WO2010016288A1 - Illumination optical system, exposure apparatus, and device manufacturing method - Google Patents

Illumination optical system, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2010016288A1
WO2010016288A1 PCT/JP2009/053631 JP2009053631W WO2010016288A1 WO 2010016288 A1 WO2010016288 A1 WO 2010016288A1 JP 2009053631 W JP2009053631 W JP 2009053631W WO 2010016288 A1 WO2010016288 A1 WO 2010016288A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
path
optical system
spatial
Prior art date
Application number
PCT/JP2009/053631
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 山本
梨沙 吉元
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2010016288A1 publication Critical patent/WO2010016288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70083Non-homogeneous intensity distribution in the mask plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides

Definitions

  • the present invention relates to an illumination optical system, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to an illumination optical system suitable for an exposure apparatus for manufacturing devices such as a semiconductor element, an image sensor, a liquid crystal display element, and a thin film magnetic head in a lithography process.
  • a light beam emitted from a light source is passed through a fly-eye lens as an optical integrator, and a secondary light source (generally an illumination pupil) as a substantial surface light source composed of a number of light sources.
  • a secondary light source generally an illumination pupil
  • a predetermined light intensity distribution the light intensity distribution in the illumination pupil is referred to as “illumination pupil luminance distribution”.
  • the illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
  • the light beam from the secondary light source is condensed by the condenser lens and then illuminates the mask on which a predetermined pattern is formed in a superimposed manner.
  • the light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer.
  • the pattern formed on the mask is highly integrated, and it is indispensable to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
  • an illumination optical system capable of performing modified illumination such as annular illumination and multipolar illumination (bipolar illumination, quadrupole illumination, etc.) using a plurality of replaceable diffractive optical elements (patent) Reference 1).
  • a diffractive optical element for annular illumination that forms an annular illumination pupil luminance distribution in a fixed manner, illumination with multiple poles (bipolar, quadrupole, etc.)
  • the illumination pupil luminance distribution is discretely set. It has changed.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an illumination optical system capable of realizing a wide variety of illumination conditions with respect to the shape and size of the illumination pupil luminance distribution. .
  • the present invention uses an illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred.
  • An object of the present invention is to provide an exposure apparatus that can perform this.
  • a light beam incident along a first illumination light path is a light beam having a predetermined cross section.
  • a light beam conversion element that fixedly forms a light intensity distribution on the illumination pupil in the first illumination optical path, and is inserted in the first illumination optical path, and is provided along the first illumination optical path.
  • a first light guide member that guides incident light to the second illumination optical path, and incident along the second illumination optical path through the first light guide member to variably form a light intensity distribution in the illumination pupil.
  • a spatial light modulator that variably imparts spatial modulation to the light, and a second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path
  • the first light guide member includes the first illumination light path and the second illumination light path.
  • the light beam incident along the first illumination light path is converted into a light beam having a predetermined cross section, and the first A light flux conversion element that forms a light intensity distribution in a fixed manner in the illumination pupil in the illumination optical path, and a second illumination optical path that is provided so as to be insertable into the first illumination optical path and that is incident along the first illumination optical path.
  • spatial modulation is applied to light incident along the second illumination light path through the first light guide member.
  • a spatial light modulator that is variably applied; and a second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path, and the spatial light modulation.
  • An extension surface of the installation surface on which the light modulation surface of the device is located forms an acute angle with the first illumination light path. Insert it provides an illumination optical system, characterized in that.
  • the first illumination light path is provided so as to be inserted into the first illumination light path.
  • a first light guide member that includes a dividing member that divides the light incident along the first light into a plurality of light traveling in a plurality of different directions, and guides the light incident along the first illumination light path to the plurality of second illumination light paths And, in order to variably form a light intensity distribution at the illumination pupil in the first illumination light path, spatially pass through each of the light incident along the plurality of second illumination light paths via the first light guide member.
  • a plurality of spatial light modulators that variably apply various modulations, and a second light guide that guides light incident along the plurality of second illumination light paths through the plurality of spatial light modulators to the first illumination light path
  • a plurality of spatial light modulators Providing spatial light modulation unit, characterized in that it is fixedly disposed in the second illumination optical path.
  • an illumination optical system comprising the spatial light modulation unit of the third aspect, and illuminating an irradiated surface based on light from a light source via the spatial light modulation unit.
  • the illumination optical system according to the first, second, or fourth aspect for illuminating a predetermined pattern is provided, and the predetermined pattern is exposed on a photosensitive substrate.
  • An exposure apparatus is provided.
  • an exposure step of exposing the predetermined pattern to the photosensitive substrate, and developing the photosensitive substrate to which the predetermined pattern is transferred A development step for forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; and a processing step for processing the surface of the photosensitive substrate through the mask layer.
  • a device manufacturing method is provided.
  • a light beam conversion element that fixedly forms a light intensity distribution on the illumination pupil and a spatial light modulator that variably forms a light intensity distribution on the illumination pupil are provided with respect to the illumination optical path. It is provided so that it can be switched. Therefore, for example, by setting a light beam conversion element selected from a plurality of light beam conversion elements in the illumination optical path, the illumination pupil luminance distribution (and thus the illumination condition) is changed discretely, and the illumination pupil is operated by the action of the spatial light modulator. It is possible to freely and quickly change the light intensity distribution, that is, the illumination pupil luminance distribution formed in the above.
  • a light beam conversion element that forms a fixed light intensity distribution on the illumination pupil without moving the spatial light modulator that variably forms the light intensity distribution on the illumination pupil; Can be switched.
  • the exposure apparatus of the present invention uses the illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. Which can be done and thus a good device can be produced.
  • FIG. 1 It is a figure which shows schematically the structure of the exposure apparatus concerning embodiment of this invention. It is a figure which shows schematically the internal structure of the spatial light modulation unit of FIG. It is a perspective view which shows the structure of a cylindrical micro fly's eye lens. It is a perspective view which shows roughly the principal part structure of the insertion / extraction mechanism of a diffractive optical element. It is a perspective view which shows roughly the structure of the frame member holding a microprism array and a reflection member. It is a figure explaining the effect
  • SYMBOLS 1 Light source 3 Spatial light modulation unit; 31 Micro prism array 32 Diffractive optical element; 33 Reflective member; 34,35 Spatial light modulator 36 Relay optical system; 37 Aperture stop; 4 Afocal lens 7 Zoom lens; Eye lens 10 Condenser optical system; 11 Mask blind; 12 Imaging optical system M Mask; PL Projection optical system; W wafer
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the internal configuration of the spatial light modulation unit of FIG.
  • the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG.
  • the X axis is set in a direction perpendicular to the paper surface of FIG.
  • exposure light (illumination light) is supplied from a light source 1 in the exposure apparatus of this embodiment.
  • the light source for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used.
  • the light emitted from the light source 1 is expanded into a light beam having a required cross-sectional shape by the shaping optical system 2 and then enters the spatial light modulation unit 3.
  • the spatial light modulation unit 3 is in a first illumination optical path (hereinafter also simply referred to as “illumination optical path” or “optical path”) along the optical axis AX that is the basic optical axis of the illumination optical system.
  • a microprism array (or prism array) 31 that can be installed at a predetermined position, and a plurality of diffractive optics that can be selectively installed at a predetermined position in the first illumination optical path (for example, substantially the same position as the installation position of the microprism array 31).
  • An element 32 and a reflection member 33 that can be installed at a position in the first illumination optical path behind the installation position of the microprism array 31 are provided.
  • the spatial light modulation unit 3 includes a pair of spatial light modulators 34 and 35 that are fixedly installed outside the first illumination light path, and a first illumination light path on the rear side of the installation position of the reflection member 33.
  • a relay optical system 36 installed at a position, and a plurality of aperture stops 37 that can be selectively installed in the first illumination optical path between the front lens group 36a and the rear lens group 36b of the relay optical system 36. ing.
  • the specific configuration and operation of the spatial light modulation unit 3 will be described later.
  • a diffractive optical element 32 for annular illumination is installed in the illumination optical path, and the microprism array 31 and the reflecting member 33 are in the illumination optical path. It is assumed that it is not installed in
  • light from the light source 1 via the shaping optical system 2 enters the diffractive optical element 32 for annular illumination along the optical axis AX.
  • the diffractive optical element 32 has an annular light intensity distribution centered on the optical axis AX in the far field (or Fraunhofer diffraction region). It has the function to form.
  • the light emitted from the spatial light modulation unit 3 through the diffractive optical element 32 and the relay optical system 36 enters the afocal lens 4.
  • the afocal lens 4 is an afocal system (non-focal optical system), and is set so that the front focal position and the position of the diffractive optical element 32 are optically conjugate via the relay optical system 36. ing. Further, the rear focal position of the afocal lens 4 and the position of the predetermined surface 5 indicated by a broken line in the figure are set so as to substantially coincide. Therefore, the light that has passed through the diffractive optical element 32 as a light beam conversion element has, for example, an annular shape centered on the optical axis AX on the pupil plane 4c of the afocal lens 4 (see FIG. 2; not shown in FIG. 1).
  • the light After forming the light intensity distribution, the light is emitted from the afocal lens 4 with an annular angular distribution.
  • a conical axicon system 6 In the optical path between the front lens group 4a and the rear lens group 4b of the afocal lens 4, a conical axicon system 6 is disposed at the position of the pupil plane 4c or in the vicinity thereof. The configuration and operation of the conical axicon system 6 will be described later.
  • ⁇ value mask-side numerical aperture of the illumination optical system / mask-side numerical aperture of the projection optical system
  • cylindrical micro fly's eye lens 8 includes a first fly eye member 8a disposed on the light source side and a second fly eye member 8b disposed on the mask side.
  • cylindrical lens groups 8aa and 8ba arranged side by side in the X direction are formed at a pitch p1, respectively.
  • Cylindrical lens groups 8ab and 8bb arranged side by side in the Z direction on the mask side surface of the first fly eye member 8a and the mask side surface of the second fly eye member 8b, respectively, with a pitch p2 (p2> p1). Is formed.
  • the parallel luminous flux incident along the optical axis AX is formed on the light source side of the first fly eye member 8a.
  • the wavefront is divided by the lens group 8aa along the X direction at the pitch p1, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8ba formed on the light source side of the second fly's eye member 8b.
  • the light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
  • the parallel light beam incident along the optical axis AX is formed on the cylindrical side of the first fly's eye member 8a on the mask side.
  • the corresponding one of the cylindrical lens groups 8bb formed on the mask side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
  • the cylindrical micro fly's eye lens 8 is constituted by the first fly eye member 8a and the second fly eye member 8b in which the cylindrical lens groups are arranged on both side surfaces, but the size of p1 is set in the X direction. It has an optical function similar to that of a micro fly's eye lens in which a large number of rectangular minute refracting surfaces having a size of p2 in the Z direction are integrally formed vertically and horizontally.
  • a change in distortion due to variations in the surface shape of the micro-refractive surface is suppressed to be small, and for example, manufacturing errors of a large number of micro-refractive surfaces integrally formed by etching process give the illuminance distribution. The influence can be kept small.
  • the position of the predetermined surface 5 is disposed in the vicinity of the front focal position of the zoom lens 7, and the incident surface of the cylindrical micro fly's eye lens 8 is disposed in the vicinity of the rear focal position of the zoom lens 7.
  • the predetermined surface 5 and the incident surface of the cylindrical micro fly's eye lens 8 are arranged substantially in a Fourier transform relationship, and as a result, the pupil surface of the afocal lens 4 and the cylindrical micro fly's eye lens 8.
  • the incident surface is optically substantially conjugate.
  • an annular illumination field composed of an annular light intensity distribution around the optical axis AX is formed.
  • the overall shape of the annular illumination field changes in a similar manner depending on the focal length of the zoom lens 7.
  • the rectangular micro-refractive surface as a wavefront division unit in the cylindrical micro fly's eye lens 8 has a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and thus the shape of the exposure region to be formed on the wafer W). It is.
  • the light beam incident on the cylindrical micro fly's eye lens 8 is two-dimensionally divided, and has two light intensity distributions on the rear focal plane or in the vicinity thereof (and thus the illumination pupil) having substantially the same light intensity distribution as the illumination field formed by the incident light beam.
  • a secondary light source annular illumination pupil luminance distribution
  • the light from the secondary light source limited by the aperture stop 9 illuminates the mask blind 11 in a superimposed manner via the condenser optical system 10.
  • a rectangular illumination field corresponding to the shape and focal length of the rectangular micro-refractive surface which is the wavefront division unit of the cylindrical micro fly's eye lens 8 is formed on the mask blind 11 as the illumination field stop.
  • the light beam that has passed through the rectangular opening (light transmitting portion) of the mask blind 11 receives the light condensing action of the imaging optical system 12 and then illuminates the mask M on which a predetermined pattern is formed in a superimposed manner. That is, the imaging optical system 12 forms an image of the rectangular opening of the mask blind 11 on the mask M.
  • the light beam transmitted through the mask M held on the mask stage MS forms an image of a mask pattern on the wafer (photosensitive substrate) W held on the wafer stage WS through the projection optical system PL.
  • batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled.
  • the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
  • the conical axicon system 6 includes, in order from the light source side, a first prism member 6a having a flat surface facing the light source side and a concave conical refractive surface facing the mask side, and a convex conical shape facing the plane toward the mask side and the light source side. And a second prism member 6b facing the refractive surface.
  • the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are complementarily formed so as to be in contact with each other.
  • At least one of the first prism member 6a and the second prism member 6b is configured to be movable along the optical axis AX, and the concave conical refracting surface of the first prism member 6a and the second prism member 6b.
  • the distance from the convex conical refracting surface is variable.
  • the conical axicon system 6 functions as a parallel flat plate, and is formed in an annular shape. Alternatively, there is no influence on the quadrupolar secondary light source.
  • the width of the annular or quadrupolar secondary light source (the annular secondary light source) 1/2 of the difference between the outer diameter and the inner diameter of the light source; 1/2 of the difference between the diameter (outer diameter) of the circle circumscribing the quadrupole secondary light source and the diameter (inner diameter) of the inscribed circle while maintaining, the outer diameter (inner diameter) of the annular or quadrupolar secondary light source changes. That is, the annular ratio (inner diameter / outer diameter) and size (outer diameter) of the annular or quadrupolar secondary light source change.
  • the zoom lens 7 has a function of enlarging or reducing the entire shape of the annular or quadrupolar secondary light source in a similar (isotropic) manner. For example, by enlarging the focal length of the zoom lens 7 from a minimum value to a predetermined value, the overall shape of the annular or quadrupolar secondary light source is similarly enlarged. In other words, due to the action of the zoom lens 7, both the width and size (outer diameter) of the annular or quadrupolar secondary light source change without changing. As described above, the annular ratio and the size (outer diameter) of the annular or quadrupolar secondary light source can be controlled by the action of the conical axicon system 6 and the zoom lens 7.
  • the secondary light source formed by the cylindrical micro fly's eye lens 8 is used as a light source, and the mask M disposed on the irradiated surface of the illumination optical system (2 to 12) is Koehler illuminated.
  • the position where the secondary light source is formed is optically conjugate with the position of the aperture stop AS of the projection optical system PL, and the formation surface of the secondary light source is the illumination pupil plane of the illumination optical system (2 to 12).
  • the irradiated surface (the surface on which the mask M is disposed or the surface on which the wafer W is disposed when the illumination optical system including the projection optical system PL is considered) is optical with respect to the illumination pupil plane.
  • the illumination pupil luminance distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system (2 to 12) or a plane optically conjugate with the illumination pupil plane.
  • the overall light intensity distribution formed on the incident surface of the cylindrical micro fly's eye lens 8 and the overall light intensity distribution of the entire secondary light source (illumination Pupil luminance distribution).
  • the light intensity distribution on the incident surface of the cylindrical micro fly's eye lens 8 and a surface optically conjugate with the incident surface can also be referred to as an illumination pupil luminance distribution.
  • the spatial light modulation unit 3, the afocal lens 4, the zoom lens 7, and the cylindrical micro fly's eye lens 8 form an illumination pupil luminance distribution on the illumination pupil behind the cylindrical micro fly's eye lens 8.
  • the distribution forming optical system is configured.
  • the spatial light modulation unit 3 of the present embodiment can rotate around an axis parallel to the optical axis AX, for example, an axis 32a extending in the Y direction with a spacing in the + X direction from the optical axis AX.
  • a plurality of diffractive optical elements 32 having different characteristics are attached to the rotating plate 32b.
  • a fan-shaped notch 32ba defined by a pair of line segments passing through the axis 32a is formed on the rotary plate 32b, and the plurality of diffractive optical elements 32 rotate at intervals along a circle centering on the axis 32a. It is attached to the plate 32b.
  • the desired diffractive optical element 32 is selectively installed at a predetermined position in the first illumination optical path by the rotation of the rotating plate 32b about the axis 32a.
  • the notch 32ba in the first illumination optical path, a state where the diffractive optical element 32 is not installed in the first illumination optical path is realized.
  • a diffractive optical element for multipole illumination (bipolar illumination, quadrupole illumination, octopole illumination, etc.) is set in the illumination optical path. Multi-pole illumination can be performed.
  • a diffractive optical element for multipole illumination forms a light intensity distribution of multiple poles (bipolar, quadrupole, octupole, etc.) in the far field when a parallel light beam having a rectangular cross section is incident. It has the function to do.
  • the light beam that has passed through the diffractive optical element for multipole illumination is irradiated on the incident surface of the cylindrical micro fly's eye lens 8 with, for example, a plurality of predetermined shapes (arc shape, circular shape, etc.) centered on the optical axis AX.
  • a multipolar illumination field consisting of As a result, the same multipolar illumination pupil luminance distribution as that of the illumination field formed on the entrance surface is formed on the rear focal plane of the cylindrical micro fly's eye lens 8 or on the illumination pupil in the vicinity thereof.
  • a normal circular illumination can be performed by setting a diffractive optical element for circular illumination in the illumination optical path.
  • the diffractive optical element for circular illumination has a function of forming a circular light intensity distribution in the far field when a parallel light beam having a rectangular cross section is incident. Therefore, the light beam that has passed through the diffractive optical element for circular illumination forms, for example, a circular illumination field around the optical axis AX on the incident surface of the cylindrical micro fly's eye lens 8.
  • an illumination pupil luminance distribution having the same circular shape as the illumination field formed on the entrance surface is also formed on the illumination pupil at or near the rear focal plane of the cylindrical micro fly's eye lens 8.
  • various forms of modified illumination can be performed by setting a diffractive optical element having appropriate characteristics in the illumination optical path instead of the diffractive optical element for annular illumination.
  • the diffractive optical element 32 is retracted from the first illumination optical path, and the microprism array 31 and the reflecting member 33 are shaped into the shaping optical system 2.
  • the first illumination optical path between the relay optical system 36 and the front lens group 36a For example, as shown in FIG. 5, the microprism array 31 and the reflecting member 33 are held by a frame member 30 having a rectangular opening along the XY plane. Therefore, by moving the frame member 30 in the + X direction and positioning the frame member 30 at the notch 32ba of the rotating plate 32b, the microprism array 31 and the reflecting member 33 can be respectively installed at predetermined positions in the first illumination optical path. . Further, by moving the frame member 30 in the ⁇ X direction from the notch 32ba of the rotating plate 32b, the microprism array 31 and the reflecting member 33 can be retracted from the first illumination optical path.
  • the microprism array is along the optical axis AX (along the first illumination optical path).
  • the light incident on 31 is divided into a first light traveling along the optical axis AX1 and a second light traveling along the optical axis AX2.
