WO2009128293A1 - Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device - Google Patents

Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device Download PDF

Info

Publication number
WO2009128293A1
WO2009128293A1 PCT/JP2009/053630 JP2009053630W WO2009128293A1 WO 2009128293 A1 WO2009128293 A1 WO 2009128293A1 JP 2009053630 W JP2009053630 W JP 2009053630W WO 2009128293 A1 WO2009128293 A1 WO 2009128293A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spatial light
optical system
modulation unit
spatial
Prior art date
Application number
PCT/JP2009/053630
Other languages
French (fr)
Japanese (ja)
Inventor
修 谷津
裕久 田中
壮一 大和
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2009128293A1 publication Critical patent/WO2009128293A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides

Definitions

  • the present invention relates to a spatial light modulation unit, an illumination optical system, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to an illumination optical system suitable for an exposure apparatus for manufacturing devices such as a semiconductor element, an image sensor, a liquid crystal display element, and a thin film magnetic head in a lithography process.
  • a light beam emitted from a light source is passed through a fly-eye lens as an optical integrator, and a secondary light source (generally an illumination pupil) as a substantial surface light source composed of a number of light sources.
  • a secondary light source generally an illumination pupil
  • a predetermined light intensity distribution the light intensity distribution in the illumination pupil is referred to as “illumination pupil luminance distribution”.
  • the illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
  • the light beam from the secondary light source is condensed by the condenser lens and then illuminates the mask on which a predetermined pattern is formed in a superimposed manner.
  • the light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer.
  • the pattern formed on the mask is highly integrated, and it is indispensable to obtain a uniform illumination distribution on the wafer in order to accurately transfer the fine pattern onto the wafer.
  • Patent Document 1 there has been proposed an illumination optical system capable of continuously changing the illumination pupil luminance distribution (and thus the illumination condition) without using a zoom optical system.
  • an incident light beam is generated using a movable multi-mirror configured by a large number of minute mirror elements that are arranged in an array and whose tilt angle and tilt direction are individually driven and controlled.
  • the cross section of the light beam is converted into a desired shape or a desired size, and thus a desired illumination pupil luminance distribution is realized.
  • the degree of freedom in changing the shape and size of the illumination pupil luminance distribution is high.
  • the spatial light modulation unit used in this illumination optical system to form the illumination pupil luminance distribution uses a movable multi-mirror as a single spatial light modulator, the light incident on the reflection surface of the mirror element The energy per unit area is relatively large. As a result, the reflectance of the mirror element is likely to decrease with time due to light irradiation, and as a result, it becomes difficult for the spatial light modulation unit to stably perform a required function over a required period.
  • the cross section of the incident light beam to the spatial light modulation unit is made large in order to keep the energy per unit area of light incident on the reflecting surface of the mirror element small, the reflection occupied by many mirror elements arranged two-dimensionally The total area of the region increases, and the spatial light modulator increases in size.
  • Increasing the size of the spatial light modulator leads to an increase in the size of optical systems (lenses, prisms, mirrors, etc.) on the incident side and the exit side of the spatial light modulator, which in turn increases the size and cost of the spatial light modulation unit. End up.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a spatial light modulation unit capable of stably exhibiting a required function over a required period.
  • the present invention also provides an illumination optical system capable of realizing a wide variety of illumination conditions for the shape and size of the illumination pupil luminance distribution, using a spatial light modulation unit that stably exhibits a required function.
  • the purpose is to provide.
  • the present invention uses an illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred.
  • An object of the present invention is to provide an exposure apparatus that can perform this.
  • a desired light intensity distribution is used on the pupil plane of the illumination optical system, which is used together with an illumination optical system that illuminates the illuminated surface based on light from a light source.
  • a spatial light modulation unit for forming, A first spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light; A second spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light; The incident light is divided into a plurality of lights, a first light of the plurality of lights is guided to the first spatial light modulator, and a second light of the plurality of lights is modulated by the second spatial light modulation.
  • a spatial light modulation unit is provided that includes a divided light guide member that leads to a vessel.
  • a spatial light modulation unit of the first form in the illumination optical system that illuminates the illuminated surface based on the light from the light source, A spatial light modulation unit of the first form; A distribution forming optical system that forms a predetermined light intensity distribution on an illumination pupil of the illumination optical system based on the light that has passed through the first spatial light modulator and the second spatial light modulator.
  • An illumination optical system is provided.
  • an exposure apparatus comprising the illumination optical system according to the second aspect for illuminating a predetermined pattern, and exposing the predetermined pattern onto a photosensitive substrate.
  • an exposure step of exposing the predetermined pattern to the photosensitive substrate Developing the photosensitive substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; And a processing step of processing the surface of the photosensitive substrate through the mask layer.
  • the spatial light modulation unit since the spatial light modulation unit includes a pair of spatial light modulators, the light intensity per unit area of the light incident on the optical surface of the optical element is larger than when the spatial light modulator is used alone. Energy can be kept small. Specifically, when a pair of reflective spatial light modulators having a plurality of mirror elements is used, the energy per unit area of light incident on the reflecting surface of the mirror elements can be kept small. As a result, in the spatial light modulation unit of the present invention, the reflectance of the mirror element is not easily lowered even when irradiated with light over a long period of time, and a required function can be stably exhibited over a required period. .
  • the illumination optical system of the present invention it is possible to realize a wide variety of illumination conditions for the shape and size of the illumination pupil luminance distribution by using the spatial light modulation unit that stably exhibits the required function.
  • the exposure apparatus of the present invention uses the illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. Which can be done and thus a good device can be produced.
  • FIG. 5 is a partial perspective view of the spatial light modulator of FIG. 4. It is a figure which shows typically the light intensity distribution of 4 pole shape formed in the pupil plane of an afocal lens in this embodiment. It is a figure which shows schematically the principal part structure of the modification which uses a prism unit as a light splitter.
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an internal configuration of the spatial light modulation unit according to the present embodiment.
  • the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG.
  • the X axis is set in a direction perpendicular to the paper surface of FIG.
  • exposure light (illumination light) is supplied from a light source 1 in the exposure apparatus of this embodiment.
  • the light source for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used.
  • the light emitted from the light source 1 is expanded into a light beam having a required cross-sectional shape by the shaping optical system 2 and then enters the spatial light modulation unit 3. As shown in FIG.
  • the spatial light modulation unit 3 includes, in order from the light incident side, a diffractive optical element 3c, a condenser lens 3d, a pair of prisms 3e and 3f, and a pair of spatial light modulators 3a and 3b. And. The specific configuration and operation of the spatial light modulation unit 3 will be described later.
  • the afocal lens 4 is an afocal system (non-focal optical system), its front focal position, the position of the first spatial light modulator 3a in the spatial light modulation unit 3, and the position of the second spatial light modulator 3b.
  • afocal system non-focal optical system
  • the rear focal position is substantially matched with the position of the predetermined surface 5 indicated by a broken line in the figure.
  • the light passing through the first spatial light modulator 3a is, for example, in the Z direction formed of two circular light intensity distributions spaced apart in the Z direction about the optical axis AX on the pupil plane of the afocal lens 4.
  • the light that has passed through the second spatial light modulator 3b is, on the pupil plane of the afocal lens 4, for example, an X direction composed of two circular light intensity distributions spaced apart in the X direction about the optical axis AX.
  • the light is emitted from the afocal lens 4 with a dipolar angular distribution.
  • the position of the pupil plane (the position indicated by reference numeral 4c in FIG. 2) or a position in the vicinity thereof has a conical axicon system 6 Is arranged.
  • the configuration and operation of the conical axicon system 6 will be described later.
  • the cylindrical micro fly's eye lens 8 includes a first fly eye member 8a disposed on the light source side and a second fly eye member 8b disposed on the mask side.
  • cylindrical lens groups 8aa and 8ba arranged side by side in the X direction are formed at a pitch p1, respectively.
  • the parallel luminous flux incident along the optical axis AX is formed on the light source side of the first fly eye member 8a.
  • the wavefront is divided by the lens group 8aa along the X direction at the pitch p1, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8ba formed on the light source side of the second fly's eye member 8b.
  • the light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
  • the parallel light beam incident along the optical axis AX is formed on the cylindrical side of the first fly's eye member 8a on the mask side.
  • the corresponding one of the cylindrical lens groups 8bb formed on the mask side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
  • the cylindrical micro fly's eye lens 8 is constituted by the first fly eye member 8a and the second fly eye member 8b in which the cylindrical lens groups are arranged on both side surfaces, but the size of p1 is set in the X direction. It has an optical function similar to that of a micro fly's eye lens in which a large number of rectangular minute refracting surfaces having a size of p2 in the Z direction are integrally formed vertically and horizontally.
  • a change in distortion due to variations in the surface shape of the micro-refractive surface is suppressed to be small, and for example, manufacturing errors of a large number of micro-refractive surfaces integrally formed by etching process give the illuminance distribution. The influence can be kept small.
  • the position of the predetermined surface 5 is disposed in the vicinity of the front focal position of the zoom lens 7, and the incident surface of the cylindrical micro fly's eye lens 8 is disposed in the vicinity of the rear focal position of the zoom lens 7.
  • the predetermined surface 5 and the incident surface of the cylindrical micro fly's eye lens 8 are arranged substantially in a Fourier transform relationship, and as a result, the pupil surface of the afocal lens 4 and the cylindrical micro fly's eye lens 8.
  • the incident surface is optically substantially conjugate.
  • a quadrupole illumination field is formed which consists of two circular light intensity distributions spaced apart in the X direction about the axis AX.
  • the overall shape of this quadrupole illumination field changes in a similar manner depending on the focal length of the zoom lens 7.
  • the rectangular micro-refractive surface as a wavefront division unit in the cylindrical micro fly's eye lens 8 has a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and thus the shape of the exposure region to be formed on the wafer W). It is.
  • the light beam incident on the cylindrical micro fly's eye lens 8 is two-dimensionally divided, and has two light intensity distributions on the rear focal plane or in the vicinity thereof (and thus the illumination pupil) having substantially the same light intensity distribution as the illumination field formed by the incident light beam.
  • the next light source that is, two circular substantial surface light sources spaced in the Z direction around the optical axis AX and two circular substantial surfaces spaced in the X direction around the optical axis AX
  • a quadrupole secondary light source (a quadrupole illumination pupil luminance distribution) composed of a light source is formed.
  • a light beam from a secondary light source formed on the rear focal plane of the cylindrical micro fly's eye lens 8 or in the vicinity thereof enters an aperture stop 9 disposed in the vicinity thereof.
  • the aperture stop 9 has a quadrupole opening (light transmission portion) corresponding to a quadrupolar secondary light source formed at or near the rear focal plane of the cylindrical micro fly's eye lens 8.
  • the aperture stop 9 is configured to be detachable with respect to the illumination optical path, and is configured to be switchable between a plurality of aperture stops having openings having different sizes and shapes.
  • an aperture stop switching method for example, a well-known turret method or slide method can be used.
  • the aperture stop 9 is disposed at a position that is optically conjugate with an entrance pupil plane of the projection optical system PL described later, and defines a range that contributes to illumination of the secondary light source.
  • the light from the secondary light source limited by the aperture stop 9 illuminates the mask blind 11 in a superimposed manner via the condenser optical system 10.
  • a rectangular illumination field corresponding to the shape and focal length of the rectangular micro-refractive surface which is the wavefront division unit of the cylindrical micro fly's eye lens 8 is formed on the mask blind 11 as the illumination field stop.
  • the light beam that has passed through the rectangular opening (light transmitting portion) of the mask blind 11 receives the light condensing action of the imaging optical system 12 and then illuminates the mask M on which a predetermined pattern is formed in a superimposed manner. That is, the imaging optical system 12 forms an image of the rectangular opening of the mask blind 11 on the mask M.
  • the light beam transmitted through the mask M held on the mask stage MS forms an image of a mask pattern on the wafer (photosensitive substrate) W held on the wafer stage WS through the projection optical system PL.
  • batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled.
  • the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
  • the conical axicon system 6 includes, in order from the light source side, a first prism member 6a having a flat surface facing the light source side and a concave conical refractive surface facing the mask side, and a convex conical shape facing the plane toward the mask side and the light source side. And a second prism member 6b facing the refractive surface.
  • the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are complementarily formed so as to be in contact with each other.
  • At least one of the first prism member 6a and the second prism member 6b is configured to be movable along the optical axis AX, and the concave conical refracting surface of the first prism member 6a and the second prism member 6b.
  • the distance from the convex conical refracting surface is variable.
  • the conical axicon system 6 functions as a plane parallel plate and is formed as a four-pole. There is no effect on the secondary light source in the form of a ring or ring. However, when the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are separated from each other, the width of the quadrupolar or annular secondary light source (the quadrupolar secondary light source).
  • the outer diameter (inner diameter) of the quadrupole or ring-shaped secondary light source changes while maintaining. That is, the annular ratio (inner diameter / outer diameter) and size (outer diameter) of the quadrupolar or annular secondary light source change.
  • the zoom lens 7 has a function of enlarging or reducing the overall shape of the quadrupolar or annular secondary light source in a similar (isotropic) manner. For example, by expanding the focal length of the zoom lens 7 from a minimum value to a predetermined value, the overall shape of the quadrupolar or annular secondary light source is enlarged similarly. In other words, the width and size (outer diameter) of the quadrupole or ring-shaped secondary light source are both changed by the action of the zoom lens 7 without changing. As described above, the annular ratio and the size (outer diameter) of the quadrupolar or annular secondary light source can be controlled by the action of the conical axicon system 6 and the zoom lens 7.
  • the light beam from the light source 1 via the shaping optical system 2 enters the diffractive optical element 3c along the optical axis AX.
  • the diffractive optical element 3c is spaced from the far field (or Fraunhofer diffraction region) in the Z direction with the optical axis AX as the center. It has a function of forming two rectangular light intensity distributions.
  • the first light beam of the two light beams divided by the diffractive optical element 3c passes through the condensing lens 3d functioning as a Fourier transform lens, passes through the prism 3e and the first spatial light modulator 3a, and is then an afocal lens. 4 reaches the pupil plane 4c of the afocal lens 4 via the front lens group 4a.
  • the second light beam of the two light beams divided by the diffractive optical element 3c passes through the condenser lens 3d, passes through the prism 3f and the second spatial light modulator 3b, and then passes through the front lens group 4a. It reaches the pupil plane 4c.
  • the front lens group 4a of the afocal lens 4 superimposes the light beam via the first spatial light modulator 3a and the light beam via the second spatial light modulator 3b on the pupil plane 4c.
  • a first optical unit (3e, 3a) comprising a prism 3e and a first spatial light modulator 3a
  • a first optical unit comprising a prism 3f and a second spatial light modulator 3b.
  • the two optical units (3f, 3b) have the same configuration and are arranged symmetrically with respect to a plane including the optical axis AX and parallel to the XY plane. Therefore, the description which overlaps with the 1st optical unit (3e, 3a) about the 2nd optical unit (3f, 3b) is abbreviate
  • the first optical unit (3e, 3a) is attached close to a prism 3e formed of an optical material such as fluorite and a side surface 3ea parallel to the XY plane of the prism 3e.
  • a reflective spatial light modulator 3a is not limited to fluorite, and may be quartz glass or other optical material according to the wavelength of light supplied from the light source 1 or the like.
  • the spatial light modulator 3a includes a main body 3aa having a plurality of mirror elements SE arranged two-dimensionally, and a drive unit 3ab for individually controlling and driving the postures of the plurality of mirror elements SE.
  • the prism 3e has a form obtained by replacing one side surface of the rectangular parallelepiped (the side surface facing the side surface 3ea to which the main body 3aa of the spatial light modulator 3a is attached) with the side surfaces 3eb and 3ec recessed in a V shape. It is also called a K prism because of its cross-sectional shape along the YZ plane. Sides 3eb and 3ec that are concave in a V shape of the prism 3e are defined by two planes PN1 and PN2 that intersect to form an obtuse angle. The two planes PN1 and PN2 are both orthogonal to the YZ plane and have a V shape along the YZ plane.
  • the inner surfaces of the two side surfaces 3eb and 3ec that are in contact with the tangent lines (straight lines extending in the X direction) P3 between the two planes PN1 and PN2 function as reflecting surfaces R1a and R2a. That is, the reflective surface R1a is located on the plane PN1, the reflective surface R2a is located on the plane PN2, and the angle formed by the reflective surfaces R1a and R2a is an obtuse angle.
  • the angle between the reflecting surfaces R1a and R2a is 120 degrees
  • the angle between the incident surface IP of the prism 3e perpendicular to the optical axis AXa and the reflecting surface R1a is 60 degrees
  • the prism 3e perpendicular to the optical axis AXa is 60 degrees.
  • the angle formed by the exit surface OP and the reflecting surface R2a can be 60 degrees.
  • the side surface 3ea to which the main body 3aa of the spatial light modulator 3a is attached is parallel to the optical axis AXa, and the reflection surface R1a is on the light source 1 side (upstream side of the exposure apparatus: left side in FIG. 4). Further, the reflection surface R2a is located on the afocal lens 4 side (downstream side of the exposure apparatus: right side in FIG. 4).
  • the reflective surface R1a is obliquely arranged with respect to the optical axis AXa
  • the reflective surface R2a is obliquely symmetrical with respect to the optical axis AXa symmetrically with the reflective surface R1a with respect to a plane passing through the tangent line P3 and parallel to the XZ plane. It is installed.
  • the side surface 3ea of the prism 3e is an optical surface facing the surface on which the plurality of mirror elements SE are arranged in the main body 3aa of the spatial light modulator 3a.
  • the reflecting surface R1a of the prism 3e reflects the light incident through the incident surface IP toward the spatial light modulator 3a.
  • the spatial light modulator 3a is disposed in the optical path between the reflecting surface R1a and the reflecting surface R2a, and reflects the light incident through the reflecting surface R1a.
  • the reflecting surface R2a of the prism 3e reflects the light incident through the spatial light modulator 3a and guides it to the front lens group 4a of the afocal lens 4 through the exit surface OP.
  • the optical path is developed so that the optical axis AXa extends linearly on the rear side of the front lens group 4a. 4 shows an example in which the prism 3e is integrally formed by one optical block, the prism 3e may be configured by using a plurality of optical blocks.
  • the spatial light modulator 3a emits the light incident through the reflecting surface R1a with spatial modulation according to the incident position.
  • the main body 3aa of the spatial light modulator 3a includes a plurality of minute mirror elements (optical elements) SE arranged two-dimensionally.
  • the light beam L1 is the mirror element SEa of the plurality of mirror elements SE
  • the light beam L2 is the mirror element SEa.
  • the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb
  • the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc.
  • the mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
  • the spatial light modulator 3a in the reference state (hereinafter referred to as “reference state”) in which the reflection surfaces of all the mirror elements SE are set parallel to the XY plane, the reflection surfaces along the direction parallel to the optical axis AXa.
  • the light beam incident on R1a passes through the spatial light modulator 3a, and is then reflected by the reflecting surface R2a in a direction parallel to the optical axis AXa.
  • the spatial light modulator 3a corresponds to the air conversion length from the incident surface IP of the prism 3e to the exit surface OP through the mirror elements SEa to SEd, and the incident surface IP when the prism 3e is not disposed in the optical path.
  • the air-converted length from the position to the position corresponding to the exit surface OP is configured to be equal.
  • the air conversion length is the optical path length in the optical system converted into the optical path length in the air with a refractive index of 1
  • the air conversion length in the medium with the refractive index n is 1 / the optical path length. multiplied by n.
  • the optical path length from the spatial light modulator 3a to the reflection surface R2a is equal to the optical path length from the spatial light modulator 3b to the reflection surface R2b.
  • the surface on which the plurality of mirror elements SE of the spatial light modulator 3a are arranged is positioned at or near the rear focal position of the condenser lens 3d, and is positioned at or near the front focal position of the afocal lens 4. Yes. Accordingly, a light beam having a cross section having a shape (for example, a rectangular shape) corresponding to the characteristics of the diffractive optical element 3c is incident on the spatial light modulator 3a.
  • the light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 3a and given a predetermined angular distribution forms predetermined light intensity distributions SP1 to SP4 on the pupil plane 4c of the afocal lens 4.
  • the front lens group 4a of the afocal lens 4 determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 3a gives to the emitted light in the far field region (Fraunhofer diffraction region) of the spatial light modulator 3a.
  • the position is converted to a position on a certain surface 4c.
  • the incident surface of the cylindrical micro fly's eye lens 8 is positioned at or near a position optically conjugate with the pupil plane 4c (not shown in FIG. 1) of the afocal lens 4. Therefore, the light intensity distribution (luminance distribution) of the secondary light source formed by the cylindrical micro fly's eye lens 8 is the light intensity distribution SP1 formed on the pupil plane 4c by the spatial light modulator 3a and the front lens group 4a of the afocal lens 4. Distribution according to SP4.
  • the spatial light modulator 3 a is a large number of minute reflective elements that are regularly and two-dimensionally arranged along one plane with a planar reflective surface as the upper surface.
  • Each mirror element SE is movable, and the inclination of the reflection surface, that is, the inclination angle and the inclination direction of the reflection surface are independently controlled by the action of the drive unit 3ab that operates according to a command from a control unit (not shown).
  • Each mirror element SE can be rotated continuously or discretely by a desired rotation angle with two directions (X direction and Y direction) parallel to the reflecting surface and orthogonal to each other as rotation axes. . That is, it is possible to two-dimensionally control the inclination of the reflection surface of each mirror element SE.
  • each mirror element SE when the reflection surface of each mirror element SE is discretely rotated, the rotation angle is set in a plurality of states (for example,..., ⁇ 2.5 degrees, ⁇ 2.0 degrees,... 0 degrees, +0. It is better to perform switching control at 5 degrees... +2.5 degrees,.
  • FIG. 5 shows a mirror element SE having a square outer shape
  • the outer shape of the mirror element SE is not limited to a square.
  • the spatial light modulators 3a and 3b for example, spatial light modulators that continuously change the directions of a plurality of mirror elements SE arranged two-dimensionally are used.
  • a spatial light modulator for example, Japanese Patent Laid-Open No. 10-503300 and corresponding European Patent Publication No. 779530, Japanese Patent Application Laid-Open No. 2004-78136, and corresponding US Pat. No. 6,900, The spatial light modulator disclosed in Japanese Patent No. 915, Japanese National Publication No. 2006-524349 and US Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-Open No. 2006-113437 can be used.
  • the directions of the plurality of mirror elements SE arranged two-dimensionally may be controlled so as to have a plurality of stages discretely.
