JP2002353105A - Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice - Google Patents

Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice

Info

Publication number
JP2002353105A
JP2002353105A JP2001155095A JP2001155095A JP2002353105A JP 2002353105 A JP2002353105 A JP 2002353105A JP 2001155095 A JP2001155095 A JP 2001155095A JP 2001155095 A JP2001155095 A JP 2001155095A JP 2002353105 A JP2002353105 A JP 2002353105A
Authority
JP
Japan
Prior art keywords
light
mirror
optical system
light source
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001155095A
Other languages
Japanese (ja)
Other versions
JP2002353105A5 (en
Inventor
Hideki Komatsuda
秀基 小松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001155095A priority Critical patent/JP2002353105A/en
Publication of JP2002353105A publication Critical patent/JP2002353105A/en
Publication of JP2002353105A5 publication Critical patent/JP2002353105A5/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an illumination optical apparatus, having higher optical efficiency which can continuously vary the lighting conditions, without using a zoom optical system, an aligner provided with the same illumination optical apparatus and a microdevices utilizing the same aligner. SOLUTION: An optical flux emitted from a light source 1 is incident on a relay optical system 2, made incident on a movable multi-mirror 3, and then made incident to a fly-eye lens 5 via the relay optical system 4 and then uniformly lights a mask 8, after passing condenser optical systems 6, 7. The movable multi-mirror 3 is formed, by including many fine element mirrors 30 arranged as in an array. Each element mirror 30 is movable and individually driven and controlled in the sloping angle and sloping direction. Therefore, the movable multi-mirror 3 divides the light flux into fine units of each reflecting surface and makes the light flux deflect in a predetermined angle in the predetermined direction. Accordingly, the cross-section of the light from the light source can be converted to the desired shape and size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,例えば半導体素子
や液晶表示素子,撮像素子,CCD素子,薄膜磁気ヘッ
ド等のマイクロデバイスを,フォトリソグラフィ技術を
利用して製造する際に用いられるのに好適な照明光学装
置,該照明光学装置を備えた露光装置,マイクロデバイ
スの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in manufacturing micro devices such as semiconductor devices, liquid crystal display devices, image pickup devices, CCD devices, and thin film magnetic heads by using photolithography technology. The present invention relates to a novel illumination optical device, an exposure apparatus having the illumination optical device, and a method for manufacturing a micro device.

【0002】[0002]

【従来の技術】近年,半導体集積回路等のマイクロデバ
イスの回路パターンの微細化が進んでいる。それに伴
い,フォトリソグラフィ工程における照明条件の選択が
非常に重要な要素となり,露光する回路パターンやプロ
セス条件毎に照明条件を変更して露光を行うことが求め
られている。それゆえ,最近の露光装置では一般に,1
つの装置で複数の照明条件を実施可能とし,露光時に最
適な照明条件を選択できるよう構成されている。
2. Description of the Related Art In recent years, circuit patterns of micro devices such as semiconductor integrated circuits have been miniaturized. Accordingly, selection of illumination conditions in a photolithography process is a very important factor, and it is required to perform exposure while changing illumination conditions for each circuit pattern to be exposed and each process condition. Therefore, in recent exposure apparatuses, generally, 1
A plurality of illumination conditions can be implemented by one device, and an optimal illumination condition can be selected at the time of exposure.

【0003】[0003]

【発明が解決しようとする課題】ところで,1つの装置
で複数の照明条件を実施可能とするために,大まかには
以下に述べる2つの方法に分類することができる。1つ
は,照明光学装置内における投影光学系の開口絞り位置
と共役な位置に,複数の開口絞りを切り替え可能なよう
に配置して切り替える方法である。なお,ここでいう照
明光学装置内における投影光学系の開口絞り位置と共役
な位置を,以下では疑似光源位置と称する。というの
は,照明光学系がケーラー照明光学系を実現していると
きは,この疑似光源位置を光源位置と考えることができ
るからである。この方法により,疑似光源位置での光強
度分布が変更可能となり,複数の照明条件を達成可能と
なる。以下,この方法を方法1と称する。
Incidentally, in order to enable a plurality of illumination conditions to be implemented by one device, the illumination conditions can be roughly classified into the following two methods. One is a method of arranging and switching a plurality of aperture stops in a position conjugate to the position of the aperture stop of the projection optical system in the illumination optical device. The position conjugate with the position of the aperture stop of the projection optical system in the illumination optical device here is hereinafter referred to as a pseudo light source position. This is because, when the illumination optical system realizes a Koehler illumination optical system, this pseudo light source position can be considered as a light source position. According to this method, the light intensity distribution at the position of the pseudo light source can be changed, and a plurality of illumination conditions can be achieved. Hereinafter, this method is referred to as method 1.

【0004】方法1は,例えば,円形,輪帯,2極,4
極等の形状の開口絞りを用いて変形照明を行う場合に用
いられる。図8にこのような変形照明を行った場合の照
野の形状の一例を示す。それぞれ,図8(a)は円形,
図8(b)は輪帯,図8(c)は4極形状の開口絞りを
用いた場合の照野の例である。図中の斜線部が照野とな
る。図8(c)における点線は4極が同一輪帯上にある
ことを示すための補助線である。
[0004] Method 1 includes, for example, circular, annular, bipolar,
It is used when performing deformed illumination using an aperture stop having a pole shape or the like. FIG. 8 shows an example of the shape of the illumination field when such modified illumination is performed. FIG. 8A shows a circle,
FIG. 8B shows an example of an illumination field in the case of using a ring zone, and FIG. The shaded area in the figure is the territory. The dotted line in FIG. 8C is an auxiliary line for indicating that the four poles are on the same annular zone.

【0005】もう1つは,光源と疑似光源位置との間の
光学系を切り替える,または光源と疑似光源位置との間
にズーム光学系を配置してズーミングを行う方法であ
る。この方法により,疑似光源位置における光束の形状
を所定の形状にすることができ,複数の照明条件が可能
となる。以下,この方法を方法2と称する。
Another method is to switch the optical system between the light source and the pseudo light source position, or to arrange a zoom optical system between the light source and the pseudo light source position to perform zooming. With this method, the shape of the light beam at the position of the pseudo light source can be made a predetermined shape, and a plurality of illumination conditions can be achieved. Hereinafter, this method is referred to as method 2.

【0006】しかしながら,方法1,2ともに以下に述
べるような欠点を有する。方法1では,複数の所定形状
の開口絞りを用意し,切り替えて用いている。ところ
が,前述のように,フォトリソグラフィ工程では,照明
条件の選択が非常に重要な要素となっており,パターン
やプロセス条件毎に実に細かく照明条件を変更して最適
となる照明条件を選択することが要求される。そのため
には,連続的に照明条件を変更できることが好ましい。
円形開口のみ考えればよい場合には,径を連続的に可変
とすることは可能であり,このような絞りは実際にカメ
ラ等でも用いられている。しかし,実際には円形開口だ
けでなく,上述の既存形状の開口絞り,およびその他の
形状の開口絞りが必要であり,さらにそれらの大きさも
連続的に変更可能であることが要求される。これに対
し,方法1の装置ではあらかじめ用意した絞りしか用い
ることができないため,照明条件を細かく変更したり,
連続的に変更することが極めて困難であり,最新の装置
の要求に対応できなくなりつつある。また,絞りによっ
て遮光するために光効率が悪いという問題がある。
However, both methods 1 and 2 have the following disadvantages. In the method 1, a plurality of aperture stops having a predetermined shape are prepared and switched to be used. However, as mentioned above, the selection of illumination conditions is a very important factor in the photolithography process, and it is necessary to change the illumination conditions for each pattern and process condition in a very fine manner to select the optimal illumination conditions. Is required. For this purpose, it is preferable that the lighting conditions can be changed continuously.
If only a circular aperture is considered, it is possible to make the diameter continuously variable, and such a diaphragm is actually used in a camera or the like. However, in practice, not only a circular aperture but also an aperture stop having the above-described existing shape and an aperture stop having another shape are required, and further, it is required that their sizes can be continuously changed. On the other hand, in the apparatus of Method 1, only the aperture prepared in advance can be used, so that the lighting conditions can be changed finely,
It is extremely difficult to change continuously, and it is becoming impossible to meet the demands of the latest equipment. In addition, there is a problem that light efficiency is poor because light is blocked by the aperture.