  • the optical axis AX1 and the optical axis AX2 correspond to the normal direction of one surface and the normal direction of the other surface of the crest-shaped exit surfaces of the prism elements constituting the microprism array 31, respectively. It extends in a direction symmetric with respect to the optical axis AX along the YZ plane including the axis AX.
  • first illumination optical path defined by the optical axis AX and the second illumination optical path defined by the optical axis AX1 intersect at an acute angle
  • the first illumination optical path and the second illumination optical path (third illumination optical path) intersect at an acute angle means that the optical axis AX defining the first illumination optical path and the second illumination optical path (second Line segment extending from the intersection with the optical axis AX1 (AX2) defining the three illumination optical paths) to the rear side (irradiated surface side) along the optical axis AX, and the rear along the optical axis AX1 (AX2) from the intersection This means that the angle formed with the line segment extending to the side is an acute angle.
  • the first light traveling along the second illumination light path through the microprism array 31 passes through one opening of the frame member 30 and enters the first spatial light modulator 34.
  • the light modulated by the first spatial light modulator 34 is reflected by the first reflecting surface 33a of the triangular prism-shaped reflecting member 33 extending along the X direction, for example, and guided to the relay optical system 36.
  • the second light traveling along the third illumination light path through the microprism array 31 passes through the other opening of the frame member 30 and enters the second spatial light modulator 35.
  • the first light traveling along the second illumination optical path through the microprism array 31 has a plurality of stripe-shaped light beam cross sections immediately after the microprism array 31, but the light beam from the light source is a completely parallel light beam. Since the light beam has a slight divergence angle, the cross-sectional shape of the light beam at the position of the first spatial light modulator 34 is one rectangular cross-section. Similarly, the cross-sectional shape of the light beam at the position of the second spatial light modulator 35 of the second light traveling along the third illumination light path via the microprism array 31 is also one rectangular cross section.
  • the light modulated by the second spatial light modulator 35 is reflected by the second reflecting surface 33 b of the reflecting member 33 and guided to the relay optical system 36.
  • the first spatial light modulator 34 and the second spatial light modulator 35 have the same configuration and are arranged symmetrically with respect to a plane including the optical axis AX and parallel to the XY plane. It is assumed that Therefore, the description which overlaps with the 1st spatial light modulator 34 about the 2nd spatial light modulator 35 is abbreviate
  • the first spatial light modulator 34 includes a plurality of mirror elements 34a arranged two-dimensionally, a base 34b holding the plurality of mirror elements 34a, and a plurality of mirror elements 34a.
  • the incident angle of light on the first reflecting surface 33a is set to be considerably larger than the incident angle in FIG.
  • the spatial light modulator 34 includes a plurality of minute mirror elements (optical elements) 34 a arranged in a two-dimensional manner, and is incident along the second illumination optical path defined by the optical axis AX1.
  • the emitted light is variably given spatial modulation according to the incident position and emitted.
  • the light beam L1 is the mirror element SEa of the plurality of mirror elements 34a
  • the light beam L2 is the mirror element.
  • the light is incident on a mirror element SEb different from SEa.
  • the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb
  • the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc.
  • the mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
  • the spatial light modulator 34 in a reference state (hereinafter referred to as “reference state”) in which the reflecting surfaces of all the mirror elements 34a are set along one plane, the light enters the direction parallel to the optical axis AX1.
  • the reflected light beam is reflected by the spatial light modulator 34 and then reflected by the first reflecting surface 33a in a direction parallel to the optical axis AX.
  • the surface on which the plurality of mirror elements 34 a of the spatial light modulator 34 are arranged is positioned at or near the front focal position of the relay optical system 36, and thus optically conjugate with the front focal position of the afocal lens 4. Positioned at or near the position.
  • the light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 34 and given a predetermined angular distribution is the position of the pupil plane 36c of the relay optical system 36 (position where the aperture stop 37 is installed).
  • Predetermined light intensity distributions SP1 to SP4 are formed, and as a result, light intensity distributions corresponding to the light intensity distributions SP1 to SP4 are formed at the position of the pupil plane 4c of the afocal lens 4. That is, the front lens group 36a of the relay optical system 36 determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 34 gives to the emitted light in the far field region (Fraunhofer diffraction region) of the spatial light modulator 34.
  • the position is converted into a position on a certain surface 36c (and eventually the pupil surface 4c).
  • the light reflected by the plurality of mirror elements of the spatial light modulator 35 and given a predetermined angular distribution also forms a predetermined light intensity distribution at the position of the pupil plane 4 c of the afocal lens 4.
  • the incident surface of the cylindrical micro fly's eye lens 8 is positioned at or near a position optically conjugate with the pupil plane 4c (not shown in FIG. 1) of the afocal lens 4. Therefore, the light intensity distribution (illumination pupil luminance distribution) of the secondary light source formed by the cylindrical micro fly's eye lens 8 is formed on the pupil plane 36c by the first spatial light modulator 34 and the front lens group 36a of the relay optical system 36.
  • the distribution corresponds to a combined distribution of the first light intensity distribution and the second light intensity distribution formed on the pupil plane 36c by the front lens group 36a of the second spatial light modulator 35 and the relay optical system 36.
  • the spatial light modulator 34 (35) has a large number of minute reflections regularly and two-dimensionally arranged along one plane with the planar reflection surface as the upper surface.
  • This is a movable multi-mirror including a mirror element 34a (35a) as an element.
  • Each mirror element 34a (35a) is movable, and the inclination of the reflection surface thereof, that is, the inclination angle and the inclination direction of the reflection surface is an action of the drive unit 34d (35d) that operates according to a command from a control unit (not shown). Controlled independently.
  • Each mirror element 34a (35a) can be rotated continuously or discretely by a desired rotation angle, with two directions parallel to the reflecting surface and perpendicular to each other. That is, it is possible to two-dimensionally control the inclination of the reflecting surface of each mirror element 34a (35a).
  • each mirror element 34a (35a) When the reflecting surface of each mirror element 34a (35a) is discretely rotated, the rotation angle is set in a plurality of states (for example,..., -2.5 degrees, -2.0 degrees,... 0 degrees). , +0.5 degrees,... +2.5 degrees,.
  • FIG. 7 shows the mirror element 34a (35a) having a square outer shape, the outer shape of the mirror element 34a (35a) is not limited to a square. However, from the viewpoint of light utilization efficiency, it is possible to provide a shape that can be arranged (a shape that can be packed closest) so that the gap between the mirror elements 34a (35a) is reduced. Further, from the viewpoint of light utilization efficiency, the interval between two adjacent mirror elements 34a (35a) can be minimized.
  • the spatial light modulators 34 and 35 for example, spatial light modulators that continuously change the directions of a plurality of mirror elements 34a (35a) arranged two-dimensionally are used.
  • a spatial light modulator for example, Japanese Patent Laid-Open No. 10-503300 and corresponding European Patent Publication No. 779530, Japanese Patent Application Laid-Open No. 2004-78136, and corresponding US Pat. No. 6,900, The spatial light modulator disclosed in Japanese Patent No. 915, Japanese National Publication No. 2006-524349 and US Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-Open No. 2006-113437 can be used.
  • the directions of the plurality of mirror elements 34a (35a) arranged two-dimensionally may be controlled so as to have a plurality of discrete stages.
  • the posture of the plurality of mirror elements 34a is changed by the action of the drive unit 34d that operates according to the control signal from the control unit, and each mirror element 34a has a predetermined orientation.
  • the light reflected by the plurality of mirror elements 34a of the first spatial light modulator 34 at a predetermined angle is applied to the pupil plane 36c of the relay optical system 36, for example, around the optical axis AX.
  • Two circular light intensity distributions 41a and 41b spaced apart in the direction are formed.
  • the posture of the plurality of mirror elements 35a is changed by the action of the drive unit 35b that operates in response to a control signal from the control unit, and each mirror element 35a has a predetermined value.
  • the light reflected by the plurality of mirror elements 35a of the second spatial light modulator 35 at a predetermined angle is applied to the pupil plane 36c of the relay optical system 36, for example, around the optical axis AX.
  • Two circular light intensity distributions 41c and 41d spaced apart in the direction are formed.
  • An aperture stop 37 that is replaceable with respect to the first illumination optical path is disposed on or near the pupil plane 36c of the relay optical system 36.
  • the aperture stop 37 installed in the first illumination optical path has a quadrupole opening (light transmission portion).
  • the aperture stop 37 is configured to be detachable with respect to the illumination optical path, and is configured to be switchable between a plurality of aperture stops having openings having different sizes and shapes.
  • an aperture stop switching method for example, a well-known turret method or slide method can be used.
  • the aperture stop 37 is disposed at a position optically conjugate with the entrance pupil plane of the projection optical system PL, as in the above-described aperture stop 9, and defines a range that contributes to the illumination of the secondary light source.
  • the light forming the quadrupolar light intensity distribution 41 on the pupil surface 36c of the relay optical system 36 or the light forming the light intensity distribution 41 is limited by the aperture stop 37, and then the pupil surface of the afocal lens 4 and the cylindrical 4 corresponding to the light intensity distributions 41a to 41d on the entrance plane of the micro fly's eye lens 8 and the illumination pupil (position where the aperture stop 9 is disposed) on the rear focal plane of the cylindrical micro fly's eye lens 8 or in the vicinity thereof.
  • a polar light intensity distribution is formed.
  • the light intensity is also applied to another illumination pupil position optically conjugate with the aperture stop 9, that is, the pupil position of the imaging optical system 12 and the pupil position of the projection optical system PL (position where the aperture stop AS is disposed).
  • a quadrupole light intensity distribution corresponding to the distributions 41a to 41d is formed.
  • a plurality of diffractive optical elements 32 that have different characteristics and can be selectively installed in the illumination light path are provided as means for fixedly forming a light intensity distribution on the illumination pupil. Accordingly, a diffractive optical element for annular illumination that forms a ring-shaped illumination pupil luminance distribution in a fixed manner, a diffractive optical element for multi-pole illumination that forms a fixed illumination pupil luminance distribution in a multiple pole, etc. are selected. By setting only one diffractive optical element 32 in the illumination optical path, the illumination pupil luminance distribution (and thus the illumination condition) can be discretely changed.
  • a pair of spatial light modulators 34 and 35 in which the postures of the plurality of mirror elements 34a and 35a individually change are provided. Therefore, the first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 34 and the second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 35 can be freely set. Can change quickly. That is, an illumination pupil composed of a first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 34 and a second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 35. The luminance distribution can be changed freely and quickly.
  • the diffractive optical element that discretely changes the illumination pupil luminance distribution. 32 and the spatial light modulators 34 and 35 that change the illumination pupil luminance distribution freely and quickly are configured to be switchable with respect to the illumination optical path, so that the shape and size of the illumination pupil luminance distribution can be varied. Abundant lighting conditions can be realized. Further, in the exposure apparatus (2 to WS) of the present embodiment, the illumination optical system (2 to 12) that realizes a wide variety of illumination conditions is used, and is appropriately realized according to the pattern characteristics of the mask M. Good exposure can be performed under various illumination conditions.
  • the microprism array 31 includes an optical axis AX that defines the first illumination optical path, an optical axis AX1 that defines the second illumination optical path, and an optical axis AX2 that defines the third illumination optical path ( It is configured to be movable in a direction intersecting the (YZ plane), that is, a normal direction (X direction) of the YZ plane.
  • the insertion / removal mechanism (exchange mechanism) of the diffractive optical element 32 and the movement space of the microprism array 31 do not interfere with each other without increasing the movement stroke of the microprism array 31.
  • the microprism array 31 and the reflection member 33 attached to the frame member 30 are configured to be movable integrally along the X direction, and thus a pair of fixedly installed spaces.
  • a configuration in which the optical modulators 34 and 35 and the moving space of the frame member 30 do not interfere with each other can be easily realized.
  • an extension surface of the installation surface an array surface of the plurality of mirror elements 34a on which the light modulation surface of the spatial light modulator 34 is located, and an installation surface on which the light modulation surface of the spatial light modulator 35 is located.
  • An extended surface of (the array surface of the plurality of mirror elements 35a) intersects the first illumination light path at an acute angle.
  • “the extended surface intersects the first illumination optical path at an acute angle” means that the front side (light source) along the optical axis AX from the intersection of the optical axis AX defining the first illumination optical path and the extended surface.
  • the angle formed by the line segment extending to the side) and the line segment extending from the intersection point to the light modulation surface along the plane including the optical axis AX and perpendicular to the extension surface is an acute angle.
  • the light modulation surfaces of the spatial light modulators 34 and 35 can be made to be perpendicular to the optical axes AX1 and AX2, so that the mirror elements 34a and 35a in the spatial light modulators 34 and 35 are disposed on the emission side.
  • the aspect ratio of the mirror elements 34a and 35a of the spatial light modulator is not compressed or expanded when viewed from the optical system located at the position.
  • the first illumination optical path defined by the optical axis AX and the second illumination optical path defined by the optical axis AX1 intersect at an acute angle
  • the first illumination optical path and the light It intersects with the third illumination optical path defined by the axis AX2 at an acute angle.
  • This configuration provides the advantage that the aspect ratio of each mirror element 34a, 35a of the spatial light modulator is not compressed or expanded as described above.
  • the position where the extension surface of the installation surface where the light modulation surface of the spatial light modulator 34 is located and the extension surface of the installation surface where the light modulation surface of the spatial light modulator 35 intersects is This is the exit side of the reflecting member 33 in one illumination optical path.
  • the incident light is split into two lights by the microprism array 31, one light is guided to the first spatial light modulator 34, and the other light is guided to the second spatial light modulator 35.
  • a configuration that is, a configuration in which a plurality of spatial light modulators are used simultaneously is adopted. With this configuration, the energy density of incident light on the plurality of mirror elements (optical elements) 34a and 35a of the spatial light modulators 34 and 35 is reduced, and the number of wavefront divisions in the spatial light modulators 34 and 35 is increased. Thus, the illumination pupil luminance distribution unevenness can be reduced.
  • the first illumination optical path defined by the optical axis AX that is the reference optical axis extends linearly at the position where the microprism array 31 is inserted.
  • a linearly extended first illumination light path is located between the second illumination light path defined by the optical axis AX1 and the third illumination light path defined by the optical axis AX2. Further, the first illumination light path is extended linearly between the position where the microprism array 31 is inserted and the position where the reflecting member 33 is inserted.
  • the optical path is filled with an inert gas such as nitrogen gas or helium gas, which is a gas having a low exposure light absorption rate, or the optical path is changed. It is necessary to maintain a substantially vacuum state.
  • the purge wall 13 including the cover glasses 34c and 35c can be provided as shown by a broken line in FIG.
  • the spatial light modulators 34 and 35 can be freely operated while maintaining good purge. Is possible.
  • the spatial light modulators 34 and 35 can be configured to be movable, in this case, not only is it difficult to maintain the purge, but the cables extending from the boards 34b and 35b are accompanied by the movement. And is susceptible to damage.
  • a cover glass may be provided on the purge wall 13 separately from the cover glasses 34c and 35c attached to the main body portions of the spatial light modulators 34 and 35.
  • the light incident on and emitted from the spatial light modulators 34 and 35 passes through the two cover glasses, but the space is maintained in the state where the purge space where the first and second light guide members are located is maintained.
  • the light modulators 34 and 35 can be exchanged.
  • the first light intensity distribution by the first spatial light modulator 34 and the second light intensity distribution by the second spatial light modulator 35 are formed at different locations in the illumination pupil.
  • the first light intensity distribution and the second light intensity distribution may partially overlap each other, or may be completely overlapped (the first light intensity distribution and the second light intensity distribution are formed in the same distribution and at the same position. ) You may.
  • the microprism array 31 is used as a dividing member that divides the incident light along the first illumination optical path (along the optical axis AX) into two lights that travel in two different directions. ing.
  • the number of divisions of light is not limited to 2, and incident light can be divided into three or more lights using, for example, a diffractive optical element.
  • the light incident along the first illumination optical path can be divided into a plurality of lights traveling in a plurality of different directions, and the same number of spatial light modulators as the number of the divided lights can be provided.
  • a configuration using only one of the pair of spatial light modulators 34 and 35 is also possible.
  • a declination prism can be used as a light guide member that guides light incident along the first illumination optical path to the second illumination optical path, instead of the microprism array 31 as the split member.
  • the spatial light modulation unit 3 using a single spatial light modulator, the configuration shown in FIG. 9 is possible.
  • the spatial light modulation unit 3 according to the modification of FIG. 9 can be installed at a predetermined position in the first illumination optical path along the optical axis AX, and deflects light incident along the first illumination optical path by, for example, 90 degrees.
  • a plurality of diffractive optical elements 32 that can be selectively installed at a position in the first illumination light path that is substantially the same as the installation position of the flat mirror 51, for example. Yes.
  • the light reflected in the Z direction by the plane mirror 51 is incident on the spatial light modulator 34 fixedly installed at a predetermined position in the second illumination optical path defined by the optical axis AX3.
  • the light modulated by the spatial light modulator 34 and reflected in the Y direction is fixedly installed in the second illumination optical path via the relay lens 52 fixedly installed in the second illumination optical path. Incident on the plane mirror 53.
  • the light reflected by the flat mirror 53 in the Z direction can be set at a predetermined position in the first illumination optical path, that is, at a predetermined position between the front lens group 36a of the relay optical system 36 and the aperture stop 37. Is incident on.
  • the light reflected in the Y direction by the plane mirror 54 enters the aperture stop 37 along the first illumination optical path.
  • the plane mirror 51 as the first light guide member includes the shaping optical system 2 and the relay optical system 36.
  • the plane mirror 54 as the second light guide member is disposed on the rear side (irradiated surface side) of the relay lens system 36 with respect to the front lens group 36a. It arrange
  • a required light intensity distribution is variably formed at the position of the aperture stop 37 (and hence at the position of the illumination pupil).
  • the spatial light modulator 34, the relay lens 52, and the plane mirror 53 are arranged in the order of incidence of light from the plane mirror 51.
  • the present invention is not limited to this, and the plane mirror 53 is disposed at the position of the spatial light modulator 34 in FIG. 9, the spatial light modulator 34 is disposed at the position of the plane mirror 53 in FIG.
  • a relay lens 52 may be disposed in the optical path between the mirrors 53 and 54.
  • the spatial light modulation unit 3 includes a pyramid prism 61 having a quadrangular pyramid shape that is formed of a light transmissive member and has a vertex directed toward the light incident side.
  • the pyramid prism 61 that can be regarded as the divided member can be inserted into and removed from the illumination optical path along the X direction in the drawing.
  • the light incident on the first illumination optical path (along the optical axis AX) is divided into four lights traveling in four different directions by the pyramid prism 61.
  • the four divided lights are incident on four spatial light modulators 34, 35, 62, and 63 arranged in each illumination light path.
  • the light modulated by each of the spatial light modulators 34, 35, 62, and 63 is directed to a pyramid mirror 64 having a pyramid shape whose slope is formed on the reflection surface and the apex is directed to the exit side.
  • the pyramid mirror 64 is also configured to be able to be inserted into and removed from the illumination optical path integrally with the pyramid prism 61.
  • the spatial light modulation unit 3 includes a V-shaped prism 65 with a ridge line along the X direction facing the incident side, instead of the microprism array 31 of the embodiment shown in FIG. ing.
  • the prism 65 also has a first light traveling along the optical axis AX1 and a second light traveling along the optical axis AX2 along the first illumination optical path (from the direction along the optical axis AX). And are guided to a pair of spatial light modulators 34 and 35 fixedly installed outside the first illumination light path.
  • the afocal lens 4, the conical axicon system 6, and the zoom lens 7 are disposed in the optical path between the spatial light modulation unit 3 and the cylindrical micro fly's eye lens 8.