  • the attitude of the plurality of mirror elements SE is changed by the action of the drive unit 3ab that operates according to the control signal from the control unit, and each mirror element SE is in a predetermined direction.
  • the light reflected by the plurality of mirror elements SE of the first spatial light modulator 3 a at a predetermined angle is applied to the pupil surface of the afocal lens 4, for example, in the Z direction centering on the optical axis AX.
  • Two circular light intensity distributions 41a and 41b spaced apart from each other are formed.
  • the posture of the plurality of mirror elements SE of the main body 3ba is changed by the action of the drive unit 3bb that operates according to the control signal from the control unit, and each mirror element SE is changed.
  • Each is set in a predetermined direction.
  • the light reflected by the plurality of mirror elements SE of the second spatial light modulator 3b at a predetermined angle is applied to the pupil plane of the afocal lens 4, for example, in the X direction with the optical axis AX as the center.
  • Two circular light intensity distributions 41c and 41d are formed at a distance from each other.
  • the reflecting surface R1a is obliquely arranged at a first angle with respect to the optical axis AXa, and the reflecting surface R1b is a second angle having the same size as the first angle with respect to the optical axis AXa. It is obliquely installed.
  • optical path length from the spatial light modulator 3a to the reflecting surface R2a and the optical path length from the spatial light modulator 3b to the reflecting surface R2b are equal to each other, from the pupil surface 4c of the afocal lens 4
  • the optical path lengths to the spatial light modulators 3a and 3b can be made equal.
  • the light having a quadrupolar light intensity distribution 41 formed on the pupil plane of the afocal lens 4 is incident on the incident surface of the cylindrical micro fly's eye lens 8 and the illumination pupil at or near the rear focal plane of the cylindrical micro fly's eye lens 8.
  • a quadrupole light intensity distribution corresponding to the light intensity distributions 41a to 41d is formed at the position where the aperture stop 9 is disposed.
  • the light intensity is also applied to another illumination pupil position optically conjugate with the aperture stop 9, that is, the pupil position of the imaging optical system 12 and the pupil position of the projection optical system PL (position where the aperture stop AS is disposed).
  • a quadrupole light intensity distribution corresponding to the distributions 41a to 41d is formed.
  • the afocal lens 4, the zoom lens 7, and the cylindrical micro fly's eye lens 8 are based on the illumination optical system (2 to 12) based on the light flux that has passed through the first spatial light modulator 3a and the second spatial light modulator 3b.
  • the distribution forming optical system that forms a predetermined light intensity distribution on the illumination pupil of (1) is configured.
  • the afocal lens 4 and the zoom lens 7 constitute a condensing optical system disposed in the optical path between the cylindrical micro fly's eye lens 8 serving as an optical integrator and the spatial light modulation unit 3.
  • the exposure apparatus in order to transfer the pattern of the mask M onto the wafer W with high accuracy and faithfully, it is important to perform exposure under appropriate illumination conditions according to the pattern characteristics.
  • the spatial light modulation unit 3 including the pair of spatial light modulators 3a and 3b in which the postures of the plurality of mirror elements SE individually change is used, the operation of the first spatial light modulator 3a is performed.
  • the first light intensity distribution formed on the illumination pupil and the second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 3b can be freely and quickly changed.
  • an illumination pupil composed of a first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 3a and a second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 3b.
  • the luminance distribution can be changed freely and quickly.
  • various illumination conditions for the shape and size of the illumination pupil luminance distribution are realized. can do.
  • the reflection of the mirror element SE is compared with the case where the spatial light modulator is used alone.
  • the energy per unit area of light incident on the surface is reduced (for example, halved).
  • the reflectance of the mirror element SE is unlikely to decrease even when light irradiation is performed over a long period of time, and a required function is stably exhibited over a required period. be able to.
  • the spatial light modulation unit that stably exhibits a required function. 3 can be used to realize a variety of illumination conditions for the shape and size of the illumination pupil luminance distribution. Further, in the exposure apparatus (2 to WS) of the present embodiment, the illumination optical system (2 to 12) that realizes a wide variety of illumination conditions is used, and is appropriately realized according to the pattern characteristics of the mask M. Good exposure can be performed under various illumination conditions.
  • the arrangement surface where the plurality of mirror elements SE of the first spatial light modulator 3a are arranged and the arrangement surface where the plurality of mirror elements SE of the second spatial light modulator 3b are arranged are parallel.
  • the reflecting surfaces of the plurality of mirror elements SE of the first spatial light modulator 3a are opposed to the reflecting surfaces of the plurality of mirror elements SE of the second spatial light modulator 3b.
  • the optical system (condensing lens 3d, afocal lens 4 and the like) before and after the pair of prisms 3e and 3f can be downsized, and the spatial light modulation unit 3 and the illumination optical system (2 to 12) can be downsized. Can be planned.
  • the diffractive optical element 3c is used as the light splitter, the uniformity of the intensity of light incident on the spatial light modulators 3a and 3b in the spatial light modulation unit 3 can be improved. There is an advantage. Further, even if the position of the light beam incident on the diffractive optical element 3c changes, the angle of the light beam immediately after the diffractive optical element 3c does not change, so that the position of the light beam incident on the spatial light modulators 3a and 3b hardly changes. There is an advantage.
  • the first light intensity distribution by the first spatial light modulator 3a and the second light intensity distribution by the second spatial light modulator 3b are formed at different locations in the illumination pupil.
  • the light intensity distribution and the second light intensity distribution may partially overlap each other, or may be completely overlapped (the first light intensity distribution and the second light intensity distribution are formed in the same distribution and at the same position). May be.
  • the diffractive optical element 3c is used as a light splitter that divides incident light into two lights.
  • the present invention is not limited to this.
  • a configuration in which an incident light beam is divided into two light beams using a prism unit 3g having a pair of prism members 3ga and 3gb is also possible.
  • the modification of FIG. 7 has a configuration similar to that of the embodiment of FIG. 2 except that a prism unit 3g is arranged instead of the diffractive optical element 3c and the condenser lens 3d. 7, elements having the same functions as those shown in FIG. 2 are denoted by the same reference numerals as those in FIG.
  • the prism unit 3g functioning as a light splitter in the modification of FIG. 7 has, in order from the light source side (left side in the figure), a plane facing the light source side and a concave and V-shaped refraction on the mask side (right side in the figure).
  • the first prism member 3ga having a surface and the second prism member 3gb having a flat surface facing the mask and a convex and V-shaped refracting surface facing the light source.
  • the concave refracting surface of the first prism member 3ga is composed of two planes, and the intersection line (ridge line) extends along the X direction.
  • the convex refracting surface of the second prism member 3gb is formed complementary to the concave refracting surface of the first prism member 3ga. That is, the convex refracting surface of the second prism member 3gb is also composed of two planes, and the line of intersection (ridge line) extends along the X direction.
  • the prism unit 3g as a light splitter is configured by the pair of prism members 3ga and 3gb.
  • the light splitter may be configured by using at least one prism.
  • various forms are possible for the specific configuration of the optical splitter.
  • the plurality of mirror elements SE of the first spatial light modulator 3a are arranged close to the prism 3e, and the plurality of mirror elements SE of the second spatial light modulator 3b. Is arranged close to the prism 3f.
  • the prisms 3e and 3f serve as cover members for the plurality of mirror elements SE, and the durability of the spatial light modulators 3a and 3b can be improved.
  • the prisms 3 e and 3 f are reduced in size, and consequently the spatial light modulation unit 3.
  • the incident light beam can be divided in the short side direction of the rectangular cross section.
  • the incident light beam can be divided in a plane whose normal is the longitudinal direction of the effective regions of the spatial light modulators 3a and 3b in the spatial light modulation unit 3.
  • the reflecting surface R1a on the incident side of the prism 3e directs the light that has passed through the diffractive optical element 3c or the prism unit 3g as an optical splitter toward the first spatial light modulator 3a.
  • the reflecting surface R1b on the incident side of the prism 3f is a second deflecting surface that deflects the light that has passed through the diffractive optical element 3c or the prism unit 3g toward the second spatial light modulator 3b. It is composed.
  • the diffractive optical element 3c or prism unit 3g, the reflecting surface R1a, and the reflecting surface R1b divide the incident light into two lights (generally a plurality of lights), and the first light is the first spatial light modulator 3a. And a divided light guide member for guiding the second light to the second spatial light modulator 3b.
  • the reflecting surface R2a on the exit side of the prism 3e constitutes a third deflecting surface that deflects the light that has passed through the first spatial light modulator 3a toward the afocal lens 4 that is the subsequent optical system, and the exit surface of the prism 3f.
  • the reflection surface R2b on the side constitutes a fourth deflection surface that deflects the light having passed through the second spatial light modulator 3b toward the afocal lens 4.
  • the first to fourth deflection surfaces may deflect the light by total reflection at the interface between the prism and the gas, or may deflect the light by the action of a reflection film provided at the interface.
  • Various configurations are possible for the specific configuration of the first deflection surface to the fourth deflection surface, the specific configuration of the divided light guide member, and the specific configuration of the spatial light modulation unit.
  • a prism 3h having a triangular prism shape as a whole and a triangular cross section along the XY plane is used as the divided light guide member.
  • the prism 3h has a pair of side surfaces 3ha and 3hb that are symmetrical with respect to a plane that includes the optical axis AX and is parallel to the XY plane.
  • the side surface 3ha functions as a surface reflecting surface R1a that reflects incident light toward the main body 3aa of the first spatial light modulator 3a, and the side surface 3hb directs incident light toward the main body 3ba of the second spatial light modulator 3b. It functions as a reflective surface R1b that reflects. In the prism 3h, the incident light is divided into two lights along the ridge line between the reflecting surfaces R1a and R1b.
  • the prism 3h serving as the divided light guide member has a first deflection surface R1a that deflects the incident light toward the first spatial light modulator 3a and the incident light toward the second spatial light modulator 3b. And deflects incident light into first light and second light along a ridge line between the first deflection surface R1a and the second deflection surface R1b.
  • the light that has passed through the first spatial light modulator 3a is reflected by the reflection surface (third deflection surface) R2a of the planar reflecting mirror 3j and is emitted from the spatial light modulation unit 3.
  • the light that has passed through the second spatial light modulator 3b is reflected by the reflecting surface (fourth deflecting surface) R2b of the planar reflecting mirror 3k and is emitted from the spatial light modulating unit 3.
  • the first deflection surface R1a is obliquely arranged at a first angle with respect to the optical axis of the illumination optical system
  • the second deflection surface R1b has a first angle and size with respect to the optical axis of the illumination optical system. It is inclined at the same second angle.
  • the optical path length from the first spatial light modulator 3a to the third deflection surface R2a and the optical path length from the second spatial light modulator 3b to the fourth deflection surface R2b are equal to each other. It has become.
  • the surface on which the ridgeline of the prism 3 h that can be regarded as a divided light guide member can be used as a light dividing surface that divides incident light into a plurality of lights.
  • a light transmitting member that changes the polarization state of incident light is not disposed in the second optical path that reaches the second optical path. Thereby, the control of the polarization state in the pupil intensity distribution formed on the illumination pupil plane can be made better.
  • the split light guide member includes a prism 3m having a square columnar cross section along the XY plane.
  • the prism 3m has a pair of side surfaces 3ma and 3mb that are symmetrical with respect to a plane that includes the optical axis AX and is parallel to the XY plane.
  • the side surface 3ma functions as a reflection surface R1a that reflects incident light toward the main body 3aa of the first spatial light modulator 3a
  • the side surface 3mb reflects incident light toward the main body 3ba of the second spatial light modulator 3b. Functions as the reflecting surface R1b.
  • incident light is divided into two lights along the ridge line between the reflecting surface (first deflecting surface) R1a and the reflecting surface (second deflecting surface) R1b.
  • the light that has passed through the first spatial light modulator 3a and the second spatial light modulator 3b is incident on prismatic prisms 3n and 3p as illustrated.
  • the side surface 3na of the prism 3n functions as a third deflection surface R2a that deflects the light that has passed through the first spatial light modulator 3a toward the subsequent optical system, and the side surface 3pa of the prism 3p has passed through the second spatial light modulator 3b. It functions as a fourth deflection surface R2b that deflects light toward the subsequent optical system.
  • the light that has passed through the first spatial light modulator 3 a and the second spatial light modulator 3 b is deflected by the third deflection surface R 2 a and the fourth deflection surface R 2 b and is emitted from the spatial light modulation unit 3.
  • various shapes are possible for the shape of the cross section along the XY plane of the prisms 3 h, 3 m, 3 n, and 3 p.
  • the first deflection surface R1a is obliquely arranged at a first angle with respect to the optical axis of the illumination optical system
  • the second deflection surface R1b has a first angle and size with respect to the optical axis of the illumination optical system. It is inclined at the same second angle.
  • the optical path length from the first spatial light modulator 3a to the third deflection surface R2a and the optical path length from the second spatial light modulator 3b to the fourth deflection surface R2b are equal to each other. It has become.
  • the surface on which the ridgeline of the prism 3m that can be regarded as a divided light guide member can be used as a light dividing surface that divides incident light into a plurality of lights.
  • the light transmissive members 3n and 3p arranged in the second optical path to reach are light transmissive members that maintain the polarization state of incident light. Thereby, the control of the polarization state in the pupil intensity distribution formed on the illumination pupil plane can be made better.
  • a light transmission member that maintains the polarization state of incident light for example, quartz glass can be applied.
  • a light splitter that divides incident light, a first deflection surface that deflects the divided light toward the first spatial light modulator 3a, and another divided light beam. Since it also serves as the second deflection surface that deflects light toward the second spatial light modulator, there is an advantage that the spatial light modulation unit 3 itself can be made very small. Therefore, when the spatial light modulation unit 3 according to these modifications is incorporated in place of the illumination luminance distribution generation element (for example, diffractive optical element) in the existing exposure apparatus, the modification of the existing exposure apparatus is minimized. Can do.
  • a spatial light modulation unit may be formed from the pair of prisms 3e and 3f and the pair of spatial light modulators 3a and 3b in the above-described embodiment.
  • the reflecting surface R1a of the prism 3e and the reflecting surface R1b of the prism 3f can be regarded as a light splitter that divides incident light into first light and second light, and the reflection of the prism 3e.
  • the surface R1a can be regarded as a first deflecting surface that deflects the first light toward the first spatial light modulator 3a, and the reflecting surface R1b of the prism 3f sends the second light to the second spatial light modulator 3b. It can be regarded as a second deflecting surface that deflects toward.
  • the reflecting surface R2a of the prism 3e can be regarded as a third deflecting surface that deflects the light that has passed through the first spatial light modulator 3a toward the subsequent optical system
  • the reflecting surface R2b of the prism 3f is the first reflecting surface R2b. It can be regarded as a fourth deflecting surface that deflects the light that has passed through the two spatial light modulator 3b toward the subsequent optical system.
  • the air conversion length from the incident surface IP of the prism 3e (3f) to the exit surface OP through the mirror element of the first spatial light modulator 3a is incident when the prism 3e (3f) is not disposed in the optical path. Since it is configured to be equal to the air-converted length from the surface IP to the position corresponding to the exit surface OP, it is necessary to install an existing illumination intensity distribution generating element (for example, a diffractive optical element) in an existing exposure apparatus. The modification of the exposure apparatus can be minimized, and in particular, the optical system can be made without modification.
  • an existing illumination intensity distribution generating element for example, a diffractive optical element
  • the first deflection surface R1a or its extension surface and the second deflection surface R1b or its extension surface form an acute angle so that the projection is directed toward the incident light. Is arranged. This configuration enables a compact design of the spatial light modulation unit 3.
  • the traveling direction of the incident light to the divided light guide members (3c to 3f; 3e to 3g; 3h; 3m);
  • the traveling direction of the emitted light emitted from the third deflection surface R2a and the traveling direction of the emitted light emitted from the fourth deflection surface R2b are configured to be parallel to each other. Further, the traveling direction of the emitted light from the third deflection surface R2a in the reference state and the traveling direction of the emitted light from the fourth deflection surface R2b in the reference state are parallel to the optical axis AX of the illumination optical system (in some cases Match).
  • the optical path is coaxial (in some cases parallel) between the upstream and downstream of the spatial light modulation unit 3, so that, for example, a conventional illumination optical system and optical system using a diffractive optical element to form an illumination pupil luminance distribution.
  • the system can be shared.
  • the cables connected to the main bodies 3a and 3b of the spatial light modulator are smooth.
  • the spatial light modulation unit 3 can be moved not in the Z direction but in the X direction so as not to hinder the insertion / removal operation.
  • the afocal lens 4, the conical axicon system 6, and the zoom lens 7 are disposed in the optical path between the spatial light modulation unit 3 and the cylindrical micro fly's eye lens 8. Yes.
  • the present invention is not limited to this, and instead of these optical members, for example, a condensing optical system that functions as a Fourier transform lens may be disposed.
  • the spatial light modulator having a plurality of optical elements that are two-dimensionally arranged and individually controlled the direction (angle: inclination) of the two-dimensionally arranged reflecting surfaces is set.
  • An individually controllable spatial light modulator is used.
  • the present invention is not limited to this.
  • a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used.
  • a spatial light modulator for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat.
  • 6,885,493 can be used.
  • these spatial light modulators by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light.
  • the spatial light modulator having a plurality of two-dimensionally arranged reflection surfaces described above is disclosed in, for example, Japanese Patent Publication No. 2006-513442 and US Pat. No. 6,891,655 corresponding thereto, Modifications may be made in accordance with the disclosure of Japanese Patent Publication No. 2005-524112 and US Patent Publication No. 2005/0095749 corresponding thereto.
  • a reflective spatial light modulator having a plurality of mirror elements is used.
  • the present invention is not limited to this.
  • transmission disclosed in US Pat. No. 5,229,872 A type of spatial light modulator may be used.
  • the illumination pupil luminance distribution is measured by the pupil luminance distribution measuring device, and the spatial light is determined according to the measurement result.
  • Each spatial light modulator in the modulation unit may be controlled.
  • Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto.
  • a configuration in which light having different polarization states is incident on the plurality of spatial light modulators 3a and 3b may be employed.
  • a polarizing optical member may be disposed in the optical path of a pair of light beams incident on the pair of prisms 3e and 3f.
  • the polarizing optical member may be provided on the incident surface IP of the pair of prisms 3e and 3f.
  • a polarizing optical member may be disposed in the optical path between the prism 3h serving as a divided light guide member and each of the spatial light modulators 3a and 3b.
  • a reflection film provided on the reflection surface (the first deflection surface R1a or the second deflection surface R1b) of the prism 3h, a reflection film that gives a phase difference between mutually orthogonal polarization components is applied to each spatial light modulator. You may change the polarization state of the light which goes to 3a, 3b.
  • a reflective film that gives a phase difference between polarization components orthogonal to each other can be regarded as a polarizing optical member.
  • polarizing optical member As the polarizing optical member described above, a phase member such as a wave plate or an optical rotator, a polarizer, or the like can be used.
  • the polarizing optical member is disposed on at least one of the optical path between the divided light guide member and the first spatial light modulator 3a and the optical path between the divided light guide member and the second spatial light modulator 3b. It only has to be done.
  • variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask.
  • a variable pattern forming apparatus for example, a DMD (digital micromirror device) including a plurality of reflecting elements driven based on predetermined electronic data can be used.
  • An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 2004-304135 and International Patent Publication No. 2006/080285.
  • a transmissive spatial light modulator may be used, or a self-luminous image display element may be used. Note that a variable pattern forming apparatus may be used even when the pattern surface is placed horizontally.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 10 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • Step S42 the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed.
  • step S46 development process
  • step S48 processing step
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is.
  • the surface of the wafer W is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as the photosensitive substrate, that is, the plate P.
  • FIG. 11 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S50
  • a color filter formation process step S52
  • a cell assembly process step S54
  • a module assembly process step S56
  • a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment.
  • the pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
  • step S52 a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • an exposure apparatus for manufacturing a semiconductor device for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display
  • various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask,
  • ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light.
  • the present invention is not limited to this, and other appropriate laser light sources are used.
  • the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm.
  • the present invention is applied to the illumination optical system that illuminates the mask in the exposure apparatus.
  • the present invention is not limited to this, and a general illumination surface other than the mask is illuminated.
  • the present invention can also be applied to an illumination optical system.
  • a wavefront division type micro fly's eye lens having a plurality of minute lens surfaces is used as the optical integrator.
  • an internal reflection type optical integrator typically Specifically, a rod type integrator
  • a condensing lens is arranged on the rear side of the zoom lens 7 so that its front focal position coincides with the rear focal position of the zoom lens 7, and the incident end is located at or near the rear focal position of the condensing lens. Position the rod-type integrator so that is positioned. At this time, the injection end of the rod-type integrator becomes the position of the mask blind 11.
  • a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical system 12 downstream of the rod type integrator can be called an illumination pupil plane.
  • this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
  • a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it.
  • a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate a method for locally filling the liquid as disclosed in International Publication No. WO 99/49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114.
  • a technique of forming a liquid tank and holding the substrate in the liquid tank can be employed.
  • a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is a spatial light modulation unit that can stably exert a required function over a required period of time. A spatial light modulation unit (3) is used together with a lighting optical system to illuminate an irradiation subject surface in accordance with light from a light source and forms a desired light intensity distribution on a pupil surface of the lighting optical system. The spatial light modulation unit (3) is comprised of first and second spatial light modulators (3a, 3b) that apply a spatial light modulation to incident light and project the modulated incident light with two-dimensionally arranged and individually controlled multiple optical elements; and division light guide members (3c, 3d, 3e, 3f) that divide the incident light into multiple light components, guide first light component out of the multiple light components to the first spatial light modulator while guiding second light component out of the multiple light components to the second spatial light modulator.