【0007】方法2では,光学系を切り替えるもので
は,方法1の絞りを切り替えるもの同様,細かな照明条
件の変更に対応できないという欠点がある。ズーム光学
系を用いるものでは,光学系が複雑である,レンズ枚数
が増加する,光量が低下する,装置劣化速度を加速させ
る,重量が増加する等のズーム光学系の一般特性から発
生する多数の問題があり,露光装置に好適であるとはい
えない。近年では特に,露光波長の短波長化に伴い,レ
ンズの透過率の経時変化による装置の劣化速度の加速が
深刻な問題となりつつある。
[0007] In the method 2, switching the optical system has a drawback in that it cannot cope with a minute change in illumination conditions as in the case of switching the aperture in the method 1. In the case of using a zoom optical system, a large number of general characteristics of the zoom optical system such as a complicated optical system, an increase in the number of lenses, a decrease in the amount of light, an increase in device deterioration speed, an increase in weight, etc. There is a problem and it cannot be said that it is suitable for an exposure apparatus. In recent years, particularly with the shortening of the exposure wavelength, the acceleration of the deterioration rate of the apparatus due to the temporal change of the transmittance of the lens is becoming a serious problem.

【0008】本発明は,このような問題に鑑みてなされ
たものであり,その目的とするところは,ズーム光学系
を用いずに照明条件を連続的に変更可能な光効率の高い
照明光学装置,該照明光学装置を備えた露光装置,該露
光装置を用いたマイクロデバイスの製造方法を提供する
ことにある。
The present invention has been made in view of such a problem, and an object of the present invention is to provide an illumination optical device with high light efficiency capable of continuously changing illumination conditions without using a zoom optical system. An exposure apparatus provided with the illumination optical apparatus, and a method for manufacturing a micro device using the exposure apparatus.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に,本発明の第1発明は,光源からの光に基づいて被照
射面を均一に照明するオプティカルインテグレータと,
前記光源と前記オプティカルインテグレータとの間の光
路中に配置され,前記光源からの光の断面形状を所望の
形状または所望の大きさに変換する光変換手段と,を含
み,前記光変換手段は,アレイ状に配列された多数の微
小な反射面を有する光学素子を含むことを特徴とする照
明光学装置を提供する。ここで,微小な各反射面を所定
方向に,所定角度傾けて配置すれば,光束を反射面毎の
微小単位に分割して,所定方向に,所定角度偏向させる
ことができる。これより,オプティカルインテグレータ
に入射する光束の断面形状を所望の形状または所望の大
きさに変換でき,オプティカルインテグレータ上に所望
の光強度分布を形成することができる。また,光源から
の全ての光を遮光することなく利用できるので,高い光
効率を達成できる。
According to a first aspect of the present invention, there is provided an optical integrator for uniformly illuminating a surface to be irradiated based on light from a light source.
Light conversion means disposed in an optical path between the light source and the optical integrator, for converting a cross-sectional shape of light from the light source into a desired shape or a desired size, the light conversion means comprising: There is provided an illumination optical device including an optical element having a number of minute reflecting surfaces arranged in an array. Here, if each minute reflecting surface is arranged at a predetermined angle in a predetermined direction, the light beam can be divided into minute units for each reflecting surface and deflected in a predetermined direction by a predetermined angle. Thereby, the cross-sectional shape of the light beam incident on the optical integrator can be converted into a desired shape or a desired size, and a desired light intensity distribution can be formed on the optical integrator. In addition, since all light from the light source can be used without being blocked, high light efficiency can be achieved.

【0010】第1発明の好ましい態様によれば,前記多
数の微小な反射面のうちの1部または全てが可動に構成
され,前記光源からの光の断面形状を所望の形状または
所望の大きさに変換するために,前記多数の微小な反射
面のうちの1部または全ての動きを制御する制御手段を
さらに含む。かかる構成によれば,微小な反射面を制御
することにより,オプティカルインテグレータに入射す
る光束の断面形状または大きさを様々に変換することが
でき,1つの露光装置で様々な照明条件を達成すること
ができる。また,反射面の動きを連続的に変更可能なよ
うに構成すれば,ズーム光学系を用いずに,連続的に照
明条件を変更することが可能となる。
According to a preferred aspect of the first invention, one or all of the plurality of minute reflecting surfaces are configured to be movable, and the sectional shape of light from the light source is changed to a desired shape or a desired size. And a control means for controlling the movement of a part or all of the plurality of minute reflecting surfaces in order to convert the light into the light. According to this configuration, by controlling the minute reflecting surface, the cross-sectional shape or the size of the light beam incident on the optical integrator can be variously converted, and various illumination conditions can be achieved with one exposure apparatus. Can be. If the movement of the reflecting surface is configured to be continuously changeable, it is possible to continuously change the illumination conditions without using the zoom optical system.

【0011】また,第1発明の好ましい態様によれば,
前記多数の微小な反射面のうちの1部または全ては,傾
斜角と傾斜方向との少なくとも一方がそれぞれ変更可能
に構成されている。傾斜角と傾斜方向の双方を変更パラ
メータと考えることにより,照明条件を多様に変更する
ことが可能となる。
According to a preferred aspect of the first invention,
At least one of the inclination angle and the inclination direction of one or all of the plurality of minute reflection surfaces is configured to be changeable. By considering both the tilt angle and the tilt direction as the change parameters, it is possible to change the illumination conditions in various ways.

【0012】また,第1発明の好ましい態様によれば,
前記多数の微小な反射面のうちの少なくとも1つは非平
面である。非平面の面形状としては,凹面,凸面,球
面,楕円面,放物面,等,様々な面形状が考えられる。
かかる構成によれば,微小単位に分割された光束それぞ
れに収束性,あるいは発散性をもたせることができる。
これより,さらに自由に光を変換することができ,より
多様な照明条件を達成できる。
According to a preferred aspect of the first invention,
At least one of the plurality of minute reflecting surfaces is non-planar. As the non-planar surface shape, various surface shapes such as a concave surface, a convex surface, a spherical surface, an elliptical surface, a paraboloid, and the like can be considered.
According to this configuration, each of the light beams divided into minute units can have convergence or divergence.
Thus, light can be more freely converted, and more diverse lighting conditions can be achieved.

【0013】上記のような光変換手段としては,例えば
テキサスインスツルメンツ社が開発したDMD(Dig
ital Micromirror Device)
(商標)を使用することができる。DMDは基板上に多
数の微小反射ミラーが碁盤の目状に配列され,個々のミ
ラーの傾斜が個別に駆動制御されるよう構成された素子
である。
As the light conversion means as described above, for example, a DMD (Dig) developed by Texas Instruments
ital Micromirror Device)
(Trademark) can be used. The DMD is an element in which a number of micro-reflection mirrors are arranged in a grid pattern on a substrate, and the inclination of each mirror is individually controlled.

【0014】また,本発明の第2の発明は,上記記載の
照明光学装置と,所定のパターンを有するマスクを前記
被照射面に設定するマスク保持手段と,前記マスクのパ
ターン像を感光性基板に投影する投影光学系と,前記感
光性基板を保持する基板保持手段とを含むことを特徴と
する露光装置を提供する。かかる構成によれば,パター
ンやプロセス条件毎に細かく照明条件を変更でき,最適
な照明条件で露光可能な露光装置を提供できる。
According to a second aspect of the present invention, there is provided the illumination optical device described above, a mask holding means for setting a mask having a predetermined pattern on the surface to be illuminated, and a pattern image of the mask on a photosensitive substrate. And a substrate holding means for holding the photosensitive substrate. According to such a configuration, it is possible to provide an exposure apparatus capable of finely changing illumination conditions for each pattern or process condition, and performing exposure under optimum illumination conditions.