  • the present invention is not limited to this, and instead of these optical members, for example, a condensing optical system that functions as a Fourier transform lens may be disposed.
  • the spatial light modulator having a plurality of optical elements that are two-dimensionally arranged and individually controlled, the direction (angle: inclination) of the two-dimensionally arranged reflecting surfaces is set.
  • An individually controllable spatial light modulator is used.
  • the present invention is not limited to this.
  • a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used.
  • a spatial light modulator for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat.
  • the spatial light modulator disclosed in FIG. 1d of Japanese Patent No. 6,885,493 can be used.
  • these spatial light modulators by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light.
  • the spatial light modulator having a plurality of two-dimensionally arranged reflection surfaces described above is disclosed in, for example, Japanese Patent Publication No.
  • the illumination pupil luminance distribution is measured by the pupil luminance distribution measuring device, and the spatial light is determined according to the measurement result.
  • Each spatial light modulator in the modulation unit may be controlled.
  • Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto.
  • a variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask.
  • variable pattern forming apparatus By using such a variable pattern forming apparatus, the influence on the synchronization accuracy can be minimized even if the pattern surface is placed vertically.
  • a DMD digital micromirror device
  • An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 2004-304135 and International Patent Publication No. 2006/080285.
  • a transmissive spatial light modulator may be used, or a self-luminous image display element may be used. Note that a variable pattern forming apparatus may be used even when the pattern surface is placed horizontally.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 12 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer W to be a substrate of the semiconductor device (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • Step S42 the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed.
  • step S46 development process
  • step S48 processing step
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is.
  • step S48 the surface of the wafer W is processed through this resist pattern.
  • step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • step S44 the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as the photosensitive substrate, that is, the plate P.
  • FIG. 13 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S50
  • a color filter formation process step S52
  • a cell assembly process step S54
  • a module assembly process step S56
  • a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment.
  • the pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • an exposure apparatus for manufacturing a semiconductor device for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display
  • various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask,
  • ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light.
  • the present invention is not limited to this, and other suitable laser light sources.
  • the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm.
  • the present invention is applied to the illumination optical system that illuminates the mask in the exposure apparatus.
  • the present invention is not limited to this, and a general illumination surface other than the mask is illuminated.
  • the present invention can also be applied to an illumination optical system.
  • the wavefront division type micro fly's eye lens (fly's eye lens) having a plurality of minute lens surfaces is used as the optical integrator.
  • an internal reflection type optical integrator (typically Specifically, a rod type integrator) may be used.
  • the condensing lens is arranged on the rear side of the zoom lens 7 so that the front focal position thereof coincides with the rear focal position of the zoom lens 7, and the incident end is located at or near the rear focal position of the condensing lens. Position the rod-type integrator so that is positioned. At this time, the injection end of the rod-type integrator becomes the position of the mask blind 11.
  • a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical system 12 downstream of the rod type integrator can be called an illumination pupil plane.
  • this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
  • a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it.
  • a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate a method for locally filling the liquid as disclosed in International Publication No. WO 99/49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114.
  • a technique of forming a liquid tank and holding the substrate in the liquid tank can be employed.
  • a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.

Abstract

An illumination condition with diversity in the shape and size of an illumination pupil luminance distribution is achieved. An illumination optical system for illuminating a surface to be irradiated on the basis of light from a light source is provided with a light flux conversion element (32) for converting a light flux incident along a first illumination light path into a light flux having a predetermined cross section to fixedly form a light intensity distribution on an illumination pupil, a first light guide member (31) for guiding the incident light to a second illumination light path, which is insertably provided in the first illumination light path, a spatial light modulator (34, 35) for variably spatially modulating the light incident along the second illumination light path through the first light guide member in order to variably form the light intensity distribution on the illumination pupil, and a second light guide member (33) for guiding the light incident along the second illumination light path through the spatial light modulator to the first illumination light path. The first light guide member is movable in an X-direction that crosses a YZ plane including the first illumination light path and the second illumination light path.

Description

照明光学系、露光装置、およびデバイス製造方法Illumination optical system, exposure apparatus, and device manufacturing method
 本発明は、照明光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。 The present invention relates to an illumination optical system, an exposure apparatus, and a device manufacturing method. More specifically, the present invention relates to an illumination optical system suitable for an exposure apparatus for manufacturing devices such as a semiconductor element, an image sensor, a liquid crystal display element, and a thin film magnetic head in a lithography process.
 この種の典型的な露光装置においては、光源から射出された光束が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「照明瞳輝度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。 In a typical exposure apparatus of this type, a light beam emitted from a light source is passed through a fly-eye lens as an optical integrator, and a secondary light source (generally an illumination pupil) as a substantial surface light source composed of a number of light sources. A predetermined light intensity distribution). Hereinafter, the light intensity distribution in the illumination pupil is referred to as “illumination pupil luminance distribution”. The illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
 二次光源からの光束は、コンデンサーレンズにより集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。 The light beam from the secondary light source is condensed by the condenser lens and then illuminates the mask on which a predetermined pattern is formed in a superimposed manner. The light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer. The pattern formed on the mask is highly integrated, and it is indispensable to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
 従来、交換可能な複数の回折光学素子を用いて輪帯照明や複数極照明(2極照明、4極照明など)のような変形照明を行うことのできる照明光学系が提案されている(特許文献1を参照)。特許文献1に開示された照明光学系では、例えば輪帯状の照明瞳輝度分布を固定的に形成する輪帯照明用の回折光学素子、複数極状(2極状、4極状など)の照明瞳輝度分布を固定的に形成する複数極照明用の回折光学素子などから選択された1つの回折光学素子を照明光路中に設定することにより、照明瞳輝度分布(ひいては照明条件)を離散的に変更している。 Conventionally, there has been proposed an illumination optical system capable of performing modified illumination such as annular illumination and multipolar illumination (bipolar illumination, quadrupole illumination, etc.) using a plurality of replaceable diffractive optical elements (patent) Reference 1). In the illumination optical system disclosed in Patent Document 1, for example, a diffractive optical element for annular illumination that forms an annular illumination pupil luminance distribution in a fixed manner, illumination with multiple poles (bipolar, quadrupole, etc.) By setting one diffractive optical element selected from a diffractive optical element for multipole illumination that forms a fixed pupil luminance distribution in the illumination optical path, the illumination pupil luminance distribution (and thus the illumination condition) is discretely set. It has changed.
特開2004-56103号公報JP 2004-56103 A
 特許文献1に記載された照明光学系において、照明瞳輝度分布の形状および大きさの変更に関する自由度を高めるには、互いに特性の異なる比較的多くの回折光学素子を準備し、これらの回折光学素子を照明光路に対して切り換える必要がある。実際の照明光学系では、交換可能な回折光学素子の数に制限があり、照明瞳輝度分布の形状および大きさについて十分に多様性に富んだ照明条件を実現することが困難である。 In the illumination optical system described in Patent Document 1, in order to increase the degree of freedom in changing the shape and size of the illumination pupil luminance distribution, a relatively large number of diffractive optical elements having different characteristics are prepared. It is necessary to switch the element with respect to the illumination optical path. In an actual illumination optical system, the number of replaceable diffractive optical elements is limited, and it is difficult to realize illumination conditions that are sufficiently diverse with respect to the shape and size of the illumination pupil luminance distribution.
 本発明は、前述の課題に鑑みてなされたものであり、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することのできる照明光学系を提供することを目的とする。また、本発明は、多様性に富んだ照明条件を実現する照明光学系を用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an illumination optical system capable of realizing a wide variety of illumination conditions with respect to the shape and size of the illumination pupil luminance distribution. . In addition, the present invention uses an illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. An object of the present invention is to provide an exposure apparatus that can perform this.
 前記課題を解決するために、本発明の第1形態では、光源からの光に基づいて被照射面を照明する照明光学系において、第1照明光路に沿って入射した光束を所定の断面の光束に変換して、前記第1照明光路中の照明瞳に光強度分布を固定的に形成する光束変換素子と、前記第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を第2照明光路へ導く第1導光部材と、前記照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記第2照明光路に沿って入射した光に空間的な変調を可変的に付与する空間光変調器と、前記空間光変調器を経て前記第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、前記第1導光部材は、前記第1照明光路と前記第2照明光路とを含む面と交差する方向に移動可能であることを特徴とする照明光学系を提供する。 In order to solve the above problems, according to a first aspect of the present invention, in an illumination optical system that illuminates an irradiated surface based on light from a light source, a light beam incident along a first illumination light path is a light beam having a predetermined cross section. And a light beam conversion element that fixedly forms a light intensity distribution on the illumination pupil in the first illumination optical path, and is inserted in the first illumination optical path, and is provided along the first illumination optical path. A first light guide member that guides incident light to the second illumination optical path, and incident along the second illumination optical path through the first light guide member to variably form a light intensity distribution in the illumination pupil. A spatial light modulator that variably imparts spatial modulation to the light, and a second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path The first light guide member includes the first illumination light path and the second illumination light path. Providing an illumination optical system, characterized in that it is movable in a direction intersecting the free surface.
 本発明の第2形態では、光源からの光に基づいて被照射面を照明する照明光学系において、第1照明光路に沿って入射した光束を所定の断面の光束に変換して、前記第1照明光路中の照明瞳に光強度分布を固定的に形成する光束変換素子と、前記第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を第2照明光路へ導く第1導光部材と、前記照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記第2照明光路に沿って入射した光に空間的な変調を可変的に付与する空間光変調器と、前記空間光変調器を経て前記第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、前記空間光変調器の光変調面が位置する設置面の延長面は、前記第1照明光路と鋭角をなして交差していることを特徴とする照明光学系を提供する。 In the second aspect of the present invention, in the illumination optical system that illuminates the irradiated surface based on the light from the light source, the light beam incident along the first illumination light path is converted into a light beam having a predetermined cross section, and the first A light flux conversion element that forms a light intensity distribution in a fixed manner in the illumination pupil in the illumination optical path, and a second illumination optical path that is provided so as to be insertable into the first illumination optical path and that is incident along the first illumination optical path. In order to variably form a light intensity distribution in the illumination pupil and the first light guide member that leads to the light, spatial modulation is applied to light incident along the second illumination light path through the first light guide member. A spatial light modulator that is variably applied; and a second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path, and the spatial light modulation. An extension surface of the installation surface on which the light modulation surface of the device is located forms an acute angle with the first illumination light path. Insert it provides an illumination optical system, characterized in that.
 本発明の第3形態では、光源からの光に基づいて被照射面を照明する照明光学系と共に用いられる空間光変調ユニットにおいて、第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を互いに異なる複数の方向に進む複数の光に分割する分割部材を備え、前記第1照明光路に沿って入射した光を複数の第2照明光路へ導く第1導光部材と、前記第1照明光路中の照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記複数の第2照明光路に沿って入射した光のそれぞれに空間的な変調を可変的に付与する複数の空間光変調器と、前記複数の空間光変調器を経て前記複数の第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、前記複数の空間光変調器は、前記複数の第2照明光路に固定的に配置されていることを特徴とする空間光変調ユニットを提供する。 In the third aspect of the present invention, in the spatial light modulation unit used together with the illumination optical system that illuminates the illuminated surface based on the light from the light source, the first illumination light path is provided so as to be inserted into the first illumination light path. A first light guide member that includes a dividing member that divides the light incident along the first light into a plurality of light traveling in a plurality of different directions, and guides the light incident along the first illumination light path to the plurality of second illumination light paths And, in order to variably form a light intensity distribution at the illumination pupil in the first illumination light path, spatially pass through each of the light incident along the plurality of second illumination light paths via the first light guide member. A plurality of spatial light modulators that variably apply various modulations, and a second light guide that guides light incident along the plurality of second illumination light paths through the plurality of spatial light modulators to the first illumination light path A plurality of spatial light modulators. Providing spatial light modulation unit, characterized in that it is fixedly disposed in the second illumination optical path.
 本発明の第4形態では、第3形態の空間光変調ユニットを備え、前記空間光変調ユニットを介した光源からの光に基づいて被照射面を照明することを特徴とする照明光学系を提供する。 According to a fourth aspect of the present invention, there is provided an illumination optical system comprising the spatial light modulation unit of the third aspect, and illuminating an irradiated surface based on light from a light source via the spatial light modulation unit. To do.
 本発明の第5形態では、所定のパターンを照明するための第1形態、第2形態または第4形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。 According to a fifth aspect of the present invention, the illumination optical system according to the first, second, or fourth aspect for illuminating a predetermined pattern is provided, and the predetermined pattern is exposed on a photosensitive substrate. An exposure apparatus is provided.
 本発明の第6形態では、第5形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。 In the sixth embodiment of the present invention, using the exposure apparatus of the fifth embodiment, an exposure step of exposing the predetermined pattern to the photosensitive substrate, and developing the photosensitive substrate to which the predetermined pattern is transferred, A development step for forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; and a processing step for processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method is provided.
 本発明にかかる照明光学系では、照明瞳に光強度分布を固定的に形成する光束変換素子と、照明瞳に光強度分布を可変的に形成する空間光変調器とが、照明光路に対して切り換え可能に設けられている。したがって、例えば複数の光束変換素子から選択された光束変換素子を照明光路中に設定することにより照明瞳輝度分布(ひいては照明条件)を離散的に変更するとともに、空間光変調器の作用により照明瞳に形成される光強度分布すなわち照明瞳輝度分布を自在に且つ迅速に変化させることができる。 In the illumination optical system according to the present invention, a light beam conversion element that fixedly forms a light intensity distribution on the illumination pupil and a spatial light modulator that variably forms a light intensity distribution on the illumination pupil are provided with respect to the illumination optical path. It is provided so that it can be switched. Therefore, for example, by setting a light beam conversion element selected from a plurality of light beam conversion elements in the illumination optical path, the illumination pupil luminance distribution (and thus the illumination condition) is changed discretely, and the illumination pupil is operated by the action of the spatial light modulator. It is possible to freely and quickly change the light intensity distribution, that is, the illumination pupil luminance distribution formed in the above.
 また、本発明にかかる空間光変調ユニットでは、照明瞳に光強度分布を可変的に形成する空間光変調器を移動させることなく、照明瞳に光強度分布を固定的に形成する光束変換素子との切り換えが可能となっている。 Further, in the spatial light modulation unit according to the present invention, a light beam conversion element that forms a fixed light intensity distribution on the illumination pupil without moving the spatial light modulator that variably forms the light intensity distribution on the illumination pupil; Can be switched.
 こうして、本発明の照明光学系では、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することができる。また、本発明の露光装置では、多様性に富んだ照明条件を実現する照明光学系を用いて、転写すべきパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。 Thus, in the illumination optical system of the present invention, it is possible to realize various illumination conditions with respect to the shape and size of the illumination pupil luminance distribution. The exposure apparatus of the present invention uses the illumination optical system that realizes a wide variety of illumination conditions, and performs good exposure under appropriate illumination conditions realized according to the characteristics of the pattern to be transferred. Which can be done and thus a good device can be produced.
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning embodiment of this invention. 図1の空間光変調ユニットの内部構成を概略的に示す図である。It is a figure which shows schematically the internal structure of the spatial light modulation unit of FIG. シリンドリカルマイクロフライアイレンズの構成を示す斜視図である。It is a perspective view which shows the structure of a cylindrical micro fly's eye lens. 回折光学素子の挿脱機構の要部構成を概略的に示す斜視図である。It is a perspective view which shows roughly the principal part structure of the insertion / extraction mechanism of a diffractive optical element. マイクロプリズムアレイおよび反射部材を保持する枠部材の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the frame member holding a microprism array and a reflection member. 空間光変調器の作用を説明する図である。It is a figure explaining the effect | action of a spatial light modulator. 空間光変調器の部分斜視図である。It is a fragmentary perspective view of a spatial light modulator. リレー光学系の瞳面に形成される4極状の光強度分布を模式的に示す図である。It is a figure which shows typically the light intensity distribution of 4 pole shape formed in the pupil plane of a relay optical system. 単一の空間光変調器を用いる空間光変調ユニットの構成例を概略的に示す図である。It is a figure which shows roughly the structural example of the spatial light modulation unit using a single spatial light modulator. 分割部材としてピラミッドプリズムを用いる空間光変調ユニットの構成例を概略的に示す図である。It is a figure which shows roughly the structural example of the spatial light modulation unit which uses a pyramid prism as a division member. 分割部材としてV字形状のプリズムを用いる空間光変調ユニットの構成例を概略的に示す図である。It is a figure which shows roughly the structural example of the spatial light modulation unit which uses a V-shaped prism as a division member. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device. 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of liquid crystal devices, such as a liquid crystal display element.
符号の説明Explanation of symbols
1 光源; 3 空間光変調ユニット; 31 マイクロプリズムアレイ
32 回折光学素子; 33 反射部材; 34,35 空間光変調器
36 リレー光学系; 37 開口絞り; 4 アフォーカルレンズ
7 ズームレンズ; 8 シリンドリカルマイクロフライアイレンズ
10 コンデンサー光学系; 11 マスクブラインド; 12 結像光学系
M マスク; PL 投影光学系; W ウェハ
DESCRIPTION OF SYMBOLS 1 Light source; 3 Spatial light modulation unit; 31 Micro prism array 32 Diffractive optical element; 33 Reflective member; 34,35 Spatial light modulator 36 Relay optical system; 37 Aperture stop; 4 Afocal lens 7 Zoom lens; Eye lens 10 Condenser optical system; 11 Mask blind; 12 Imaging optical system M Mask; PL Projection optical system; W wafer
 本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図2は、図1の空間光変調ユニットの内部構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向にY軸を、ウェハWの転写面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。 Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing the internal configuration of the spatial light modulation unit of FIG. In FIG. 1, the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG. In the W transfer surface, the X axis is set in a direction perpendicular to the paper surface of FIG.
 図1を参照すると、本実施形態の露光装置では、光源1から露光光(照明光)が供給される。光源1として、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源1から射出された光は、整形光学系2により所要の断面形状の光束に拡大された後、空間光変調ユニット3に入射する。 Referring to FIG. 1, exposure light (illumination light) is supplied from a light source 1 in the exposure apparatus of this embodiment. As the light source 1, for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used. The light emitted from the light source 1 is expanded into a light beam having a required cross-sectional shape by the shaping optical system 2 and then enters the spatial light modulation unit 3.
 空間光変調ユニット3は、図2に示すように、照明光学系の基本光軸である光軸AXに沿った第1照明光路(以下、単に「照明光路」または「光路」ともいう)中の所定位置に設置可能なマイクロプリズムアレイ(またはプリズムアレイ)31と、第1照明光路中の所定位置(例えばマイクロプリズムアレイ31の設置位置とほぼ同じ位置)に選択的に設置可能な複数の回折光学素子32と、マイクロプリズムアレイ31の設置位置よりも後側の第1照明光路中の位置に設置可能な反射部材33とを備えている。 As shown in FIG. 2, the spatial light modulation unit 3 is in a first illumination optical path (hereinafter also simply referred to as “illumination optical path” or “optical path”) along the optical axis AX that is the basic optical axis of the illumination optical system. A microprism array (or prism array) 31 that can be installed at a predetermined position, and a plurality of diffractive optics that can be selectively installed at a predetermined position in the first illumination optical path (for example, substantially the same position as the installation position of the microprism array 31). An element 32 and a reflection member 33 that can be installed at a position in the first illumination optical path behind the installation position of the microprism array 31 are provided.