Description

空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
 本発明は、空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。 The present invention relates to a spatial light modulation unit, an illumination optical system, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to an illumination optical system suitable for an exposure apparatus for manufacturing devices such as a semiconductor element, an image sensor, a liquid crystal display element, and a thin film magnetic head in a lithography process.
 この種の典型的な露光装置においては、光源から射出された光束が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「照明瞳輝度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。 In a typical exposure apparatus of this type, a light beam emitted from a light source is passed through a fly-eye lens as an optical integrator, and a secondary light source (generally an illumination pupil) as a substantial surface light source composed of a number of light sources. A predetermined light intensity distribution). Hereinafter, the light intensity distribution in the illumination pupil is referred to as “illumination pupil luminance distribution”. The illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
 二次光源からの光束は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。 The light beam from the secondary light source is condensed by the condenser lens and then illuminates the mask on which a predetermined pattern is formed in a superimposed manner. The light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer. The pattern formed on the mask is highly integrated, and it is indispensable to obtain a uniform illumination distribution on the wafer in order to accurately transfer the fine pattern onto the wafer.
 従来、ズーム光学系を用いることなく照明瞳輝度分布(ひいては照明条件)を連続的に変更することのできる照明光学系が提案されている(特許文献1を参照)。特許文献1に開示された照明光学系では、アレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小なミラー要素により構成された可動マルチミラーを用いて、入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換し、ひいては所望の照明瞳輝度分布を実現している。 Conventionally, there has been proposed an illumination optical system capable of continuously changing the illumination pupil luminance distribution (and thus the illumination condition) without using a zoom optical system (see Patent Document 1). In the illumination optical system disclosed in Patent Document 1, an incident light beam is generated using a movable multi-mirror configured by a large number of minute mirror elements that are arranged in an array and whose tilt angle and tilt direction are individually driven and controlled. By dividing and deflecting into minute units for each reflecting surface, the cross section of the light beam is converted into a desired shape or a desired size, and thus a desired illumination pupil luminance distribution is realized.
特開2002-353105号公報JP 2002-353105 A
 特許文献1に記載された照明光学系では、可動マルチミラーを用いているので、照明瞳輝度分布の形状および大きさの変更に関する自由度は高い。しかしながら、この照明光学系に用いられて照明瞳輝度分布を形成する空間光変調ユニットでは、空間光変調器としての可動マルチミラーを単体で使用しているため、ミラー要素の反射面に入射する光の単位面積当たりのエネルギーが比較的大きくなる。その結果、光照射に起因してミラー要素の反射率が経時的に低下し易く、ひいては空間光変調ユニットが所要の機能を所要期間に亘って安定的に発揮することが困難になる。 In the illumination optical system described in Patent Document 1, since a movable multi-mirror is used, the degree of freedom in changing the shape and size of the illumination pupil luminance distribution is high. However, since the spatial light modulation unit used in this illumination optical system to form the illumination pupil luminance distribution uses a movable multi-mirror as a single spatial light modulator, the light incident on the reflection surface of the mirror element The energy per unit area is relatively large. As a result, the reflectance of the mirror element is likely to decrease with time due to light irradiation, and as a result, it becomes difficult for the spatial light modulation unit to stably perform a required function over a required period.
 一方、ミラー要素の反射面に入射する光の単位面積当たりのエネルギーを小さく抑えるために空間光変調ユニットへの入射光束の断面を大きくすると、二次元的に配置された多数のミラー要素が占める反射領域の全体面積が大きくなり、空間光変調器が大型化する。空間光変調器の大型化は、空間光変調器の入射側および射出側の光学系(レンズ、プリズム、ミラーなど)の大型化を招き、ひいては空間光変調ユニットの大型化およびコストアップを招いてしまう。 On the other hand, if the cross section of the incident light beam to the spatial light modulation unit is made large in order to keep the energy per unit area of light incident on the reflecting surface of the mirror element small, the reflection occupied by many mirror elements arranged two-dimensionally The total area of the region increases, and the spatial light modulator increases in size. Increasing the size of the spatial light modulator leads to an increase in the size of optical systems (lenses, prisms, mirrors, etc.) on the incident side and the exit side of the spatial light modulator, which in turn increases the size and cost of the spatial light modulation unit. End up.
 本発明は、前述の課題に鑑みてなされたものであり、所要の機能を所要期間に亘って安定的に発揮することのできる空間光変調ユニットを提供することを目的とする。また、本発明は、所要の機能を安定的に発揮する空間光変調ユニットを用いて、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することのできる照明光学系を提供することを目的とする。また、本発明は、多様性に富んだ照明条件を実現する照明光学系を用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a spatial light modulation unit capable of stably exhibiting a required function over a required period. The present invention also provides an illumination optical system capable of realizing a wide variety of illumination conditions for the shape and size of the illumination pupil luminance distribution, using a spatial light modulation unit that stably exhibits a required function. The purpose is to provide. In addition, the present invention uses an illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. An object of the present invention is to provide an exposure apparatus that can perform this.
 前記課題を解決するために、本発明の第1形態では、光源からの光に基づいて被照射面を照明する照明光学系と共に用いられ、前記照明光学系の瞳面に所望の光強度分布を形成するための空間光変調ユニットであって、
 二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する第1空間光変調器と、
 二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する第2空間光変調器と、
 入射光を複数の光に分割し、該複数の光のうちの第1の光を前記第1空間光変調器へ導き且つ前記複数の光のうちの第2の光を前記第2空間光変調器へ導く分割導光部材とを備えていることを特徴とする空間光変調ユニットを提供する。
In order to solve the above-mentioned problem, in the first embodiment of the present invention, a desired light intensity distribution is used on the pupil plane of the illumination optical system, which is used together with an illumination optical system that illuminates the illuminated surface based on light from a light source. A spatial light modulation unit for forming,
A first spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light;
A second spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light;
The incident light is divided into a plurality of lights, a first light of the plurality of lights is guided to the first spatial light modulator, and a second light of the plurality of lights is modulated by the second spatial light modulation. A spatial light modulation unit is provided that includes a divided light guide member that leads to a vessel.
 本発明の第2形態では、光源からの光に基づいて被照射面を照明する照明光学系において、
 第1形態の空間光変調ユニットと、
 前記第1空間光変調器および前記第2空間光変調器を介した光に基づいて、前記照明光学系の照明瞳に所定の光強度分布を形成する分布形成光学系とを備えていることを特徴とする照明光学系を提供する。
In the second embodiment of the present invention, in the illumination optical system that illuminates the illuminated surface based on the light from the light source,
A spatial light modulation unit of the first form;
A distribution forming optical system that forms a predetermined light intensity distribution on an illumination pupil of the illumination optical system based on the light that has passed through the first spatial light modulator and the second spatial light modulator. An illumination optical system is provided.
 本発明の第3形態では、所定のパターンを照明するための第2形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。 According to a third aspect of the present invention, there is provided an exposure apparatus comprising the illumination optical system according to the second aspect for illuminating a predetermined pattern, and exposing the predetermined pattern onto a photosensitive substrate.
 本発明の第4形態では、第3形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
 前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
 前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。
In the fourth embodiment of the present invention, using the exposure apparatus of the third embodiment, an exposure step of exposing the predetermined pattern to the photosensitive substrate;
Developing the photosensitive substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
And a processing step of processing the surface of the photosensitive substrate through the mask layer.
 本発明では、空間光変調ユニットが一対の空間光変調器を備えているので、空間光変調器を単体で使用する場合に比して、光学要素の光学面に入射する光の単位面積当たりのエネルギーが小さく抑えられる。具体的には、複数のミラー要素を有する一対の反射型の空間光変調器を用いる場合、ミラー要素の反射面に入射する光の単位面積当たりのエネルギーが小さく抑えられる。その結果、本発明の空間光変調ユニットでは、長期間に亘って光照射を受けてもミラー要素の反射率が低下しにくく、所要の機能を所要期間に亘って安定的に発揮することができる。 In the present invention, since the spatial light modulation unit includes a pair of spatial light modulators, the light intensity per unit area of the light incident on the optical surface of the optical element is larger than when the spatial light modulator is used alone. Energy can be kept small. Specifically, when a pair of reflective spatial light modulators having a plurality of mirror elements is used, the energy per unit area of light incident on the reflecting surface of the mirror elements can be kept small. As a result, in the spatial light modulation unit of the present invention, the reflectance of the mirror element is not easily lowered even when irradiated with light over a long period of time, and a required function can be stably exhibited over a required period. .
 したがって、本発明の照明光学系では、所要の機能を安定的に発揮する空間光変調ユニットを用いて、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することができる。また、本発明の露光装置では、多様性に富んだ照明条件を実現する照明光学系を用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。 Therefore, in the illumination optical system of the present invention, it is possible to realize a wide variety of illumination conditions for the shape and size of the illumination pupil luminance distribution by using the spatial light modulation unit that stably exhibits the required function. . The exposure apparatus of the present invention uses the illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. Which can be done and thus a good device can be produced.
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning embodiment of this invention. 本実施形態にかかる空間光変調ユニットの内部構成を概略的に示す図である。It is a figure which shows schematically the internal structure of the spatial light modulation unit concerning this embodiment. シリンドリカルマイクロフライアイレンズの構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of a cylindrical micro fly's eye lens. 図2の空間光変調ユニットの要部構成を概略的に示す図である。It is a figure which shows schematically the principal part structure of the spatial light modulation unit of FIG. 図4の空間光変調器の部分斜視図である。FIG. 5 is a partial perspective view of the spatial light modulator of FIG. 4. 本実施形態においてアフォーカルレンズの瞳面に形成される4極状の光強度分布を模式的に示す図である。It is a figure which shows typically the light intensity distribution of 4 pole shape formed in the pupil plane of an afocal lens in this embodiment. 光分割器としてプリズムユニットを用いる変形例の要部構成を概略的に示す図である。It is a figure which shows schematically the principal part structure of the modification which uses a prism unit as a light splitter. 1つのプリズムの形態を有する分割導光部材を備えた空間光変調ユニットの変形例の要部構成を概略的に示す図である。It is a figure which shows roughly the principal part structure of the modification of the spatial light modulation unit provided with the division | segmentation light guide member which has the form of one prism. 1つのプリズムの形態を有する分割導光部材を備えた空間光変調ユニットのもう1つの変形例の要部構成を概略的に示す図である。It is a figure which shows roughly the principal part structure of another modification of the spatial light modulation unit provided with the division | segmentation light guide member which has the form of one prism. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device. 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of liquid crystal devices, such as a liquid crystal display element.
符号の説明Explanation of symbols
1 光源
3 空間光変調ユニット
3a,3b 空間光変調器
3c 回折光学素子
3g プリズムユニット
4 アフォーカルレンズ
7 ズームレンズ
8 シリンドリカルマイクロフライアイレンズ
10 コンデンサー光学系
11 マスクブラインド
12 結像光学系
SE 空間光変調器3a,3bの複数のミラー要素
M マスク
PL 投影光学系
W ウェハ
DESCRIPTION OF SYMBOLS 1 Light source 3 Spatial light modulation unit 3a, 3b Spatial light modulator 3c Diffraction optical element 3g Prism unit 4 Afocal lens 7 Zoom lens 8 Cylindrical micro fly's eye lens 10 Condenser optical system 11 Mask blind 12 Imaging optical system SE Spatial light modulation Mirror elements M mask PL projection optical system W wafer
 本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図2は、本実施形態にかかる空間光変調ユニットの内部構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向にY軸を、ウェハWの転写面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。 Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing an internal configuration of the spatial light modulation unit according to the present embodiment. In FIG. 1, the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG. In the W transfer surface, the X axis is set in a direction perpendicular to the paper surface of FIG.
 図1を参照すると、本実施形態の露光装置では、光源1から露光光(照明光)が供給される。光源1として、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源1から射出された光は、整形光学系2により所要の断面形状の光束に拡大された後、空間光変調ユニット3に入射する。空間光変調ユニット3は、図2に示すように、光の入射側から順に、回折光学素子3cと、集光レンズ3dと、一対のプリズム3eおよび3fと、一対の空間光変調器3aおよび3bとを備えている。空間光変調ユニット3の具体的な構成および作用については後述する。 Referring to FIG. 1, exposure light (illumination light) is supplied from a light source 1 in the exposure apparatus of this embodiment. As the light source 1, for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used. The light emitted from the light source 1 is expanded into a light beam having a required cross-sectional shape by the shaping optical system 2 and then enters the spatial light modulation unit 3. As shown in FIG. 2, the spatial light modulation unit 3 includes, in order from the light incident side, a diffractive optical element 3c, a condenser lens 3d, a pair of prisms 3e and 3f, and a pair of spatial light modulators 3a and 3b. And. The specific configuration and operation of the spatial light modulation unit 3 will be described later.
 再び図1を参照すると、空間光変調ユニット3から射出された光は、アフォーカルレンズ4に入射する。アフォーカルレンズ4は、アフォーカル系(無焦点光学系)であって、その前側焦点位置と空間光変調ユニット3中の第1空間光変調器3aの位置および第2空間光変調器3bの位置とがほぼ一致し、且つその後側焦点位置と図中破線で示す所定面5の位置とがほぼ一致するように設定されている。 Referring to FIG. 1 again, the light emitted from the spatial light modulation unit 3 enters the afocal lens 4. The afocal lens 4 is an afocal system (non-focal optical system), its front focal position, the position of the first spatial light modulator 3a in the spatial light modulation unit 3, and the position of the second spatial light modulator 3b. Are substantially matched with each other, and the rear focal position is substantially matched with the position of the predetermined surface 5 indicated by a broken line in the figure.
 したがって、第1空間光変調器3aを介した光は、アフォーカルレンズ4の瞳面に、例えば光軸AXを中心としてZ方向に間隔を隔てた2つの円形状の光強度分布からなるZ方向2極状の光強度分布を形成した後、2極状の角度分布でアフォーカルレンズ4から射出される。一方、第2空間光変調器3bを介した光は、アフォーカルレンズ4の瞳面に、例えば光軸AXを中心としてX方向に間隔を隔てた2つの円形状の光強度分布からなるX方向2極状の光強度分布を形成した後、2極状の角度分布でアフォーカルレンズ4から射出される。 Therefore, the light passing through the first spatial light modulator 3a is, for example, in the Z direction formed of two circular light intensity distributions spaced apart in the Z direction about the optical axis AX on the pupil plane of the afocal lens 4. After forming a dipolar light intensity distribution, the light is emitted from the afocal lens 4 with a dipolar angular distribution. On the other hand, the light that has passed through the second spatial light modulator 3b is, on the pupil plane of the afocal lens 4, for example, an X direction composed of two circular light intensity distributions spaced apart in the X direction about the optical axis AX. After forming a dipolar light intensity distribution, the light is emitted from the afocal lens 4 with a dipolar angular distribution.
 アフォーカルレンズ4の前側レンズ群4aと後側レンズ群4bとの間の光路中においてその瞳面の位置(図2において参照符号4cで示す位置)またはその近傍の位置には、円錐アキシコン系6が配置されている。円錐アキシコン系6の構成および作用については後述する。アフォーカルレンズ4を介した光束は、σ値(σ値=照明光学系のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ7を介して、シリンドリカルマイクロフライアイレンズ8に入射する。 In the optical path between the front lens group 4a and the rear lens group 4b of the afocal lens 4, the position of the pupil plane (the position indicated by reference numeral 4c in FIG. 2) or a position in the vicinity thereof has a conical axicon system 6 Is arranged. The configuration and operation of the conical axicon system 6 will be described later. The light beam that has passed through the afocal lens 4 passes through a zoom lens 7 for varying a σ value (σ value = mask-side numerical aperture of the illumination optical system / mask-side numerical aperture of the projection optical system), and a cylindrical micro fly's eye lens 8. Is incident on.
 シリンドリカルマイクロフライアイレンズ8は、図3に示すように、光源側に配置された第1フライアイ部材8aとマスク側に配置された第2フライアイ部材8bとから構成されている。第1フライアイ部材8aの光源側の面および第2フライアイ部材8bの光源側の面には、X方向に並んで配列されたシリンドリカルレンズ群8aaおよび8baがそれぞれピッチp1で形成されている。第1フライアイ部材8aのマスク側の面および第2フライアイ部材8bのマスク側の面には、Z方向に並んで配列されたシリンドリカルレンズ群8abおよび8bbがそれぞれピッチp2(p2>p1)で形成されている。 As shown in FIG. 3, the cylindrical micro fly's eye lens 8 includes a first fly eye member 8a disposed on the light source side and a second fly eye member 8b disposed on the mask side. On the light source side surface of the first fly eye member 8a and the light source side surface of the second fly eye member 8b, cylindrical lens groups 8aa and 8ba arranged side by side in the X direction are formed at a pitch p1, respectively. Cylindrical lens groups 8ab and 8bb arranged side by side in the Z direction on the mask side surface of the first fly eye member 8a and the mask side surface of the second fly eye member 8b, respectively, with a pitch p2 (p2> p1). Is formed.
 シリンドリカルマイクロフライアイレンズ8のX方向に関する屈折作用(すなわちXY平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材8aの光源側に形成されたシリンドリカルレンズ群8aaによってX方向に沿ってピッチp1で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材8bの光源側に形成されたシリンドリカルレンズ群8baのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ8の後側焦点面上に集光する。 Focusing on the refraction action in the X direction of the cylindrical micro fly's eye lens 8 (that is, the refraction action in the XY plane), the parallel luminous flux incident along the optical axis AX is formed on the light source side of the first fly eye member 8a. The wavefront is divided by the lens group 8aa along the X direction at the pitch p1, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8ba formed on the light source side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
 シリンドリカルマイクロフライアイレンズ8のZ方向に関する屈折作用(すなわちYZ平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材8aのマスク側に形成されたシリンドリカルレンズ群8abによってZ方向に沿ってピッチp2で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材8bのマスク側に形成されたシリンドリカルレンズ群8bbのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ8の後側焦点面上に集光する。 Focusing on the refractive action in the Z direction of the cylindrical micro fly's eye lens 8 (that is, the refractive action in the YZ plane), the parallel light beam incident along the optical axis AX is formed on the cylindrical side of the first fly's eye member 8a on the mask side. After the wavefront is divided at the pitch p2 along the Z direction by the lens group 8ab, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8bb formed on the mask side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
 このように、シリンドリカルマイクロフライアイレンズ8は、シリンドリカルレンズ群が両側面に配置された第1フライアイ部材8aと第2フライアイ部材8bとにより構成されているが、X方向にp1のサイズを有しZ方向にp2のサイズを有する多数の矩形状の微小屈折面が縦横に且つ稠密に一体形成されたマイクロフライアイレンズと同様の光学的機能を発揮する。シリンドリカルマイクロフライアイレンズ8では、微小屈折面の面形状のばらつきに起因する歪曲収差の変化を小さく抑え、たとえばエッチング加工により一体的に形成される多数の微小屈折面の製造誤差が照度分布に与える影響を小さく抑えることができる。 As described above, the cylindrical micro fly's eye lens 8 is constituted by the first fly eye member 8a and the second fly eye member 8b in which the cylindrical lens groups are arranged on both side surfaces, but the size of p1 is set in the X direction. It has an optical function similar to that of a micro fly's eye lens in which a large number of rectangular minute refracting surfaces having a size of p2 in the Z direction are integrally formed vertically and horizontally. In the cylindrical micro fly's eye lens 8, a change in distortion due to variations in the surface shape of the micro-refractive surface is suppressed to be small, and for example, manufacturing errors of a large number of micro-refractive surfaces integrally formed by etching process give the illuminance distribution. The influence can be kept small.
 所定面5の位置はズームレンズ7の前側焦点位置の近傍に配置され、シリンドリカルマイクロフライアイレンズ8の入射面はズームレンズ7の後側焦点位置の近傍に配置されている。換言すると、ズームレンズ7は、所定面5とシリンドリカルマイクロフライアイレンズ8の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ4の瞳面とシリンドリカルマイクロフライアイレンズ8の入射面とを光学的にほぼ共役に配置している。 The position of the predetermined surface 5 is disposed in the vicinity of the front focal position of the zoom lens 7, and the incident surface of the cylindrical micro fly's eye lens 8 is disposed in the vicinity of the rear focal position of the zoom lens 7. In other words, in the zoom lens 7, the predetermined surface 5 and the incident surface of the cylindrical micro fly's eye lens 8 are arranged substantially in a Fourier transform relationship, and as a result, the pupil surface of the afocal lens 4 and the cylindrical micro fly's eye lens 8. The incident surface is optically substantially conjugate.
 したがって、シリンドリカルマイクロフライアイレンズ8の入射面上には、アフォーカルレンズ4の瞳面と同様に、たとえば光軸AXを中心としてZ方向に間隔を隔てた2つの円形状の光強度分布と光軸AXを中心としてX方向に間隔を隔てた2つの円形状の光強度分布とからなる4極状の照野が形成される。この4極状の照野の全体形状は、ズームレンズ7の焦点距離に依存して相似的に変化する。シリンドリカルマイクロフライアイレンズ8における波面分割単位としての矩形状の微小屈折面は、マスクM上において形成すべき照野の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。 Accordingly, on the incident surface of the cylindrical micro fly's eye lens 8, as with the pupil surface of the afocal lens 4, for example, two circular light intensity distributions and light with an interval in the Z direction centered on the optical axis AX. A quadrupole illumination field is formed which consists of two circular light intensity distributions spaced apart in the X direction about the axis AX. The overall shape of this quadrupole illumination field changes in a similar manner depending on the focal length of the zoom lens 7. The rectangular micro-refractive surface as a wavefront division unit in the cylindrical micro fly's eye lens 8 has a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and thus the shape of the exposure region to be formed on the wafer W). It is.