【0015】また,本発明の第3の発明は,上記記載の
露光装置を用いて前記マスクに形成されたパターンを前
記基板上に露光する露光工程と,前記露光工程にて露光
された前記基板を現像する現像工程とを含むことを特徴
とするマイクロデバイスの製造方法を提供する。かかる
構成によれば,最適な照明条件でパターンを露光できる
ので,良好にパターン形成でき,製品の歩留まり向上に
貢献できる。
According to a third aspect of the present invention, there is provided an exposure step of exposing a pattern formed on the mask onto the substrate using the exposure apparatus described above, and a step of exposing the substrate exposed in the exposure step. And a developing step of developing the microdevice. According to such a configuration, the pattern can be exposed under the optimum illumination condition, so that the pattern can be formed well and the yield of the product can be improved.

【0016】[0016]

【発明の実施の形態】以下,図面に基づいて本発明の実
施の形態を詳細に説明する。なお,以下の説明及び添付
図面において,略同一の機能及び構成を有する構成要素
については,同一符号を付すことにより,重複説明を省
略する。図1は,本発明の第1の実施の形態に係る露光
装置の概略構成図である。図1を参照しながら,本露光
装置の概略構成について説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description and the accompanying drawings, components having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a schematic configuration diagram of an exposure apparatus according to a first embodiment of the present invention. A schematic configuration of the present exposure apparatus will be described with reference to FIG.

【0017】光源1から射出された光束はリレー光学系
2に入射する。リレー光学系2は,コリメート光学系を
構成していてもよく,その場合は,光束は平行光に変換
されて射出する。その後,光束は可動マルチミラー3に
入射する。可動マルチミラー3は,アレイ状に配列され
た多数の微小な反射面を有する素子から構成される。可
動マルチミラー3は,例えばDMDによって構成されて
いてもく,後で詳述するようにここでは光束変換素子と
しての機能を有する。
The light beam emitted from the light source 1 enters the relay optical system 2. The relay optical system 2 may constitute a collimating optical system. In this case, the light beam is converted into parallel light and emitted. Thereafter, the light beam enters the movable multi-mirror 3. The movable multi-mirror 3 is composed of elements having a large number of minute reflecting surfaces arranged in an array. The movable multi-mirror 3 may be constituted by, for example, a DMD, and has a function as a light beam conversion element here, as described later in detail.

【0018】可動マルチミラー3から射出した光束は,
リレー光学系4を介してオプティカルインテグレータと
してのフライアイレンズ5に入射する。ここでは,リレ
ー光学系4の前側焦点位置に可動マルチミラー3が配置
されているが,この配置は必ずしも限定的なものではな
い。リレー光学系4は可動マルチミラー3により変換さ
れた光束をフライアイレンズ5に伝達する機能を果た
す。また,フライアイレンズ5はここでは,前述の疑似
光源位置に配置されているが,この配置は必ずしも限定
的なものではなく,疑似光源位置からデフォーカスした
位置に配置されていてもよい。フライアイレンズ5は,
多数のレンズエレメントを二次元的に配列することによ
り構成されている。フライアイレンズ5に入射した光束
は,この多数のレンズエレメントにより二次元的に分割
され,フライアイレンズ5の後側焦点面に多数の光源像
を形成する。
The light beam emitted from the movable multi-mirror 3 is
The light enters a fly-eye lens 5 as an optical integrator via a relay optical system 4. Here, the movable multi-mirror 3 is arranged at the front focal position of the relay optical system 4, but this arrangement is not necessarily limited. The relay optical system 4 has a function of transmitting the light beam converted by the movable multi-mirror 3 to the fly-eye lens 5. Although the fly's eye lens 5 is arranged here at the above-described pseudo light source position, this arrangement is not necessarily limited, and may be arranged at a position defocused from the pseudo light source position. Fly-eye lens 5
It is constituted by arranging a large number of lens elements two-dimensionally. The light beam incident on the fly-eye lens 5 is two-dimensionally split by the multiple lens elements, and forms a large number of light source images on the rear focal plane of the fly-eye lens 5.

【0019】この多数の光源像からの光束は,コンデン
サ光学系6を透過した後,視野絞りFSにより制限され
る。視野絞りFSは露光時の視野を規定するものであ
る。その後,光束はコンデンサ光学系7および折り返し
ミラーM1を経て,所定の回路パターンが形成されたマ
スク8を均一に照明する。マスク8を透過した光束は,
投影光学系9を介してレジストを塗布した基板であるウ
エハ10に達し,ウエハ10上にはマスク8の回路パタ
ーンが形成される。図中のASは投影光学系の開口絞り
位置である。ここで,マスク8は不図示のマスクステー
ジに保持されており,ウエハ10は不図示のウエハステ
ージに保持されている。マスクステージ及びウエハステ
ージは共に二次元的に移動可能であり,マスクステージ
及びウエハステージを介してマスク8及びウエハ10を
所定方向へ移動させることによって,マスク8の全面の
パターンが投影光学系9を介してウエハ10上に転写露
光される。
After passing through the condenser optical system 6, the light beams from the multiple light source images are limited by the field stop FS. The field stop FS defines the field of view at the time of exposure. Thereafter, the light beam passes through the condenser optical system 7 and the turning mirror M1, and uniformly illuminates the mask 8 on which a predetermined circuit pattern is formed. The luminous flux transmitted through the mask 8 is
Through the projection optical system 9, the wafer reaches a wafer 10, which is a substrate on which a resist is applied, and a circuit pattern of a mask 8 is formed on the wafer 10. AS in the figure is an aperture stop position of the projection optical system. Here, the mask 8 is held on a mask stage (not shown), and the wafer 10 is held on a wafer stage (not shown). Both the mask stage and the wafer stage can be moved two-dimensionally, and by moving the mask 8 and the wafer 10 in a predetermined direction via the mask stage and the wafer stage, the pattern on the entire surface of the mask 8 changes the projection optical system 9. The wafer is transferred and exposed on the wafer 10.

【0020】次に,可動マルチミラー3について詳細に
述べる。図2に可動マルチミラー3の部分斜視図を示
す。可動マルチミラー3は,図2に示すように平面形状
の反射面を上面にして敷き詰められた多数の微小な要素
ミラー30を含む。図中の斜線は要素ミラー30の側面
を表す。各要素ミラー30は可動であり,その傾斜角お
よび傾斜方向は不図示の制御系により個別に駆動制御さ
れる。ここでは,要素ミラー30の外形は正方形として
いるが,これに限定するものではない。ただし,光利用
効率の観点から,隙間無く配列可能な形状が好ましい。
また,隣接する要素ミラー30間の間隔は必要最小限と
することが好ましい。さらにまた,照明条件の細かな変
更を可能にするために,要素ミラー30は可能な限り小
さいことが好ましい。
Next, the movable multi-mirror 3 will be described in detail. FIG. 2 shows a partial perspective view of the movable multi-mirror 3. As shown in FIG. 2, the movable multi-mirror 3 includes a large number of minute element mirrors 30 laid with the flat reflecting surface as the upper surface. The hatched lines in the figure represent the side surfaces of the element mirror 30. Each element mirror 30 is movable, and its tilt angle and tilt direction are individually driven and controlled by a control system (not shown). Here, the outer shape of the element mirror 30 is a square, but it is not limited to this. However, from the viewpoint of light use efficiency, a shape that can be arranged without gaps is preferable.
Further, it is preferable that the interval between the adjacent element mirrors 30 is set to a necessary minimum. Furthermore, it is preferred that the element mirror 30 be as small as possible, in order to allow fine changes in the lighting conditions.

【0021】次に,図3を参照しながら,可動マルチミ
ラー3の駆動機構の一例について説明する。図3は駆動
機構の概略構成を示す斜視図である。図3に示すよう
に,要素ミラー30は反射面を上面にしてヒンジ部材3
2により支持されている。ヒンジ部材32の長軸方向は
要素ミラー30の対角線方向と一致しており,この長軸
方向と直交しかつ反射面に平行な方向に沿ってヒンジ部
材32から4つの電極34が突設されている。ヒンジ部
材32の両端は支柱部材36の上端において,長軸方向
と一致する方向を揺動軸線方向として揺動可能に支持さ
れている。支柱部材36は基板38上に設置されてい
る。基板38上には,4つの電極34にそれぞれ対応す
る位置に4つの電極40が形成されている。
Next, an example of a driving mechanism of the movable multi-mirror 3 will be described with reference to FIG. FIG. 3 is a perspective view showing a schematic configuration of the driving mechanism. As shown in FIG. 3, the element mirror 30 has the reflecting surface facing upward and the hinge member 3
2 supported. The major axis direction of the hinge member 32 coincides with the diagonal direction of the element mirror 30, and four electrodes 34 project from the hinge member 32 along a direction orthogonal to the major axis direction and parallel to the reflection surface. I have. Both ends of the hinge member 32 are swingably supported at the upper end of the support member 36 with the direction coinciding with the long axis direction as the swing axis direction. The support member 36 is provided on a substrate 38. Four electrodes 40 are formed on the substrate 38 at positions respectively corresponding to the four electrodes 34.