 また、空間光変調ユニット3は、第1照明光路から外れて固定的に設置された一対の空間光変調器34および35と、反射部材33の設置位置よりも後側の第1照明光路中の位置に設置されたリレー光学系36と、リレー光学系36の前側レンズ群36aと後側レンズ群36bとの間の第1照明光路中に選択的に設置可能な複数の開口絞り37とを備えている。空間光変調ユニット3の具体的な構成および作用については後述する。以下の説明では、露光装置の構成および作用の理解を容易にするために、照明光路中には輪帯照明用の回折光学素子32が設置され、マイクロプリズムアレイ31および反射部材33は照明光路中に設置されていないものとする。 In addition, the spatial light modulation unit 3 includes a pair of spatial light modulators 34 and 35 that are fixedly installed outside the first illumination light path, and a first illumination light path on the rear side of the installation position of the reflection member 33. A relay optical system 36 installed at a position, and a plurality of aperture stops 37 that can be selectively installed in the first illumination optical path between the front lens group 36a and the rear lens group 36b of the relay optical system 36. ing. The specific configuration and operation of the spatial light modulation unit 3 will be described later. In the following description, in order to facilitate understanding of the configuration and operation of the exposure apparatus, a diffractive optical element 32 for annular illumination is installed in the illumination optical path, and the microprism array 31 and the reflecting member 33 are in the illumination optical path. It is assumed that it is not installed in
 この場合、整形光学系2を介した光源1からの光が、光軸AXに沿って輪帯照明用の回折光学素子32に入射する。回折光学素子32は、例えば矩形状の断面を有する平行光束が光軸AXに沿って入射した場合、ファーフィールド(またはフラウンホーファー回折領域)に、光軸AXを中心とした輪帯状の光強度分布を形成する機能を有する。回折光学素子32およびリレー光学系36を経て、空間光変調ユニット3から射出された光は、アフォーカルレンズ4に入射する。 In this case, light from the light source 1 via the shaping optical system 2 enters the diffractive optical element 32 for annular illumination along the optical axis AX. For example, when a parallel light beam having a rectangular cross section is incident along the optical axis AX, the diffractive optical element 32 has an annular light intensity distribution centered on the optical axis AX in the far field (or Fraunhofer diffraction region). It has the function to form. The light emitted from the spatial light modulation unit 3 through the diffractive optical element 32 and the relay optical system 36 enters the afocal lens 4.
 アフォーカルレンズ4は、アフォーカル系(無焦点光学系)であって、その前側焦点位置と回折光学素子32の位置とがリレー光学系36を介して光学的にほぼ共役になるように設定されている。また、アフォーカルレンズ4の後側焦点位置と図中破線で示す所定面5の位置とがほぼ一致するように設定されている。したがって、光束変換素子としての回折光学素子32を介した光は、アフォーカルレンズ4の瞳面4c(図2を参照;図1では不図示)に、例えば光軸AXを中心とした輪帯状の光強度分布を形成した後、輪帯状の角度分布でアフォーカルレンズ4から射出される。アフォーカルレンズ4の前側レンズ群4aと後側レンズ群4bとの間の光路中において、その瞳面4cの位置またはその近傍の位置には、円錐アキシコン系6が配置されている。円錐アキシコン系6の構成および作用については後述する。 The afocal lens 4 is an afocal system (non-focal optical system), and is set so that the front focal position and the position of the diffractive optical element 32 are optically conjugate via the relay optical system 36. ing. Further, the rear focal position of the afocal lens 4 and the position of the predetermined surface 5 indicated by a broken line in the figure are set so as to substantially coincide. Therefore, the light that has passed through the diffractive optical element 32 as a light beam conversion element has, for example, an annular shape centered on the optical axis AX on the pupil plane 4c of the afocal lens 4 (see FIG. 2; not shown in FIG. 1). After forming the light intensity distribution, the light is emitted from the afocal lens 4 with an annular angular distribution. In the optical path between the front lens group 4a and the rear lens group 4b of the afocal lens 4, a conical axicon system 6 is disposed at the position of the pupil plane 4c or in the vicinity thereof. The configuration and operation of the conical axicon system 6 will be described later.
 アフォーカルレンズ4を介した光束は、σ値(σ値=照明光学系のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ7を介して、シリンドリカルマイクロフライアイレンズ8に入射する。シリンドリカルマイクロフライアイレンズ8は、図3に示すように、光源側に配置された第1フライアイ部材8aとマスク側に配置された第2フライアイ部材8bとから構成されている。第1フライアイ部材8aの光源側の面および第2フライアイ部材8bの光源側の面には、X方向に並んで配列されたシリンドリカルレンズ群8aaおよび8baがそれぞれピッチp1で形成されている。第1フライアイ部材8aのマスク側の面および第2フライアイ部材8bのマスク側の面には、Z方向に並んで配列されたシリンドリカルレンズ群8abおよび8bbがそれぞれピッチp2(p2>p1)で形成されている。 The light beam that has passed through the afocal lens 4 passes through a zoom lens 7 for varying a σ value (σ value = mask-side numerical aperture of the illumination optical system / mask-side numerical aperture of the projection optical system), and a cylindrical micro fly's eye lens 8. Is incident on. As shown in FIG. 3, the cylindrical micro fly's eye lens 8 includes a first fly eye member 8a disposed on the light source side and a second fly eye member 8b disposed on the mask side. On the light source side surface of the first fly eye member 8a and the light source side surface of the second fly eye member 8b, cylindrical lens groups 8aa and 8ba arranged side by side in the X direction are formed at a pitch p1, respectively. Cylindrical lens groups 8ab and 8bb arranged side by side in the Z direction on the mask side surface of the first fly eye member 8a and the mask side surface of the second fly eye member 8b, respectively, with a pitch p2 (p2> p1). Is formed.
 シリンドリカルマイクロフライアイレンズ8のX方向に関する屈折作用(すなわちXY平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材8aの光源側に形成されたシリンドリカルレンズ群8aaによってX方向に沿ってピッチp1で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材8bの光源側に形成されたシリンドリカルレンズ群8baのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ8の後側焦点面上に集光する。 Focusing on the refraction action in the X direction of the cylindrical micro fly's eye lens 8 (that is, the refraction action in the XY plane), the parallel luminous flux incident along the optical axis AX is formed on the light source side of the first fly eye member 8a. The wavefront is divided by the lens group 8aa along the X direction at the pitch p1, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8ba formed on the light source side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
 シリンドリカルマイクロフライアイレンズ8のZ方向に関する屈折作用(すなわちYZ平面に関する屈折作用)に着目すると、光軸AXに沿って入射した平行光束は、第1フライアイ部材8aのマスク側に形成されたシリンドリカルレンズ群8abによってZ方向に沿ってピッチp2で波面分割され、その屈折面で集光作用を受けた後、第2フライアイ部材8bのマスク側に形成されたシリンドリカルレンズ群8bbのうちの対応するシリンドリカルレンズの屈折面で集光作用を受け、シリンドリカルマイクロフライアイレンズ8の後側焦点面上に集光する。 Focusing on the refractive action in the Z direction of the cylindrical micro fly's eye lens 8 (that is, the refractive action in the YZ plane), the parallel light beam incident along the optical axis AX is formed on the cylindrical side of the first fly's eye member 8a on the mask side. After the wavefront is divided at the pitch p2 along the Z direction by the lens group 8ab, and after receiving the light condensing action on the refracting surface, the corresponding one of the cylindrical lens groups 8bb formed on the mask side of the second fly's eye member 8b. The light is focused on the refracting surface of the cylindrical lens and focused on the rear focal plane of the cylindrical micro fly's eye lens 8.
 このように、シリンドリカルマイクロフライアイレンズ8は、シリンドリカルレンズ群が両側面に配置された第1フライアイ部材8aと第2フライアイ部材8bとにより構成されているが、X方向にp1のサイズを有しZ方向にp2のサイズを有する多数の矩形状の微小屈折面が縦横に且つ稠密に一体形成されたマイクロフライアイレンズと同様の光学的機能を発揮する。シリンドリカルマイクロフライアイレンズ8では、微小屈折面の面形状のばらつきに起因する歪曲収差の変化を小さく抑え、たとえばエッチング加工により一体的に形成される多数の微小屈折面の製造誤差が照度分布に与える影響を小さく抑えることができる。 As described above, the cylindrical micro fly's eye lens 8 is constituted by the first fly eye member 8a and the second fly eye member 8b in which the cylindrical lens groups are arranged on both side surfaces, but the size of p1 is set in the X direction. It has an optical function similar to that of a micro fly's eye lens in which a large number of rectangular minute refracting surfaces having a size of p2 in the Z direction are integrally formed vertically and horizontally. In the cylindrical micro fly's eye lens 8, a change in distortion due to variations in the surface shape of the micro-refractive surface is suppressed to be small, and for example, manufacturing errors of a large number of micro-refractive surfaces integrally formed by etching process give the illuminance distribution. The influence can be kept small.
 所定面5の位置はズームレンズ7の前側焦点位置の近傍に配置され、シリンドリカルマイクロフライアイレンズ8の入射面はズームレンズ7の後側焦点位置の近傍に配置されている。換言すると、ズームレンズ7は、所定面5とシリンドリカルマイクロフライアイレンズ8の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ4の瞳面とシリンドリカルマイクロフライアイレンズ8の入射面とを光学的にほぼ共役に配置している。 The position of the predetermined surface 5 is disposed in the vicinity of the front focal position of the zoom lens 7, and the incident surface of the cylindrical micro fly's eye lens 8 is disposed in the vicinity of the rear focal position of the zoom lens 7. In other words, in the zoom lens 7, the predetermined surface 5 and the incident surface of the cylindrical micro fly's eye lens 8 are arranged substantially in a Fourier transform relationship, and as a result, the pupil surface of the afocal lens 4 and the cylindrical micro fly's eye lens 8. The incident surface is optically substantially conjugate.
 したがって、シリンドリカルマイクロフライアイレンズ8の入射面上には、アフォーカルレンズ4の瞳面と同様に、たとえば光軸AXを中心とした輪帯状の光強度分布からなる輪帯状の照野が形成される。この輪帯状の照野の全体形状は、ズームレンズ7の焦点距離に依存して相似的に変化する。シリンドリカルマイクロフライアイレンズ8における波面分割単位としての矩形状の微小屈折面は、マスクM上において形成すべき照野の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。 Therefore, on the incident surface of the cylindrical micro fly's eye lens 8, as in the pupil plane of the afocal lens 4, for example, an annular illumination field composed of an annular light intensity distribution around the optical axis AX is formed. The The overall shape of the annular illumination field changes in a similar manner depending on the focal length of the zoom lens 7. The rectangular micro-refractive surface as a wavefront division unit in the cylindrical micro fly's eye lens 8 has a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and thus the shape of the exposure region to be formed on the wafer W). It is.
 シリンドリカルマイクロフライアイレンズ8に入射した光束は二次元的に分割され、その後側焦点面またはその近傍(ひいては照明瞳)には、入射光束によって形成される照野とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXを中心とした輪帯状の実質的な面光源からなる二次光源(輪帯状の照明瞳輝度分布)が形成される。シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り9に入射する。 The light beam incident on the cylindrical micro fly's eye lens 8 is two-dimensionally divided, and has two light intensity distributions on the rear focal plane or in the vicinity thereof (and thus the illumination pupil) having substantially the same light intensity distribution as the illumination field formed by the incident light beam. A secondary light source (annular illumination pupil luminance distribution) consisting of a secondary light source, that is, a substantial annular light source having an optical axis AX as a center is formed. A light beam from a secondary light source formed on the rear focal plane of the cylindrical micro fly's eye lens 8 or in the vicinity thereof enters an aperture stop 9 disposed in the vicinity thereof.
 開口絞り9は、シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍に形成される輪帯状の二次光源に対応した輪帯状の開口部(光透過部)を有する。開口絞り9は、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。開口絞り9は、後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。 The aperture stop 9 has an annular opening (light transmission part) corresponding to the annular secondary light source formed at or near the rear focal plane of the cylindrical micro fly's eye lens 8. The aperture stop 9 is configured to be detachable with respect to the illumination optical path, and is configured to be switchable between a plurality of aperture stops having openings having different sizes and shapes. As an aperture stop switching method, for example, a well-known turret method or slide method can be used. The aperture stop 9 is disposed at a position that is optically conjugate with an entrance pupil plane of the projection optical system PL described later, and defines a range that contributes to illumination of the secondary light source.
 開口絞り9により制限された二次光源からの光は、コンデンサー光学系10を介して、マスクブラインド11を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド11には、シリンドリカルマイクロフライアイレンズ8の波面分割単位である矩形状の微小屈折面の形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド11の矩形状の開口部(光透過部)を介した光束は、結像光学系12の集光作用を受けた後、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系12は、マスクブラインド11の矩形状開口部の像をマスクM上に形成することになる。 The light from the secondary light source limited by the aperture stop 9 illuminates the mask blind 11 in a superimposed manner via the condenser optical system 10. Thus, a rectangular illumination field corresponding to the shape and focal length of the rectangular micro-refractive surface which is the wavefront division unit of the cylindrical micro fly's eye lens 8 is formed on the mask blind 11 as the illumination field stop. The light beam that has passed through the rectangular opening (light transmitting portion) of the mask blind 11 receives the light condensing action of the imaging optical system 12 and then illuminates the mask M on which a predetermined pattern is formed in a superimposed manner. That is, the imaging optical system 12 forms an image of the rectangular opening of the mask blind 11 on the mask M.
 マスクステージMS上に保持されたマスクMを透過した光束は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。 The light beam transmitted through the mask M held on the mask stage MS forms an image of a mask pattern on the wafer (photosensitive substrate) W held on the wafer stage WS through the projection optical system PL. In this way, batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled. As a result, the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
 円錐アキシコン系6は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状の屈折面を向けた第1プリズム部材6aと、マスク側に平面を向け且つ光源側に凸円錐状の屈折面を向けた第2プリズム部材6bとから構成されている。そして、第1プリズム部材6aの凹円錐状の屈折面と第2プリズム部材6bの凸円錐状の屈折面とは、互いに当接可能なように相補的に形成されている。また、第1プリズム部材6aおよび第2プリズム部材6bのうち少なくとも一方の部材が光軸AXに沿って移動可能に構成され、第1プリズム部材6aの凹円錐状の屈折面と第2プリズム部材6bの凸円錐状の屈折面との間隔が可変に構成されている。以下、理解を容易にするために、輪帯状または4極状の二次光源に着目して、円錐アキシコン系6の作用およびズームレンズ7の作用を説明する。 The conical axicon system 6 includes, in order from the light source side, a first prism member 6a having a flat surface facing the light source side and a concave conical refractive surface facing the mask side, and a convex conical shape facing the plane toward the mask side and the light source side. And a second prism member 6b facing the refractive surface. The concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are complementarily formed so as to be in contact with each other. Further, at least one of the first prism member 6a and the second prism member 6b is configured to be movable along the optical axis AX, and the concave conical refracting surface of the first prism member 6a and the second prism member 6b. The distance from the convex conical refracting surface is variable. Hereinafter, in order to facilitate understanding, the operation of the conical axicon system 6 and the operation of the zoom lens 7 will be described by focusing on the annular or quadrupolar secondary light source.
 第1プリズム部材6aの凹円錐状屈折面と第2プリズム部材6bの凸円錐状屈折面とが互いに当接している状態では、円錐アキシコン系6は平行平面板として機能し、形成される輪帯状または4極状の二次光源に及ぼす影響はない。しかしながら、第1プリズム部材6aの凹円錐状屈折面と第2プリズム部材6bの凸円錐状屈折面とを離間させると、輪帯状または4極状の二次光源の幅(輪帯状の二次光源の外径と内径との差の1/2;4極状の二次光源に外接する円の直径(外径)と内接する円の直径(内径)との差の1/2)を一定に保ちつつ、輪帯状または4極状の二次光源の外径(内径)が変化する。すなわち、輪帯状または4極状の二次光源の輪帯比(内径/外径)および大きさ(外径)が変化する。 In a state in which the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are in contact with each other, the conical axicon system 6 functions as a parallel flat plate, and is formed in an annular shape. Alternatively, there is no influence on the quadrupolar secondary light source. However, if the concave conical refracting surface of the first prism member 6a and the convex conical refracting surface of the second prism member 6b are separated from each other, the width of the annular or quadrupolar secondary light source (the annular secondary light source) 1/2 of the difference between the outer diameter and the inner diameter of the light source; 1/2 of the difference between the diameter (outer diameter) of the circle circumscribing the quadrupole secondary light source and the diameter (inner diameter) of the inscribed circle While maintaining, the outer diameter (inner diameter) of the annular or quadrupolar secondary light source changes. That is, the annular ratio (inner diameter / outer diameter) and size (outer diameter) of the annular or quadrupolar secondary light source change.
 ズームレンズ7は、輪帯状または4極状の二次光源の全体形状を相似的(等方的)に拡大または縮小する機能を有する。たとえば、ズームレンズ7の焦点距離を最小値から所定の値へ拡大させることにより、輪帯状または4極状の二次光源の全体形状が相似的に拡大される。換言すると、ズームレンズ7の作用により、輪帯状または4極状の二次光源の輪帯比が変化することなく、その幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系6およびズームレンズ7の作用により、輪帯状または4極状の二次光源の輪帯比と大きさ(外径)とを制御することができる。 The zoom lens 7 has a function of enlarging or reducing the entire shape of the annular or quadrupolar secondary light source in a similar (isotropic) manner. For example, by enlarging the focal length of the zoom lens 7 from a minimum value to a predetermined value, the overall shape of the annular or quadrupolar secondary light source is similarly enlarged. In other words, due to the action of the zoom lens 7, both the width and size (outer diameter) of the annular or quadrupolar secondary light source change without changing. As described above, the annular ratio and the size (outer diameter) of the annular or quadrupolar secondary light source can be controlled by the action of the conical axicon system 6 and the zoom lens 7.
 本実施形態では、上述したように、シリンドリカルマイクロフライアイレンズ8により形成される二次光源を光源として、照明光学系(2~12)の被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系(2~12)の照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。なお、照明瞳輝度分布とは、照明光学系(2~12)の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。 In this embodiment, as described above, the secondary light source formed by the cylindrical micro fly's eye lens 8 is used as a light source, and the mask M disposed on the irradiated surface of the illumination optical system (2 to 12) is Koehler illuminated. For this reason, the position where the secondary light source is formed is optically conjugate with the position of the aperture stop AS of the projection optical system PL, and the formation surface of the secondary light source is the illumination pupil plane of the illumination optical system (2 to 12). Can be called. Typically, the irradiated surface (the surface on which the mask M is disposed or the surface on which the wafer W is disposed when the illumination optical system including the projection optical system PL is considered) is optical with respect to the illumination pupil plane. A Fourier transform plane. The illumination pupil luminance distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system (2 to 12) or a plane optically conjugate with the illumination pupil plane.
 シリンドリカルマイクロフライアイレンズ8による波面分割数が比較的大きい場合、シリンドリカルマイクロフライアイレンズ8の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(照明瞳輝度分布)とが高い相関を示す。このため、シリンドリカルマイクロフライアイレンズ8の入射面および当該入射面と光学的に共役な面における光強度分布についても照明瞳輝度分布と称することができる。図1の構成において、空間光変調ユニット3、アフォーカルレンズ4、ズームレンズ7、およびシリンドリカルマイクロフライアイレンズ8は、シリンドリカルマイクロフライアイレンズ8よりも後側の照明瞳に照明瞳輝度分布を形成する分布形成光学系を構成している。 When the number of wavefront divisions by the cylindrical micro fly's eye lens 8 is relatively large, the overall light intensity distribution formed on the incident surface of the cylindrical micro fly's eye lens 8 and the overall light intensity distribution of the entire secondary light source (illumination Pupil luminance distribution). For this reason, the light intensity distribution on the incident surface of the cylindrical micro fly's eye lens 8 and a surface optically conjugate with the incident surface can also be referred to as an illumination pupil luminance distribution. In the configuration of FIG. 1, the spatial light modulation unit 3, the afocal lens 4, the zoom lens 7, and the cylindrical micro fly's eye lens 8 form an illumination pupil luminance distribution on the illumination pupil behind the cylindrical micro fly's eye lens 8. The distribution forming optical system is configured.