 シリンドリカルマイクロフライアイレンズ8に入射した光束は二次元的に分割され、その後側焦点面またはその近傍(ひいては照明瞳)には、入射光束によって形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXを中心としてZ方向に間隔を隔てた2つの円形状の実質的な面光源と光軸AXを中心としてX方向に間隔を隔てた2つの円形状の実質的な面光源とからなる4極状の二次光源(4極状の照明瞳輝度分布)が形成される。シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り9に入射する。 The light beam incident on the cylindrical micro fly's eye lens 8 is two-dimensionally divided, and has two light intensity distributions on the rear focal plane or in the vicinity thereof (and thus the illumination pupil) having substantially the same light intensity distribution as the illumination field formed by the incident light beam. The next light source, that is, two circular substantial surface light sources spaced in the Z direction around the optical axis AX and two circular substantial surfaces spaced in the X direction around the optical axis AX A quadrupole secondary light source (a quadrupole illumination pupil luminance distribution) composed of a light source is formed. A light beam from a secondary light source formed on the rear focal plane of the cylindrical micro fly's eye lens 8 or in the vicinity thereof enters an aperture stop 9 disposed in the vicinity thereof.
 開口絞り9は、シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍に形成される4極状の二次光源に対応した4極状の開口部(光透過部)を有する。開口絞り9は、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。開口絞り9は、後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。 The aperture stop 9 has a quadrupole opening (light transmission portion) corresponding to a quadrupolar secondary light source formed at or near the rear focal plane of the cylindrical micro fly's eye lens 8. The aperture stop 9 is configured to be detachable with respect to the illumination optical path, and is configured to be switchable between a plurality of aperture stops having openings having different sizes and shapes. As an aperture stop switching method, for example, a well-known turret method or slide method can be used. The aperture stop 9 is disposed at a position that is optically conjugate with an entrance pupil plane of the projection optical system PL described later, and defines a range that contributes to illumination of the secondary light source.
 開口絞り9により制限された二次光源からの光は、コンデンサー光学系10を介して、マスクブラインド11を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド11には、シリンドリカルマイクロフライアイレンズ8の波面分割単位である矩形状の微小屈折面の形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド11の矩形状の開口部(光透過部)を介した光束は、結像光学系12の集光作用を受けた後、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系12は、マスクブラインド11の矩形状開口部の像をマスクM上に形成することになる。 The light from the secondary light source limited by the aperture stop 9 illuminates the mask blind 11 in a superimposed manner via the condenser optical system 10. Thus, a rectangular illumination field corresponding to the shape and focal length of the rectangular micro-refractive surface which is the wavefront division unit of the cylindrical micro fly's eye lens 8 is formed on the mask blind 11 as the illumination field stop. The light beam that has passed through the rectangular opening (light transmitting portion) of the mask blind 11 receives the light condensing action of the imaging optical system 12 and then illuminates the mask M on which a predetermined pattern is formed in a superimposed manner. That is, the imaging optical system 12 forms an image of the rectangular opening of the mask blind 11 on the mask M.
 マスクステージMS上に保持されたマスクMを透過した光束は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。 The light beam transmitted through the mask M held on the mask stage MS forms an image of a mask pattern on the wafer (photosensitive substrate) W held on the wafer stage WS through the projection optical system PL. In this way, batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled. As a result, the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
 円錐アキシコン系6は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状の屈折面を向けた第1プリズム部材6aと、マスク側に平面を向け且つ光源側に凸円錐状の屈折面を向けた第2プリズム部材6bとから構成されている。そして、第1プリズム部材6aの凹円錐状の屈折面と第2プリズム部材6bの凸円錐状の屈折面とは、互いに当接可能なように相補的に形成されている。また、第1プリズム部材6aおよび第2プリズム部材6bのうち少なくとも一方の部材が光軸AXに沿って移動可能に構成され、第1プリズム部材6aの凹円錐状の屈折面と第2プリズム部材6bの凸円錐状の屈折面との間隔が可変に構成されている。以下、理解を容易にするために、4極状または輪帯状の二次光源に着目して、円錐アキシコン系6の作用およびズームレンズ7の作用を説明する。 The conical axicon system 6 includes, in order from the light source side, a first prism member 6a having a flat surface facing the light source side and a concave conical refractive surface facing the mask side, and a convex conical shape facing the plane toward the mask side and the light source side. And a second prism member 6b facing the refractive surface. The concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are complementarily formed so as to be in contact with each other. Further, at least one of the first prism member 6a and the second prism member 6b is configured to be movable along the optical axis AX, and the concave conical refracting surface of the first prism member 6a and the second prism member 6b. The distance from the convex conical refracting surface is variable. Hereinafter, in order to facilitate understanding, the operation of the conical axicon system 6 and the operation of the zoom lens 7 will be described focusing on a quadrupolar or annular secondary light source.
 第1プリズム部材6aの凹円錐状屈折面と第2プリズム部材6bの凸円錐状屈折面とが互いに当接している状態では、円錐アキシコン系6は平行平面板として機能し、形成される4極状または輪帯状の二次光源に及ぼす影響はない。しかしながら、第1プリズム部材6aの凹円錐状屈折面と第2プリズム部材6bの凸円錐状屈折面とを離間させると、4極状または輪帯状の二次光源の幅(4極状の二次光源に外接する円の直径(外径)と内接する円の直径(内径)との差の1/2;輪帯状の二次光源の外径と内径との差の1/2)を一定に保ちつつ、4極状または輪帯状の二次光源の外径(内径)が変化する。すなわち、4極状または輪帯状の二次光源の輪帯比(内径/外径)および大きさ(外径)が変化する。 In a state where the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are in contact with each other, the conical axicon system 6 functions as a plane parallel plate and is formed as a four-pole. There is no effect on the secondary light source in the form of a ring or ring. However, when the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are separated from each other, the width of the quadrupolar or annular secondary light source (the quadrupolar secondary light source). 1/2 of the difference between the diameter (outer diameter) of the circle circumscribing the light source and the diameter (inner diameter) of the inscribed circle; 1/2 of the difference between the outer diameter and inner diameter of the annular secondary light source The outer diameter (inner diameter) of the quadrupole or ring-shaped secondary light source changes while maintaining. That is, the annular ratio (inner diameter / outer diameter) and size (outer diameter) of the quadrupolar or annular secondary light source change.
 ズームレンズ7は、4極状または輪帯状の二次光源の全体形状を相似的(等方的)に拡大または縮小する機能を有する。たとえば、ズームレンズ7の焦点距離を最小値から所定の値へ拡大させることにより、4極状または輪帯状の二次光源の全体形状が相似的に拡大される。換言すると、ズームレンズ7の作用により、4極状または輪帯状の二次光源の輪帯比が変化することなく、その幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系6およびズームレンズ7の作用により、4極状または輪帯状の二次光源の輪帯比と大きさ(外径)とを制御することができる。 The zoom lens 7 has a function of enlarging or reducing the overall shape of the quadrupolar or annular secondary light source in a similar (isotropic) manner. For example, by expanding the focal length of the zoom lens 7 from a minimum value to a predetermined value, the overall shape of the quadrupolar or annular secondary light source is enlarged similarly. In other words, the width and size (outer diameter) of the quadrupole or ring-shaped secondary light source are both changed by the action of the zoom lens 7 without changing. As described above, the annular ratio and the size (outer diameter) of the quadrupolar or annular secondary light source can be controlled by the action of the conical axicon system 6 and the zoom lens 7.
 本実施形態の空間光変調ユニット3では、図2に示すように、整形光学系2を介した光源1からの光束が、光軸AXに沿って回折光学素子3cに入射する。回折光学素子3cは、例えば矩形状の断面を有する平行光束が光軸AXに沿って入射した場合、ファーフィールド(またはフラウンホーファー回折領域)に、光軸AXを中心としてZ方向に間隔を隔てた2つの矩形状の光強度分布を形成する機能を有する。 In the spatial light modulation unit 3 of the present embodiment, as shown in FIG. 2, the light beam from the light source 1 via the shaping optical system 2 enters the diffractive optical element 3c along the optical axis AX. For example, when a parallel light beam having a rectangular cross section is incident along the optical axis AX, the diffractive optical element 3c is spaced from the far field (or Fraunhofer diffraction region) in the Z direction with the optical axis AX as the center. It has a function of forming two rectangular light intensity distributions.
 回折光学素子3cにより分割された2つの光束のうちの第1光束は、フーリエ変換レンズとして機能する集光レンズ3dを介して、プリズム3eおよび第1空間光変調器3aを経た後、アフォーカルレンズ4の前側レンズ群4aを介して、アフォーカルレンズ4の瞳面4cに達する。一方、回折光学素子3cにより分割された2つの光束のうちの第2光束は、集光レンズ3dを介して、プリズム3fおよび第2空間光変調器3bを経た後、前側レンズ群4aを介して瞳面4cに達する。アフォーカルレンズ4の前側レンズ群4aは、第1空間光変調器3aを介した光束と第2空間光変調器3bを介した光束とを瞳面4cで重ね合わせる。 The first light beam of the two light beams divided by the diffractive optical element 3c passes through the condensing lens 3d functioning as a Fourier transform lens, passes through the prism 3e and the first spatial light modulator 3a, and is then an afocal lens. 4 reaches the pupil plane 4c of the afocal lens 4 via the front lens group 4a. On the other hand, the second light beam of the two light beams divided by the diffractive optical element 3c passes through the condenser lens 3d, passes through the prism 3f and the second spatial light modulator 3b, and then passes through the front lens group 4a. It reaches the pupil plane 4c. The front lens group 4a of the afocal lens 4 superimposes the light beam via the first spatial light modulator 3a and the light beam via the second spatial light modulator 3b on the pupil plane 4c.
 以下、説明の理解を容易にするために、プリズム3eと第1空間光変調器3aとからなる第1光学ユニット(3e,3a)と、プリズム3fと第2空間光変調器3bとからなる第2光学ユニット(3f,3b)とは、互いに同じ構成を有し、光軸AXを含んでXY平面に平行な面に関して対称に配置されているものとする。したがって、第2光学ユニット(3f,3b)について第1光学ユニット(3e,3a)と重複する説明を省略し、第1光学ユニット(3e,3a)に着目して、空間光変調ユニット3の具体的な構成および作用を説明する。 Hereinafter, in order to facilitate the understanding of the description, a first optical unit (3e, 3a) comprising a prism 3e and a first spatial light modulator 3a, a first optical unit comprising a prism 3f and a second spatial light modulator 3b. The two optical units (3f, 3b) have the same configuration and are arranged symmetrically with respect to a plane including the optical axis AX and parallel to the XY plane. Therefore, the description which overlaps with the 1st optical unit (3e, 3a) about the 2nd optical unit (3f, 3b) is abbreviate | omitted, paying attention to the 1st optical unit (3e, 3a), the concrete of the spatial light modulation unit 3 A typical configuration and operation will be described.
 第1光学ユニット(3e,3a)は、図4に示すように、例えば蛍石のような光学材料により形成されたプリズム3eと、プリズム3eのXY平面に平行な側面3eaに近接して取り付けられた反射型の空間光変調器3aとを備えている。プリズム3eを形成する光学材料は、蛍石に限定されることなく、光源1が供給する光の波長などに応じて、石英ガラスであっても良くその他の光学材料であっても良い。空間光変調器3aは、二次元的に配列された複数のミラー要素SEを有する本体3aaと、複数のミラー要素SEの姿勢を個別に制御駆動する駆動部3abとにより構成されている。 As shown in FIG. 4, the first optical unit (3e, 3a) is attached close to a prism 3e formed of an optical material such as fluorite and a side surface 3ea parallel to the XY plane of the prism 3e. And a reflective spatial light modulator 3a. The optical material forming the prism 3e is not limited to fluorite, and may be quartz glass or other optical material according to the wavelength of light supplied from the light source 1 or the like. The spatial light modulator 3a includes a main body 3aa having a plurality of mirror elements SE arranged two-dimensionally, and a drive unit 3ab for individually controlling and driving the postures of the plurality of mirror elements SE.
 プリズム3eは、直方体の1つの側面(空間光変調器3aの本体3aaが近接して取り付けられる側面3eaと対向する側面)をV字状に凹んだ側面3ebおよび3ecと置き換えることにより得られる形態を有し、YZ平面に沿った断面形状に因んでKプリズムとも呼ばれる。プリズム3eのV字状に凹んだ側面3ebおよび3ecは、鈍角をなすように交差する2つの平面PN1およびPN2によって規定されている。2つの平面PN1およびPN2はともにYZ平面と直交し、YZ平面に沿ってV字状を呈している。 The prism 3e has a form obtained by replacing one side surface of the rectangular parallelepiped (the side surface facing the side surface 3ea to which the main body 3aa of the spatial light modulator 3a is attached) with the side surfaces 3eb and 3ec recessed in a V shape. It is also called a K prism because of its cross-sectional shape along the YZ plane. Sides 3eb and 3ec that are concave in a V shape of the prism 3e are defined by two planes PN1 and PN2 that intersect to form an obtuse angle. The two planes PN1 and PN2 are both orthogonal to the YZ plane and have a V shape along the YZ plane.
 2つの平面PN1とPN2との接線(X方向に延びる直線)P3で接する2つの側面3ebおよび3ecの内面は、反射面R1aおよびR2aとして機能する。すなわち、反射面R1aは平面PN1上に位置し、反射面R2aは平面PN2上に位置し、反射面R1aとR2aとのなす角度は鈍角である。一例として、反射面R1aとR2aとのなす角度を120度とし、光軸AXaに垂直なプリズム3eの入射面IPと反射面R1aとのなす角度を60度とし、光軸AXaに垂直なプリズム3eの射出面OPと反射面R2aとのなす角度を60度とすることができる。 The inner surfaces of the two side surfaces 3eb and 3ec that are in contact with the tangent lines (straight lines extending in the X direction) P3 between the two planes PN1 and PN2 function as reflecting surfaces R1a and R2a. That is, the reflective surface R1a is located on the plane PN1, the reflective surface R2a is located on the plane PN2, and the angle formed by the reflective surfaces R1a and R2a is an obtuse angle. As an example, the angle between the reflecting surfaces R1a and R2a is 120 degrees, the angle between the incident surface IP of the prism 3e perpendicular to the optical axis AXa and the reflecting surface R1a is 60 degrees, and the prism 3e perpendicular to the optical axis AXa. The angle formed by the exit surface OP and the reflecting surface R2a can be 60 degrees.
 プリズム3eでは、空間光変調器3aの本体3aaが近接して取り付けられる側面3eaと光軸AXaとが平行であり、且つ反射面R1aが光源1側(露光装置の上流側:図4中左側)に、反射面R2aがアフォーカルレンズ4側(露光装置の下流側:図4中右側)に位置している。さらに詳細には、反射面R1aは光軸AXaに対して斜設され、反射面R2aは接線P3を通り且つXZ平面に平行な面に関して反射面R1aとは対称的に光軸AXaに対して斜設されている。プリズム3eの側面3eaは、後述するように、空間光変調器3aの本体3aaにおいて複数のミラー要素SEが配列される面に対向した光学面である。 In the prism 3e, the side surface 3ea to which the main body 3aa of the spatial light modulator 3a is attached is parallel to the optical axis AXa, and the reflection surface R1a is on the light source 1 side (upstream side of the exposure apparatus: left side in FIG. 4). Further, the reflection surface R2a is located on the afocal lens 4 side (downstream side of the exposure apparatus: right side in FIG. 4). More specifically, the reflective surface R1a is obliquely arranged with respect to the optical axis AXa, and the reflective surface R2a is obliquely symmetrical with respect to the optical axis AXa symmetrically with the reflective surface R1a with respect to a plane passing through the tangent line P3 and parallel to the XZ plane. It is installed. As will be described later, the side surface 3ea of the prism 3e is an optical surface facing the surface on which the plurality of mirror elements SE are arranged in the main body 3aa of the spatial light modulator 3a.
 プリズム3eの反射面R1aは、入射面IPを介して入射した光を空間光変調器3aに向かって反射する。空間光変調器3aは、反射面R1aと反射面R2aとの間の光路中に配置され、反射面R1aを経て入射した光を反射する。プリズム3eの反射面R2aは、空間光変調器3aを経て入射した光を反射し、射出面OPを介してアフォーカルレンズ4の前側レンズ群4aへ導く。図4では、説明の理解を容易にするために、前側レンズ群4aよりも後側において光軸AXaが直線状に延びるように光路を展開している。また、図4にはプリズム3eを1つの光学ブロックで一体的に形成した例を示しているが、複数の光学ブロックを用いてプリズム3eを構成しても良い。 The reflecting surface R1a of the prism 3e reflects the light incident through the incident surface IP toward the spatial light modulator 3a. The spatial light modulator 3a is disposed in the optical path between the reflecting surface R1a and the reflecting surface R2a, and reflects the light incident through the reflecting surface R1a. The reflecting surface R2a of the prism 3e reflects the light incident through the spatial light modulator 3a and guides it to the front lens group 4a of the afocal lens 4 through the exit surface OP. In FIG. 4, in order to facilitate understanding of the description, the optical path is developed so that the optical axis AXa extends linearly on the rear side of the front lens group 4a. 4 shows an example in which the prism 3e is integrally formed by one optical block, the prism 3e may be configured by using a plurality of optical blocks.
 空間光変調器3aは、反射面R1aを経て入射した光に対して、その入射位置に応じた空間的な変調を付与して射出する。空間光変調器3aの本体3aaは、図5に示すように、二次元的に配列された複数の微小なミラー要素(光学要素)SEを備えている。説明および図示を簡単にするために、図4および図5では空間光変調器3aが4×4=16個のミラー要素SEを備える構成例を示しているが、実際には16個よりもはるかに多数のミラー要素SEを備えている。 The spatial light modulator 3a emits the light incident through the reflecting surface R1a with spatial modulation according to the incident position. As shown in FIG. 5, the main body 3aa of the spatial light modulator 3a includes a plurality of minute mirror elements (optical elements) SE arranged two-dimensionally. For ease of explanation and illustration, FIG. 4 and FIG. 5 show a configuration example in which the spatial light modulator 3a includes 4 × 4 = 16 mirror elements SE. Are provided with a number of mirror elements SE.
 図4を参照すると、光軸AXaと平行な方向に沿ってプリズム3eに入射する光線群のうち、光線L1は複数のミラー要素SEのうちのミラー要素SEaに、光線L2はミラー要素SEaとは異なるミラー要素SEbにそれぞれ入射する。同様に、光線L3はミラー要素SEa,SEbとは異なるミラー要素SEcに、光線L4はミラー要素SEa~SEcとは異なるミラー要素SEdにそれぞれ入射する。ミラー要素SEa~SEdは、その位置に応じて設定された空間的な変調を光L1~L4に与える。 Referring to FIG. 4, among the light beams incident on the prism 3 e along the direction parallel to the optical axis AXa, the light beam L1 is the mirror element SEa of the plurality of mirror elements SE, and the light beam L2 is the mirror element SEa. Each incident on a different mirror element SEb. Similarly, the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb, and the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc. The mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
 空間光変調器3aでは、すべてのミラー要素SEの反射面がXY平面に平行に設定された基準の状態(以下、「基準状態」という)において、光軸AXaと平行な方向に沿って反射面R1aへ入射した光線が、空間光変調器3aを経た後に、反射面R2aにより光軸AXaと平行な方向に向かって反射されるように構成されている。また、空間光変調器3aは、プリズム3eの入射面IPからミラー要素SEa~SEdを経て射出面OPまでの空気換算長と、プリズム3eが光路中に配置されていないときの入射面IPに相当する位置から射出面OPに相当する位置までの空気換算長とが等しくなるように構成されている。ここで、空気換算長とは、光学系中の光路長を屈折率1の空気中の光路長に換算したものであり、屈折率nの媒質中の空気換算長は、その光路長に1/nを乗じたものである。なお、空間光変調器3aから反射面R2aまでの光路長と、空間光変調器3bから反射面R2bまでの光路長とは互いに等しくなっている。 In the spatial light modulator 3a, in the reference state (hereinafter referred to as “reference state”) in which the reflection surfaces of all the mirror elements SE are set parallel to the XY plane, the reflection surfaces along the direction parallel to the optical axis AXa. The light beam incident on R1a passes through the spatial light modulator 3a, and is then reflected by the reflecting surface R2a in a direction parallel to the optical axis AXa. The spatial light modulator 3a corresponds to the air conversion length from the incident surface IP of the prism 3e to the exit surface OP through the mirror elements SEa to SEd, and the incident surface IP when the prism 3e is not disposed in the optical path. The air-converted length from the position to the position corresponding to the exit surface OP is configured to be equal. Here, the air conversion length is the optical path length in the optical system converted into the optical path length in the air with a refractive index of 1, and the air conversion length in the medium with the refractive index n is 1 / the optical path length. multiplied by n. The optical path length from the spatial light modulator 3a to the reflection surface R2a is equal to the optical path length from the spatial light modulator 3b to the reflection surface R2b.
 空間光変調器3aの複数のミラー要素SEが配列される面は、集光レンズ3dの後側焦点位置またはその近傍に位置決めされ、且つアフォーカルレンズ4の前側焦点位置またはその近傍に位置決めされている。したがって、空間光変調器3aには、回折光学素子3cの特性に応じた形状(例えば矩形状)の断面を有する光束が入射する。空間光変調器3aの複数のミラー要素SEa~SEdによって反射されて所定の角度分布が与えられた光は、アフォーカルレンズ4の瞳面4cに所定の光強度分布SP1~SP4を形成する。すなわち、アフォーカルレンズ4の前側レンズ群4aは、空間光変調器3aの複数のミラー要素SEa~SEdが射出光に与える角度を、空間光変調器3aの遠視野領域(フラウンホーファー回折領域)である面4c上での位置に変換している。 The surface on which the plurality of mirror elements SE of the spatial light modulator 3a are arranged is positioned at or near the rear focal position of the condenser lens 3d, and is positioned at or near the front focal position of the afocal lens 4. Yes. Accordingly, a light beam having a cross section having a shape (for example, a rectangular shape) corresponding to the characteristics of the diffractive optical element 3c is incident on the spatial light modulator 3a. The light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 3a and given a predetermined angular distribution forms predetermined light intensity distributions SP1 to SP4 on the pupil plane 4c of the afocal lens 4. That is, the front lens group 4a of the afocal lens 4 determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 3a gives to the emitted light in the far field region (Fraunhofer diffraction region) of the spatial light modulator 3a. The position is converted to a position on a certain surface 4c.
 図1を参照すると、アフォーカルレンズ4の瞳面4c(図1では不図示)と光学的に共役な位置またはその近傍に、シリンドリカルマイクロフライアイレンズ8の入射面が位置決めされている。したがって、シリンドリカルマイクロフライアイレンズ8が形成する二次光源の光強度分布(輝度分布)は、空間光変調器3aおよびアフォーカルレンズ4の前側レンズ群4aが瞳面4cに形成する光強度分布SP1~SP4に応じた分布となる。空間光変調器3aは、図5に示すように、平面形状の反射面を上面にした状態で1つの平面に沿って規則的に且つ二次元的に配列された多数の微小な反射素子であるミラー要素SEを含む可動マルチミラーである。 Referring to FIG. 1, the incident surface of the cylindrical micro fly's eye lens 8 is positioned at or near a position optically conjugate with the pupil plane 4c (not shown in FIG. 1) of the afocal lens 4. Therefore, the light intensity distribution (luminance distribution) of the secondary light source formed by the cylindrical micro fly's eye lens 8 is the light intensity distribution SP1 formed on the pupil plane 4c by the spatial light modulator 3a and the front lens group 4a of the afocal lens 4. Distribution according to SP4. As shown in FIG. 5, the spatial light modulator 3 a is a large number of minute reflective elements that are regularly and two-dimensionally arranged along one plane with a planar reflective surface as the upper surface. A movable multi-mirror including a mirror element SE.
 各ミラー要素SEは可動であり、その反射面の傾き、すなわち反射面の傾斜角および傾斜方向は、制御部(不図示)からの指令にしたがって作動する駆動部3abの作用により独立に制御される。各ミラー要素SEは、その反射面に平行な二方向であって互いに直交する二方向(X方向およびY方向)を回転軸として、所望の回転角度だけ連続的或いは離散的に回転することができる。すなわち、各ミラー要素SEの反射面の傾斜を二次元的に制御することが可能である。 Each mirror element SE is movable, and the inclination of the reflection surface, that is, the inclination angle and the inclination direction of the reflection surface are independently controlled by the action of the drive unit 3ab that operates according to a command from a control unit (not shown). . Each mirror element SE can be rotated continuously or discretely by a desired rotation angle with two directions (X direction and Y direction) parallel to the reflecting surface and orthogonal to each other as rotation axes. . That is, it is possible to two-dimensionally control the inclination of the reflection surface of each mirror element SE.
 なお、各ミラー要素SEの反射面を離散的に回転させる場合、回転角を複数の状態(例えば、・・・、-2.5度、-2.0度、・・・0度、+0.5度・・・+2.5度、・・・)で切り換え制御するのが良い。図5には外形が正方形状のミラー要素SEを示しているが、ミラー要素SEの外形形状は正方形に限定されない。ただし、光利用効率の観点から、ミラー要素SEの隙間が少なくなるように配列可能な形状(最密充填可能な形状)とすることができる。また、光利用効率の観点から、隣り合う2つのミラー要素SEの間隔を必要最小限に抑えることができる。 In addition, when the reflection surface of each mirror element SE is discretely rotated, the rotation angle is set in a plurality of states (for example,..., −2.5 degrees, −2.0 degrees,... 0 degrees, +0. It is better to perform switching control at 5 degrees... +2.5 degrees,. Although FIG. 5 shows a mirror element SE having a square outer shape, the outer shape of the mirror element SE is not limited to a square. However, from the viewpoint of light utilization efficiency, it is possible to provide a shape that can be arranged so as to reduce the gap between the mirror elements SE (a shape that can be closely packed). Further, from the viewpoint of light utilization efficiency, the interval between two adjacent mirror elements SE can be minimized.