【0022】対応する電極34と40との間に電位差を
付与し,電極間の電位差に基づいて作用する静電力によ
って,ヒンジ部材32を揺動させることができる。ヒン
ジ部材32の揺動に伴い,ヒンジ部材32により支持さ
れている要素ミラー30も揺動する。このような手段を
用いて,要素ミラー30の傾斜角度と傾斜方向を電気的
に容易に制御することができる。ここでは,1つの要素
ミラー30を例示して説明したが,他の要素ミラー30
についても同様の構成となっている。図4は複数の要素
ミラー30と前述の駆動機構が基板上に配列された様子
を示す断面図である。
By applying a potential difference between the corresponding electrodes 34 and 40, the hinge member 32 can be swung by an electrostatic force acting on the basis of the potential difference between the electrodes. As the hinge member 32 swings, the element mirror 30 supported by the hinge member 32 also swings. By using such means, the inclination angle and the inclination direction of the element mirror 30 can be electrically easily controlled. Here, one element mirror 30 has been described as an example.
Has the same configuration. FIG. 4 is a cross-sectional view showing a state in which a plurality of element mirrors 30 and the aforementioned driving mechanism are arranged on a substrate.

【0023】可動マルチミラー3に入射した光は要素ミ
ラー30を単位として分割され,各要素ミラー30の傾
斜方向,傾斜角に従い,所定の方向に所定角度をもって
偏向される。各要素ミラー30の動きを制御して所定の
傾斜方向,傾斜角となるよう設定することにより,可動
マルチミラー3を射出する光束を自由に制御することが
できる。すなわち,可動マルチミラー3は光束の断面形
状を所望の形状および大きさに変換可能な光束変換素子
としての機能を果たす。よって,可動マルチミラー3に
より,フライアイレンズ5上に所望の光強度分布の光束
を形成することが可能となる。ここで,各要素ミラー3
0の動きを連続的に変更可能なように構成しておけば,
連続的に照明条件を変更することができる。例えば,従
来の露光装置で用いられていた円形照明,および輪帯,
2極,4極等の変形照明も達成することができ,各照明
においてその照野の大きさを連続的に変更することも可
能である。
The light incident on the movable multi-mirror 3 is split in units of the element mirrors 30, and is deflected at a predetermined angle in a predetermined direction according to the tilt direction and the tilt angle of each element mirror 30. By controlling the movement of each of the element mirrors 30 and setting them so as to have a predetermined inclination direction and inclination angle, the light beam emitted from the movable multi-mirror 3 can be freely controlled. That is, the movable multi-mirror 3 functions as a light beam conversion element that can convert the cross-sectional shape of the light beam into a desired shape and size. Therefore, a light beam having a desired light intensity distribution can be formed on the fly-eye lens 5 by the movable multi-mirror 3. Here, each element mirror 3
If it is configured so that the movement of 0 can be changed continuously,
The lighting conditions can be changed continuously. For example, circular illumination used in conventional exposure equipment,
It is possible to achieve modified illumination such as two poles or four poles, and it is also possible to continuously change the size of the illumination field in each illumination.

【0024】本実施の形態によれば,光源1とフライア
イレンズ5との間の光路中に前述のような可動マルチミ
ラー3を配置したことにより,以下のような多数の効果
が得られる。フライアイレンズ5上に所望の光強度分布
の光束を形成することが可能となり,種種の変形照明に
対応可能である。しかも連続的な光束変化が可能である
ため,連続的に照明条件を変更することができる。ま
た,1つの可動マルチミラーで様々な光束形状を形成可
能であるため,従来の複数の絞りを切り替えていた露光
装置で必要とされた複数の絞りを用意する必要もない。
また,絞りによって遮光することなく光束形状を変更可
能であるため,高い光効率が得られる。さらに,ズーム
光学系を必要としないため,ズーム光学系に起因する様
々な問題も回避でき,部品点数も少なく,装置のコンパ
クト化,コスト削減に貢献できる。またさらに,電気的
手段により光束形状を変換できるので,制御が容易であ
り,パターンやプロセス条件の変更に即時に対応でき
る。
According to the present embodiment, the following many effects can be obtained by disposing the movable multi-mirror 3 in the optical path between the light source 1 and the fly-eye lens 5 as described above. It is possible to form a light beam having a desired light intensity distribution on the fly-eye lens 5, and it is possible to cope with various types of deformed illumination. Moreover, since the light flux can be changed continuously, the illumination conditions can be changed continuously. In addition, since a single movable multi-mirror can form various light flux shapes, there is no need to prepare a plurality of apertures required in an exposure apparatus that switches a plurality of apertures in the related art.
Further, since the shape of the light beam can be changed without blocking light by the stop, high light efficiency can be obtained. Furthermore, since a zoom optical system is not required, various problems caused by the zoom optical system can be avoided, the number of parts is small, and the apparatus can be made compact and cost can be reduced. Further, since the shape of the light beam can be converted by electrical means, the control is easy, and it is possible to immediately respond to changes in patterns and process conditions.

【0025】次に,可動マルチミラー3の変形例につい
て述べる。本変形例では要素ミラーのみ構成が異なり,
その他の駆動機構は前述のものと同様である。図5にこ
の変形例の断面図を示す。ここでは,要素ミラー31の
反射面は凹形状の球面である。このような構成を採用す
ることにより,要素ミラー31を単位として分割された
光束に収束性,あるいは発散性をもたせることができ
る。これはリレー光学系4とは独立に作用するものであ
り,光束変換の自由度が高まり,より多様な照明条件を
達成できる。例えば,要素ミラー31単位で分割された
光がフライアイレンズ5の入射面上で所定の広がりをも
つようにすることができ,これはフライアイレンズ5を
通常の位置からデフォーカス位置に配置したのと実質的
に同様の効果が得られる。
Next, a modified example of the movable multi-mirror 3 will be described. In this modification, only the configuration of the element mirror is different.
Other drive mechanisms are the same as those described above. FIG. 5 shows a sectional view of this modification. Here, the reflection surface of the element mirror 31 is a concave spherical surface. By adopting such a configuration, it is possible to impart convergence or divergence to the luminous flux split in units of the element mirror 31. This works independently of the relay optical system 4, so that the degree of freedom of light beam conversion is increased and more various illumination conditions can be achieved. For example, the light split by the unit mirror 31 can be made to have a predetermined spread on the incident surface of the fly-eye lens 5, which is obtained by disposing the fly-eye lens 5 from a normal position to a defocus position. Substantially the same effect as described above can be obtained.

【0026】なお,要素ミラーの反射面の形状は上記例
に限定されるものではない。凸形状であっても良く,ま
た楕円面,放物面,あるいは任意曲面等,用途や装置に
合わせて最適な形状を選ぶことが好ましい。
The shape of the reflecting surface of the element mirror is not limited to the above example. It may be a convex shape, and it is preferable to select an optimum shape such as an elliptical surface, a parabolic surface, or an arbitrary curved surface according to a use or an apparatus.

【0027】図6は,本発明の第2の実施の形態に係る
露光装置の概略構成図である。第1の実施の形態との大
きな相違点は,オプティカルインテグレータに内面反射
型のロッドインテグレータを用いている点である。以
下,この点に注目しながら第2の実施の形態について説
明する。
FIG. 6 is a schematic configuration diagram of an exposure apparatus according to a second embodiment of the present invention. A major difference from the first embodiment is that an internal reflection type rod integrator is used as an optical integrator. Hereinafter, the second embodiment will be described while paying attention to this point.