 本実施形態の空間光変調ユニット3では、図4に示すように、光軸AXと平行な軸線、例えば光軸AXから+X方向に間隔を隔ててY方向に延びる軸線32aを中心として回転可能な回転板32bに、互いに特性の異なる複数の回折光学素子32が取り付けられている。回転板32bには軸線32aを通る一対の線分により規定される扇形形状の切欠き部32baが形成され、複数の回折光学素子32は軸線32aを中心とする円に沿って間隔を隔てて回転板32bに取り付けられている。こうして、軸線32aを中心した回転板32bの回転により、所望の回折光学素子32が第1照明光路中の所定位置に選択的に設置される。また、切欠き部32baを第1照明光路中に位置決めすることにより、回折光学素子32が第1照明光路中に設置されない状態が実現される。 In the spatial light modulation unit 3 of the present embodiment, as shown in FIG. 4, it can rotate around an axis parallel to the optical axis AX, for example, an axis 32a extending in the Y direction with a spacing in the + X direction from the optical axis AX. A plurality of diffractive optical elements 32 having different characteristics are attached to the rotating plate 32b. A fan-shaped notch 32ba defined by a pair of line segments passing through the axis 32a is formed on the rotary plate 32b, and the plurality of diffractive optical elements 32 rotate at intervals along a circle centering on the axis 32a. It is attached to the plate 32b. Thus, the desired diffractive optical element 32 is selectively installed at a predetermined position in the first illumination optical path by the rotation of the rotating plate 32b about the axis 32a. In addition, by positioning the notch 32ba in the first illumination optical path, a state where the diffractive optical element 32 is not installed in the first illumination optical path is realized.
 空間光変調ユニット3において、輪帯照明用の回折光学素子に代えて、複数極照明(2極照明、4極照明、8極照明など)用の回折光学素子を照明光路中に設定することによって、複数極照明を行うことができる。複数極照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに複数極状(2極状、4極状、8極状など)の光強度分布を形成する機能を有する。したがって、複数極照明用の回折光学素子を介した光束は、シリンドリカルマイクロフライアイレンズ8の入射面に、たとえば光軸AXを中心とした複数の所定形状(円弧状、円形状など)の照野からなる複数極状の照野を形成する。その結果、シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳にも、その入射面に形成された照野と同じ複数極状の照明瞳輝度分布が形成される。 In the spatial light modulation unit 3, instead of the diffractive optical element for annular illumination, a diffractive optical element for multipole illumination (bipolar illumination, quadrupole illumination, octopole illumination, etc.) is set in the illumination optical path. Multi-pole illumination can be performed. A diffractive optical element for multipole illumination forms a light intensity distribution of multiple poles (bipolar, quadrupole, octupole, etc.) in the far field when a parallel light beam having a rectangular cross section is incident. It has the function to do. Therefore, the light beam that has passed through the diffractive optical element for multipole illumination is irradiated on the incident surface of the cylindrical micro fly's eye lens 8 with, for example, a plurality of predetermined shapes (arc shape, circular shape, etc.) centered on the optical axis AX. A multipolar illumination field consisting of As a result, the same multipolar illumination pupil luminance distribution as that of the illumination field formed on the entrance surface is formed on the rear focal plane of the cylindrical micro fly's eye lens 8 or on the illumination pupil in the vicinity thereof.
 また、輪帯照明用の回折光学素子に代えて、円形照明用の回折光学素子を照明光路中に設定することによって、通常の円形照明を行うことができる。円形照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに円形状の光強度分布を形成する機能を有する。したがって、円形照明用の回折光学素子を介した光束は、シリンドリカルマイクロフライアイレンズ8の入射面に、たとえば光軸AXを中心とした円形状の照野を形成する。その結果、シリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳にも、その入射面に形成された照野と同じ円形状の照明瞳輝度分布が形成される。また、輪帯照明用の回折光学素子に代えて、適当な特性を有する回折光学素子を照明光路中に設定することによって、様々な形態の変形照明を行うことができる。 Further, instead of the diffractive optical element for annular illumination, a normal circular illumination can be performed by setting a diffractive optical element for circular illumination in the illumination optical path. The diffractive optical element for circular illumination has a function of forming a circular light intensity distribution in the far field when a parallel light beam having a rectangular cross section is incident. Therefore, the light beam that has passed through the diffractive optical element for circular illumination forms, for example, a circular illumination field around the optical axis AX on the incident surface of the cylindrical micro fly's eye lens 8. As a result, an illumination pupil luminance distribution having the same circular shape as the illumination field formed on the entrance surface is also formed on the illumination pupil at or near the rear focal plane of the cylindrical micro fly's eye lens 8. Further, various forms of modified illumination can be performed by setting a diffractive optical element having appropriate characteristics in the illumination optical path instead of the diffractive optical element for annular illumination.
 本実施形態の空間光変調ユニット3では、一対の空間光変調器34および35の使用に際して、回折光学素子32を第1照明光路から退避させ、マイクロプリズムアレイ31および反射部材33を整形光学系2とリレー光学系36の前側レンズ群36aとの間の第1照明光路中に配置する。マイクロプリズムアレイ31および反射部材33は、例えば図5に示すように、XY平面に沿って矩形形状の開口を有する枠部材30により保持されている。したがって、枠部材30を+X方向へ移動させて回転板32bの切欠き部32baに位置決めすることにより、マイクロプリズムアレイ31および反射部材33を第1照明光路中の所定位置にそれぞれ設置することができる。また、回転板32bの切欠き部32baから枠部材30を-X方向へ移動させることにより、マイクロプリズムアレイ31および反射部材33を第1照明光路から退避させることができる。 In the spatial light modulation unit 3 of the present embodiment, when the pair of spatial light modulators 34 and 35 are used, the diffractive optical element 32 is retracted from the first illumination optical path, and the microprism array 31 and the reflecting member 33 are shaped into the shaping optical system 2. And the first illumination optical path between the relay optical system 36 and the front lens group 36a. For example, as shown in FIG. 5, the microprism array 31 and the reflecting member 33 are held by a frame member 30 having a rectangular opening along the XY plane. Therefore, by moving the frame member 30 in the + X direction and positioning the frame member 30 at the notch 32ba of the rotating plate 32b, the microprism array 31 and the reflecting member 33 can be respectively installed at predetermined positions in the first illumination optical path. . Further, by moving the frame member 30 in the −X direction from the notch 32ba of the rotating plate 32b, the microprism array 31 and the reflecting member 33 can be retracted from the first illumination optical path.
 図2に示すように、マイクロプリズムアレイ31および反射部材33が第1照明光路中の所定位置にそれぞれ設置された状態では、光軸AXに沿って(第1照明光路に沿って)マイクロプリズムアレイ31に入射した光が、光軸AX1に沿って進む第1の光と、光軸AX2に沿って進む第2の光とに分割される。光軸AX1および光軸AX2は、例えばマイクロプリズムアレイ31を構成する各プリズム要素の山形状の射出面のうち、一方の面の法線方向および他方の面の法線方向にそれぞれ対応し、光軸AXを含むYZ平面に沿って光軸AXに関して対称な方向に延びている。 As shown in FIG. 2, in a state where the microprism array 31 and the reflecting member 33 are respectively installed at predetermined positions in the first illumination optical path, the microprism array is along the optical axis AX (along the first illumination optical path). The light incident on 31 is divided into a first light traveling along the optical axis AX1 and a second light traveling along the optical axis AX2. The optical axis AX1 and the optical axis AX2, for example, correspond to the normal direction of one surface and the normal direction of the other surface of the crest-shaped exit surfaces of the prism elements constituting the microprism array 31, respectively. It extends in a direction symmetric with respect to the optical axis AX along the YZ plane including the axis AX.
 また、光軸AXによって規定される第1照明光路と光軸AX1によって規定される第2照明光路とは鋭角をなして交差し、第1照明光路と光軸AX2によって規定される第3照明光路とは鋭角をなして交差している。ここで、「第1照明光路と第2照明光路(第3照明光路)とは鋭角をなして交差している」とは、第1照明光路を規定する光軸AXと第2照明光路(第3照明光路)を規定する光軸AX1(AX2)との交点から光軸AXに沿って後側(被照射面側)へ延びる線分と、当該交点から光軸AX1(AX2)に沿って後側へ延びる線分とのなす角度が鋭角であることを意味している。 Further, the first illumination optical path defined by the optical axis AX and the second illumination optical path defined by the optical axis AX1 intersect at an acute angle, and the third illumination optical path defined by the first illumination optical path and the optical axis AX2. Intersects with an acute angle. Here, “the first illumination optical path and the second illumination optical path (third illumination optical path) intersect at an acute angle” means that the optical axis AX defining the first illumination optical path and the second illumination optical path (second Line segment extending from the intersection with the optical axis AX1 (AX2) defining the three illumination optical paths) to the rear side (irradiated surface side) along the optical axis AX, and the rear along the optical axis AX1 (AX2) from the intersection This means that the angle formed with the line segment extending to the side is an acute angle.
 マイクロプリズムアレイ31を経て第2照明光路に沿って進む第1の光は、枠部材30の一方の開口を通過して、第1空間光変調器34に入射する。第1空間光変調器34により変調された光は、例えばX方向に沿って延びる三角柱状の反射部材33の第1反射面33aにより反射され、リレー光学系36へ導かれる。一方、マイクロプリズムアレイ31を経て第3照明光路に沿って進む第2の光は、枠部材30の他方の開口を通過して、第2空間光変調器35に入射する。 The first light traveling along the second illumination light path through the microprism array 31 passes through one opening of the frame member 30 and enters the first spatial light modulator 34. The light modulated by the first spatial light modulator 34 is reflected by the first reflecting surface 33a of the triangular prism-shaped reflecting member 33 extending along the X direction, for example, and guided to the relay optical system 36. On the other hand, the second light traveling along the third illumination light path through the microprism array 31 passes through the other opening of the frame member 30 and enters the second spatial light modulator 35.
 なお、マイクロプリズムアレイ31を経て第2照明光路に沿って進む第1の光は、マイクロプリズムアレイ31の直後で複数のストライプ状の光束断面となるが、光源からの光束が完全な平行光束でなく若干の発散角を持つ光束であるため、第1空間光変調器34の位置での光束断面形状は1つの矩形状断面となる。同様に、マイクロプリズムアレイ31を経て第3照明光路に沿って進む第2の光の第2空間光変調器35の位置での光束断面形状も1つの矩形状断面となる。 Note that the first light traveling along the second illumination optical path through the microprism array 31 has a plurality of stripe-shaped light beam cross sections immediately after the microprism array 31, but the light beam from the light source is a completely parallel light beam. Since the light beam has a slight divergence angle, the cross-sectional shape of the light beam at the position of the first spatial light modulator 34 is one rectangular cross-section. Similarly, the cross-sectional shape of the light beam at the position of the second spatial light modulator 35 of the second light traveling along the third illumination light path via the microprism array 31 is also one rectangular cross section.
 第2空間光変調器35により変調された光は、反射部材33の第2反射面33bにより反射され、リレー光学系36へ導かれる。以下、説明を単純化するために、第1空間光変調器34と第2空間光変調器35とは互いに同じ構成を有し、光軸AXを含んでXY平面に平行な面に関して対称に配置されているものとする。したがって、第2空間光変調器35について第1空間光変調器34と重複する説明を省略し、第1空間光変調器34に着目して、空間光変調ユニット3における空間光変調器34,35の作用を説明する。 The light modulated by the second spatial light modulator 35 is reflected by the second reflecting surface 33 b of the reflecting member 33 and guided to the relay optical system 36. Hereinafter, in order to simplify the description, the first spatial light modulator 34 and the second spatial light modulator 35 have the same configuration and are arranged symmetrically with respect to a plane including the optical axis AX and parallel to the XY plane. It is assumed that Therefore, the description which overlaps with the 1st spatial light modulator 34 about the 2nd spatial light modulator 35 is abbreviate | omitted, paying attention to the 1st spatial light modulator 34, and the spatial light modulators 34 and 35 in the spatial light modulation unit 3 The operation of will be described.
 第1空間光変調器34は、図2および図6に示すように、二次元的に配列された複数のミラー要素34aと、複数のミラー要素34aを保持する基盤34bと、複数のミラー要素34aを覆うカバーガラス(カバー基板;図6では図示を省略)34cと、基盤34bに接続されたケーブル(不図示)を介して複数のミラー要素34aの姿勢を個別に制御駆動する駆動部34dとを備えている。なお、図6では、図面の明瞭化のために、第1反射面33aへの光の入射角が図2における入射角よりもかなり大きく設定されている。 As shown in FIGS. 2 and 6, the first spatial light modulator 34 includes a plurality of mirror elements 34a arranged two-dimensionally, a base 34b holding the plurality of mirror elements 34a, and a plurality of mirror elements 34a. A cover glass (cover substrate; not shown in FIG. 6) 34c, and a drive unit 34d that individually controls and drives the postures of the plurality of mirror elements 34a via a cable (not shown) connected to the base 34b. I have. In FIG. 6, for the sake of clarity, the incident angle of light on the first reflecting surface 33a is set to be considerably larger than the incident angle in FIG.
 空間光変調器34は、図7に示すように、二次元的に配列された複数の微小なミラー要素(光学要素)34aを備え、光軸AX1により規定される第2照明光路に沿って入射した光に対して、その入射位置に応じた空間的な変調を可変的に付与して射出する。説明および図示を簡単にするために、図6および図7では空間光変調器34が4×4=16個のミラー要素34aを備える構成例を示しているが、実際には16個よりもはるかに多数のミラー要素34aを備えている。 As shown in FIG. 7, the spatial light modulator 34 includes a plurality of minute mirror elements (optical elements) 34 a arranged in a two-dimensional manner, and is incident along the second illumination optical path defined by the optical axis AX1. The emitted light is variably given spatial modulation according to the incident position and emitted. For ease of explanation and illustration, FIGS. 6 and 7 show a configuration example in which the spatial light modulator 34 includes 4 × 4 = 16 mirror elements 34a. Are provided with a number of mirror elements 34a.
 図6を参照すると、光軸AX1と平行な方向に沿って空間光変調器34に入射する光線群のうち、光線L1は複数のミラー要素34aのうちのミラー要素SEaに、光線L2はミラー要素SEaとは異なるミラー要素SEbにそれぞれ入射する。同様に、光線L3はミラー要素SEa,SEbとは異なるミラー要素SEcに、光線L4はミラー要素SEa~SEcとは異なるミラー要素SEdにそれぞれ入射する。ミラー要素SEa~SEdは、その位置に応じて設定された空間的な変調を光L1~L4に与える。 Referring to FIG. 6, among the light beams incident on the spatial light modulator 34 along the direction parallel to the optical axis AX1, the light beam L1 is the mirror element SEa of the plurality of mirror elements 34a, and the light beam L2 is the mirror element. The light is incident on a mirror element SEb different from SEa. Similarly, the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb, and the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc. The mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
 空間光変調器34では、すべてのミラー要素34aの反射面が1つの平面に沿って設定された基準の状態(以下、「基準状態」という)において、光軸AX1と平行な方向に沿って入射した光線が、空間光変調器34で反射された後に、第1反射面33aにより光軸AXと平行な方向に向かって反射されるように構成されている。また、空間光変調器34の複数のミラー要素34aが配列される面は、リレー光学系36の前側焦点位置またはその近傍に位置決めされ、ひいてはアフォーカルレンズ4の前側焦点位置と光学的に共役な位置またはその近傍に位置決めされている。 In the spatial light modulator 34, in a reference state (hereinafter referred to as “reference state”) in which the reflecting surfaces of all the mirror elements 34a are set along one plane, the light enters the direction parallel to the optical axis AX1. The reflected light beam is reflected by the spatial light modulator 34 and then reflected by the first reflecting surface 33a in a direction parallel to the optical axis AX. The surface on which the plurality of mirror elements 34 a of the spatial light modulator 34 are arranged is positioned at or near the front focal position of the relay optical system 36, and thus optically conjugate with the front focal position of the afocal lens 4. Positioned at or near the position.
 したがって、空間光変調器34の複数のミラー要素SEa~SEdによって反射されて所定の角度分布が与えられた光は、リレー光学系36の瞳面36cの位置(開口絞り37が設置される位置)に所定の光強度分布SP1~SP4を形成し、ひいてはアフォーカルレンズ4の瞳面4cの位置に光強度分布SP1~SP4に対応する光強度分布を形成する。すなわち、リレー光学系36の前側レンズ群36aは、空間光変調器34の複数のミラー要素SEa~SEdが射出光に与える角度を、空間光変調器34の遠視野領域(フラウンホーファー回折領域)である面36c(ひいては瞳面4c)上での位置に変換している。同様に、空間光変調器35の複数のミラー要素によって反射されて所定の角度分布が与えられた光も、アフォーカルレンズ4の瞳面4cの位置に所定の光強度分布を形成する。 Therefore, the light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 34 and given a predetermined angular distribution is the position of the pupil plane 36c of the relay optical system 36 (position where the aperture stop 37 is installed). Predetermined light intensity distributions SP1 to SP4 are formed, and as a result, light intensity distributions corresponding to the light intensity distributions SP1 to SP4 are formed at the position of the pupil plane 4c of the afocal lens 4. That is, the front lens group 36a of the relay optical system 36 determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 34 gives to the emitted light in the far field region (Fraunhofer diffraction region) of the spatial light modulator 34. The position is converted into a position on a certain surface 36c (and eventually the pupil surface 4c). Similarly, the light reflected by the plurality of mirror elements of the spatial light modulator 35 and given a predetermined angular distribution also forms a predetermined light intensity distribution at the position of the pupil plane 4 c of the afocal lens 4.
 図1を参照すると、アフォーカルレンズ4の瞳面4c(図1では不図示)と光学的に共役な位置またはその近傍に、シリンドリカルマイクロフライアイレンズ8の入射面が位置決めされている。したがって、シリンドリカルマイクロフライアイレンズ8が形成する二次光源の光強度分布(照明瞳輝度分布)は、第1空間光変調器34およびリレー光学系36の前側レンズ群36aが瞳面36cに形成する第1の光強度分布と第2空間光変調器35およびリレー光学系36の前側レンズ群36aが瞳面36cに形成する第2の光強度分布との合成分布に応じた分布となる。 Referring to FIG. 1, the incident surface of the cylindrical micro fly's eye lens 8 is positioned at or near a position optically conjugate with the pupil plane 4c (not shown in FIG. 1) of the afocal lens 4. Therefore, the light intensity distribution (illumination pupil luminance distribution) of the secondary light source formed by the cylindrical micro fly's eye lens 8 is formed on the pupil plane 36c by the first spatial light modulator 34 and the front lens group 36a of the relay optical system 36. The distribution corresponds to a combined distribution of the first light intensity distribution and the second light intensity distribution formed on the pupil plane 36c by the front lens group 36a of the second spatial light modulator 35 and the relay optical system 36.
