exposure apparatus and method, a device manufacturing method, and determination method
JP2013034014A (en) * 2006-09-01 2013-02-14 Nikon Corp Mobile body drive method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029757A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008029758A1 (en) * 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JPWO2008029757A1 (en) * 2006-09-01 2010-01-21 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, an exposure method and apparatus, device manufacturing method, and a calibration method
JP2015180967A (en) * 2006-09-01 2015-10-15 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
JP2015111695A (en) * 2006-09-01 2015-06-18 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
KR101511929B1 (en) * 2006-09-01 2015-04-13 가부시키가이샤 니콘 Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2015008306A (en) * 2006-09-01 2015-01-15 株式会社ニコン Exposure method, exposure apparatus and device manufacturing method
JP2012169655A (en) * 2006-09-01 2012-09-06 Nikon Corp Mobile body driving method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR101452524B1 (en) * 2006-09-01 2014-10-21 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
KR101444632B1 (en) * 2006-09-01 2014-09-26 가부시키가이샤 니콘 Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
JP5035247B2 (en) * 2006-09-01 2012-09-26 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, an exposure method and apparatus, device manufacturing method, and a calibration method
KR101442449B1 (en) * 2006-09-01 2014-09-22 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
JP5486189B2 (en) * 2006-09-01 2014-05-07 株式会社ニコン Movable body drive method and the movable body drive system, a patterning method and apparatus, exposure method and apparatus, and device manufacturing method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN102252633A (en) * 2011-05-05 2011-11-23 陕西威蓝工业自动化有限公司 Method for measuring track direction and horizontal irregularity based on plot points
US9470988B2 (en) 2012-10-24 2016-10-18 Asml Netherlands B.V. Substrate positioning system, lithographic apparatus and device manufacturing method
JP2016502070A (en) * 2012-10-24 2016-01-21 エーエスエムエル ネザーランズ ビー.ブイ. Object positioning system, a lithographic apparatus, and device manufacturing method
KR101444735B1 (en) * 2013-05-23 2014-09-26 한국전기연구원 Jig device for measuring displacement of rotor

Similar Documents

Publication Publication Date Title
US5125261A (en) Analogue probe calibration
US4676649A (en) Multi-axis gas bearing stage assembly
US6868356B2 (en) Method of and apparatus for correction of coordinate measurement errors due to vibrations in coordinate measuring machines (cmms)
Teoh et al. The measurement uncertainties in the laser interferometry-based sensing and tracking technique
US20080083127A1 (en) Method of calibrating a scanning system
US20090025463A1 (en) Method for Scanning the Surface of a Workpiece
US20030142862A1 (en) Stereoscopic three-dimensional metrology system and method
Fan et al. A 6-degree-of-freedom measurement system for the accuracy of XY stages
US6067165A (en) Position calibrating method for optical measuring apparatus
JP2006301991A (en) Correction method of coordinate conversion function
JPH10260009A (en) Coordinate measuring device
US5850291A (en) Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error
CN1362692A (en) Laser scannning and tracking instrument with six feedom measurement function
CN103447884A (en) Numerical control machine tool translational shaft geometric error measuring device and measuring and identifying method
US6854193B2 (en) Rotating swivel unit for sensors of a coordinate measuring apparatus and method for determining corrective parameters of the rotating swivel unit
US6701268B2 (en) Method for calibrating scanning probe and computer-readable medium therefor
US7131207B2 (en) Workpiece inspection method
JPH1063317A (en) Method for combining coordinate system in robot and visual sensor system
US5456020A (en) Method and sensor for the determination of the position of a position-control element relative to a reference body
Isheil et al. Systematic error correction of a 3D laser scanning measurement device
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
CN101100061A (en) Measuring device and calibration method
Che et al. A ball-target-based extrinsic calibration technique for high-accuracy 3-D metrology using off-the-shelf laser-stripe sensors
JP2000266524A (en) Machine and method for measuring three-dimensional shape
CN1368631A (en) Method for measuring metering error of coordinate measuring apparatus and coordinate measuring apparatus counter