【0028】光源1から可動マルチミラー3までの光学
系は第1の実施の形態と同じであるため,説明を省略す
る。可動マルチミラー3から射出した光束は,リレー光
学系14を介してオプティカルインテグレータとしての
ロッドインテグレータ15に入射する。ここで,可動マ
ルチミラー3とロッドインテグレータ15の入射面が共
役関係になるよう,リレー光学系14が配置されてい
る。なお,この配置は限定的なものではなく,ロッドイ
ンテグレータ15への入射光束径がロッドインテグレー
タ15の有効径を越えない程度に配置されていればよ
い。あるいは,光量損失を問題にしない場合は,入射光
束径と有効径とを考慮する必要もなく,概ねの位置に配
置されていてもよい。
The optical system from the light source 1 to the movable multi-mirror 3 is the same as in the first embodiment, and the description is omitted. The light beam emitted from the movable multi-mirror 3 enters a rod integrator 15 as an optical integrator via a relay optical system 14. Here, the relay optical system 14 is arranged such that the movable multi-mirror 3 and the incident surface of the rod integrator 15 have a conjugate relationship. Note that this arrangement is not limited, and it is sufficient that the arrangement is such that the diameter of the light beam incident on the rod integrator 15 does not exceed the effective diameter of the rod integrator 15. Alternatively, when the light quantity loss is not a problem, it is not necessary to consider the incident light beam diameter and the effective diameter, and they may be arranged at almost positions.

【0029】ロッドインテグレータ15は内面に反射膜
を形成した中空形状の反射型インテグレータ又は内面反
射型のガラスロッドである。ロッドインテグレータ15
に入射した光束は内面で反射されるかあるいは反射する
ことなく射出端面から射出し,射出端面内は均一性良く
照明される。その後,光束はコンデンサ光学系17およ
び折り返しミラーM1を経て,所定の回路パターンが形
成されたマスク8を均一に照明する。ここで,ロッドイ
ンテグレータ15の射出端面とマスク8が共役関係にな
るよう,コンデンサ光学系17が配置されている。この
配置に関しては,マスク8を照明する照度均一性を確保
するためにある程度の厳密さを必要とする。マスク8を
透過した光束は,投影光学系9を介してレジストを塗布
した基板であるウエハ10に達し,ウエハ10上にはマ
スク8の回路パターンが形成される。
The rod integrator 15 is a hollow reflective integrator having a reflective film formed on the inner surface, or an inner reflective glass rod. Rod integrator 15
Is incident on the exit end face without being reflected or reflected on the inner face, and the inside of the exit end face is uniformly illuminated. After that, the light beam passes through the condenser optical system 17 and the return mirror M1, and uniformly illuminates the mask 8 on which a predetermined circuit pattern is formed. Here, the condenser optical system 17 is arranged so that the exit end face of the rod integrator 15 and the mask 8 have a conjugate relationship. This arrangement requires a certain degree of rigor to ensure uniformity of illuminance for illuminating the mask 8. The light beam transmitted through the mask 8 reaches a wafer 10 as a substrate coated with a resist via a projection optical system 9, and a circuit pattern of the mask 8 is formed on the wafer 10.

【0030】ここで,可動マルチミラー3の構成は第1
の実施の形態と同様である。本実施の形態においても,
可動マルチミラー3は光源からの光束の断面形状を,所
望の形状および大きさに変換して,ロッドインテグレー
タ15に入射する光束に所望の光強度分布をもたせるこ
とができる。よって,各種の変形照明に対応可能であ
り,照明条件を連続的に変更可能であり,第1の実施の
形態と同様の効果が得られる。なお,以上の各実施の形
態では,オプティカルインテグレータとして,フライア
イレンズや対面反射型の光学部材を用いた例を説明した
が,これらに限ることなく,例えば回折光学素子やマイ
クロレンズアイ等をオプティカルインテグレータとして
用いることが可能である。
Here, the configuration of the movable multi-mirror 3 is the first
This is the same as the embodiment. Also in this embodiment,
The movable multi-mirror 3 can convert the cross-sectional shape of the light beam from the light source into a desired shape and size so that the light beam incident on the rod integrator 15 has a desired light intensity distribution. Therefore, it is possible to cope with various types of modified illumination, and it is possible to continuously change the illumination conditions, and the same effect as in the first embodiment can be obtained. In each of the above embodiments, an example is described in which a fly-eye lens or a facing reflection type optical member is used as an optical integrator. However, the present invention is not limited to these, and for example, a diffractive optical element, a micro lens eye, or the like may be used. It can be used as an integrator.

【0031】図7は,以上に述べた露光装置を用いてマ
イクロデバイスを製造する際の動作の一例を示すフロー
チャートである。ここでは上記のマスク8の代わりにレ
チクルを用いる。まず,ステップ101において,1ロ
ットのウエハ10上に金属膜が蒸着される。次のステッ
プ102において,その1ロットのウエハ10上の金属
膜上にフォトレジストが塗布される。その後,ステップ
103において,前記露光装置を用いて,レチクル上の
パターンの像が投影光学系9を介して,その1ロットの
ウエハ10上の各ショット領域に順次露光転写される。
その後,ステップ104において,その1ロットのウエ
ハ10上のフォトレジストの現像が行われた後,ステッ
プ105において,その1ロットのウエハ10上でレジ
ストパターンをマスクとしてエッチングを行うことによ
って,レチクル上のパターンに対応する回路パターン
が,各ウエハ上の各ショット領域に形成される。その
後,さらに上のレイヤーの回路パターンの形成を行う。
以上により,極めて微細な回路を有する半導体素子等の
デバイスが良好に製造される。
FIG. 7 is a flowchart showing an example of an operation when manufacturing a micro device using the above-described exposure apparatus. Here, a reticle is used instead of the mask 8 described above. First, in step 101, a metal film is deposited on one lot of wafers 10. In the next step 102, a photoresist is applied on the metal film on the wafer 10 of the lot. Thereafter, in step 103, the image of the pattern on the reticle is sequentially exposed and transferred to each shot area on the wafer 10 of the lot through the projection optical system 9 using the exposure apparatus.
Thereafter, in step 104, the photoresist on the one lot of wafers 10 is developed, and then in step 105, etching is performed on the one lot of wafers 10 using the resist pattern as a mask, so that the reticle is etched. A circuit pattern corresponding to the pattern is formed in each shot area on each wafer. After that, a circuit pattern of a further upper layer is formed.
As described above, a device such as a semiconductor element having an extremely fine circuit is favorably manufactured.

【0032】以上,添付図面を参照しながら本発明にか
かる好適な実施形態について説明したが,本発明はかか
る例に限定されないことは言うまでもない。当業者であ
れば,特許請求の範囲に記載された技術的思想の範疇内
において,各種の変更例または修正例に想到し得ること
は明らかであり,それらについても当然に本発明の技術
的範囲に属するものと了解される。
Although the preferred embodiments of the present invention have been described with reference to the accompanying drawings, it is needless to say that the present invention is not limited to such examples. It is clear that a person skilled in the art can conceive various changes or modifications within the scope of the technical idea described in the claims, and it is obvious that the technical scope of the present invention is not limited thereto. It is understood that it belongs to.

【0033】上記例では,可動マルチミラー3は,個々
に独立に可動であるとしたが,これに限定するものでは
なく,可動マルチミラー3の一部が可動となっていても
よい。また,可動マルチミラー3の全体または一部につ
いて,傾斜角または傾斜方向のどちらか一方のみが可動
であるよう構成されていてもよい。
In the above example, the movable multi-mirrors 3 are individually movable. However, the present invention is not limited to this, and a part of the movable multi-mirrors 3 may be movable. Further, the whole or a part of the movable multi-mirror 3 may be configured such that only one of the tilt angle and the tilt direction is movable.

【0034】[0034]

【発明の効果】以上,詳細に説明したように本発明によ
れば,ズーム光学系を利用せずに照明条件を連続的に変
更可能で,光効率の高い照明光学装置を提供できる。ま
た,パターンやプロセス条件毎に細かく照明条件を変更
でき,好適な照明条件で露光可能な露光装置を提供でき
る。さらに,好適な照明条件の下で良好にデバイスを製
造可能なマイクロデバイスの製造方法を提供できる。
As described above, according to the present invention, it is possible to provide an illumination optical device which can continuously change illumination conditions without using a zoom optical system and has high light efficiency. Further, it is possible to finely change the illumination conditions for each pattern or process condition, and to provide an exposure apparatus capable of performing exposure under suitable illumination conditions. Further, it is possible to provide a method for manufacturing a micro device capable of favorably manufacturing a device under suitable lighting conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態に係る露光装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an exposure apparatus according to a first embodiment of the present invention.