 空間光変調器34(35)は、図7に示すように、平面形状の反射面を上面にした状態で1つの平面に沿って規則的に且つ二次元的に配列された多数の微小な反射素子であるミラー要素34a(35a)を含む可動マルチミラーである。各ミラー要素34a(35a)は可動であり、その反射面の傾き、すなわち反射面の傾斜角および傾斜方向は、制御部(不図示)からの指令にしたがって作動する駆動部34d(35d)の作用により独立に制御される。各ミラー要素34a(35a)は、その反射面に平行な二方向であって互いに直交する二方向を回転軸として、所望の回転角度だけ連続的或いは離散的に回転することができる。すなわち、各ミラー要素34a(35a)の反射面の傾斜を二次元的に制御することが可能である。 As shown in FIG. 7, the spatial light modulator 34 (35) has a large number of minute reflections regularly and two-dimensionally arranged along one plane with the planar reflection surface as the upper surface. This is a movable multi-mirror including a mirror element 34a (35a) as an element. Each mirror element 34a (35a) is movable, and the inclination of the reflection surface thereof, that is, the inclination angle and the inclination direction of the reflection surface is an action of the drive unit 34d (35d) that operates according to a command from a control unit (not shown). Controlled independently. Each mirror element 34a (35a) can be rotated continuously or discretely by a desired rotation angle, with two directions parallel to the reflecting surface and perpendicular to each other. That is, it is possible to two-dimensionally control the inclination of the reflecting surface of each mirror element 34a (35a).
 なお、各ミラー要素34a(35a)の反射面を離散的に回転させる場合、回転角を複数の状態(例えば、・・・、-2.5度、-2.0度、・・・0度、+0.5度・・・+2.5度、・・・)で切り換え制御するのが良い。図7には外形が正方形状のミラー要素34a(35a)を示しているが、ミラー要素34a(35a)の外形形状は正方形に限定されない。ただし、光利用効率の観点から、ミラー要素34a(35a)の隙間が少なくなるように配列可能な形状(最密充填可能な形状)とすることができる。また、光利用効率の観点から、隣り合う2つのミラー要素34a(35a)の間隔を必要最小限に抑えることができる。 When the reflecting surface of each mirror element 34a (35a) is discretely rotated, the rotation angle is set in a plurality of states (for example,..., -2.5 degrees, -2.0 degrees,... 0 degrees). , +0.5 degrees,... +2.5 degrees,. Although FIG. 7 shows the mirror element 34a (35a) having a square outer shape, the outer shape of the mirror element 34a (35a) is not limited to a square. However, from the viewpoint of light utilization efficiency, it is possible to provide a shape that can be arranged (a shape that can be packed closest) so that the gap between the mirror elements 34a (35a) is reduced. Further, from the viewpoint of light utilization efficiency, the interval between two adjacent mirror elements 34a (35a) can be minimized.
 本実施形態では、空間光変調器34,35として、たとえば二次元的に配列された複数のミラー要素34a(35a)の向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば特表平10-503300号公報およびこれに対応する欧州特許公開第779530号公報、特開2004-78136号公報およびこれに対応する米国特許第6,900,915号公報、特表2006-524349号公報およびこれに対応する米国特許第7,095,546号公報、並びに特開2006-113437号公報に開示される空間光変調器を用いることができる。なお、二次元的に配列された複数のミラー要素34a(35a)の向きを離散的に複数の段階を持つように制御してもよい。 In the present embodiment, as the spatial light modulators 34 and 35, for example, spatial light modulators that continuously change the directions of a plurality of mirror elements 34a (35a) arranged two-dimensionally are used. As such a spatial light modulator, for example, Japanese Patent Laid-Open No. 10-503300 and corresponding European Patent Publication No. 779530, Japanese Patent Application Laid-Open No. 2004-78136, and corresponding US Pat. No. 6,900, The spatial light modulator disclosed in Japanese Patent No. 915, Japanese National Publication No. 2006-524349 and US Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-Open No. 2006-113437 can be used. Note that the directions of the plurality of mirror elements 34a (35a) arranged two-dimensionally may be controlled so as to have a plurality of discrete stages.
 こうして、第1空間光変調器34では、制御部からの制御信号に応じて作動する駆動部34dの作用により、複数のミラー要素34aの姿勢がそれぞれ変化し、各ミラー要素34aがそれぞれ所定の向きに設定される。第1空間光変調器34の複数のミラー要素34aによりそれぞれ所定の角度で反射された光は、図8に示すように、リレー光学系36の瞳面36cに、例えば光軸AXを中心としてZ方向に間隔を隔てた2つの円形状の光強度分布41aおよび41bを形成する。 Thus, in the first spatial light modulator 34, the posture of the plurality of mirror elements 34a is changed by the action of the drive unit 34d that operates according to the control signal from the control unit, and each mirror element 34a has a predetermined orientation. Set to As shown in FIG. 8, the light reflected by the plurality of mirror elements 34a of the first spatial light modulator 34 at a predetermined angle is applied to the pupil plane 36c of the relay optical system 36, for example, around the optical axis AX. Two circular light intensity distributions 41a and 41b spaced apart in the direction are formed.
 同様に、第2空間光変調器35では、制御部からの制御信号に応じて作動する駆動部35bの作用により、複数のミラー要素35aの姿勢がそれぞれ変化し、各ミラー要素35aがそれぞれ所定の向きに設定される。第2空間光変調器35の複数のミラー要素35aによりそれぞれ所定の角度で反射された光は、図8に示すように、リレー光学系36の瞳面36cに、例えば光軸AXを中心としてX方向に間隔を隔てた2つの円形状の光強度分布41cおよび41dを形成する。 Similarly, in the second spatial light modulator 35, the posture of the plurality of mirror elements 35a is changed by the action of the drive unit 35b that operates in response to a control signal from the control unit, and each mirror element 35a has a predetermined value. Set to orientation. As shown in FIG. 8, the light reflected by the plurality of mirror elements 35a of the second spatial light modulator 35 at a predetermined angle is applied to the pupil plane 36c of the relay optical system 36, for example, around the optical axis AX. Two circular light intensity distributions 41c and 41d spaced apart in the direction are formed.
 リレー光学系36の瞳面36cまたはその近傍には、第1照明光路に対して交換可能な開口絞り37が配置されている。リレー光学系36の瞳面36cに4極状の光強度分布41が形成される場合、第1照明光路に設置される開口絞り37は4極状の開口部(光透過部)を有する。開口絞り37は、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。開口絞り37は、上述した開口絞り9と同様に、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。 An aperture stop 37 that is replaceable with respect to the first illumination optical path is disposed on or near the pupil plane 36c of the relay optical system 36. When the quadrupole light intensity distribution 41 is formed on the pupil plane 36c of the relay optical system 36, the aperture stop 37 installed in the first illumination optical path has a quadrupole opening (light transmission portion). The aperture stop 37 is configured to be detachable with respect to the illumination optical path, and is configured to be switchable between a plurality of aperture stops having openings having different sizes and shapes. As an aperture stop switching method, for example, a well-known turret method or slide method can be used. The aperture stop 37 is disposed at a position optically conjugate with the entrance pupil plane of the projection optical system PL, as in the above-described aperture stop 9, and defines a range that contributes to the illumination of the secondary light source.
 リレー光学系36の瞳面36cに4極状の光強度分布41を形成する光または光強度分布41を形成した光は、開口絞り37により制限された後、アフォーカルレンズ4の瞳面、シリンドリカルマイクロフライアイレンズ8の入射面、およびシリンドリカルマイクロフライアイレンズ8の後側焦点面またはその近傍の照明瞳(開口絞り9が配置されている位置)に、光強度分布41a~41dに対応する4極状の光強度分布を形成する。さらに、開口絞り9と光学的に共役な別の照明瞳位置、すなわち結像光学系12の瞳位置および投影光学系PLの瞳位置(開口絞りASが配置されている位置)にも、光強度分布41a~41dに対応する4極状の光強度分布が形成される。 The light forming the quadrupolar light intensity distribution 41 on the pupil surface 36c of the relay optical system 36 or the light forming the light intensity distribution 41 is limited by the aperture stop 37, and then the pupil surface of the afocal lens 4 and the cylindrical 4 corresponding to the light intensity distributions 41a to 41d on the entrance plane of the micro fly's eye lens 8 and the illumination pupil (position where the aperture stop 9 is disposed) on the rear focal plane of the cylindrical micro fly's eye lens 8 or in the vicinity thereof. A polar light intensity distribution is formed. Furthermore, the light intensity is also applied to another illumination pupil position optically conjugate with the aperture stop 9, that is, the pupil position of the imaging optical system 12 and the pupil position of the projection optical system PL (position where the aperture stop AS is disposed). A quadrupole light intensity distribution corresponding to the distributions 41a to 41d is formed.
 露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、パターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。本実施形態では、照明瞳に光強度分布を固定的に形成する手段として、互いに異なる特性を有し且つ照明光路中に選択的に設置可能な複数の回折光学素子32を備えている。したがって、輪帯状の照明瞳輝度分布を固定的に形成する輪帯照明用の回折光学素子、複数極状の照明瞳輝度分布を固定的に形成する複数極照明用の回折光学素子などから選択された1つの回折光学素子32を照明光路中に設定することにより、照明瞳輝度分布(ひいては照明条件)を離散的に変更することができる。 In the exposure apparatus, in order to transfer the pattern of the mask M onto the wafer W with high accuracy and faithfully, it is important to perform exposure under appropriate illumination conditions according to the pattern characteristics. In the present embodiment, a plurality of diffractive optical elements 32 that have different characteristics and can be selectively installed in the illumination light path are provided as means for fixedly forming a light intensity distribution on the illumination pupil. Accordingly, a diffractive optical element for annular illumination that forms a ring-shaped illumination pupil luminance distribution in a fixed manner, a diffractive optical element for multi-pole illumination that forms a fixed illumination pupil luminance distribution in a multiple pole, etc. are selected. By setting only one diffractive optical element 32 in the illumination optical path, the illumination pupil luminance distribution (and thus the illumination condition) can be discretely changed.
 また、本実施形態では、照明瞳に光強度分布を可変的に形成する手段として、複数のミラー要素34a,35aの姿勢がそれぞれ個別に変化する一対の空間光変調器34,35を備えている。したがって、第1空間光変調器34の作用により照明瞳に形成される第1光強度分布および第2空間光変調器35の作用により照明瞳に形成される第2光強度分布をそれぞれ自在に且つ迅速に変化させることができる。すなわち、第1空間光変調器34の作用により照明瞳に形成される第1光強度分布と第2空間光変調器35の作用により照明瞳に形成される第2光強度分布とからなる照明瞳輝度分布を自在に且つ迅速に変化させることができる。 Further, in the present embodiment, as means for variably forming the light intensity distribution on the illumination pupil, a pair of spatial light modulators 34 and 35 in which the postures of the plurality of mirror elements 34a and 35a individually change are provided. . Therefore, the first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 34 and the second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 35 can be freely set. Can change quickly. That is, an illumination pupil composed of a first light intensity distribution formed on the illumination pupil by the action of the first spatial light modulator 34 and a second light intensity distribution formed on the illumination pupil by the action of the second spatial light modulator 35. The luminance distribution can be changed freely and quickly.
 以上のように、光源1からの光に基づいて被照射面としてのマスクMを照明する本実施形態の照明光学系(2~12)では、照明瞳輝度分布を離散的に変更する回折光学素子32と照明瞳輝度分布を自在に且つ迅速に変更する空間光変調器34,35とが照明光路に対して切り換え可能に構成されているので、照明瞳輝度分布の形状および大きさについて多様性に富んだ照明条件を実現することができる。また、本実施形態の露光装置(2~WS)では、多様性に富んだ照明条件を実現する照明光学系(2~12)を用いて、マスクMのパターンの特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができる。 As described above, in the illumination optical system (2 to 12) of the present embodiment that illuminates the mask M as the irradiated surface based on the light from the light source 1, the diffractive optical element that discretely changes the illumination pupil luminance distribution. 32 and the spatial light modulators 34 and 35 that change the illumination pupil luminance distribution freely and quickly are configured to be switchable with respect to the illumination optical path, so that the shape and size of the illumination pupil luminance distribution can be varied. Abundant lighting conditions can be realized. Further, in the exposure apparatus (2 to WS) of the present embodiment, the illumination optical system (2 to 12) that realizes a wide variety of illumination conditions is used, and is appropriately realized according to the pattern characteristics of the mask M. Good exposure can be performed under various illumination conditions.
 また、本実施形態では、マイクロプリズムアレイ31が、第1照明光路を規定する光軸AXと第2照明光路を規定する光軸AX1と第3照明光路を規定する光軸AX2とを含む面(YZ平面)と交差する方向、すなわちYZ平面の法線方向(X方向)に移動可能に構成されている。その結果、マイクロプリズムアレイ31の移動ストロークを増やすことなく、回折光学素子32の挿脱機構(交換機構)とマイクロプリズムアレイ31の移動スペースとが干渉しない構成を実現することができる。特に、本実施形態では、枠部材30に取り付けられたマイクロプリズムアレイ31と反射部材33とがX方向に沿って一体的に移動可能に構成されているので、固定的に設置された一対の空間光変調器34,35と枠部材30の移動スペースとが干渉しない構成を容易に実現することができる。 In the present embodiment, the microprism array 31 includes an optical axis AX that defines the first illumination optical path, an optical axis AX1 that defines the second illumination optical path, and an optical axis AX2 that defines the third illumination optical path ( It is configured to be movable in a direction intersecting the (YZ plane), that is, a normal direction (X direction) of the YZ plane. As a result, it is possible to realize a configuration in which the insertion / removal mechanism (exchange mechanism) of the diffractive optical element 32 and the movement space of the microprism array 31 do not interfere with each other without increasing the movement stroke of the microprism array 31. In particular, in the present embodiment, the microprism array 31 and the reflection member 33 attached to the frame member 30 are configured to be movable integrally along the X direction, and thus a pair of fixedly installed spaces. A configuration in which the optical modulators 34 and 35 and the moving space of the frame member 30 do not interfere with each other can be easily realized.
 また、本実施形態では、空間光変調器34の光変調面が位置する設置面(複数のミラー要素34aの配列面)の延長面、および空間光変調器35の光変調面が位置する設置面(複数のミラー要素35aの配列面)の延長面が、第1照明光路と鋭角をなして交差している。ここで、「延長面が第1照明光路と鋭角をなして交差している」とは、第1照明光路を規定する光軸AXと延長面との交点から光軸AXに沿って前側(光源側)へ延びる線分と、光軸AXを含み延長面に垂直な平面に沿って当該交点から光変調面へ延びる線分とのなす角度が鋭角であることを意味している。この構成により、空間光変調器34,35の光変調面を光軸AX1,AX2に対して垂直に近づけることができるので、空間光変調器34,35中の各ミラー要素34a,35aを射出側に位置する光学系から見た際に空間光変調器の各ミラー要素34a,35aの縦横比が圧縮または伸張されない利点が得られる。 In the present embodiment, an extension surface of the installation surface (an array surface of the plurality of mirror elements 34a) on which the light modulation surface of the spatial light modulator 34 is located, and an installation surface on which the light modulation surface of the spatial light modulator 35 is located. An extended surface of (the array surface of the plurality of mirror elements 35a) intersects the first illumination light path at an acute angle. Here, “the extended surface intersects the first illumination optical path at an acute angle” means that the front side (light source) along the optical axis AX from the intersection of the optical axis AX defining the first illumination optical path and the extended surface. This means that the angle formed by the line segment extending to the side) and the line segment extending from the intersection point to the light modulation surface along the plane including the optical axis AX and perpendicular to the extension surface is an acute angle. With this configuration, the light modulation surfaces of the spatial light modulators 34 and 35 can be made to be perpendicular to the optical axes AX1 and AX2, so that the mirror elements 34a and 35a in the spatial light modulators 34 and 35 are disposed on the emission side. The aspect ratio of the mirror elements 34a and 35a of the spatial light modulator is not compressed or expanded when viewed from the optical system located at the position.
 また、本実施形態では、上述したように、光軸AXによって規定される第1照明光路と光軸AX1によって規定される第2照明光路とは鋭角をなして交差し、第1照明光路と光軸AX2によって規定される第3照明光路とは鋭角をなして交差している。この構成により、上述のように空間光変調器の各ミラー要素34a,35aの縦横比が圧縮または伸張されないという利点が得られる。また、本実施形態では、空間光変調器34の光変調面が位置する設置面の延長面と空間光変調器35の光変調面が位置する設置面の延長面とが交差する位置は、第1照明光路における反射部材33の射出側である。この構成により、第2導光部材と見なすことができる反射部材33の移動スペースを確保できるという利点が得られる。 In the present embodiment, as described above, the first illumination optical path defined by the optical axis AX and the second illumination optical path defined by the optical axis AX1 intersect at an acute angle, and the first illumination optical path and the light It intersects with the third illumination optical path defined by the axis AX2 at an acute angle. This configuration provides the advantage that the aspect ratio of each mirror element 34a, 35a of the spatial light modulator is not compressed or expanded as described above. In the present embodiment, the position where the extension surface of the installation surface where the light modulation surface of the spatial light modulator 34 is located and the extension surface of the installation surface where the light modulation surface of the spatial light modulator 35 intersects is This is the exit side of the reflecting member 33 in one illumination optical path. With this configuration, there is an advantage that a space for moving the reflecting member 33 that can be regarded as the second light guide member can be secured.
 また、本実施形態では、入射した光をマイクロプリズムアレイ31により2つの光に分割し、一方の光を第1空間光変調器34へ導き且つ他方の光を第2空間光変調器35へ導く構成、すなわち複数の空間光変調器を同時利用する構成を採用している。この構成により、各空間光変調器34,35の複数のミラー要素(光学要素)34a,35aへの入射光のエネルギ密度を低減するとともに、空間光変調器34,35での波面分割数を増大させて照明瞳輝度分布ムラを低減することができる。 In the present embodiment, the incident light is split into two lights by the microprism array 31, one light is guided to the first spatial light modulator 34, and the other light is guided to the second spatial light modulator 35. A configuration, that is, a configuration in which a plurality of spatial light modulators are used simultaneously is adopted. With this configuration, the energy density of incident light on the plurality of mirror elements (optical elements) 34a and 35a of the spatial light modulators 34 and 35 is reduced, and the number of wavefront divisions in the spatial light modulators 34 and 35 is increased. Thus, the illumination pupil luminance distribution unevenness can be reduced.
 また、本実施形態では、マイクロプリズムアレイ31が挿入される位置において、基準光軸である光軸AXによって規定される第1照明光路は直線状に延びている。また、光軸AX1によって規定される第2照明光路と光軸AX2によって規定される第3照明光路との間に、直線状に延ばされた第1照明光路が位置している。さらに、マイクロプリズムアレイ31が挿入される位置と反射部材33が挿入される位置との間で、第1照明光路は直線状に延ばされている。上述の各構成により、既存の照明光学系の構成を大幅に改造することなく、空間光変調器34,35を付設することができる。 In the present embodiment, the first illumination optical path defined by the optical axis AX that is the reference optical axis extends linearly at the position where the microprism array 31 is inserted. In addition, a linearly extended first illumination light path is located between the second illumination light path defined by the optical axis AX1 and the third illumination light path defined by the optical axis AX2. Further, the first illumination light path is extended linearly between the position where the microprism array 31 is inserted and the position where the reflecting member 33 is inserted. With the above-described configurations, the spatial light modulators 34 and 35 can be added without significantly modifying the configuration of the existing illumination optical system.