 本実施形態では、空間光変調器3a,3bとして、たとえば二次元的に配列された複数のミラー要素SEの向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば特表平10-503300号公報およびこれに対応する欧州特許公開第779530号公報、特開2004-78136号公報およびこれに対応する米国特許第6,900,915号公報、特表2006-524349号公報およびこれに対応する米国特許第7,095,546号公報、並びに特開2006-113437号公報に開示される空間光変調器を用いることができる。なお、二次元的に配列された複数のミラー要素SEの向きを離散的に複数の段階を持つように制御してもよい。 In this embodiment, as the spatial light modulators 3a and 3b, for example, spatial light modulators that continuously change the directions of a plurality of mirror elements SE arranged two-dimensionally are used. As such a spatial light modulator, for example, Japanese Patent Laid-Open No. 10-503300 and corresponding European Patent Publication No. 779530, Japanese Patent Application Laid-Open No. 2004-78136, and corresponding US Pat. No. 6,900, The spatial light modulator disclosed in Japanese Patent No. 915, Japanese National Publication No. 2006-524349 and US Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-Open No. 2006-113437 can be used. Note that the directions of the plurality of mirror elements SE arranged two-dimensionally may be controlled so as to have a plurality of stages discretely.
 こうして、第1空間光変調器3aでは、制御部からの制御信号に応じて作動する駆動部3abの作用により、複数のミラー要素SEの姿勢がそれぞれ変化し、各ミラー要素SEがそれぞれ所定の向きに設定される。第1空間光変調器3aの複数のミラー要素SEによりそれぞれ所定の角度で反射された光は、図6に示すように、アフォーカルレンズ4の瞳面に、例えば光軸AXを中心としてZ方向に間隔を隔てた2つの円形状の光強度分布41aおよび41bを形成する。 Thus, in the first spatial light modulator 3a, the attitude of the plurality of mirror elements SE is changed by the action of the drive unit 3ab that operates according to the control signal from the control unit, and each mirror element SE is in a predetermined direction. Set to As shown in FIG. 6, the light reflected by the plurality of mirror elements SE of the first spatial light modulator 3 a at a predetermined angle is applied to the pupil surface of the afocal lens 4, for example, in the Z direction centering on the optical axis AX. Two circular light intensity distributions 41a and 41b spaced apart from each other are formed.
 同様に、第2空間光変調器3bでは、制御部からの制御信号に応じて作動する駆動部3bbの作用により、本体3baの複数のミラー要素SEの姿勢がそれぞれ変化し、各ミラー要素SEがそれぞれ所定の向きに設定される。第2空間光変調器3bの複数のミラー要素SEによりそれぞれ所定の角度で反射された光は、図6に示すように、アフォーカルレンズ4の瞳面に、例えば光軸AXを中心としてX方向に間隔を隔てた2つの円形状の光強度分布41cおよび41dを形成する。 Similarly, in the second spatial light modulator 3b, the posture of the plurality of mirror elements SE of the main body 3ba is changed by the action of the drive unit 3bb that operates according to the control signal from the control unit, and each mirror element SE is changed. Each is set in a predetermined direction. As shown in FIG. 6, the light reflected by the plurality of mirror elements SE of the second spatial light modulator 3b at a predetermined angle is applied to the pupil plane of the afocal lens 4, for example, in the X direction with the optical axis AX as the center. Two circular light intensity distributions 41c and 41d are formed at a distance from each other.
 なお、本実施形態において、反射面R1aは光軸AXaに対して第1の角度で斜設され、且つ反射面R1bは光軸AXaに対して第1の角度と大きさが同じ第2の角度で斜設されている。 In the present embodiment, the reflecting surface R1a is obliquely arranged at a first angle with respect to the optical axis AXa, and the reflecting surface R1b is a second angle having the same size as the first angle with respect to the optical axis AXa. It is obliquely installed.
 また、本実施形態では、空間光変調器3aから反射面R2aまでの光路長と、空間光変調器3bから反射面R2bまでの光路長とが互いに等しいため、アフォーカルレンズ4の瞳面4cから各空間光変調器3a,3bまでの光路長を等しくすることができる。 In this embodiment, since the optical path length from the spatial light modulator 3a to the reflecting surface R2a and the optical path length from the spatial light modulator 3b to the reflecting surface R2b are equal to each other, from the pupil surface 4c of the afocal lens 4 The optical path lengths to the spatial light modulators 3a and 3b can be made equal.
 アフォーカルレンズ4の瞳面に4極状の光強度分布41を形成した光は、シリンドリカルマイクロフライアイレンズ8の入射面、およびシリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳(開口絞り9が配置されている位置)に、光強度分布41a~41dに対応する4極状の光強度分布を形成する。さらに、開口絞り9と光学的に共役な別の照明瞳位置、すなわち結像光学系12の瞳位置および投影光学系PLの瞳位置(開口絞りASが配置されている位置)にも、光強度分布41a~41dに対応する4極状の光強度分布が形成される。 The light having a quadrupolar light intensity distribution 41 formed on the pupil plane of the afocal lens 4 is incident on the incident surface of the cylindrical micro fly's eye lens 8 and the illumination pupil at or near the rear focal plane of the cylindrical micro fly's eye lens 8. A quadrupole light intensity distribution corresponding to the light intensity distributions 41a to 41d is formed at the position where the aperture stop 9 is disposed. Furthermore, the light intensity is also applied to another illumination pupil position optically conjugate with the aperture stop 9, that is, the pupil position of the imaging optical system 12 and the pupil position of the projection optical system PL (position where the aperture stop AS is disposed). A quadrupole light intensity distribution corresponding to the distributions 41a to 41d is formed.
 すなわち、アフォーカルレンズ4、ズームレンズ7、およびシリンドリカルマイクロフライアイレンズ8は、第1空間光変調器3aおよび第2空間光変調器3bを介した光束に基づいて、照明光学系(2~12)の照明瞳に所定の光強度分布を形成する分布形成光学系を構成している。そして、アフォーカルレンズ4およびズームレンズ7は、オプティカルインテグレータとしてのシリンドリカルマイクロフライアイレンズ8と空間光変調ユニット3との間の光路中に配置された集光光学系を構成している。 That is, the afocal lens 4, the zoom lens 7, and the cylindrical micro fly's eye lens 8 are based on the illumination optical system (2 to 12) based on the light flux that has passed through the first spatial light modulator 3a and the second spatial light modulator 3b. The distribution forming optical system that forms a predetermined light intensity distribution on the illumination pupil of (1) is configured. The afocal lens 4 and the zoom lens 7 constitute a condensing optical system disposed in the optical path between the cylindrical micro fly's eye lens 8 serving as an optical integrator and the spatial light modulation unit 3.
 露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、パターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。本実施形態では、複数のミラー要素SEの姿勢がそれぞれ個別に変化する一対の空間光変調器3a,3bを備えた空間光変調ユニット3を用いているので、第1空間光変調器3aの作用により照明瞳に形成される第1光強度分布および第2空間光変調器3bの作用により照明瞳に形成される第2光強度分布をそれぞれ自在に且つ迅速に変化させることができる。 In the exposure apparatus, in order to transfer the pattern of the mask M onto the wafer W with high accuracy and faithfully, it is important to perform exposure under appropriate illumination conditions according to the pattern characteristics. In the present embodiment, since the spatial light modulation unit 3 including the pair of spatial light modulators 3a and 3b in which the postures of the plurality of mirror elements SE individually change is used, the operation of the first spatial light modulator 3a is performed. Thus, the first light intensity distribution formed on the illumination pupil and the second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 3b can be freely and quickly changed.
 すなわち、第1空間光変調器3aの作用により照明瞳に形成される第1光強度分布と第2空間光変調器3bの作用により照明瞳に形成される第2光強度分布とからなる照明瞳輝度分布を自在に且つ迅速に変化させることができる。その結果、本実施形態では、第1光強度分布および第2光強度分布の形状および大きさをそれぞれ変化させることにより、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することができる。 That is, an illumination pupil composed of a first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 3a and a second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 3b. The luminance distribution can be changed freely and quickly. As a result, in the present embodiment, by changing the shape and size of the first light intensity distribution and the second light intensity distribution, various illumination conditions for the shape and size of the illumination pupil luminance distribution are realized. can do.
 また、本実施形態では、一対の空間光変調器3a,3bを備えた空間光変調ユニット3を用いているので、空間光変調器を単体で使用する場合に比して、ミラー要素SEの反射面に入射する光の単位面積当たりのエネルギーが小さく(例えば1/2に)抑えられる。その結果、本実施形態の空間光変調ユニット3では、長期間に亘って光照射を受けてもミラー要素SEの反射率が低下しにくく、所要の機能を所要期間に亘って安定的に発揮することができる。 Further, in this embodiment, since the spatial light modulation unit 3 including the pair of spatial light modulators 3a and 3b is used, the reflection of the mirror element SE is compared with the case where the spatial light modulator is used alone. The energy per unit area of light incident on the surface is reduced (for example, halved). As a result, in the spatial light modulation unit 3 of the present embodiment, the reflectance of the mirror element SE is unlikely to decrease even when light irradiation is performed over a long period of time, and a required function is stably exhibited over a required period. be able to.
 以上のように、本実施形態において光源1からの光に基づいて被照射面としてのマスクMを照明する照明光学系(2~12)では、所要の機能を安定的に発揮する空間光変調ユニット3を用いて、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することができる。また、本実施形態の露光装置(2~WS)では、多様性に富んだ照明条件を実現する照明光学系(2~12)を用いて、マスクMのパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができる。 As described above, in the illumination optical system (2 to 12) that illuminates the mask M as the irradiated surface based on the light from the light source 1 in the present embodiment, the spatial light modulation unit that stably exhibits a required function. 3 can be used to realize a variety of illumination conditions for the shape and size of the illumination pupil luminance distribution. Further, in the exposure apparatus (2 to WS) of the present embodiment, the illumination optical system (2 to 12) that realizes a wide variety of illumination conditions is used, and is appropriately realized according to the pattern characteristics of the mask M. Good exposure can be performed under various illumination conditions.
 特に、本実施形態では、第1空間光変調器3aの複数のミラー要素SEの配列される配列面と第2空間光変調器3bの複数のミラー要素SEの配列される配列面とが平行であり、且つ第1空間光変調器3aの複数のミラー要素SEの反射面と第2空間光変調器3bの複数のミラー要素SEの反射面とが対向している。この構成により、一対のプリズム3e,3fに入射する一対の光束の間隔および一対のプリズム3e,3fから射出される一対の光束の間隔を小さく抑えることができる。その結果、一対のプリズム3e,3fの前後の光学系(集光レンズ3d,アフォーカルレンズ4など)の小型化を、ひいては空間光変調ユニット3および照明光学系(2~12)の小型化を図ることができる。 In particular, in the present embodiment, the arrangement surface where the plurality of mirror elements SE of the first spatial light modulator 3a are arranged and the arrangement surface where the plurality of mirror elements SE of the second spatial light modulator 3b are arranged are parallel. In addition, the reflecting surfaces of the plurality of mirror elements SE of the first spatial light modulator 3a are opposed to the reflecting surfaces of the plurality of mirror elements SE of the second spatial light modulator 3b. With this configuration, the distance between the pair of light beams incident on the pair of prisms 3e and 3f and the distance between the pair of light beams emitted from the pair of prisms 3e and 3f can be reduced. As a result, the optical system (condensing lens 3d, afocal lens 4 and the like) before and after the pair of prisms 3e and 3f can be downsized, and the spatial light modulation unit 3 and the illumination optical system (2 to 12) can be downsized. Can be planned.
 また、本実施形態では、光分割器として回折光学素子3cを用いているので、空間光変調ユニット3中の空間光変調器3a,3bに入射する光の強度の均一性を向上させることができるという利点がある。また、回折光学素子3cに入射する光束の位置が変動しても、回折光学素子3cの直後の光束の角度が変化しないので、空間光変調器3a,3bに入射する光束の位置が変動し難いという利点がある。 In the present embodiment, since the diffractive optical element 3c is used as the light splitter, the uniformity of the intensity of light incident on the spatial light modulators 3a and 3b in the spatial light modulation unit 3 can be improved. There is an advantage. Further, even if the position of the light beam incident on the diffractive optical element 3c changes, the angle of the light beam immediately after the diffractive optical element 3c does not change, so that the position of the light beam incident on the spatial light modulators 3a and 3b hardly changes. There is an advantage.
 また、本実施形態では、第1空間光変調器3aによる第1光強度分布と第2空間光変調器3bによる第2光強度分布とを照明瞳において異なる場所に形成したが、これらの第1光強度分布と第2光強度分布とは互いにその一部が重畳していても良く、また完全に重畳(第1光強度分布と第2光強度分布とが同じ分布かつ同じ位置に形成)していても良い。 In the present embodiment, the first light intensity distribution by the first spatial light modulator 3a and the second light intensity distribution by the second spatial light modulator 3b are formed at different locations in the illumination pupil. The light intensity distribution and the second light intensity distribution may partially overlap each other, or may be completely overlapped (the first light intensity distribution and the second light intensity distribution are formed in the same distribution and at the same position). May be.
 なお、上述の実施形態では、入射光を2つの光に分割する光分割器として、回折光学素子3cを用いている。しかしながら、これに限定されることなく、例えば図7に示すように、一対のプリズム部材3gaと3gbとを有するプリズムユニット3gを用いて入射光束を2つの光束に分割する構成も可能である。図7の変形例は図2の実施形態と類似の構成を有するが、回折光学素子3cおよび集光レンズ3dに代えてプリズムユニット3gが配置されている点だけが相違している。図7では、図2に示す構成要素と同様の機能を有する要素に、図2と同じ参照符号を付している。 In the above-described embodiment, the diffractive optical element 3c is used as a light splitter that divides incident light into two lights. However, the present invention is not limited to this. For example, as shown in FIG. 7, a configuration in which an incident light beam is divided into two light beams using a prism unit 3g having a pair of prism members 3ga and 3gb is also possible. The modification of FIG. 7 has a configuration similar to that of the embodiment of FIG. 2 except that a prism unit 3g is arranged instead of the diffractive optical element 3c and the condenser lens 3d. 7, elements having the same functions as those shown in FIG. 2 are denoted by the same reference numerals as those in FIG.
 図7の変形例において光分割器として機能するプリズムユニット3gは、光源側(図中左側)から順に、光源側に平面を向け且つマスク側(図中右側)に凹状で且つV字状の屈折面を向けた第1プリズム部材3gaと、マスク側に平面を向け且つ光源側に凸状で且つV字状の屈折面を向けた第2プリズム部材3gbとにより構成されている。第1プリズム部材3gaの凹状屈折面は2つの平面から構成され、その交線(稜線)はX方向に沿って延びている。第2プリズム部材3gbの凸状屈折面は、第1プリズム部材3gaの凹状屈折面と相補的に形成されている。すなわち、第2プリズム部材3gbの凸状屈折面も2つの平面から構成され、その交線(稜線)はX方向に沿って延びている。図7の変形例では、一対のプリズム部材3gaと3gbとにより光分割器としてのプリズムユニット3gを構成しているが、少なくとも1つのプリズムを用いて光分割器を構成することもできる。さらに、光分割器の具体的な構成については様々な形態が可能である。 The prism unit 3g functioning as a light splitter in the modification of FIG. 7 has, in order from the light source side (left side in the figure), a plane facing the light source side and a concave and V-shaped refraction on the mask side (right side in the figure). The first prism member 3ga having a surface and the second prism member 3gb having a flat surface facing the mask and a convex and V-shaped refracting surface facing the light source. The concave refracting surface of the first prism member 3ga is composed of two planes, and the intersection line (ridge line) extends along the X direction. The convex refracting surface of the second prism member 3gb is formed complementary to the concave refracting surface of the first prism member 3ga. That is, the convex refracting surface of the second prism member 3gb is also composed of two planes, and the line of intersection (ridge line) extends along the X direction. In the modified example of FIG. 7, the prism unit 3g as a light splitter is configured by the pair of prism members 3ga and 3gb. However, the light splitter may be configured by using at least one prism. Furthermore, various forms are possible for the specific configuration of the optical splitter.
 なお、上述の実施形態および図7の変形例では、第1空間光変調器3aの複数のミラー要素SEがプリズム3eに近接して配置され、第2空間光変調器3bの複数のミラー要素SEがプリズム3fに近接して配置されている。この場合、プリズム3e,3fが複数のミラー要素SEのカバー部材の役目を果たすことになり、空間光変調器3a,3bの耐久性の向上を図ることができる。 In the above-described embodiment and the modification of FIG. 7, the plurality of mirror elements SE of the first spatial light modulator 3a are arranged close to the prism 3e, and the plurality of mirror elements SE of the second spatial light modulator 3b. Is arranged close to the prism 3f. In this case, the prisms 3e and 3f serve as cover members for the plurality of mirror elements SE, and the durability of the spatial light modulators 3a and 3b can be improved.
 また、上述の実施形態および図7の変形例では、回折光学素子3cまたはプリズムユニット3gに矩形状の断面を有する光束が入射する場合、プリズム3e,3fの小型化、ひいては空間光変調ユニット3の小型化を図るには、矩形状の断面の短辺方向に入射光束を分割することができる。換言すれば、空間光変調ユニット3中の空間光変調器3a,3bの有効領域の長手方向を法線とする面内で入射光束を分割することができる。 Further, in the above-described embodiment and the modification of FIG. 7, when a light beam having a rectangular cross section is incident on the diffractive optical element 3 c or the prism unit 3 g, the prisms 3 e and 3 f are reduced in size, and consequently the spatial light modulation unit 3. In order to reduce the size, the incident light beam can be divided in the short side direction of the rectangular cross section. In other words, the incident light beam can be divided in a plane whose normal is the longitudinal direction of the effective regions of the spatial light modulators 3a and 3b in the spatial light modulation unit 3.
 また、上述の実施形態および図7の変形例では、プリズム3eの入射側の反射面R1aは光分割器としての回折光学素子3cまたはプリズムユニット3gを経た光を第1空間光変調器3aに向かって偏向する第1偏向面を構成し、プリズム3fの入射側の反射面R1bは回折光学素子3cまたはプリズムユニット3gを経た光を第2空間光変調器3bに向かって偏向する第2偏向面を構成している。そして、回折光学素子3cまたはプリズムユニット3gと反射面R1aと反射面R1bとは、入射光を2つの光(一般には複数の光)に分割し、第1の光を第1空間光変調器3aへ導き且つ第2の光を第2空間光変調器3bへ導く分割導光部材を構成している。 Further, in the above-described embodiment and the modification of FIG. 7, the reflecting surface R1a on the incident side of the prism 3e directs the light that has passed through the diffractive optical element 3c or the prism unit 3g as an optical splitter toward the first spatial light modulator 3a. The reflecting surface R1b on the incident side of the prism 3f is a second deflecting surface that deflects the light that has passed through the diffractive optical element 3c or the prism unit 3g toward the second spatial light modulator 3b. It is composed. The diffractive optical element 3c or prism unit 3g, the reflecting surface R1a, and the reflecting surface R1b divide the incident light into two lights (generally a plurality of lights), and the first light is the first spatial light modulator 3a. And a divided light guide member for guiding the second light to the second spatial light modulator 3b.
 また、プリズム3eの射出側の反射面R2aは第1空間光変調器3aを経た光を後続の光学系であるアフォーカルレンズ4に向かって偏向する第3偏向面を構成し、プリズム3fの射出側の反射面R2bは第2空間光変調器3bを経た光をアフォーカルレンズ4に向かって偏向する第4偏向面を構成している。第1偏向面~第4偏向面は、プリズムと気体との界面での全反射により光を偏向してもよいし、界面に設けられた反射膜の作用により光を偏向してもよい。第1偏向面~第4偏向面の具体的な構成、分割導光部材の具体的な構成、空間光変調ユニットの具体的な構成については、様々な形態が可能である。 The reflecting surface R2a on the exit side of the prism 3e constitutes a third deflecting surface that deflects the light that has passed through the first spatial light modulator 3a toward the afocal lens 4 that is the subsequent optical system, and the exit surface of the prism 3f. The reflection surface R2b on the side constitutes a fourth deflection surface that deflects the light having passed through the second spatial light modulator 3b toward the afocal lens 4. The first to fourth deflection surfaces may deflect the light by total reflection at the interface between the prism and the gas, or may deflect the light by the action of a reflection film provided at the interface. Various configurations are possible for the specific configuration of the first deflection surface to the fourth deflection surface, the specific configuration of the divided light guide member, and the specific configuration of the spatial light modulation unit.
 以下、図8および図9を参照して、1つのプリズムの形態を有する分割導光部材を備えた空間光変調ユニットの2つの変形例の要部構成を説明する。図8の変形例では、分割導光部材として、XY平面に沿った断面が三角形状で全体として三角柱状の形態を有するプリズム3hを用いている。プリズム3hは、光軸AXを含んでXY平面に平行な面に関して対称な一対の側面3haおよび3hbを有する。側面3haは入射した光を第1空間光変調器3aの本体3aaに向かって反射する表面反射面R1aとして機能し、側面3hbは入射した光を第2空間光変調器3bの本体3baに向かって反射する表面反射面R1bとして機能する。そして、プリズム3hでは、反射面R1aとR1bとの稜線に沿って入射光を2つの光に分割する。 Hereinafter, with reference to FIG. 8 and FIG. 9, the structure of the principal part of two modifications of the spatial light modulation unit provided with the divided light guide member having the form of one prism will be described. In the modification of FIG. 8, a prism 3h having a triangular prism shape as a whole and a triangular cross section along the XY plane is used as the divided light guide member. The prism 3h has a pair of side surfaces 3ha and 3hb that are symmetrical with respect to a plane that includes the optical axis AX and is parallel to the XY plane. The side surface 3ha functions as a surface reflecting surface R1a that reflects incident light toward the main body 3aa of the first spatial light modulator 3a, and the side surface 3hb directs incident light toward the main body 3ba of the second spatial light modulator 3b. It functions as a reflective surface R1b that reflects. In the prism 3h, the incident light is divided into two lights along the ridge line between the reflecting surfaces R1a and R1b.
 換言すれば、分割導光部材としてのプリズム3hは、入射した光を第1空間光変調器3aに向かって偏向する第1偏向面R1aと、入射した光を第2空間光変調器3bに向かって偏向する第2偏向面R1bとを有し、第1偏向面R1aと第2偏向面R1bとの稜線に沿って入射光を第1の光と第2の光とに分割する。第1空間光変調器3aを経た光は、平面反射鏡3jの反射面(第3偏向面)R2aで反射されて、空間光変調ユニット3から射出される。第2空間光変調器3bを経た光は、平面反射鏡3kの反射面(第4偏向面)R2bで反射されて、空間光変調ユニット3から射出される。 In other words, the prism 3h serving as the divided light guide member has a first deflection surface R1a that deflects the incident light toward the first spatial light modulator 3a and the incident light toward the second spatial light modulator 3b. And deflects incident light into first light and second light along a ridge line between the first deflection surface R1a and the second deflection surface R1b. The light that has passed through the first spatial light modulator 3a is reflected by the reflection surface (third deflection surface) R2a of the planar reflecting mirror 3j and is emitted from the spatial light modulation unit 3. The light that has passed through the second spatial light modulator 3b is reflected by the reflecting surface (fourth deflecting surface) R2b of the planar reflecting mirror 3k and is emitted from the spatial light modulating unit 3.
 ここで、第1偏向面R1aは照明光学系の光軸に対して第1の角度で斜設され、第2偏向面R1bは照明光学系の光軸に対して第1の角度と大きさが同じ第2の角度で斜設されている。また、図8の変形例においても、第1空間光変調器3aから第3偏向面R2aまでの光路長と、第2空間光変調器3bから第4偏向面R2bまでの光路長とは互いに等しくなっている。 Here, the first deflection surface R1a is obliquely arranged at a first angle with respect to the optical axis of the illumination optical system, and the second deflection surface R1b has a first angle and size with respect to the optical axis of the illumination optical system. It is inclined at the same second angle. Also in the modification of FIG. 8, the optical path length from the first spatial light modulator 3a to the third deflection surface R2a and the optical path length from the second spatial light modulator 3b to the fourth deflection surface R2b are equal to each other. It has become.
 また、図8の変形例では、分割導光部材とみなすことのできるプリズム3hの稜線が位置する面を入射光を複数の光に分割する光分割面とすることができ、この光分割面から第1空間光変調器3aを経て後続の光学系(たとえばレンズ4c)に至る第1の光路と、この光分割面から第2空間光変調器3bを経て後続の光学系(たとえばレンズ4c)に至る第2の光路とには、入射光の偏光状態を変化させる光透過部材は配置されない。これにより、照明瞳面に形成される瞳強度分布における偏光状態の制御をより良好にすることができる。 Further, in the modification of FIG. 8, the surface on which the ridgeline of the prism 3 h that can be regarded as a divided light guide member can be used as a light dividing surface that divides incident light into a plurality of lights. A first optical path that reaches the subsequent optical system (for example, the lens 4c) through the first spatial light modulator 3a, and a subsequent optical system (for example, the lens 4c) from this light splitting surface through the second spatial light modulator 3b. A light transmitting member that changes the polarization state of incident light is not disposed in the second optical path that reaches the second optical path. Thereby, the control of the polarization state in the pupil intensity distribution formed on the illumination pupil plane can be made better.
 図9の変形例では、分割導光部材として、XY平面に沿った断面が菱形形状で四角柱状の形態を有するプリズム3mを備えている。プリズム3mは、光軸AXを含んでXY平面に平行な面に関して対称な一対の側面3maおよび3mbを有する。側面3maは入射した光を第1空間光変調器3aの本体3aaに向かって反射する反射面R1aとして機能し、側面3mbは入射した光を第2空間光変調器3bの本体3baに向かって反射する反射面R1bとして機能する。そして、プリズム3mでは、反射面(第1偏向面)R1aと反射面(第2偏向面)R1bとの稜線に沿って入射光を2つの光に分割する。 In the modification of FIG. 9, the split light guide member includes a prism 3m having a square columnar cross section along the XY plane. The prism 3m has a pair of side surfaces 3ma and 3mb that are symmetrical with respect to a plane that includes the optical axis AX and is parallel to the XY plane. The side surface 3ma functions as a reflection surface R1a that reflects incident light toward the main body 3aa of the first spatial light modulator 3a, and the side surface 3mb reflects incident light toward the main body 3ba of the second spatial light modulator 3b. Functions as the reflecting surface R1b. In the prism 3m, incident light is divided into two lights along the ridge line between the reflecting surface (first deflecting surface) R1a and the reflecting surface (second deflecting surface) R1b.
 第1空間光変調器3aおよび第2空間光変調器3bを経た光は、図示のような角柱状のプリズム3nおよび3pに入射する。プリズム3nの側面3naは第1空間光変調器3aを経た光を後続の光学系に向かって偏向する第3偏向面R2aとして機能し、プリズム3pの側面3paは第2空間光変調器3bを経た光を後続の光学系に向かって偏向する第4偏向面R2bとして機能する。すなわち、第1空間光変調器3aおよび第2空間光変調器3bを経た光は、第3偏向面R2aおよび第4偏向面R2bで偏向されて、空間光変調ユニット3から射出される。図8の変形例および図9の変形例において、プリズム3h、3m、3n、3pのXY平面に沿った断面の形状については、様々な形態が可能である。 The light that has passed through the first spatial light modulator 3a and the second spatial light modulator 3b is incident on prismatic prisms 3n and 3p as illustrated. The side surface 3na of the prism 3n functions as a third deflection surface R2a that deflects the light that has passed through the first spatial light modulator 3a toward the subsequent optical system, and the side surface 3pa of the prism 3p has passed through the second spatial light modulator 3b. It functions as a fourth deflection surface R2b that deflects light toward the subsequent optical system. That is, the light that has passed through the first spatial light modulator 3 a and the second spatial light modulator 3 b is deflected by the third deflection surface R 2 a and the fourth deflection surface R 2 b and is emitted from the spatial light modulation unit 3. In the modification of FIG. 8 and the modification of FIG. 9, various shapes are possible for the shape of the cross section along the XY plane of the prisms 3 h, 3 m, 3 n, and 3 p.
 ここで、第1偏向面R1aは照明光学系の光軸に対して第1の角度で斜設され、第2偏向面R1bは照明光学系の光軸に対して第1の角度と大きさが同じ第2の角度で斜設されている。また、図9の変形例においても、第1空間光変調器3aから第3偏向面R2aまでの光路長と、第2空間光変調器3bから第4偏向面R2bまでの光路長とは互いに等しくなっている。 Here, the first deflection surface R1a is obliquely arranged at a first angle with respect to the optical axis of the illumination optical system, and the second deflection surface R1b has a first angle and size with respect to the optical axis of the illumination optical system. It is inclined at the same second angle. Also in the modification of FIG. 9, the optical path length from the first spatial light modulator 3a to the third deflection surface R2a and the optical path length from the second spatial light modulator 3b to the fourth deflection surface R2b are equal to each other. It has become.
 また、図9の変形例では、分割導光部材とみなすことのできるプリズム3mの稜線が位置する面を入射光を複数の光に分割する光分割面とすることができ、この光分割面から第1空間光変調器3aを経て後続の光学系(たとえばレンズ4c)に至る第1の光路と、この光分割面から第2空間光変調器3bを経て後続の光学系(たとえばレンズ4c)に至る第2の光路とに配置される光透過部材3n,3pは、入射光の偏光状態を維持する光透過部材である。これにより、照明瞳面に形成される瞳強度分布における偏光状態の制御をより良好にすることができる。このような、入射光の偏光状態を維持する光透過部材としては、たとえば石英ガラスを適用することができる。 In the modification of FIG. 9, the surface on which the ridgeline of the prism 3m that can be regarded as a divided light guide member can be used as a light dividing surface that divides incident light into a plurality of lights. A first optical path that reaches the subsequent optical system (for example, the lens 4c) through the first spatial light modulator 3a, and a subsequent optical system (for example, the lens 4c) from this light splitting surface through the second spatial light modulator 3b. The light transmissive members 3n and 3p arranged in the second optical path to reach are light transmissive members that maintain the polarization state of incident light. Thereby, the control of the polarization state in the pupil intensity distribution formed on the illumination pupil plane can be made better. As such a light transmission member that maintains the polarization state of incident light, for example, quartz glass can be applied.
 図8および図9に示した変形例では、入射光を分割する光分割器と、分割された光を第1空間光変調器3aに向かって偏向する第1偏向面と、分割された別の光を第2空間光変調器に向かって偏向する第2偏向面とを兼用しているため、空間光変調ユニット3自体を非常に小型化することができる利点がある。したがって、これらの変形例にかかる空間光変調ユニット3を、既存の露光装置における照明輝度分布生成素子(たとえば回折光学素子)の代わりに組み込む際に、既存の露光装置の改造を最小限にすることができる。 In the modification shown in FIG. 8 and FIG. 9, a light splitter that divides incident light, a first deflection surface that deflects the divided light toward the first spatial light modulator 3a, and another divided light beam. Since it also serves as the second deflection surface that deflects light toward the second spatial light modulator, there is an advantage that the spatial light modulation unit 3 itself can be made very small. Therefore, when the spatial light modulation unit 3 according to these modifications is incorporated in place of the illumination luminance distribution generation element (for example, diffractive optical element) in the existing exposure apparatus, the modification of the existing exposure apparatus is minimized. Can do.
 また、上述の実施形態における一対のプリズム3eおよび3fと、一対の空間光変調器3aおよび3bとから空間光変調ユニットを形成してもよい。この場合には、プリズム3eの反射面R1aとプリズム3fの反射面R1bとが、入射光を第1の光と第2の光とに分割する光分割器と見なすことができ、プリズム3eの反射面R1aが第1の光を第1空間光変調器3aに向かって偏向する第1偏向面と見なすことができ、プリズム3fの反射面R1bが第2の光を第2空間光変調器3bに向かって偏向する第2偏向面と見なすことができる。また、この場合、プリズム3eの反射面R2aが第1空間光変調器3aを経た光を後続の光学系に向かって偏向する第3偏向面と見なすことができ、プリズム3fの反射面R2bが第2空間光変調器3bを経た光を後続の光学系に向かって偏向する第4偏向面と見なすことができる。 Also, a spatial light modulation unit may be formed from the pair of prisms 3e and 3f and the pair of spatial light modulators 3a and 3b in the above-described embodiment. In this case, the reflecting surface R1a of the prism 3e and the reflecting surface R1b of the prism 3f can be regarded as a light splitter that divides incident light into first light and second light, and the reflection of the prism 3e. The surface R1a can be regarded as a first deflecting surface that deflects the first light toward the first spatial light modulator 3a, and the reflecting surface R1b of the prism 3f sends the second light to the second spatial light modulator 3b. It can be regarded as a second deflecting surface that deflects toward. In this case, the reflecting surface R2a of the prism 3e can be regarded as a third deflecting surface that deflects the light that has passed through the first spatial light modulator 3a toward the subsequent optical system, and the reflecting surface R2b of the prism 3f is the first reflecting surface R2b. It can be regarded as a fourth deflecting surface that deflects the light that has passed through the two spatial light modulator 3b toward the subsequent optical system.
 この場合、プリズム3e(3f)の入射面IPから第1空間光変調器3aのミラー要素を経て射出面OPまでの空気換算長がプリズム3e(3f)が光路中に配置されていないときに入射面IPから射出面OPに相当する位置までの空気換算長と等しくなるように構成されているため、既存の露光装置における照明輝度分布生成素子(たとえば回折光学素子)の代わりに組み込む際に、既存の露光装置の改造を最小限にすることができ、特に光学系に関しては無改造とすることができる。 In this case, the air conversion length from the incident surface IP of the prism 3e (3f) to the exit surface OP through the mirror element of the first spatial light modulator 3a is incident when the prism 3e (3f) is not disposed in the optical path. Since it is configured to be equal to the air-converted length from the surface IP to the position corresponding to the exit surface OP, it is necessary to install an existing illumination intensity distribution generating element (for example, a diffractive optical element) in an existing exposure apparatus. The modification of the exposure apparatus can be minimized, and in particular, the optical system can be made without modification.
 なお、上述の実施形態および各変形例では、第1偏向面R1aまたはその延長面と第2偏向面R1bまたはその延長面とが、鋭角の角度をなし、入射する光に対して凸を向けるように配置されている。この構成より、空間光変調ユニット3のコンパクトな設計が可能になる。 In the above-described embodiments and modifications, the first deflection surface R1a or its extension surface and the second deflection surface R1b or its extension surface form an acute angle so that the projection is directed toward the incident light. Is arranged. This configuration enables a compact design of the spatial light modulation unit 3.
 また、上述の実施形態および各変形例では、空間光変調器3aおよび3bの基準状態において、分割導光部材(3c~3f;3e~3g;3h;3m)への入射光の進行方向と、第3偏向面R2aから射出される射出光の進行方向と、第4偏向面R2bから射出される射出光の進行方向とが互いに平行になるように構成されている。また、第3偏向面R2aからの射出光の基準状態での進行方向および第4偏向面R2bからの射出光の基準状態での進行方向は、照明光学系の光軸AXと平行(場合によっては一致)になるように構成されている。この構成により、空間光変調ユニット3の上流と下流とで光路が同軸(場合によっては平行)になるので、例えば照明瞳輝度分布の形成のために回折光学素子を用いる従来の照明光学系と光学系を共用することができる。 In the above-described embodiment and each modification, in the reference state of the spatial light modulators 3a and 3b, the traveling direction of the incident light to the divided light guide members (3c to 3f; 3e to 3g; 3h; 3m); The traveling direction of the emitted light emitted from the third deflection surface R2a and the traveling direction of the emitted light emitted from the fourth deflection surface R2b are configured to be parallel to each other. Further, the traveling direction of the emitted light from the third deflection surface R2a in the reference state and the traveling direction of the emitted light from the fourth deflection surface R2b in the reference state are parallel to the optical axis AX of the illumination optical system (in some cases Match). With this configuration, the optical path is coaxial (in some cases parallel) between the upstream and downstream of the spatial light modulation unit 3, so that, for example, a conventional illumination optical system and optical system using a diffractive optical element to form an illumination pupil luminance distribution. The system can be shared.
 また、上述の実施形態および各変形例では、空間光変調ユニット3を照明光路に対して挿脱自在に構成する場合、空間光変調器の本体3a,3bなどに接続されているケーブルが円滑な挿脱動作を妨げることがないように、Z方向ではなくX方向に沿って空間光変調ユニット3を移動させることができる。 Moreover, in the above-mentioned embodiment and each modification, when the spatial light modulation unit 3 is configured to be detachable with respect to the illumination optical path, the cables connected to the main bodies 3a and 3b of the spatial light modulator are smooth. The spatial light modulation unit 3 can be moved not in the Z direction but in the X direction so as not to hinder the insertion / removal operation.
 また、上述の実施形態および各変形例では、空間光変調ユニット3とシリンドリカルマイクロフライアイレンズ8との間の光路中に、アフォーカルレンズ4、円錐アキシコン系6、およびズームレンズ7が配置されている。しかしながら、これに限定されることなく、これらの光学部材に代えて、例えばフーリエ変換レンズとして機能する集光光学系を配置することもできる。 In the above-described embodiment and each modification, the afocal lens 4, the conical axicon system 6, and the zoom lens 7 are disposed in the optical path between the spatial light modulation unit 3 and the cylindrical micro fly's eye lens 8. Yes. However, the present invention is not limited to this, and instead of these optical members, for example, a condensing optical system that functions as a Fourier transform lens may be disposed.
 なお、上述の説明では、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば特開平6-281869号公報及びこれに対応する米国特許第5,312,513号公報、並びに特表2004-520618号公報およびこれに対応する米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば特表2006-513442号公報およびこれに対応する米国特許第6,891,655号公報や、特表2005-524112号公報およびこれに対応する米国特許公開第2005/0095749号公報の開示に従って変形しても良い。 In the above description, as the spatial light modulator having a plurality of optical elements that are two-dimensionally arranged and individually controlled, the direction (angle: inclination) of the two-dimensionally arranged reflecting surfaces is set. An individually controllable spatial light modulator is used. However, the present invention is not limited to this. For example, a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used. As such a spatial light modulator, for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat. The spatial light modulator disclosed in FIG. 1d of Japanese Patent No. 6,885,493 can be used. In these spatial light modulators, by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light. Note that the spatial light modulator having a plurality of two-dimensionally arranged reflection surfaces described above is disclosed in, for example, Japanese Patent Publication No. 2006-513442 and US Pat. No. 6,891,655 corresponding thereto, Modifications may be made in accordance with the disclosure of Japanese Patent Publication No. 2005-524112 and US Patent Publication No. 2005/0095749 corresponding thereto.
 また、上述の説明では、複数のミラー要素を有する反射型の空間光変調器を用いているが、これに限定されることなく、たとえば米国特許第5,229,872号公報に開示される透過型の空間光変調器を用いても良い。 In the above description, a reflective spatial light modulator having a plurality of mirror elements is used. However, the present invention is not limited to this. For example, transmission disclosed in US Pat. No. 5,229,872 A type of spatial light modulator may be used.
 上述の実施形態並びに各変形例において、空間光変調ユニットを用いて照明瞳輝度分布を形成する際に、瞳輝度分布計測装置で照明瞳輝度分布を計測しつつ、この計測結果に応じて空間光変調ユニット中の各空間光変調器を制御してもよい。このような技術は、たとえば特開2006-54328号公報や特開2003-22967号公報およびこれに対応する米国特許公開第2003/0038225号公報に開示されている。 In the above-described embodiment and each modification, when forming the illumination pupil luminance distribution using the spatial light modulation unit, the illumination pupil luminance distribution is measured by the pupil luminance distribution measuring device, and the spatial light is determined according to the measurement result. Each spatial light modulator in the modulation unit may be controlled. Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto.
 また、上述の実施形態並びに各変形例において、複数の空間光変調器3a,3bに異なる偏光状態の光を入射させる構成であっても良い。この場合、図2に示した実施形態および図7に示した変形例では、たとえば一対のプリズム3e,3fに入射する一対の光束の光路に偏光光学部材を配置すれば良い。ここで、偏光光学部材を一対のプリズム3e,3fの入射面IPに設けても良い。 Further, in the above-described embodiment and each modification, a configuration in which light having different polarization states is incident on the plurality of spatial light modulators 3a and 3b may be employed. In this case, in the embodiment shown in FIG. 2 and the modification shown in FIG. 7, for example, a polarizing optical member may be disposed in the optical path of a pair of light beams incident on the pair of prisms 3e and 3f. Here, the polarizing optical member may be provided on the incident surface IP of the pair of prisms 3e and 3f.
 また、図8および図9の変形例では、たとえば分割導光部材としてのプリズム3hと各空間光変調器3a,3bとの間の光路に偏光光学部材を配置すれば良い。なお、プリズム3hの反射面(第1偏向面R1aまたは第2偏向面R1b)に設けられる反射膜として、互いに直交する偏光成分間に位相差を与える反射膜を適用して、各空間光変調器3a,3bに向かう光の偏光状態を変更しても良い。この場合、互いに直交する偏光成分間に位相差を与える反射膜を偏光光学部材とみなすことができる。 8 and 9, for example, a polarizing optical member may be disposed in the optical path between the prism 3h serving as a divided light guide member and each of the spatial light modulators 3a and 3b. In addition, as the reflection film provided on the reflection surface (the first deflection surface R1a or the second deflection surface R1b) of the prism 3h, a reflection film that gives a phase difference between mutually orthogonal polarization components is applied to each spatial light modulator. You may change the polarization state of the light which goes to 3a, 3b. In this case, a reflective film that gives a phase difference between polarization components orthogonal to each other can be regarded as a polarizing optical member.
 上述した偏光光学部材としては、波長板や旋光子などの位相部材や偏光子などを用いることができる。また、偏光光学部材は、分割導光部材と第1空間光変調器3aとの間の光路と分割導光部材と第2空間光変調器3bとの間の光路との少なくとも一方の光路に配置されていればよい。 As the polarizing optical member described above, a phase member such as a wave plate or an optical rotator, a polarizer, or the like can be used. The polarizing optical member is disposed on at least one of the optical path between the divided light guide member and the first spatial light modulator 3a and the optical path between the divided light guide member and the second spatial light modulator 3b. It only has to be done.
 なお、上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004-304135号公報、国際特許公開第2006/080285号パンフレットに開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形成装置を用いても良い。 In the above-described embodiment, a variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask. By using such a variable pattern forming apparatus, the influence on the synchronization accuracy can be minimized even if the pattern surface is placed vertically. As the variable pattern forming apparatus, for example, a DMD (digital micromirror device) including a plurality of reflecting elements driven based on predetermined electronic data can be used. An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 2004-304135 and International Patent Publication No. 2006/080285. In addition to a non-light-emitting reflective spatial light modulator such as DMD, a transmissive spatial light modulator may be used, or a self-luminous image display element may be used. Note that a variable pattern forming apparatus may be used even when the pattern surface is placed horizontally.
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図10は、半導体デバイスの製造工程を示すフローチャートである。図10に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。 Next, a device manufacturing method using the exposure apparatus according to the above-described embodiment will be described. FIG. 10 is a flowchart showing a manufacturing process of a semiconductor device. As shown in FIG. 10, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film. (Step S42). Subsequently, using the projection exposure apparatus of the above-described embodiment, the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed. Development, that is, development of the photoresist to which the pattern has been transferred (step S46: development process). Thereafter, using the resist pattern generated on the surface of the wafer W in step S46 as a mask, processing such as etching is performed on the surface of the wafer W (step S48: processing step).
 ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。 Here, the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is. In step S48, the surface of the wafer W is processed through this resist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like. In step S44, the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as the photosensitive substrate, that is, the plate P.
 図11は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図11に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。 FIG. 11 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in FIG. 11, in the manufacturing process of the liquid crystal device, a pattern formation process (step S50), a color filter formation process (step S52), a cell assembly process (step S54), and a module assembly process (step S56) are sequentially performed.
 ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。 In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment. The pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。 In the color filter forming process in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
 ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 In the cell assembly process of step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。 In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
 なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。 In the above-described embodiment, ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light. However, the present invention is not limited to this, and other appropriate laser light sources are used. For example, the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm.
 また、上述の実施形態では、露光装置においてマスクを照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。 In the above-described embodiment, the present invention is applied to the illumination optical system that illuminates the mask in the exposure apparatus. However, the present invention is not limited to this, and a general illumination surface other than the mask is illuminated. The present invention can also be applied to an illumination optical system.
 また、上述の実施形態では、オプティカルインテグレータとして、複数の微小レンズ面を備えた波面分割型のマイクロフライアイレンズ(フライアイレンズ)を用いたが、その代わりに、内面反射型のオプティカルインテグレータ(典型的にはロッド型インテグレータ)を用いても良い。この場合、ズームレンズ7の後側にその前側焦点位置がズームレンズ7の後側焦点位置と一致するように集光レンズを配置し、この集光レンズの後側焦点位置またはその近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。このとき、ロッド型インテグレータの射出端がマスクブラインド11の位置になる。ロッド型インテグレータを用いる場合、このロッド型インテグレータの下流の結像光学系12内の、投影光学系PLの開口絞りASの位置と光学的に共役な位置を照明瞳面と呼ぶことができる。また、ロッド型インテグレータの入射面の位置には、照明瞳面の二次光源の虚像が形成されることになるため、この位置およびこの位置と光学的に共役な位置も照明瞳面と呼ぶことができる。 In the above-described embodiment, a wavefront division type micro fly's eye lens (fly eye lens) having a plurality of minute lens surfaces is used as the optical integrator. Instead, an internal reflection type optical integrator (typically Specifically, a rod type integrator) may be used. In this case, a condensing lens is arranged on the rear side of the zoom lens 7 so that its front focal position coincides with the rear focal position of the zoom lens 7, and the incident end is located at or near the rear focal position of the condensing lens. Position the rod-type integrator so that is positioned. At this time, the injection end of the rod-type integrator becomes the position of the mask blind 11. When a rod type integrator is used, a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical system 12 downstream of the rod type integrator can be called an illumination pupil plane. In addition, since a virtual image of the secondary light source of the illumination pupil plane is formed at the position of the entrance surface of the rod integrator, this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
 また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンフレットに開示されているような局所的に液体を満たす手法や、特開平6-124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10-303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。また、上述の実施形態において、米国公開公報第2006/0170901号及び第2007/0146676号に開示されるいわゆる偏光照明方法を適用することも可能である。 In the above-described embodiment, a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it. In this case, as a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method for locally filling the liquid as disclosed in International Publication No. WO 99/49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. A technique of forming a liquid tank and holding the substrate in the liquid tank can be employed. In the above-described embodiment, a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。また、上記実施形態の各構成要素等は、いずれの組み合わせ等も可能とすることができる。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention. In addition, each component of the above-described embodiment can be any combination.

Claims (27)

  1. 光源からの光に基づいて被照射面を照明する照明光学系と共に用いられ、前記照明光学系の瞳面に所望の光強度分布を形成するための空間光変調ユニットであって、
     二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する第1空間光変調器と、
     二次元的に配列されて個別に制御される複数の光学要素を有し、入射した光に空間的な光変調を付与して射出する第2空間光変調器と、
     入射光を複数の光に分割し、該複数の光のうちの第1の光を前記第1空間光変調器へ導き且つ前記複数の光のうちの第2の光を前記第2空間光変調器へ導く分割導光部材とを備えていることを特徴とする空間光変調ユニット。
    A spatial light modulation unit that is used together with an illumination optical system that illuminates a surface to be irradiated based on light from a light source, and that forms a desired light intensity distribution on a pupil plane of the illumination optical system,
    A first spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light;
    A second spatial light modulator that has a plurality of optical elements that are two-dimensionally arranged and individually controlled, and that emits light by applying spatial light modulation to incident light;
    The incident light is divided into a plurality of lights, a first light of the plurality of lights is guided to the first spatial light modulator, and a second light of the plurality of lights is modulated by the second spatial light modulation. A spatial light modulation unit, comprising: a divided light guide member that leads to a vessel.
  2. 前記第1空間光変調器および前記第2空間光変調器は、二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とをそれぞれ有することを特徴とする請求項1に記載の空間光変調ユニット。 The first spatial light modulator and the second spatial light modulator each have a plurality of two-dimensionally arranged mirror elements and a drive unit that individually controls and drives the postures of the plurality of mirror elements. The spatial light modulation unit according to claim 1.
  3. 前記第1空間光変調器の前記複数のミラー要素の配列される配列面と前記第2空間光変調器の前記複数のミラー要素の配列される配列面とはほぼ平行であり、且つ前記第1空間光変調器の前記複数のミラー要素の反射面と前記第2空間光変調器の前記複数のミラー要素の反射面とは対向していることを特徴とする請求項2に記載の空間光変調ユニット。 The array surface on which the plurality of mirror elements of the first spatial light modulator are arranged is substantially parallel to the array surface on which the plurality of mirror elements of the second spatial light modulator are arranged, and the first 3. The spatial light modulation according to claim 2, wherein the reflection surfaces of the plurality of mirror elements of the spatial light modulator are opposed to the reflection surfaces of the plurality of mirror elements of the second spatial light modulator. unit.
  4. 前記駆動部は、前記複数のミラー要素の向きを連続的または離散的に変化させることを特徴とする請求項2または3に記載の空間光変調ユニット。 4. The spatial light modulation unit according to claim 2, wherein the drive unit continuously or discretely changes the directions of the plurality of mirror elements. 5.
  5. 前記分割導光部材は、前記入射光を前記第1の光と前記第2の光とに分割する光分割器と、該光分割器を経た前記第1の光を前記第1空間光変調器に向かって偏向する第1偏向面と、前記光分割器を経た前記第2の光を前記第2空間光変調器に向かって偏向する第2偏向面とを有することを特徴とする請求項1乃至4のいずれか1項に記載の空間光変調ユニット。 The split light guide member splits the incident light into the first light and the second light, and the first spatial light modulator passes the first light passing through the light splitter. 2. A first deflection surface that deflects toward the first and a second deflection surface that deflects the second light that has passed through the optical splitter toward the second spatial light modulator. The spatial light modulation unit according to any one of 1 to 4.
  6. 前記光分割器は、少なくとも1つのプリズムを有することを特徴とする請求項5に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 5, wherein the light splitter includes at least one prism.
  7. 前記光分割器は、回折光学素子を有することを特徴とする請求項5に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 5, wherein the light splitter includes a diffractive optical element.
  8. 前記分割導光部材は、入射した光を前記第1空間光変調器に向かって偏向する第1偏向面と、入射した光を前記第2空間光変調器に向かって偏向する第2偏向面とを有し、前記第1偏向面と前記第2偏向面との稜線に沿って前記入射光を前記第1の光と前記第2の光とに分割することを特徴とする請求項1乃至4のいずれか1項に記載の空間光変調ユニット。 The divided light guide member includes a first deflection surface that deflects incident light toward the first spatial light modulator, and a second deflection surface that deflects incident light toward the second spatial light modulator. The incident light is divided into the first light and the second light along a ridge line between the first deflection surface and the second deflection surface. The spatial light modulation unit according to any one of the above.
  9. 前記分割導光部材は、1つのプリズムの形態を有することを特徴とする請求項8に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 8, wherein the divided light guide member has a form of one prism.
  10. 前記第1偏向面またはその延長面と前記第2偏向面またはその延長面とのなす角度は鋭角であることを特徴とすることを特徴とする請求項5乃至9のいずれか1項に記載の空間光変調ユニット。 The angle formed by the first deflection surface or its extension surface and the second deflection surface or its extension surface is an acute angle, according to any one of claims 5 to 9, Spatial light modulation unit.
  11. 前記第1偏向面またはその延長面と前記第2偏向面またはその延長面とは、入射する光に対して凸を向けるように配置されていることを特徴とする請求項10に記載の空間光変調ユニット。 11. The spatial light according to claim 10, wherein the first deflection surface or its extension surface and the second deflection surface or its extension surface are arranged so as to be convex with respect to incident light. Modulation unit.
  12. 前記第1偏向面は前記照明光学系の光軸に対して第1の角度をなして斜設され、前記第2偏向面は前記照明光学系の前記光軸に対して第2の角度をなして斜設され、前記第1の角度の大きさと前記第2の角度の大きさとが互いに等しいことを特徴とする請求項5乃至11のいずれか1項に記載の空間光変調ユニット。 The first deflection surface is obliquely formed at a first angle with respect to the optical axis of the illumination optical system, and the second deflection surface forms a second angle with respect to the optical axis of the illumination optical system. The spatial light modulation unit according to any one of claims 5 to 11, wherein the spatial light modulation unit is obliquely arranged so that the magnitude of the first angle and the magnitude of the second angle are equal to each other.
  13. 前記第1空間光変調器を経た光を後続の光学系に向かって偏向する第3偏向面と、前記第2空間光変調器を経た光を前記後続の光学系に向かって偏向する第4偏向面とをさらに備えていることを特徴とする請求項1乃至12のいずれか1項に記載の空間光変調ユニット。 A third deflecting surface that deflects light that has passed through the first spatial light modulator toward the subsequent optical system, and a fourth deflection that deflects light that has passed through the second spatial light modulator toward the subsequent optical system. The spatial light modulation unit according to claim 1, further comprising a surface.
  14. 前記分割導光部材に入射する前記入射光の進行方向と、前記第3偏向面から射出される射出光の基準状態での進行方向と、前記第4偏向面から射出される射出光の前記基準状態での進行方向とは互いに平行であることを特徴とする請求項13に記載の空間光変調ユニット。 The traveling direction of the incident light incident on the divided light guide member, the traveling direction in the reference state of the emitted light emitted from the third deflection surface, and the reference of the emitted light emitted from the fourth deflection surface The spatial light modulation unit according to claim 13, wherein the traveling directions in the state are parallel to each other.
  15. 前記第3偏向面からの前記射出光の前記基準状態での進行方向および前記第4偏向面からの前記射出光の前記基準状態での進行方向は、前記照明光学系の光軸と一致または平行であることを特徴とする請求項14に記載の空間光変調ユニット。 The traveling direction of the exit light from the third deflection surface in the reference state and the traveling direction of the exit light from the fourth deflection surface in the reference state coincide with or parallel to the optical axis of the illumination optical system. The spatial light modulation unit according to claim 14, wherein
  16. 前記第1空間光変調器から前記第3偏向面までの光路長と、前記第2空間光変調器から前記第4偏向面までの光路長とは互いに等しいことを特徴とする請求項13乃至15のいずれか1項に記載の空間光変調ユニット。 16. The optical path length from the first spatial light modulator to the third deflection surface and the optical path length from the second spatial light modulator to the fourth deflection surface are equal to each other. The spatial light modulation unit according to any one of the above.
  17. 前記分割導光部材は、入射した光を前記第1空間光変調器に向かって偏向する第1偏向面と、入射した光を前記第2空間光変調器に向かって偏向する第2偏向面とを有し、
     前記第1偏向面と前記第2偏向面とは表面反射面であることを特徴とする請求項1乃至16のいずれか1項に記載の空間光変調ユニット。
    The divided light guide member includes a first deflection surface that deflects incident light toward the first spatial light modulator, and a second deflection surface that deflects incident light toward the second spatial light modulator. Have
    The spatial light modulation unit according to claim 1, wherein the first deflection surface and the second deflection surface are surface reflection surfaces.
  18. 前記第1空間光変調器を経た光を後続の光学系に向かって偏向する第3偏向面と、前記第2空間光変調器を経た光を前記後続の光学系に向かって偏向する第4偏向面とをさらに備え、
     前記第3偏向面と前記第4偏向面とは表面反射面であることを特徴とする請求項17に記載の空間光変調ユニット。
    A third deflecting surface that deflects light that has passed through the first spatial light modulator toward the subsequent optical system, and a fourth deflection that deflects light that has passed through the second spatial light modulator toward the subsequent optical system. And further comprising a surface,
    The spatial light modulation unit according to claim 17, wherein the third deflection surface and the fourth deflection surface are surface reflection surfaces.
  19. 前記第1空間光変調器を経た光を後続の光学系に向かって偏向する第3偏向面と、前記第2空間光変調器を経た光を前記後続の光学系に向かって偏向する第4偏向面とをさらに備え、
     前記第3偏向面と前記第4偏向面とは内面反射面であることを特徴とする請求項17に記載の空間光変調ユニット。
    A third deflecting surface that deflects light that has passed through the first spatial light modulator toward the subsequent optical system, and a fourth deflection that deflects light that has passed through the second spatial light modulator toward the subsequent optical system. And further comprising a surface,
    18. The spatial light modulation unit according to claim 17, wherein the third deflection surface and the fourth deflection surface are inner surface reflection surfaces.
  20. 前記空間光変調ユニットは、前記照明光学系の光路に対して挿脱可能であることを特徴とする請求項1乃至19のいずれか1項に記載の空間光変調ユニット。 The spatial light modulation unit according to any one of claims 1 to 19, wherein the spatial light modulation unit can be inserted into and removed from an optical path of the illumination optical system.
  21. 前記分割導光部材は、光分割面にて前記入射光を前記複数の光に分割し、前記光分割面から前記第1空間光変調器を経て後続の光学系に至る第1の光路と、前記光分割面から前記第2空間光変調器を経て前記後続の光学系に至る第2の光路とに配置される光透過部材は、入射光の偏光状態を維持する光透過部材であることを特徴とする請求項1乃至20のいずれか1項に記載の空間光変調ユニット。 The split light guide member splits the incident light into the plurality of lights at a light splitting surface, a first optical path from the light splitting surface to the subsequent optical system through the first spatial light modulator, The light transmitting member disposed in the second optical path from the light splitting surface through the second spatial light modulator to the subsequent optical system is a light transmitting member that maintains the polarization state of incident light. The spatial light modulation unit according to claim 1, wherein the spatial light modulation unit is a unit.
  22. 前記分割導光部材と前記第1空間光変調器との間の光路と、前記分割導光部材と前記第2空間光変調器との間の光路との少なくとも一方の光路に配置されて、入射光の偏光状態を変化させて射出する偏光光学部材を備えることを特徴とする請求項1乃至20のいずれか1項に記載の空間光変調ユニット。 Arranged in at least one of the optical path between the divided light guide member and the first spatial light modulator and the optical path between the divided light guide member and the second spatial light modulator. 21. The spatial light modulation unit according to claim 1, further comprising a polarizing optical member that emits light while changing a polarization state of the light.
  23. 光源からの光に基づいて被照射面を照明する照明光学系において、
     請求項1乃至22のいずれか1項に記載の空間光変調ユニットと、
     前記第1空間光変調器および前記第2空間光変調器を介した光に基づいて、前記照明光学系の照明瞳に所定の光強度分布を形成する分布形成光学系とを備えていることを特徴とする照明光学系。
    In the illumination optical system that illuminates the illuminated surface based on the light from the light source,
    The spatial light modulation unit according to any one of claims 1 to 22,
    A distribution forming optical system that forms a predetermined light intensity distribution on an illumination pupil of the illumination optical system based on the light that has passed through the first spatial light modulator and the second spatial light modulator. Characteristic illumination optical system.
  24. 前記分布形成光学系は、オプティカルインテグレータと、該オプティカルインテグレータと前記空間光変調ユニットとの間の光路中に配置された集光光学系とを有することを特徴とする請求項23に記載の照明光学系。 24. The illumination optical system according to claim 23, wherein the distribution forming optical system includes an optical integrator, and a condensing optical system disposed in an optical path between the optical integrator and the spatial light modulation unit. system.
  25. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項23または24に記載の照明光学系。 The projection pupil is used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface, and the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. The illumination optical system according to 23 or 24.
  26. 所定のパターンを照明するための請求項23乃至25のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。 26. An exposure apparatus comprising the illumination optical system according to claim 23 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a photosensitive substrate.
  27. 請求項26に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
     前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
     前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
    An exposure step of exposing the predetermined pattern to the photosensitive substrate using the exposure apparatus according to claim 26;
    Developing the photosensitive substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
    And a processing step of processing the surface of the photosensitive substrate through the mask layer.
PCT/JP2009/053630 2008-04-14 2009-02-27 Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device WO2009128293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7114008P 2008-04-14 2008-04-14
US61/071,140 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128293A1 true WO2009128293A1 (en) 2009-10-22

Family

ID=41198994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053630 WO2009128293A1 (en) 2008-04-14 2009-02-27 Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device

Country Status (1)

Country Link
WO (1) WO2009128293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078070A1 (en) * 2009-12-23 2011-06-30 株式会社ニコン Spatial light modulator unit, illumination optical system, exposure device, and device manufacturing method
CN107144948A (en) * 2017-06-15 2017-09-08 中国科学院西安光学精密机械研究所 Spatial light modulator coupling device based on triangular reflector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333795A (en) * 1993-05-26 1994-12-02 Canon Inc Exposure method
JP2002353105A (en) * 2001-05-24 2002-12-06 Nikon Corp Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice
JP2005093522A (en) * 2003-09-12 2005-04-07 Canon Inc Optical illumination system and aligner using the same
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
JP2005236088A (en) * 2004-02-20 2005-09-02 Nikon Corp Illuminating optical device, aligner, and exposure method
JP2006013518A (en) * 2004-06-28 2006-01-12 Asml Netherlands Bv Lithography equipment and method of manufacturing device
WO2009050977A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2009105396A (en) * 2007-10-24 2009-05-14 Nikon Corp Optical unit, optical illumination device, exposure device, and method of manufacturing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333795A (en) * 1993-05-26 1994-12-02 Canon Inc Exposure method
JP2002353105A (en) * 2001-05-24 2002-12-06 Nikon Corp Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice
JP2005093522A (en) * 2003-09-12 2005-04-07 Canon Inc Optical illumination system and aligner using the same
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
JP2005236088A (en) * 2004-02-20 2005-09-02 Nikon Corp Illuminating optical device, aligner, and exposure method
JP2006013518A (en) * 2004-06-28 2006-01-12 Asml Netherlands Bv Lithography equipment and method of manufacturing device
WO2009050977A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2009105396A (en) * 2007-10-24 2009-05-14 Nikon Corp Optical unit, optical illumination device, exposure device, and method of manufacturing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078070A1 (en) * 2009-12-23 2011-06-30 株式会社ニコン Spatial light modulator unit, illumination optical system, exposure device, and device manufacturing method
JP5598733B2 (en) * 2009-12-23 2014-10-01 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2015005764A (en) * 2009-12-23 2015-01-08 株式会社ニコン Spatial light modulation unit, illuminating optical system, exposure device, and device manufacturing method
JP2016130859A (en) * 2009-12-23 2016-07-21 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and method of producing device
JP2017134408A (en) * 2009-12-23 2017-08-03 株式会社ニコン Spatial light modulation unit, illumination optical system, exposure apparatus, and method of producing device
JP2018112755A (en) * 2009-12-23 2018-07-19 株式会社ニコン Illumination optical device, illumination method, exposure device, exposure method, and method of producing device
CN107144948A (en) * 2017-06-15 2017-09-08 中国科学院西安光学精密机械研究所 Spatial light modulator coupling device based on triangular reflector

Similar Documents

Publication Publication Date Title
JP5935852B2 (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR100827874B1 (en) Exposure apparatus, method for manufacturing thereof, method for exposing, method for manufacturing microdevice, and method for manufacturing device
US20090091730A1 (en) Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
WO2009125511A1 (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
JP2013502703A (en) Polarization conversion unit, illumination optical system, exposure apparatus, and device manufacturing method
JPWO2008007633A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009087805A1 (en) Spatial light modulator, illumination optical system, aligner, and device manufacturing method
JP2018112755A (en) Illumination optical device, illumination method, exposure device, exposure method, and method of producing device
JP5700272B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5688672B2 (en) Optical transmission apparatus, illumination optical system, exposure apparatus, and device manufacturing method
JP5403244B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2009128293A1 (en) Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
JP5353408B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
WO2012017783A1 (en) Transmission optical system, illumination optical system, exposure device, and device manufacturing method
JP2011222841A (en) Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
JP5327715B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2010016288A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2012004558A (en) Illumination optical system, exposure equipment, and device manufacturing method
JP2011029596A (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2010141151A (en) Luminous flux-splitting element, illumination optical system, exposure device, and device manufacturing method
JP2012080098A (en) Illumination optical system, exposure equipment, illumination method, exposure method, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09732055

Country of ref document: EP

Kind code of ref document: A1