【図2】 可動マルチミラーの部分斜視図である。FIG. 2 is a partial perspective view of a movable multi-mirror.

【図3】 要素ミラーの駆動機構の構成を示す斜視図で
ある。
FIG. 3 is a perspective view illustrating a configuration of a driving mechanism of an element mirror.

【図4】 複数の要素ミラーと駆動機構が配列された状
態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state where a plurality of element mirrors and a driving mechanism are arranged.

【図5】 可動マルチミラーの変形例を示す断面図であ
る。
FIG. 5 is a sectional view showing a modification of the movable multi-mirror.

【図6】 本発明の第2の実施の形態に係る露光装置の
概略構成図である。
FIG. 6 is a schematic configuration diagram of an exposure apparatus according to a second embodiment of the present invention.

【図7】 本発明の実施の形態に係るマイクロデバイス
の製造方法の一例を示すフローチャートである。
FIG. 7 is a flowchart illustrating an example of a method for manufacturing a micro device according to an embodiment of the present invention.

【図8】 形状の異なる開口絞りを用いた際に形成され
る照野を説明する図である。
FIG. 8 is a diagram illustrating an illumination field formed when aperture stops having different shapes are used.

【符号の説明】[Explanation of symbols]

1 光源 2,4 リレー光学系 3 可動マルチミラー 4 振動ミラー 5 フライアイレンズ 6,7 コンデンサ光学系 8 マスク 9 投影光学系 10 ウエハ 30,31 要素ミラー 32 ヒンジ部材 34,40 電極 36 支柱部材 38 基板 FS 視野絞り M1 折り返しミラー Reference Signs List 1 light source 2, 4 relay optical system 3 movable multi-mirror 4 vibrating mirror 5 fly-eye lens 6, 7 condenser optical system 8 mask 9 projection optical system 10 wafer 30, 31 element mirror 32 hinge member 34, 40 electrode 36 support member 38 substrate FS Field stop M1 folding mirror

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03F 7/20 521 H01L 21/30 515D G02B 27/00 E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03F 7/20 521 H01L 21/30 515D G02B 27/00 E

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光に基づいて被照射面を均一
に照明するオプティカルインテグレータと,前記光源と
前記オプティカルインテグレータとの間の光路中に配置
され,前記光源からの光の断面形状を所望の形状または
所望の大きさに変換する光変換手段と,を含み,前記光
変換手段は,アレイ状に配列された多数の微小な反射面
を有する光学素子を含むことを特徴とする照明光学装
置。
An optical integrator for uniformly illuminating a surface to be illuminated based on light from a light source, and an optical integrator disposed in an optical path between the light source and the optical integrator, wherein a cross-sectional shape of the light from the light source is desired. A light converting means for converting the light into a desired shape or a desired size, wherein the light converting means includes an optical element having a large number of minute reflecting surfaces arranged in an array. .
【請求項2】 前記多数の微小な反射面のうちの1部ま
たは全てが可動に構成され,前記光源からの光の断面形
状を所望の形状または所望の大きさに変換するために,
前記多数の微小な反射面のうちの1部または全ての動き
を制御する制御手段をさらに含むことを特徴とする請求
項1に記載の照明光学装置。
2. A method according to claim 1, wherein a part or all of said plurality of minute reflecting surfaces are movable, and convert a sectional shape of light from said light source into a desired shape or a desired size.
The illumination optical device according to claim 1, further comprising a control unit configured to control a movement of a part or all of the plurality of minute reflecting surfaces.
【請求項3】 前記多数の微小な反射面のうちの1部ま
たは全ては,傾斜角と傾斜方向との少なくとも一方がそ
れぞれ変更可能に構成されていることを特徴とする請求
項1または請求項2に記載の照明光学装置。
3. A part or all of the plurality of minute reflecting surfaces are configured such that at least one of an inclination angle and an inclination direction is changeable. 3. The illumination optical device according to 2.
【請求項4】 前記多数の微小な反射面のうちの少なく
とも1つは非平面であることを特徴とする請求項1乃至
請求項3の何れか一項に記載の照明光学装置。
4. The illumination optical device according to claim 1, wherein at least one of the plurality of minute reflecting surfaces is non-planar.
【請求項5】 請求項1乃至請求項4の何れか一項に記
載の照明光学装置と,所定のパターンを有するマスクを
前記被照射面に設定するマスク保持手段と,前記マスク
のパターン像を感光性基板に投影する投影光学系と,前
記感光性基板を保持する基板保持手段とを含むことを特
徴とする露光装置。
5. The illumination optical device according to claim 1, a mask holding means for setting a mask having a predetermined pattern on the surface to be irradiated, and a pattern image of the mask. An exposure apparatus comprising: a projection optical system that projects onto a photosensitive substrate; and substrate holding means that holds the photosensitive substrate.
【請求項6】 請求項5に記載の露光装置を用いて前記
マスクに形成されたパターンを前記基板上に露光する露
光工程と,前記露光工程にて露光された前記基板を現像
する現像工程とを含むことを特徴とするマイクロデバイ
スの製造方法。
6. An exposure step of exposing a pattern formed on the mask onto the substrate using the exposure apparatus according to claim 5, and a development step of developing the substrate exposed in the exposure step. A method for manufacturing a micro device, comprising:
JP2001155095A 2001-05-24 2001-05-24 Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice Pending JP2002353105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155095A JP2002353105A (en) 2001-05-24 2001-05-24 Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155095A JP2002353105A (en) 2001-05-24 2001-05-24 Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice

Publications (2)

Publication Number Publication Date
JP2002353105A true JP2002353105A (en) 2002-12-06
JP2002353105A5 JP2002353105A5 (en) 2008-05-15

Family

ID=18999339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155095A Pending JP2002353105A (en) 2001-05-24 2001-05-24 Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice

Country Status (1)

Country Link
JP (1) JP2002353105A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486707B1 (en) * 2001-10-09 2005-05-03 삼성전자주식회사 Micro-mirror device and a projector employing it
JP2005260232A (en) * 2004-03-09 2005-09-22 Asml Netherlands Bv Lithographic device and manufacturing method of device
WO2006085660A1 (en) * 2005-02-10 2006-08-17 Fujifilm Corporation Image exposing apparatus
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
JP2006519494A (en) * 2003-02-28 2006-08-24 マイクロニック レーザー システムズ アクチボラゲット SLM direct writing device
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device
WO2009060773A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
JP2009105206A (en) * 2007-10-23 2009-05-14 Nikon Corp Spatial light modulator unit, luminaire, exposure device, and method of manufacturing device
JP2009111369A (en) * 2007-10-12 2009-05-21 Nikon Corp Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2009117801A (en) * 2007-09-14 2009-05-28 Nikon Corp Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
WO2009078224A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
WO2009078223A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009087805A1 (en) * 2008-01-11 2009-07-16 Nikon Corporation Spatial light modulator, illumination optical system, aligner, and device manufacturing method
WO2009125511A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009128293A1 (en) * 2008-04-14 2009-10-22 株式会社ニコン Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
WO2009145048A1 (en) 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
WO2010024106A1 (en) * 2008-08-28 2010-03-04 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
WO2010041522A1 (en) * 2008-10-08 2010-04-15 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
WO2010044307A1 (en) * 2008-10-15 2010-04-22 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus
JP2010197630A (en) * 2009-02-25 2010-09-09 Nikon Corp Projection optical system, exposure device and method of manufacturing device
JP2010197629A (en) * 2009-02-25 2010-09-09 Nikon Corp Projection optical device, exposure device and method of manufacturing device
KR20100099157A (en) 2007-11-08 2010-09-10 가부시키가이샤 니콘 Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2010258117A (en) * 2009-04-23 2010-11-11 Nikon Corp Illumination optical system, exposure device and device manufacturing method
EP2273305A2 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2011023559A (en) * 2009-07-16 2011-02-03 Nikon Corp Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
JP2011507292A (en) * 2007-12-21 2011-03-03 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for mask illumination of microlithography exposure equipment
WO2011040488A1 (en) * 2009-09-29 2011-04-07 株式会社ニコン Illumination optical system, exposure system and method for manufacturing device
WO2011096453A1 (en) * 2010-02-03 2011-08-11 株式会社ニコン Illumination optical device, illumination method, and exposure method and device
WO2011158912A1 (en) 2010-06-19 2011-12-22 株式会社ニコン Illuminating optical system, expose device, and device production method
JP2012533180A (en) * 2009-07-16 2012-12-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
US8451430B2 (en) 2008-12-24 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2013535115A (en) * 2010-07-01 2013-09-09 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system and multifaceted mirror
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2013243386A (en) * 2013-07-18 2013-12-05 Nikon Corp Illumination optical system, exposure device, and method of manufacturing device
US8699116B2 (en) 2007-11-09 2014-04-15 Nikon Corporation Microactuator, optical device, display apparatus, exposure apparatus, and method for producing device
CN103984090A (en) * 2014-05-04 2014-08-13 华侨大学 Dodging system based on digital micromirror device
US8817235B2 (en) 2008-05-08 2014-08-26 Asml Netherlands B.V. Lithographic apparatus and method involving a pockels cell
JP2014195078A (en) * 2008-07-16 2014-10-09 Carl Zeiss Smt Gmbh Illumination system of micro-lithographic projection exposure apparatus
US8947635B2 (en) 2008-12-24 2015-02-03 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9001309B2 (en) 2007-02-06 2015-04-07 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
WO2015113408A1 (en) * 2014-01-28 2015-08-06 上海普利生机电科技有限公司 Light-curing type 3d printing device and image exposure system thereof
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
KR20170118142A (en) * 2015-02-17 2017-10-24 칼 짜이스 에스엠테 게엠베하 Particularly an assembly of an optical system of a microlithographic projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486707B1 (en) * 2001-10-09 2005-05-03 삼성전자주식회사 Micro-mirror device and a projector employing it
JP2006519494A (en) * 2003-02-28 2006-08-24 マイクロニック レーザー システムズ アクチボラゲット SLM direct writing device
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005260232A (en) * 2004-03-09 2005-09-22 Asml Netherlands Bv Lithographic device and manufacturing method of device
JP2006216951A (en) * 2005-01-31 2006-08-17 Asml Holding Nv System and method for performing imaging emphasizing by calculating customized optimum pupil field and lighting mode
US7542013B2 (en) 2005-01-31 2009-06-02 Asml Holding N.V. System and method for imaging enhancement via calculation of a customized optimal pupil field and illumination mode
JP2006251748A (en) * 2005-02-10 2006-09-21 Fuji Photo Film Co Ltd Image exposing device
WO2006085660A1 (en) * 2005-02-10 2006-08-17 Fujifilm Corporation Image exposing apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9383544B2 (en) 2006-08-16 2016-07-05 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
US8269947B2 (en) 2006-08-16 2012-09-18 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
US9001309B2 (en) 2007-02-06 2015-04-07 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US9239229B2 (en) 2007-02-06 2016-01-19 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US9897925B2 (en) 2007-02-06 2018-02-20 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US9013684B2 (en) 2007-02-06 2015-04-21 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US9019475B2 (en) 2007-02-06 2015-04-28 Carl Zeiss Smt Gmbh Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
EP2631699A1 (en) 2007-09-14 2013-08-28 Nikon Corporation Illumination optical system, configuration and illumination methods
JP2013251583A (en) * 2007-09-14 2013-12-12 Nikon Corp Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2009117801A (en) * 2007-09-14 2009-05-28 Nikon Corp Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2015046601A (en) * 2007-09-14 2015-03-12 株式会社ニコン Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
EP2278380A1 (en) 2007-09-14 2011-01-26 Nikon Corporation Design and manufacturing method of an optical element
JP2009093175A (en) * 2007-10-03 2009-04-30 Nikon Corp Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
JP2009111369A (en) * 2007-10-12 2009-05-21 Nikon Corp Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2515171A1 (en) 2007-10-12 2012-10-24 Nikon Corporation Illumination optical apparatus and device manufacturing method
CN103149806A (en) * 2007-10-12 2013-06-12 株式会社尼康 Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2016035593A (en) * 2007-10-12 2016-03-17 株式会社ニコン Illumination optical apparatus, exposure apparatus, and method for manufacturing device
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2013138255A (en) * 2007-10-12 2013-07-11 Nikon Corp Illumination optical device, exposure device, and device manufacturing method
CN103149807A (en) * 2007-10-12 2013-06-12 株式会社尼康 Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2015073129A (en) * 2007-10-12 2015-04-16 株式会社ニコン Illumination optical device, exposure device, and device manufacturing method
EP2527920A1 (en) 2007-10-12 2012-11-28 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2017045064A (en) * 2007-10-12 2017-03-02 株式会社ニコン Illumination optical apparatus, exposure apparatus, and method for manufacturing device
EP2518564A1 (en) 2007-10-12 2012-10-31 Nikon Corporation Illumination optical apparatus and device manufacturing method
JP2018077494A (en) * 2007-10-12 2018-05-17 株式会社ニコン Illumination optical apparatus, exposure apparatus, and method for manufacturing device
KR101924745B1 (en) * 2007-10-12 2018-12-03 가부시키가이샤 니콘 Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2498132A1 (en) 2007-10-12 2012-09-12 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2009105206A (en) * 2007-10-23 2009-05-14 Nikon Corp Spatial light modulator unit, luminaire, exposure device, and method of manufacturing device
JP2015029128A (en) * 2007-10-24 2015-02-12 株式会社ニコン Optical unit, illumination optical device, exposure device, and manufacturing method of device
JP2012199552A (en) * 2007-10-24 2012-10-18 Nikon Corp Optical unit, illumination optical device, exposure device, and manufacturing method of device
EP2273305A2 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620799A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620801A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR101680620B1 (en) 2007-10-24 2016-11-29 가부시키가이샤 니콘 Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620800A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
TWI620036B (en) * 2007-10-24 2018-04-01 Nikon Corp Illumination optical device, exposure device, and element manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2273304A1 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
JP2011503835A (en) * 2007-11-06 2011-01-27 株式会社ニコン Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009060744A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination optical device and exposure device
US10261421B2 (en) 2007-11-06 2019-04-16 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
WO2009060773A1 (en) * 2007-11-06 2009-05-14 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
KR20180100456A (en) 2007-11-06 2018-09-10 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
KR20180072841A (en) 2007-11-06 2018-06-29 가부시키가이샤 니콘 Illumination optical system, exposure device and exposure method
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9946162B2 (en) 2007-11-06 2018-04-17 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
EP2209135A1 (en) * 2007-11-06 2010-07-21 Nikon Corporation Illumination optical device and exposure device
JP5418230B2 (en) * 2007-11-06 2014-02-19 株式会社ニコン Exposure method and exposure apparatus
JP2014042073A (en) * 2007-11-06 2014-03-06 Nikon Corp Exposure method, device, and device manufacturing method
KR20170089952A (en) 2007-11-06 2017-08-04 가부시키가이샤 니콘 Illumination optical system, exposure device and exposure method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
EP2219206A1 (en) * 2007-11-06 2010-08-18 Nikon Corporation Control device, exposure method, and exposure device
KR20100095566A (en) 2007-11-06 2010-08-31 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5582287B2 (en) * 2007-11-06 2014-09-03 株式会社ニコン Illumination optical apparatus and exposure apparatus
KR101708943B1 (en) * 2007-11-06 2017-02-21 가부시키가이샤 니콘 Control device, exposure method, and exposure device
US9551942B2 (en) 2007-11-06 2017-01-24 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
KR20160092053A (en) 2007-11-06 2016-08-03 가부시키가이샤 니콘 Illumination optical system, exposure device and exposure method
KR101644762B1 (en) 2007-11-06 2016-08-01 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
KR101644660B1 (en) 2007-11-06 2016-08-01 가부시키가이샤 니콘 Illumination optical device and exposure device
KR20160090916A (en) 2007-11-06 2016-08-01 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
EP2209135A4 (en) * 2007-11-06 2011-06-08 Nikon Corp Illumination optical device and exposure device
EP2219206A4 (en) * 2007-11-06 2011-04-27 Nikon Corp Control device, exposure method, and exposure device
KR20150032755A (en) 2007-11-06 2015-03-27 가부시키가이샤 니콘 Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
KR20100099152A (en) 2007-11-06 2010-09-10 가부시키가이샤 니콘 Illumination optical device and exposure device
KR20100103498A (en) * 2007-11-06 2010-09-27 가부시키가이샤 니콘 Control device, exposure method, and exposure device
US9268235B2 (en) 2007-11-06 2016-02-23 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8953147B2 (en) 2007-11-08 2015-02-10 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2518565B1 (en) * 2007-11-08 2016-06-08 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20160116034A (en) 2007-11-08 2016-10-06 가부시키가이샤 니콘 Illumination optical system, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2518565A1 (en) 2007-11-08 2012-10-31 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8144308B2 (en) 2007-11-08 2012-03-27 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP3101478A2 (en) 2007-11-08 2016-12-07 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20100099157A (en) 2007-11-08 2010-09-10 가부시키가이샤 니콘 Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP3101478A3 (en) * 2007-11-08 2017-01-25 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8699116B2 (en) 2007-11-09 2014-04-15 Nikon Corporation Microactuator, optical device, display apparatus, exposure apparatus, and method for producing device
WO2009078223A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009078224A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2011507292A (en) * 2007-12-21 2011-03-03 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for mask illumination of microlithography exposure equipment
WO2009087805A1 (en) * 2008-01-11 2009-07-16 Nikon Corporation Spatial light modulator, illumination optical system, aligner, and device manufacturing method
WO2009125511A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009128293A1 (en) * 2008-04-14 2009-10-22 株式会社ニコン Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
US8817235B2 (en) 2008-05-08 2014-08-26 Asml Netherlands B.V. Lithographic apparatus and method involving a pockels cell
WO2009145048A1 (en) 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2014195078A (en) * 2008-07-16 2014-10-09 Carl Zeiss Smt Gmbh Illumination system of micro-lithographic projection exposure apparatus
JP2014187380A (en) * 2008-08-28 2014-10-02 Nikon Corp Illumination optical system, exposure device, and device manufacturing method
JPWO2010024106A1 (en) * 2008-08-28 2012-01-26 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
US8913227B2 (en) 2008-08-28 2014-12-16 Nikon Corporation Illumination optical system, aligner, and process for fabricating device
JP2018197889A (en) * 2008-08-28 2018-12-13 株式会社ニコン Illumination optical system, exposure device, and process for fabricating device
JP2017083903A (en) * 2008-08-28 2017-05-18 株式会社ニコン Illumination optical system, aligner, exposure method, and process for fabricating device
WO2010024106A1 (en) * 2008-08-28 2010-03-04 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
WO2010041522A1 (en) * 2008-10-08 2010-04-15 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
WO2010044307A1 (en) * 2008-10-15 2010-04-22 株式会社ニコン Illumination optical system, aligner, and process for fabricating device
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus
US8947635B2 (en) 2008-12-24 2015-02-03 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8451430B2 (en) 2008-12-24 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2010197629A (en) * 2009-02-25 2010-09-09 Nikon Corp Projection optical device, exposure device and method of manufacturing device
JP2010197630A (en) * 2009-02-25 2010-09-09 Nikon Corp Projection optical system, exposure device and method of manufacturing device
JP2010258117A (en) * 2009-04-23 2010-11-11 Nikon Corp Illumination optical system, exposure device and device manufacturing method
JP2011023559A (en) * 2009-07-16 2011-02-03 Nikon Corp Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
JP2012533180A (en) * 2009-07-16 2012-12-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system for illuminating a mask in a microlithographic projection exposure apparatus
WO2011040488A1 (en) * 2009-09-29 2011-04-07 株式会社ニコン Illumination optical system, exposure system and method for manufacturing device
JP2011077142A (en) * 2009-09-29 2011-04-14 Nikon Corp Illumination optical apparatus, aligner, and device manufacturing method
US9310604B2 (en) 2010-02-03 2016-04-12 Nikon Corporation Illumination optical device, illumination method, and exposure method and device
WO2011096453A1 (en) * 2010-02-03 2011-08-11 株式会社ニコン Illumination optical device, illumination method, and exposure method and device
US10591824B2 (en) 2010-02-03 2020-03-17 Nikon Corporation Illumination optical device, illumination method, and exposure method and device
KR20170102064A (en) 2010-02-03 2017-09-06 가부시키가이샤 니콘 Illumination optical device, illumination method, and exposure method and device
JP5842615B2 (en) * 2010-02-03 2016-01-13 株式会社ニコン Illumination optical apparatus, illumination method, and exposure method and apparatus
KR20190006098A (en) 2010-02-03 2019-01-16 가부시키가이샤 니콘 Illumination optical device, illumination method, and exposure method and device
EP3547032A1 (en) 2010-06-19 2019-10-02 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
US8934086B2 (en) 2010-06-19 2015-01-13 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
US10520825B2 (en) 2010-06-19 2019-12-31 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
KR20190128749A (en) 2010-06-19 2019-11-18 가부시키가이샤 니콘 Illumination optical system, exposure apparatus and device manufacturing method
US10168620B2 (en) 2010-06-19 2019-01-01 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
US9563130B2 (en) 2010-06-19 2017-02-07 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
WO2011158912A1 (en) 2010-06-19 2011-12-22 株式会社ニコン Illuminating optical system, expose device, and device production method
US9213245B2 (en) 2010-07-01 2015-12-15 Carl Zeiss Smt Gmbh Optical system and multi facet mirror of a microlithographic projection exposure apparatus
JP2013535115A (en) * 2010-07-01 2013-09-09 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system and multifaceted mirror
JP2013243386A (en) * 2013-07-18 2013-12-05 Nikon Corp Illumination optical system, exposure device, and method of manufacturing device
US10156793B2 (en) 2014-01-28 2018-12-18 Prismlab China Ltd. Light-curing type 3D printing device and image exposure system thereof
WO2015113408A1 (en) * 2014-01-28 2015-08-06 上海普利生机电科技有限公司 Light-curing type 3d printing device and image exposure system thereof
CN103984090A (en) * 2014-05-04 2014-08-13 华侨大学 Dodging system based on digital micromirror device
KR20170118142A (en) * 2015-02-17 2017-10-24 칼 짜이스 에스엠테 게엠베하 Particularly an assembly of an optical system of a microlithographic projection exposure apparatus
KR102531573B1 (en) 2015-02-17 2023-05-12 칼 짜이스 에스엠테 게엠베하 In particular, an assembly of an optical system of a microlithographic projection exposure apparatus

Similar Documents

Publication Publication Date Title
JP2002353105A (en) Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice
EP2518565B1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5287113B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP6410115B2 (en) Illumination optical system, exposure apparatus, exposure method, and device manufacturing method
US6977718B1 (en) Lithography method and system with adjustable reflector
KR101813307B1 (en) Illumination system of a microlithographic projection exposure apparatus
KR20040025487A (en) Exposing equipment including a Micro Mirror Array and exposing method using the exposing equipment
JPH113849A (en) Deformable illumination filter and semiconductor aligner
CN102356353B (en) Illumination system of microlithographic projection exposure apparatus
JPWO2008007632A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5700272B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5262063B2 (en) Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
TW201137394A (en) Spatial light modulator, illumination optical system, exposure apparatus, and method for manufacturing device
JP5353408B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2005268265A (en) Collimator optical system and illumination optical system
KR101591155B1 (en) Illumination system of a microlithographic projection exposure apparatus
JP5327715B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2010016288A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2012004558A (en) Illumination optical system, exposure equipment, and device manufacturing method
JP2011029596A (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2012028543A (en) Illumination optical system, exposure device, and device manufacturing method
JP2012080098A (en) Illumination optical system, exposure equipment, illumination method, exposure method, and device manufacturing method
JP2010141151A (en) Luminous flux-splitting element, illumination optical system, exposure device, and device manufacturing method
JP2009117672A (en) Illumination optical system, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421