 ところで、露光光としてArFエキシマレーザ光やKrFエキシマレーザ光などを用いる場合、露光光の吸収率が低い気体である窒素ガスやヘリウムガスのような不活性ガスで光路を充満させるか、あるいは光路をほぼ真空状態に保持する必要がある。本実施形態では、一対の空間光変調器34および35を固定的に設置しているので、図2に破線で示すように、カバーガラス34c,35cを含むパージ壁13を設けることができる。この場合、空間光変調器34,35の本体部分(可動部を含む部分)が気密空間の外側に配置されるので、パージを良好に維持しながら空間光変調器34,35の自在な動作が可能である。 By the way, when ArF excimer laser light or KrF excimer laser light is used as exposure light, the optical path is filled with an inert gas such as nitrogen gas or helium gas, which is a gas having a low exposure light absorption rate, or the optical path is changed. It is necessary to maintain a substantially vacuum state. In the present embodiment, since the pair of spatial light modulators 34 and 35 are fixedly installed, the purge wall 13 including the cover glasses 34c and 35c can be provided as shown by a broken line in FIG. In this case, since the main body portion (portion including the movable portion) of the spatial light modulators 34 and 35 is disposed outside the airtight space, the spatial light modulators 34 and 35 can be freely operated while maintaining good purge. Is possible.
 なお、空間光変調器34,35を移動可能に構成することもできるが、その場合には、パージの維持が困難になるだけでなく、基盤34b,35bから延びているケーブル類が移動に伴って損傷を受け易くなる。このとき、空間光変調器34,35の本体部分に取り付けられるカバーガラス34c,35cとは別に、パージ壁13にカバーガラス(パージ窓)を設けても良い。このときには、空間光変調器34,35にそれぞれ入射・射出する光は、2つのカバーガラスを通過することになるが、第1および第2導光部材が位置するパージ空間を維持した状態で空間光変調器34,35の交換が可能となる。 Although the spatial light modulators 34 and 35 can be configured to be movable, in this case, not only is it difficult to maintain the purge, but the cables extending from the boards 34b and 35b are accompanied by the movement. And is susceptible to damage. At this time, a cover glass (purge window) may be provided on the purge wall 13 separately from the cover glasses 34c and 35c attached to the main body portions of the spatial light modulators 34 and 35. At this time, the light incident on and emitted from the spatial light modulators 34 and 35 passes through the two cover glasses, but the space is maintained in the state where the purge space where the first and second light guide members are located is maintained. The light modulators 34 and 35 can be exchanged.
 なお、上述の本実施形態では、第1空間光変調器34による第1光強度分布と第2空間光変調器35による第2光強度分布とを照明瞳において異なる箇所に形成したが、これらの第1光強度分布と第2光強度分布とは互いにその一部が重畳していても良く、また完全に重畳(第1光強度分布と第2光強度分布とが同じ分布かつ同じ位置に形成)していても良い。また、上述の実施形態では、第1照明光路に沿って(光軸AXに沿って)入射した光を互いに異なる2つの方向に進む2つの光に分割する分割部材として、マイクロプリズムアレイ31を用いている。しかしながら、光の分割数は2に限定されることなく、例えば回折光学素子を用いて入射光を3つ以上の光に分割することもできる。一般に、第1照明光路に沿って入射した光を互いに異なる複数の方向に進む複数の光に分割し、分割した光の数と同数の空間光変調器を併設することができる。また、上述の実施形態の構成において、一対の空間光変調器34,35のうちの一方の空間光変調器34だけを用いる構成も可能である。この場合、分割部材としてのマイクロプリズムアレイ31に代えて、第1照明光路に沿って入射した光を第2照明光路へ導く導光部材として、例えば偏角プリズムを用いることができる。 In the present embodiment described above, the first light intensity distribution by the first spatial light modulator 34 and the second light intensity distribution by the second spatial light modulator 35 are formed at different locations in the illumination pupil. The first light intensity distribution and the second light intensity distribution may partially overlap each other, or may be completely overlapped (the first light intensity distribution and the second light intensity distribution are formed in the same distribution and at the same position. ) You may. In the above-described embodiment, the microprism array 31 is used as a dividing member that divides the incident light along the first illumination optical path (along the optical axis AX) into two lights that travel in two different directions. ing. However, the number of divisions of light is not limited to 2, and incident light can be divided into three or more lights using, for example, a diffractive optical element. In general, the light incident along the first illumination optical path can be divided into a plurality of lights traveling in a plurality of different directions, and the same number of spatial light modulators as the number of the divided lights can be provided. In the configuration of the above-described embodiment, a configuration using only one of the pair of spatial light modulators 34 and 35 is also possible. In this case, for example, a declination prism can be used as a light guide member that guides light incident along the first illumination optical path to the second illumination optical path, instead of the microprism array 31 as the split member.
 また、単一の空間光変調器を用いる空間光変調ユニット3の例として、図9に示す構成が可能である。図9の変形例にかかる空間光変調ユニット3は、光軸AXに沿った第1照明光路中の所定位置に設置可能で、第1照明光路に沿って入射した光を例えば90度だけ偏向して第2照明光路へ導く偏向部材としての平面ミラー51と、例えば平面ミラー51の設置位置とほぼ同じ第1照明光路中の位置に選択的に設置可能な複数の回折光学素子32とを備えている。平面ミラー51によってZ方向に反射された光は、光軸AX3によって規定される第2照明光路中の所定位置に固定的に設置された空間光変調器34に入射する。空間光変調器34によって変調され且つ例えばY方向に反射された光は、第2照明光路中に固定的に設置されたリレーレンズ52を介して、第2照明光路中に固定的に設置された平面ミラー53に入射する。平面ミラー53によって例えばZ方向に反射された光は、第1照明光路中の所定位置、すなわちリレー光学系36の前側レンズ群36aと開口絞り37との間の所定位置に設置可能な平面ミラー54に入射する。平面ミラー54によってY方向に反射された光は、第1照明光路に沿って開口絞り37に入射する。このように、図9の変形例にかかる空間光変調ユニット3では、単一の空間光変調器34の使用に際して、第1導光部材としての平面ミラー51は整形光学系2とリレー光学系36の前側レンズ群36aとの間の第1照明光路中に配置され、第2導光部材としての平面ミラー54はリレー光学系36の前側レンズ群36aよりも後側(被照射面側)の第1照明光路中に配置される。こうして、図9の変形例では、空間光変調器34によって変調された光は、リレー光学系36の前側レンズ群36aに対応する光学特性を有するリレーレンズ52、平面ミラー53および54を介して、開口絞り37の位置に(ひいては照明瞳の位置に)所要の光強度分布を可変的に形成する。なお、図9の変形例では、平面ミラー51から光の入射順に、空間光変調器34、リレーレンズ52、および平面ミラー53を配置している。しかしながら、これに限定されることなく、図9の空間光変調器34の位置に平面ミラー53を配置し、図9の平面ミラー53の位置に空間光変調器34を配置し、図9の平面ミラー53と54との間の光路中にリレーレンズ52を配置することもできる。 Further, as an example of the spatial light modulation unit 3 using a single spatial light modulator, the configuration shown in FIG. 9 is possible. The spatial light modulation unit 3 according to the modification of FIG. 9 can be installed at a predetermined position in the first illumination optical path along the optical axis AX, and deflects light incident along the first illumination optical path by, for example, 90 degrees. And a plurality of diffractive optical elements 32 that can be selectively installed at a position in the first illumination light path that is substantially the same as the installation position of the flat mirror 51, for example. Yes. The light reflected in the Z direction by the plane mirror 51 is incident on the spatial light modulator 34 fixedly installed at a predetermined position in the second illumination optical path defined by the optical axis AX3. The light modulated by the spatial light modulator 34 and reflected in the Y direction, for example, is fixedly installed in the second illumination optical path via the relay lens 52 fixedly installed in the second illumination optical path. Incident on the plane mirror 53. The light reflected by the flat mirror 53 in the Z direction, for example, can be set at a predetermined position in the first illumination optical path, that is, at a predetermined position between the front lens group 36a of the relay optical system 36 and the aperture stop 37. Is incident on. The light reflected in the Y direction by the plane mirror 54 enters the aperture stop 37 along the first illumination optical path. As described above, in the spatial light modulation unit 3 according to the modification of FIG. 9, when the single spatial light modulator 34 is used, the plane mirror 51 as the first light guide member includes the shaping optical system 2 and the relay optical system 36. The plane mirror 54 as the second light guide member is disposed on the rear side (irradiated surface side) of the relay lens system 36 with respect to the front lens group 36a. It arrange | positions in one illumination optical path. 9, the light modulated by the spatial light modulator 34 passes through the relay lens 52 and the plane mirrors 53 and 54 having optical characteristics corresponding to the front lens group 36a of the relay optical system 36. A required light intensity distribution is variably formed at the position of the aperture stop 37 (and hence at the position of the illumination pupil). In the modification of FIG. 9, the spatial light modulator 34, the relay lens 52, and the plane mirror 53 are arranged in the order of incidence of light from the plane mirror 51. However, the present invention is not limited to this, and the plane mirror 53 is disposed at the position of the spatial light modulator 34 in FIG. 9, the spatial light modulator 34 is disposed at the position of the plane mirror 53 in FIG. A relay lens 52 may be disposed in the optical path between the mirrors 53 and 54.
 また、第1照明光路に沿って(光軸AXに沿って)入射した光を互いに異なる4つの方向に進む4つの光に分割する分割部材としてピラミッドプリズム61を用いる例として、図10に示す構成が可能である。図10の変形例にかかる空間光変調ユニット3は、光透過性部材で形成されて頂点を光の入射側に向けた四角錐状のピラミッドプリズム61を備えている。この分割部材と見なすことができるピラミッドプリズム61は、図中X方向に沿って照明光路から挿脱可能である。第1照明光路(光軸AXに沿って)入射した光は、このピラミッドプリズム61によって互いに異なる4つの方向に進む4つの光に分割される。分割された4つの光は、各照明光路に配置された4つの空間光変調器34,35,62,63に入射する。そして、各空間光変調器34,35,62,63によって変調された光は、その斜面が反射面に形成されて頂点を射出側に向けた四角錐状のピラミッドミラー64へ向かう。このピラミッドミラー64も、ピラミッドプリズム61と一体的に照明光路から挿脱可能に構成されている。ピラミッドミラー64を介した各空間光変調器34,35,62,63からの光は、リレー光学系36の前側レンズ群36aへ向かう。そして、図10では不図示ではあるが、上述の実施形態と同様に照明光学系の瞳面の位置に所定の光強度分布を形成する。 Further, as an example in which the pyramid prism 61 is used as a dividing member that divides incident light along the first illumination optical path (along the optical axis AX) into four light beams that travel in four different directions, the configuration shown in FIG. Is possible. The spatial light modulation unit 3 according to the modified example of FIG. 10 includes a pyramid prism 61 having a quadrangular pyramid shape that is formed of a light transmissive member and has a vertex directed toward the light incident side. The pyramid prism 61 that can be regarded as the divided member can be inserted into and removed from the illumination optical path along the X direction in the drawing. The light incident on the first illumination optical path (along the optical axis AX) is divided into four lights traveling in four different directions by the pyramid prism 61. The four divided lights are incident on four spatial light modulators 34, 35, 62, and 63 arranged in each illumination light path. The light modulated by each of the spatial light modulators 34, 35, 62, and 63 is directed to a pyramid mirror 64 having a pyramid shape whose slope is formed on the reflection surface and the apex is directed to the exit side. The pyramid mirror 64 is also configured to be able to be inserted into and removed from the illumination optical path integrally with the pyramid prism 61. Light from each of the spatial light modulators 34, 35, 62, 63 via the pyramid mirror 64 travels to the front lens group 36 a of the relay optical system 36. Then, although not shown in FIG. 10, a predetermined light intensity distribution is formed at the position of the pupil plane of the illumination optical system as in the above-described embodiment.
 また、分割部材としてV字形状のプリズムを用いる例として、図11に示す構成が可能である。図11の変形例にかかる空間光変調ユニット3は、図2に示した実施形態のマイクロプリズムアレイ31に代えて、X方向に沿った稜線を入射側に向けたV字形状のプリズム65を備えている。このプリズム65も、第1照明光路に沿って(光軸AXに沿った方向から)入射する光を、光軸AX1に沿って進む第1の光と光軸AX2に沿って進む第2の光とに分割して、第1照明光路から外れて固定的に設置された一対の空間光変調器34および35へ導く。 Further, as an example using a V-shaped prism as the dividing member, the configuration shown in FIG. 11 is possible. The spatial light modulation unit 3 according to the modified example of FIG. 11 includes a V-shaped prism 65 with a ridge line along the X direction facing the incident side, instead of the microprism array 31 of the embodiment shown in FIG. ing. The prism 65 also has a first light traveling along the optical axis AX1 and a second light traveling along the optical axis AX2 along the first illumination optical path (from the direction along the optical axis AX). And are guided to a pair of spatial light modulators 34 and 35 fixedly installed outside the first illumination light path.
 上述の実施形態および変形例では、空間光変調ユニット3とシリンドリカルマイクロフライアイレンズ8との間の光路中に、アフォーカルレンズ4、円錐アキシコン系6、およびズームレンズ7が配置されている。しかしながら、これに限定されることなく、これらの光学部材に代えて、例えばフーリエ変換レンズとして機能する集光光学系を配置することもできる。なお、上述の説明では、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば特開平6-281869号公報及びこれに対応する米国特許第5,312,513号公報、並びに特表2004-520618号公報およびこれに対応する米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば特表2006-513442号公報およびこれに対応する米国特許第6,891,655号公報や、特表2005-524112号公報およびこれに対応する米国特許公開第2005/0095749号公報の開示に従って変形しても良い。また、上述の説明では、複数のミラー要素を有する反射型の空間光変調器を用いているが、これに限定されることなく、たとえば米国特許第5,229,872号公報に開示される透過型の空間光変調器を用いても良い。 In the embodiment and the modification described above, the afocal lens 4, the conical axicon system 6, and the zoom lens 7 are disposed in the optical path between the spatial light modulation unit 3 and the cylindrical micro fly's eye lens 8. However, the present invention is not limited to this, and instead of these optical members, for example, a condensing optical system that functions as a Fourier transform lens may be disposed. In the above description, as the spatial light modulator having a plurality of optical elements that are two-dimensionally arranged and individually controlled, the direction (angle: inclination) of the two-dimensionally arranged reflecting surfaces is set. An individually controllable spatial light modulator is used. However, the present invention is not limited to this. For example, a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used. As such a spatial light modulator, for example, Japanese Patent Laid-Open No. 6-281869 and US Pat. No. 5,312,513 corresponding thereto, and Japanese Patent Laid-Open No. 2004-520618 and US Pat. The spatial light modulator disclosed in FIG. 1d of Japanese Patent No. 6,885,493 can be used. In these spatial light modulators, by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light. Note that the spatial light modulator having a plurality of two-dimensionally arranged reflection surfaces described above is disclosed in, for example, Japanese Patent Publication No. 2006-513442 and US Pat. No. 6,891,655 corresponding thereto, Modifications may be made in accordance with the disclosure of Japanese Patent Publication No. 2005-524112 and US Patent Publication No. 2005/0095749 corresponding thereto. In the above description, a reflective spatial light modulator having a plurality of mirror elements is used. However, the present invention is not limited to this. For example, transmission disclosed in US Pat. No. 5,229,872 A type of spatial light modulator may be used.
 上述の実施形態並びに各変形例において、空間光変調ユニットを用いて照明瞳輝度分布を形成する際に、瞳輝度分布計測装置で照明瞳輝度分布を計測しつつ、この計測結果に応じて空間光変調ユニット中の各空間光変調器を制御してもよい。このような技術は、たとえば特開2006-54328号公報や特開2003-22967号公報およびこれに対応する米国特許公開第2003/0038225号公報に開示されている。なお、上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004-304135号公報、国際特許公開第2006/080285号パンフレットに開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形成装置を用いても良い。 In the above-described embodiment and each modification, when forming the illumination pupil luminance distribution using the spatial light modulation unit, the illumination pupil luminance distribution is measured by the pupil luminance distribution measuring device, and the spatial light is determined according to the measurement result. Each spatial light modulator in the modulation unit may be controlled. Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto. In the above-described embodiment, a variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask. By using such a variable pattern forming apparatus, the influence on the synchronization accuracy can be minimized even if the pattern surface is placed vertically. As the variable pattern forming apparatus, for example, a DMD (digital micromirror device) including a plurality of reflecting elements driven based on predetermined electronic data can be used. An exposure apparatus using DMD is disclosed in, for example, Japanese Patent Laid-Open No. 2004-304135 and International Patent Publication No. 2006/080285. In addition to a non-light-emitting reflective spatial light modulator such as DMD, a transmissive spatial light modulator may be used, or a self-luminous image display element may be used. Note that a variable pattern forming apparatus may be used even when the pattern surface is placed horizontally.
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図12は、半導体デバイスの製造工程を示すフローチャートである。図12に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。 Next, a device manufacturing method using the exposure apparatus according to the above-described embodiment will be described. FIG. 12 is a flowchart showing a manufacturing process of a semiconductor device. As shown in FIG. 12, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer W to be a substrate of the semiconductor device (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film. (Step S42). Subsequently, using the projection exposure apparatus of the above-described embodiment, the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed. Development, that is, development of the photoresist to which the pattern has been transferred (step S46: development process). Thereafter, using the resist pattern generated on the surface of the wafer W in step S46 as a mask, processing such as etching is performed on the surface of the wafer W (step S48: processing step). Here, the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is. In step S48, the surface of the wafer W is processed through this resist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like. In step S44, the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as the photosensitive substrate, that is, the plate P.
 図13は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図13に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 FIG. 13 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in FIG. 13, in the liquid crystal device manufacturing process, a pattern formation process (step S50), a color filter formation process (step S52), a cell assembly process (step S54), and a module assembly process (step S56) are sequentially performed. In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment. The pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer. In the color filter forming process in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction. In the cell assembly process in step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。また、上述の実施形態では、露光装置においてマスクを照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。 In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process. In the above-described embodiment, ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light. However, the present invention is not limited to this, and other suitable laser light sources. For example, the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm. In the above-described embodiment, the present invention is applied to the illumination optical system that illuminates the mask in the exposure apparatus. However, the present invention is not limited to this, and a general illumination surface other than the mask is illuminated. The present invention can also be applied to an illumination optical system.
 また、上述の実施形態では、オプティカルインテグレータとして、複数の微小レンズ面を備えた波面分割型のマイクロフライアイレンズ(フライアイレンズ)を用いたが、その代わりに、内面反射型のオプティカルインテグレータ(典型的にはロッド型インテグレータ)を用いても良い。この場合、ズームレンズ7の後側にその前側焦点位置がズームレンズ7の後側焦点位置と一致するように集光レンズを配置し、この集光レンズの後側焦点位置またはその近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。このとき、ロッド型インテグレータの射出端がマスクブラインド11の位置になる。ロッド型インテグレータを用いる場合、このロッド型インテグレータの下流の結像光学系12内の、投影光学系PLの開口絞りASの位置と光学的に共役な位置を照明瞳面と呼ぶことができる。また、ロッド型インテグレータの入射面の位置には、照明瞳面の二次光源の虚像が形成されることになるため、この位置およびこの位置と光学的に共役な位置も照明瞳面と呼ぶことができる。 In the above-described embodiment, the wavefront division type micro fly's eye lens (fly's eye lens) having a plurality of minute lens surfaces is used as the optical integrator. Instead, an internal reflection type optical integrator (typically Specifically, a rod type integrator) may be used. In this case, the condensing lens is arranged on the rear side of the zoom lens 7 so that the front focal position thereof coincides with the rear focal position of the zoom lens 7, and the incident end is located at or near the rear focal position of the condensing lens. Position the rod-type integrator so that is positioned. At this time, the injection end of the rod-type integrator becomes the position of the mask blind 11. When a rod type integrator is used, a position optically conjugate with the position of the aperture stop AS of the projection optical system PL in the imaging optical system 12 downstream of the rod type integrator can be called an illumination pupil plane. In addition, since a virtual image of the secondary light source of the illumination pupil plane is formed at the position of the entrance surface of the rod integrator, this position and a position optically conjugate with this position are also called the illumination pupil plane. Can do.
 また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンフレットに開示されているような局所的に液体を満たす手法や、特開平6-124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10-303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。また、上述の実施形態において、米国公開公報第2006/0170901号及び第2007/0146676号に開示されるいわゆる偏光照明方法を適用することも可能である。 In the above-described embodiment, a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it. In this case, as a method for filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method for locally filling the liquid as disclosed in International Publication No. WO 99/49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. A technique of forming a liquid tank and holding the substrate in the liquid tank can be employed. In the above-described embodiment, a so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901 and 2007/0146676 can be applied.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。また、上記実施形態の各構成要素等は、いずれの組み合わせ等も可能とすることができる。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention. In addition, each component of the above-described embodiment can be any combination.

Claims (32)

  1. 光源からの光に基づいて被照射面を照明する照明光学系において、
     第1照明光路に沿って入射した光束を所定の断面の光束に変換して、前記第1照明光路中の照明瞳に光強度分布を固定的に形成する光束変換素子と、
     前記第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を第2照明光路へ導く第1導光部材と、
     前記照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記第2照明光路に沿って入射した光に空間的な変調を可変的に付与する空間光変調器と、
     前記空間光変調器を経て前記第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、
     前記第1導光部材は、前記第1照明光路と前記第2照明光路とを含む面と交差する方向に移動可能であることを特徴とする照明光学系。
    In the illumination optical system that illuminates the illuminated surface based on the light from the light source,
    A light beam conversion element that converts a light beam incident along the first illumination light path into a light beam having a predetermined cross section and forms a light intensity distribution in a fixed manner in an illumination pupil in the first illumination light path;
    A first light guide member provided so as to be insertable into the first illumination optical path, and guiding light incident along the first illumination optical path to the second illumination optical path;
    A spatial light modulator that variably applies spatial modulation to light incident along the second illumination light path through the first light guide member in order to variably form a light intensity distribution in the illumination pupil. When,
    A second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path;
    The illumination optical system, wherein the first light guide member is movable in a direction intersecting a plane including the first illumination light path and the second illumination light path.
  2. 前記第1導光部材は、前記第1照明光路と前記第2照明光路とを含む面の法線方向に移動可能であることを特徴とする請求項1に記載の照明光学系。 The illumination optical system according to claim 1, wherein the first light guide member is movable in a normal direction of a surface including the first illumination light path and the second illumination light path.
  3. 前記第1導光部材は、前記第1照明光路に沿って入射した光を互いに異なる複数の方向に進む複数の光に分割する分割部材を有し、
     前記空間光変調器は、前記複数の光に空間的な変調を可変的に付与する複数の空間光変調器を有することを特徴とする請求項1または2に記載の照明光学系。
    The first light guide member includes a dividing member that divides light incident along the first illumination optical path into a plurality of lights traveling in a plurality of different directions.
    The illumination optical system according to claim 1, wherein the spatial light modulator includes a plurality of spatial light modulators that variably apply spatial modulation to the plurality of lights.
  4. 前記第1照明光路に沿って前記光束変換素子の前記光源側に隣接して配置された前側光学系と、前記第1照明光路に沿って前記光束変換素子の前記被照射面側に隣接して配置された後側光学系とを備え、
     前記空間光変調器の使用に際して、前記第1導光部材および前記第2導光部材は前記前側光学系と前記後側光学系との間の前記第1照明光路中に配置されることを特徴とする請求項3に記載の照明光学系。
    A front optical system disposed adjacent to the light source side of the light beam conversion element along the first illumination light path; and adjacent to the irradiated surface side of the light beam conversion element along the first illumination light path. A rear optical system arranged,
    When the spatial light modulator is used, the first light guide member and the second light guide member are disposed in the first illumination light path between the front optical system and the rear optical system. The illumination optical system according to claim 3.
  5. 前記第1導光部材は、前記第1照明光路に沿って入射した光を偏向して前記第2照明光路へ導く偏向部材を有することを特徴とする請求項1または2に記載の照明光学系。 3. The illumination optical system according to claim 1, wherein the first light guide member includes a deflection member that deflects light incident along the first illumination optical path and guides the light to the second illumination optical path. 4. .
  6. 前記第1照明光路に沿って前記光束変換素子の前記光源側に隣接して配置された前側光学系と、前記第1照明光路に沿って前記光束変換素子の前記被照射面側に隣接して配置された後側光学系とを備え、
     前記空間光変調器の使用に際して、前記第1導光部材は前記前側光学系と前記後側光学系との間の前記第1照明光路中に配置され、前記第2導光部材は前記後側光学系よりも前記被照射面側の前記第1照明光路中に配置されることを特徴とする請求項5に記載の照明光学系。
    A front optical system disposed adjacent to the light source side of the light beam conversion element along the first illumination light path; and adjacent to the irradiated surface side of the light beam conversion element along the first illumination light path. A rear optical system arranged,
    In using the spatial light modulator, the first light guide member is disposed in the first illumination light path between the front optical system and the rear optical system, and the second light guide member is disposed on the rear side. The illumination optical system according to claim 5, wherein the illumination optical system is disposed in the first illumination optical path closer to the irradiated surface than the optical system.
  7. 光源からの光に基づいて被照射面を照明する照明光学系において、
     第1照明光路に沿って入射した光束を所定の断面の光束に変換して、前記第1照明光路中の照明瞳に光強度分布を固定的に形成する光束変換素子と、
     前記第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を第2照明光路へ導く第1導光部材と、
     前記照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記第2照明光路に沿って入射した光に空間的な変調を可変的に付与する空間光変調器と、
     前記空間光変調器を経て前記第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、
     前記空間光変調器の光変調面が位置する設置面の延長面は、前記第1照明光路と鋭角をなして交差していることを特徴とする照明光学系。
    In the illumination optical system that illuminates the illuminated surface based on the light from the light source,
    A light beam conversion element that converts a light beam incident along the first illumination light path into a light beam having a predetermined cross section and forms a light intensity distribution in a fixed manner in an illumination pupil in the first illumination light path;
    A first light guide member provided so as to be insertable into the first illumination optical path, and guiding light incident along the first illumination optical path to the second illumination optical path;
    A spatial light modulator that variably applies spatial modulation to light incident along the second illumination light path through the first light guide member in order to variably form a light intensity distribution in the illumination pupil. When,
    A second light guide member that guides light incident along the second illumination light path through the spatial light modulator to the first illumination light path;
    An illumination optical system, wherein an extension surface of an installation surface on which the light modulation surface of the spatial light modulator is located intersects the first illumination light path at an acute angle.
  8. 前記第1照明光路と前記第2照明光路とは鋭角をなして交差していることを特徴とする請求項7に記載の照明光学系。 The illumination optical system according to claim 7, wherein the first illumination optical path and the second illumination optical path intersect at an acute angle.
  9. 前記第1導光部材は、前記第1照明光路に沿って入射した光を互いに異なる複数の方向に進む複数の光に分割する分割部材を有し、
     前記空間光変調器は、前記複数の光に空間的な変調を可変的に付与する複数の空間光変調器を有することを特徴とする請求項7または8に記載の照明光学系。
    The first light guide member includes a dividing member that divides light incident along the first illumination optical path into a plurality of lights traveling in a plurality of different directions.
    The illumination optical system according to claim 7, wherein the spatial light modulator includes a plurality of spatial light modulators that variably apply spatial modulation to the plurality of lights.
  10. 前記複数の空間光変調器は、第1の空間光変調器と第2の空間光変調器とを備え、
     前記第1導光部材により分割された複数の光のうち前記第1の空間光変調器へ向かう光は第3照明光路に沿って進行し、前記第1導光部材により分割された複数の光のうち前記第2の空間光変調器へ向かう光は第4照明光路に沿って進行し、
     前記第1照明光路と前記第3照明光路とは鋭角をなし、前記第1照明光路と前記第4照明光路とは鋭角をなすことを特徴とする請求項9に記載の照明光学系。
    The plurality of spatial light modulators include a first spatial light modulator and a second spatial light modulator,
    Of the plurality of lights divided by the first light guide member, the light traveling toward the first spatial light modulator travels along the third illumination light path, and the plurality of lights divided by the first light guide member. Of which the light traveling toward the second spatial light modulator travels along the fourth illumination light path,
    The illumination optical system according to claim 9, wherein the first illumination light path and the third illumination light path form an acute angle, and the first illumination light path and the fourth illumination light path form an acute angle.
  11. 前記第1導光部材が挿入される位置において前記第1照明光路は直線状に延びており、
     前記第3照明光路および前記第4照明光路の間に前記直線状に延ばされた前記第1照明光路が位置することを特徴とする請求項10に記載の照明光学系。
    The first illumination light path extends linearly at a position where the first light guide member is inserted,
    11. The illumination optical system according to claim 10, wherein the first illumination light path extended linearly is located between the third illumination light path and the fourth illumination light path.
  12. 前記第1の空間光変調器の光変調面が位置する第1の設置面の延長面は前記第1照明光路と鋭角をなして交差し、前記第2の空間光変調器の光変調面が位置する第2の設置面の延長面は前記第1照明光路と鋭角をなして交差することを特徴とする請求項10または11に記載の照明光学系。 An extension surface of the first installation surface on which the light modulation surface of the first spatial light modulator is located intersects the first illumination light path at an acute angle, and the light modulation surface of the second spatial light modulator is 12. The illumination optical system according to claim 10, wherein an extended surface of the second installation surface positioned intersects the first illumination light path at an acute angle.
  13. 前記第1の設置面の延長面と前記第2の設置面の延長面とが交差する位置は、前記第1照明光路における前記第2導光部材の射出側であることを特徴とする請求項12に記載の照明光学系。 The position where the extended surface of the first installation surface intersects with the extended surface of the second installation surface is an exit side of the second light guide member in the first illumination light path. 12. The illumination optical system according to 12.
  14. 前記第2導光部材は、前記第1照明光路に挿入可能であることを特徴とする請求項1乃至13のいずれか1項に記載の照明光学系。 The illumination optical system according to claim 1, wherein the second light guide member can be inserted into the first illumination optical path.
  15. 前記第1導光部材が挿入される位置と前記第2導光部材が挿入される位置との間で前記第1照明光路は直線状に延ばされていることを特徴とする請求項14に記載の照明光学系。 15. The first illumination light path is linearly extended between a position where the first light guide member is inserted and a position where the second light guide member is inserted. The illumination optical system described.
  16. 前記空間光変調器は、前記第2照明光路に固定的に配置されていることを特徴とする請求項1乃至15のいずれか1項に記載の照明光学系。 The illumination optical system according to claim 1, wherein the spatial light modulator is fixedly disposed in the second illumination light path.
  17. 前記空間光変調器は、二次元的に配列されて個別に制御される複数の光学要素を有することを特徴とする請求項1乃至16のいずれか1項に記載の照明光学系。 The illumination optical system according to any one of claims 1 to 16, wherein the spatial light modulator includes a plurality of optical elements that are two-dimensionally arranged and individually controlled.
  18. 前記空間光変調器は、二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有することを特徴とする請求項17に記載の照明光学系。 The illumination according to claim 17, wherein the spatial light modulator includes a plurality of mirror elements arranged two-dimensionally, and a drive unit that individually controls and drives the postures of the plurality of mirror elements. Optical system.
  19. 前記駆動部は、前記複数のミラー要素の向きを連続的または離散的に変化させることを特徴とする請求項18に記載の照明光学系。 The illumination optical system according to claim 18, wherein the driving unit continuously or discretely changes directions of the plurality of mirror elements.
  20. 前記空間光変調器は、前記複数のミラー要素を覆うカバー基板を有することを特徴とする請求項18または19に記載の照明光学系。 The illumination optical system according to claim 18, wherein the spatial light modulator has a cover substrate that covers the plurality of mirror elements.
  21. 前記光束変換素子は、前記第1照明光路に対して挿脱可能な1つまたは複数の回折光学素子を有することを特徴とする請求項1乃至20のいずれか1項に記載の照明光学系。 21. The illumination optical system according to claim 1, wherein the light beam conversion element includes one or a plurality of diffractive optical elements that can be inserted into and removed from the first illumination optical path.
  22. 光源からの光に基づいて被照射面を照明する照明光学系と共に用いられる空間光変調ユニットにおいて、
     第1照明光路に挿入可能に設けられて、前記第1照明光路に沿って入射した光を互いに異なる複数の方向に進む複数の光に分割する分割部材を備え、前記第1照明光路に沿って入射した光を複数の第2照明光路へ導く第1導光部材と、
     前記第1照明光路中の照明瞳に光強度分布を可変的に形成するために、前記第1導光部材を経て前記複数の第2照明光路に沿って入射した光のそれぞれに空間的な変調を可変的に付与する複数の空間光変調器と、
     前記複数の空間光変調器を経て前記複数の第2照明光路に沿って入射した光を前記第1照明光路へ導く第2導光部材とを備え、
     前記複数の空間光変調器は、前記複数の第2照明光路に固定的に配置されていることを特徴とする空間光変調ユニット。
    In the spatial light modulation unit used together with the illumination optical system that illuminates the illuminated surface based on the light from the light source,
    A splitting member is provided so as to be insertable into the first illumination optical path, and divides the light incident along the first illumination optical path into a plurality of lights traveling in a plurality of different directions, along the first illumination optical path. A first light guide member for guiding incident light to a plurality of second illumination light paths;
    In order to variably form a light intensity distribution in the illumination pupil in the first illumination light path, spatial modulation is performed on each of the light incident along the plurality of second illumination light paths via the first light guide member. A plurality of spatial light modulators that variably provide,
    A second light guide member that guides light incident along the plurality of second illumination light paths through the plurality of spatial light modulators to the first illumination light path;
    The spatial light modulator unit, wherein the plurality of spatial light modulators are fixedly disposed in the plurality of second illumination light paths.
  23. 前記第2導光部材は、前記第1導光部材と一体的に保持されることを特徴とする請求項22に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 22, wherein the second light guide member is integrally held with the first light guide member.
  24. 前記空間光変調器は、二次元的に配列されて個別に制御される複数の光学要素を有することを特徴とする請求項22または23に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 22 or 23, wherein the spatial light modulator has a plurality of optical elements that are two-dimensionally arranged and individually controlled.
  25. 前記空間光変調器は、二次元的に配列された複数のミラー要素と、該複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有することを特徴とする請求項24に記載の空間光変調ユニット。 25. The space according to claim 24, wherein the spatial light modulator includes a plurality of mirror elements arranged two-dimensionally, and a drive unit that individually controls and drives the postures of the plurality of mirror elements. Light modulation unit.
  26. 前記駆動部は、前記複数のミラー要素の向きを連続的または離散的に変化させることを特徴とする請求項25に記載の空間光変調ユニット。 The spatial light modulation unit according to claim 25, wherein the driving unit continuously or discretely changes the directions of the plurality of mirror elements.
  27. 前記複数の空間光変調器は、前記空間光変調器の前記複数のミラー要素側の空間と前記第1および第2導光部材側の空間とを隔てるカバー基板をそれぞれ有することを特徴とする請求項25または26に記載の空間光変調ユニット。 The plurality of spatial light modulators each include a cover substrate that separates a space on the mirror element side of the spatial light modulator and a space on the first and second light guide members. Item 27. The spatial light modulation unit according to Item 25 or 26.
  28. 請求項22乃至27のいずれか1項に記載の空間光変調ユニットを備え、
     前記空間光変調ユニットを介した光源からの光に基づいて被照射面を照明することを特徴とする照明光学系。
    A spatial light modulation unit according to any one of claims 22 to 27,
    An illumination optical system for illuminating a surface to be irradiated based on light from a light source via the spatial light modulation unit.
  29. 前記第1照明光路に沿って入射した光束を所定の断面の光束に変換して、前記第1照明光路中の照明瞳に光強度分布を固定的に形成する光束変換素子を備えることを特徴とする請求項28に記載の照明光学系。 A light beam conversion element that converts a light beam incident along the first illumination light path into a light beam having a predetermined cross section and forms a light intensity distribution in a fixed manner in an illumination pupil in the first illumination light path; The illumination optical system according to claim 28.
  30. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項1乃至21、28および29のいずれか1項に記載の照明光学系。 The projection pupil is used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface, and the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. 30. The illumination optical system according to any one of 1 to 21, 28, and 29.
  31. 所定のパターンを照明するための請求項1乃至21および28乃至30のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。 31. An exposure apparatus comprising the illumination optical system according to any one of claims 1 to 21 and 28 to 30 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a photosensitive substrate.
  32. 請求項31に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
     前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
     前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
    An exposure step of exposing the predetermined pattern to the photosensitive substrate using the exposure apparatus according to claim 31;
    Developing the photosensitive substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
    And a processing step of processing the surface of the photosensitive substrate through the mask layer.
PCT/JP2009/053631 2008-08-08 2009-02-27 Illumination optical system, exposure apparatus, and device manufacturing method WO2010016288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13604508P 2008-08-08 2008-08-08
US61/136,045 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016288A1 true WO2010016288A1 (en) 2010-02-11

Family

ID=41663514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053631 WO2010016288A1 (en) 2008-08-08 2009-02-27 Illumination optical system, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
WO (1) WO2010016288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251583A (en) * 2007-09-14 2013-12-12 Nikon Corp Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204114A (en) * 1992-12-29 1994-07-22 Canon Inc Lighting system and projection aligner using same
JP2003022967A (en) * 2001-06-01 2003-01-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product
JP2006519494A (en) * 2003-02-28 2006-08-24 マイクロニック レーザー システムズ アクチボラゲット SLM direct writing device
WO2009035129A2 (en) * 2007-09-14 2009-03-19 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
WO2009057822A1 (en) * 2007-10-31 2009-05-07 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204114A (en) * 1992-12-29 1994-07-22 Canon Inc Lighting system and projection aligner using same
JP2003022967A (en) * 2001-06-01 2003-01-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product
JP2006519494A (en) * 2003-02-28 2006-08-24 マイクロニック レーザー システムズ アクチボラゲット SLM direct writing device
WO2009035129A2 (en) * 2007-09-14 2009-03-19 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
WO2009057822A1 (en) * 2007-10-31 2009-05-07 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251583A (en) * 2007-09-14 2013-12-12 Nikon Corp Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2015046601A (en) * 2007-09-14 2015-03-12 株式会社ニコン Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP5935852B2 (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP6410115B2 (en) Illumination optical system, exposure apparatus, exposure method, and device manufacturing method
EP2264511A1 (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
KR20100099157A (en) Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JPWO2008007633A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2013502703A (en) Polarization conversion unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2009087805A1 (en) Spatial light modulator, illumination optical system, aligner, and device manufacturing method
JP5365982B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2018112755A (en) Illumination optical device, illumination method, exposure device, exposure method, and method of producing device
JP5688672B2 (en) Optical transmission apparatus, illumination optical system, exposure apparatus, and device manufacturing method
JP2011222856A (en) Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
WO2010016288A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
JP5353408B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2009128293A1 (en) Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
JP5366019B2 (en) Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP2011222841A (en) Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
JP5327715B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2012004558A (en) Illumination optical system, exposure equipment, and device manufacturing method
JP2011029596A (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2012028543A (en) Illumination optical system, exposure device, and device manufacturing method
JP2008021767A (en) Illuminating optical device, exposure device and manufacturing method for devices
WO2014073548A1 (en) Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device
JP2012080098A (en) Illumination optical system, exposure equipment, illumination method, exposure method, and device manufacturing method
JP2011009318A (en) Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP