WO2014073548A1 - Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device - Google Patents

Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device Download PDF

Info

Publication number
WO2014073548A1
WO2014073548A1 PCT/JP2013/079955 JP2013079955W WO2014073548A1 WO 2014073548 A1 WO2014073548 A1 WO 2014073548A1 JP 2013079955 W JP2013079955 W JP 2013079955W WO 2014073548 A1 WO2014073548 A1 WO 2014073548A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
spatial light
light modulator
incident
mirror elements
Prior art date
Application number
PCT/JP2013/079955
Other languages
French (fr)
Japanese (ja)
Inventor
水野 恭志
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014073548A1 publication Critical patent/WO2014073548A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Definitions

  • the present invention relates to a spatial light modulation optical system, an illumination optical system, an exposure apparatus, and a device manufacturing method.
  • a light source emitted from a light source is a secondary light source (generally a surface light source consisting of a number of light sources via a fly-eye lens as an optical integrator).
  • a secondary light source generally a surface light source consisting of a number of light sources via a fly-eye lens as an optical integrator.
  • Form a predetermined light intensity distribution in the illumination pupil is referred to as “pupil intensity distribution”.
  • the illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
  • the mask on which a predetermined pattern is formed is illuminated in a superimposed manner.
  • the light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer.
  • the pattern formed on the mask is miniaturized, and it is indispensable to obtain a uniform illuminance distribution on the wafer in order to accurately transfer the fine pattern onto the wafer.
  • an illumination optical system capable of continuously changing the pupil intensity distribution (and consequently the illumination condition) without using a zoom optical system (see, for example, Patent Document 1).
  • a conventional illumination optical system an incident light flux is made minute for each reflecting surface by using a movable multi-mirror configured by a large number of minute mirror elements that are arranged in an array and whose tilt angle and tilt direction are individually driven and controlled.
  • the cross section of the light beam is converted into a desired shape or a desired size, and thus a desired pupil intensity distribution is realized.
  • the conventional illumination optical system uses a spatial light modulator having a large number of minute mirror elements whose postures are individually controlled, the degree of freedom in changing the shape and size of the pupil intensity distribution is high.
  • the reflected light from the mirror element may reach the illumination pupil. In this case, it becomes difficult to form a desired pupil intensity distribution due to the influence of reflected light (generally unnecessary light) from other than the mirror elements.
  • the present invention has been made in view of the foregoing problems, and provides an illumination optical system capable of realizing a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror elements of the spatial light modulator.
  • the purpose is to do.
  • the present invention also provides an exposure apparatus that can perform good exposure under appropriate illumination conditions using an illumination optical system that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light. With the goal.
  • a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled, An incident-side optical system that irradiates light to the plurality of mirror elements of the spatial light modulator; Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system.
  • a spatial light modulation optical system characterized by intersecting with a second surface is provided.
  • a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled, Of the plurality of mirror elements of the spatial light modulator, the direction of an arbitrary pair of edges facing each other in two adjacent mirror elements passes between the pair of any facing edges and is substantially the same as the predetermined surface.
  • a spatial light modulation optical system characterized by an angle at which unnecessary light reflected by parallel plane portions is reduced.
  • a spatial light modulation optical system of the first form or the second form comprising: a distribution forming optical system that distributes light having passed through the spatial light modulator to an illumination pupil of the illumination optical system with a predetermined light intensity distribution.
  • an exposure apparatus comprising the illumination optical system of the third aspect for illuminating a predetermined pattern, and exposing the predetermined pattern onto a substrate.
  • an exposure apparatus that exposes a predetermined pattern on a substrate, An exposure apparatus comprising the spatial light modulation optical system of the first form or the second form is provided.
  • exposing the predetermined pattern to a photosensitive substrate Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; And processing the surface of the photosensitive substrate through the mask layer.
  • a device manufacturing method is provided.
  • the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator.
  • a spatial light modulation method is provided in which the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
  • a spatial light modulation method for spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled, Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system; Reflecting the light at the plurality of mirror elements of the spatial light modulator; Including Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system.
  • a spatial light modulation method characterized by intersecting a second surface is provided.
  • a spatial light modulation method for spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled, Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system; Reflecting the light at the plurality of mirror elements of the spatial light modulator; Of the plurality of mirror elements of the spatial light modulator, unnecessary light that passes between any pair of opposing edges in two adjacent mirror elements and is reflected by a surface portion substantially parallel to the predetermined surface is reduced.
  • the spatial light modulation method characterized by including.
  • the illumination optical system of the present invention it is possible to realize a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror elements of the spatial light modulator.
  • the illumination optical system that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light is favorable under appropriate illumination conditions realized according to the mask pattern characteristics. Exposure can be performed, and as a result, a good device can be manufactured.
  • FIG. 6 is a cross-sectional view taken along line AA of FIG.
  • FIG. 6 is a figure which shows schematically the structure of the exposure apparatus concerning a modification. It is a figure which shows roughly the characteristic principal part structure in the modification of FIG. It is a figure explaining the necessity of the light beam conversion element in the modification of FIG.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to the embodiment.
  • the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG.
  • the X axis is set in a direction perpendicular to the paper surface of FIG.
  • exposure light (illumination light) is supplied from a light source LS.
  • the light source LS for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used.
  • Light emitted from the light source LS in the + Z direction is incident on the optical path bending mirror 2 via the beam transmission unit 1.
  • the light reflected by the optical path bending mirror 2 enters the spatial light modulator 3.
  • the spatial light modulator 3 individually controls the postures of a plurality of mirror elements arranged in a predetermined plane and individually controlled based on a control signal from the control system CR. And a driving unit for driving.
  • the beam transmitting unit 1 guides the incident light beam from the light source LS to the spatial light modulator 3 while converting the incident light beam into a light beam having a cross section having an appropriate size and shape, and arranges a plurality of mirror elements of the spatial light modulator 3.
  • the position variation and the angle variation of the light incident on the surface (hereinafter referred to as “spatial light modulator array surface”) are actively corrected.
  • the light emitted in the + Z direction from the spatial light modulator 3 enters the pupil plane 4 c of the relay optical system 4 via the front lens group 4 a of the relay optical system 4.
  • the front lens group 4a is set so that its front focal position substantially coincides with the position of the array surface of the spatial light modulator 3, and its rear focal position substantially coincides with the position of the pupil plane 4c.
  • the light having passed through the spatial light modulator 3 variably forms a light intensity distribution according to the postures of the plurality of mirror elements on the pupil plane 4c.
  • the light that forms the light intensity distribution on the pupil plane 4c is incident on the relay optical system 5 via the rear lens group 4b of the relay optical system 4 in which the front focal position is set on the pupil plane 4c.
  • the relay optical system 5 has a front focal position located near the rear focal position of the rear lens group 4b, and a rear focal position located near the incident surface of the micro fly's eye lens 7.
  • the rear focal position of the side lens group 4b and the incident surface of the micro fly's eye lens 7 are set optically in a Fourier transform relationship between the arrangement surface of the spatial light modulator 3 and the incident surface of the micro fly's eye lens 7. is doing.
  • the light that has passed through the relay optical system 5 is reflected in the + Y direction by the optical path bending mirror 6 and enters the micro fly's eye lens (or fly eye lens) 7.
  • the rear lens group 4b and the relay optical system 5 set the pupil plane 4c and the incident surface of the micro fly's eye lens 7 optically conjugate. Therefore, the light that has passed through the spatial light modulator 3 is light corresponding to the light intensity distribution formed on the pupil plane 4c on the incident surface of the micro fly's eye lens 7 disposed at a position optically conjugate with the pupil plane 4c. Form an intensity distribution.
  • the micro fly's eye lens 7 is an optical element made up of a large number of micro lenses having positive refractive power, which are arranged vertically and horizontally and densely.
  • the micro fly's eye lens 7 is configured by forming a micro lens group by etching a plane parallel plate.
  • a micro fly's eye lens unlike a fly eye lens composed of lens elements isolated from each other, a large number of micro lenses (micro refractive surfaces) are integrally formed without being isolated from each other.
  • the micro fly's eye lens is the same wavefront division type optical integrator as the fly's eye lens in that the lens elements are arranged vertically and horizontally.
  • the micro fly's eye lens 7 is an optical integrator that includes a plurality of wavefront division surfaces arranged in parallel in a plane that crosses the optical axis.
  • a rectangular minute refracting surface as a unit wavefront dividing surface in the micro fly's eye lens 7 is a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and the shape of the exposure region to be formed on the wafer W). It is.
  • a cylindrical micro fly's eye lens can be used as the micro fly's eye lens 7.
  • the configuration and operation of the cylindrical micro fly's eye lens are disclosed in, for example, US Pat. No. 6,913,373.
  • the light beam incident on the micro fly's eye lens 7 is two-dimensionally divided by a large number of microlenses, and the light intensity distribution on the rear focal plane or in the vicinity of the illumination pupil is almost the same as the light intensity distribution formed on the incident plane.
  • a secondary light source substantially surface light source consisting of a large number of small light sources: pupil intensity distribution
  • the light from the secondary light source formed on the illumination pupil immediately after the micro fly's eye lens 7 illuminates the mask blind 9 in a superimposed manner via the condenser optical system 8.
  • a rectangular illumination field corresponding to the shape and focal length of the rectangular minute refractive surface of the micro fly's eye lens 7 is formed.
  • an opening having a shape corresponding to the secondary light source is located at the rear focal plane of the micro fly's eye lens 7 or at a position in the vicinity thereof, that is, at a position optically conjugate with an entrance pupil plane of the projection optical system PL described later. You may arrange
  • the light that passes through the rectangular opening (light transmitting portion) of the mask blind 9 receives the light condensing action of the imaging optical system 10 and is an optical path bending mirror 11 arranged in the optical path of the imaging optical system 10. After that, the mask M on which a predetermined pattern is formed is illuminated in a superimposed manner. That is, the imaging optical system 10 forms an image of the rectangular opening of the mask blind 9 on the mask M.
  • the light transmitted through the mask M held on the mask stage MS forms a mask pattern image on the wafer (photosensitive substrate) W held on the wafer stage WS via the projection optical system PL.
  • batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled.
  • the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
  • the exposure apparatus of the present embodiment includes a first pupil intensity distribution measurement unit DTr that measures a pupil intensity distribution on the exit pupil plane of the illumination optical system based on light that passes through the illumination optical system (1 to 11), and a projection optical system.
  • a second pupil intensity distribution measurement unit DTw that measures a pupil intensity distribution on the pupil plane of the projection optical system PL (an exit pupil plane of the projection optical system PL) based on light via the PL, and first and second pupil intensity distributions
  • a control system CR that controls the spatial light modulator 3 based on the measurement result of at least one of the measurement units DTr and DTw and controls the overall operation of the exposure apparatus.
  • the first pupil intensity distribution measurement unit DTr includes, for example, an imaging unit having a photoelectric conversion surface disposed at a position optically conjugate with the exit pupil position of the illumination optical system, and each point on the surface to be irradiated by the illumination optical system. Is measured (pupil intensity distribution formed at the exit pupil position of the illumination optical system by the light incident on each point).
  • the second pupil intensity distribution measurement unit DTw includes an imaging unit having a photoelectric conversion surface arranged at a position optically conjugate with the pupil position of the projection optical system PL, for example, and includes each image plane of the projection optical system PL. A pupil intensity distribution related to the points (pupil intensity distribution formed by light incident on each point at the pupil position of the projection optical system PL) is measured.
  • the secondary light source formed by the micro fly's eye lens 7 is used as a light source, and the mask M (and thus the wafer W) disposed on the irradiated surface of the illumination optical system is Koehler illuminated.
  • the position where the secondary light source is formed is optically conjugate with the position of the aperture stop AS of the projection optical system PL, and the formation surface of the secondary light source can be called the illumination pupil plane of the illumination optical system.
  • the image of the formation surface of the secondary light source can be called an exit pupil plane of the illumination optical system.
  • the irradiated surface (the surface on which the mask M is disposed or the surface on which the wafer W is disposed when the illumination optical system including the projection optical system PL is considered) is optical with respect to the illumination pupil plane.
  • the pupil intensity distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system or a plane optically conjugate with the illumination pupil plane.
  • the incident surface of the micro fly's eye lens 7 and a surface optically conjugate with the incident surface, for example, the pupil plane 4c can also be called illumination pupil planes, and the light intensity distribution on these planes is also the pupil intensity distribution. Can be called.
  • the condensing optical system including the relay optical systems 4 and 5 and the micro fly's eye lens 7 are based on the light beam that has passed through the spatial light modulator 3 and the pupil intensity is applied to the illumination pupil immediately after the micro fly's eye lens 7.
  • a distribution forming optical system that forms a distribution that is, a distribution forming optical system that distributes light having passed through the spatial light modulator 3 to the illumination pupil immediately after the micro fly's eye lens 7 with a predetermined light intensity distribution.
  • the spatial light modulator 3 includes a plurality of mirror elements 3a arranged in a predetermined plane, a base 3b holding the plurality of mirror elements 3a, and a cable (not shown) connected to the base 3b. ), And a drive unit 3c that individually controls and drives the postures of the plurality of mirror elements 3a.
  • the optical path from the spatial light modulator 3 to the pupil plane 4c of the relay optical system 4 is shown.
  • the attitude of the plurality of mirror elements 3a is changed by the action of the drive unit 3c that operates based on a command from the control system CR, and each mirror element 3a is set in a predetermined direction.
  • the spatial light modulator 3 includes a plurality of minute mirror elements 3a arranged two-dimensionally, and the spatial modulation corresponding to the incident position of the incident light can be varied. Is applied and injected.
  • the number of mirror elements 3a is typically large, typically about 4000 to 100,000.
  • the light beam L1 is incident on the mirror element SEa of the plurality of mirror elements 3a, and the light beam L2 is incident on the mirror element SEb different from the mirror element SEa.
  • the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb, and the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc.
  • the mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
  • the configuration is such that the light beam incident along the parallel direction travels in a direction parallel to the optical axis AX3 of the optical path between the spatial light modulator 3 and the relay optical system 4 after being reflected by the spatial light modulator 3.
  • the array plane of the plurality of mirror elements 3a of the spatial light modulator 3 and the pupil plane 4c of the relay optical system 4 are optically positioned in a Fourier transform relationship via the front lens group 4a. ing.
  • the light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 3 and given a predetermined angular distribution forms the predetermined light intensity distributions SP1 to SP4 on the pupil plane 4c, and thus the micro fly's eye
  • a light intensity distribution corresponding to the light intensity distributions SP1 to SP4 is formed on the incident surface of the lens. That is, the front lens group 4a determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 3 gives to the emitted light on the pupil plane 4c that is the far field (Fraunhofer diffraction region) of the spatial light modulator 3. Convert to position.
  • the light intensity distribution (pupil intensity distribution) of the secondary light source formed by the micro fly's eye lens 7 is the light intensity formed on the incident surface of the micro fly's eye lens 7 by the spatial light modulator 3 and the relay optical systems 4 and 5.
  • the distribution corresponds to the distribution.
  • the spatial light modulator 3 is a large number of minute reflecting elements regularly and two-dimensionally arranged along one plane with a planar reflecting surface as the upper surface.
  • a movable multi-mirror including a mirror element 3a.
  • Each mirror element 3a is movable, and the inclination of the reflection surface, that is, the inclination angle and the inclination direction of the reflection surface are independently controlled by the action of the drive unit 3c that operates based on a control signal from the control system CR.
  • Each mirror element 3a can be rotated continuously or discretely by a desired rotation angle with two directions parallel to the reflecting surface and orthogonal to each other as rotation axes. That is, it is possible to two-dimensionally control the inclination of the reflecting surface of each mirror element 3a.
  • each mirror element 3a When the reflecting surface of each mirror element 3a is discretely rotated, the rotation angle is set in a plurality of states (for example,..., -2.5 degrees, -2.0 degrees,... 0 degrees, +0.5 degrees) ... +2.5 degrees,.
  • FIG. 3 shows a mirror element 3a having a square outer shape
  • the outer shape of the mirror element 3a is not limited to a square.
  • the shape can be arranged so that the gap between the mirror elements 3a is reduced (a shape that can be packed most closely). Further, from the viewpoint of light utilization efficiency, the interval between two adjacent mirror elements 3a can be minimized.
  • the spatial light modulator 3 for example, a spatial light modulator that continuously changes the directions of a plurality of mirror elements 3a arranged two-dimensionally is used.
  • a spatial light modulator for example, European Patent Publication No. 779530, US Pat. No. 5,867,302, US Pat. No. 6,480,320, US Pat. No. 6,600,591 U.S. Patent No. 6,733,144, U.S. Patent No. 6,900,915, U.S. Patent No. 7,095,546, U.S. Patent No. 7,295,726, U.S. Patent No. 7, No. 424,330, U.S. Pat. No. 7,567,375, U.S. Patent Publication No.
  • a spatial light modulator can be used. Note that the orientations of the plurality of mirror elements 3a arranged two-dimensionally may be controlled to have a plurality of discrete stages.
  • the attitude of the plurality of mirror elements 3a is changed by the action of the drive unit 3c that operates according to the control signal from the control system CR, and each mirror element 3a is set in a predetermined direction.
  • the light reflected at a predetermined angle by each of the plurality of mirror elements 3 a of the spatial light modulator 3 forms a desired pupil intensity distribution on the illumination pupil immediately after the micro fly's eye lens 7.
  • the spatial light modulator 3 variably forms a pupil intensity distribution on the illumination pupil immediately after the micro fly's eye lens 7.
  • the desired pupil intensity distribution is also formed at the (position).
  • the exposure apparatus in order to transfer the pattern of the mask M onto the wafer W with high accuracy and faithfully, it is important to perform exposure under appropriate illumination conditions according to the pattern characteristics of the mask M, for example.
  • the illumination optical system (1 to 11) of the present embodiment since the spatial light modulator 3 in which the postures of the plurality of mirror elements 3a are individually changed is used, the pupil formed by the action of the spatial light modulator 3 is used. The intensity distribution can be changed freely and quickly.
  • a local coordinate system (x1, y1, z1) in the spatial light modulator 3 is set.
  • the x1 axis is set in the direction parallel to the X axis on the arrangement plane of the spatial light modulator 3
  • the y1 axis is set in the direction orthogonal to the x1 axis on the arrangement plane.
  • the plurality of mirror elements 3a have a rectangular reflecting surface having edges along the x1 direction (X direction) and the y1 direction, and the spatial light modulator 3 extends along the x1 direction.
  • the rectangular effective reflection region 3d has a long side and a short side along the y1 direction.
  • the direction of a pair of edges (y1 direction) facing each other in two adjacent mirror elements 3 a and the spatial light modulation As shown in FIG. 4, among a plurality of mirror elements 3 a of the spatial light modulator 3, the direction of a pair of edges (y1 direction) facing each other in two adjacent mirror elements 3 a and the spatial light modulation.
  • the direction of the axis of the incident light beam incident on the device 3 (the direction of the optical axis AX2) intersects the XY plane at an angle ⁇ ′.
  • the axis of the incident light beam is defined as a line connecting the center of the light quantity in the cross section of the incident light beam, or a line connecting the outline center in the cross section of the incident light beam.
  • the outer shape center is defined as, for example, the center of gravity of the outer shape obtained by connecting the points where the intensity peak is half value (or other appropriate value) in the cross section of the incident light beam.
  • the optical path bending mirror 2 that deflects the incident light and guides it to the spatial light modulator 3 is the incident side optical system that guides the incident light beam to the spatial light modulator 3, that is, spatial light modulation.
  • An incident side optical system for irradiating light to the plurality of mirror elements 3a of the container 3 is configured.
  • the relay optical system 4 constitutes an emission side optical system into which light from the plurality of mirror elements 3 a of the spatial light modulator 3 enters.
  • the plane including the incident optical axis AX ⁇ b> 1 to the optical path bending mirror 2 and the incident optical axis AX ⁇ b> 2 from the optical path bending mirror 2 to the spatial light modulator 3 is from the spatial light modulator 3.
  • a plane perpendicular to the arrangement plane of the spatial light modulator 3 including the emission optical axis AX3 and the y1 direction intersects at an angle ⁇ ′ corresponding to the required angle ⁇ .
  • the plane including the optical axis AX1 on the incident side of the optical path bending mirror 2 and the optical axis AX2 on the exit side of the optical path bending mirror 2 intersects the y1 direction that is the direction of the edge.
  • the y1 direction which is the direction of the pair of edges 51 and 52 facing each other in the two adjacent mirror elements 3a and the axis of the incident light beam incident on the spatial light modulator 3 (on the optical axis AX2). And a direction perpendicular to the arrangement plane of the spatial light modulator 3 and the direction of the intersection line (corresponding to the direction line F1 in FIG. 5) intersects at a required angle ⁇ .
  • the y1 direction that is the direction of the edge is a surface (second surface) that includes the optical axis AX2 of the incident-side optical system (2) and is perpendicular to the array surface (first surface) of the spatial light modulator 3. ).
  • the zero-order light that passes between the pair of opposing edges 51 and 52 in the two adjacent mirror elements 3a and is reflected by the surface 3ba of the base 3b is reflected between the edges 51 and 52.
  • the light is not emitted from the spatial light modulator 3 after passing through, and thus does not reach the illumination pupil immediately after the micro fly's eye lens 7.
  • the illumination optical system (1 to 11) of the present embodiment it is possible to achieve a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror element 3a of the spatial light modulator 3.
  • the pattern of the mask M to be transferred is used by using the illumination optical system (1 to 11) that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light.
  • the fine pattern can be accurately transferred to the wafer W under appropriate illumination conditions realized according to the characteristics.
  • the emission optical axis AX3 from the device 3 is not included in one plane. However, without being limited to this, in the configuration in which the incident optical axes AX1 and AX2 and the emission optical axis AX3 are included in one plane, the influence of unnecessary light from other than the mirror element 3a of the spatial light modulator 3 is suppressed. Variations that can be made are also possible.
  • FIG. 7 is a drawing schematically showing a configuration of an exposure apparatus according to a modification.
  • the modification of FIG. 7 has a configuration similar to that of the embodiment of FIG.
  • the incident optical axes AX1 and AX2 and the exit optical axis AX3 are included in one plane (YZ plane), and between the beam transmitting unit 1 and the optical path bending mirror 2. 1 is different from the embodiment of FIG. 1 in that a diffractive optical element 21 and a relay optical system 22 are provided in the optical path. Therefore, in FIG. 7, the same reference numerals as those in FIG. 1 are given to elements having the same functions as the components shown in FIG.
  • the configuration and operation of the modified example of FIG. 7 will be described focusing on the differences from the embodiment of FIG.
  • the incident light axis AX1 to the optical path bending mirror 2 and the spatial light modulation from the optical path bending mirror 2 are the same as in the case of a normal design using a spatial light modulator having a number of mirror elements.
  • the optical axis AX2 incident on the optical device 3 and the optical axis AX3 emitted from the spatial light modulator 3 are included in one plane (YZ plane).
  • the spatial light modulator 3 is installed in such a posture that the long side of the rectangular effective reflection region 3d is inclined with respect to the X direction.
  • a local coordinate system (x2, y2) on the array surface of the spatial light modulator 3 is set.
  • the x2 axis in the long side direction of the rectangular effective reflection region 3d on the arrangement surface of the spatial light modulator 3 is perpendicular to the x2 axis on the arrangement surface (of the effective reflection region 3d).
  • the y2 axis is set in the short side direction.
  • the spatial light modulator 3 is obtained by rotating the rectangular effective reflection region 3d by a required angle ⁇ from the normal arrangement in which the long side is parallel to the X direction around the normal of the arrangement surface. It is installed at. That is, the direction of the line of intersection between one YZ plane including the incident optical axes AX1 and AX2 and the outgoing optical axis AX3 and the array surface of the spatial light modulator 3 is the required angle ⁇ with respect to the y2 direction on the array surface. Tilted.
  • FIG. 8 shows an angle ⁇ ′′ formed by one YZ plane including the incident optical axes AX1 and AX2 and the outgoing optical axis AX3 and the y2 direction in the XY plane.
  • This angle ⁇ ′′ is an array. This corresponds to the required angle ⁇ on the surface.
  • the optical axis AX1 on the entrance side of the optical path bending mirror 2, the optical axis AX2 on the exit side of the optical path folding mirror 2, and the optical axis AX3 of the exit side optical system (4) are one plane. (YZ plane), and the direction of the line of intersection between this one plane and the array plane of the spatial light modulator 3 is inclined by a required angle with respect to the y2 direction (edge direction) on the array plane.
  • the y2 direction that is the direction of a pair of edges facing each other in the two adjacent mirror elements 3a and the axis of the incident light beam incident on the spatial light modulator 3 (on the optical axis AX2).
  • the plane perpendicular to the array plane of the spatial light modulator 3 and the direction of the intersection line of the array plane intersect at a required angle ⁇ . Therefore, the zero-order light that passes between a pair of opposing edges in the two adjacent mirror elements 3a and is reflected by the surface of the substrate passes through the pair of edges and is emitted from the spatial light modulator 3. Therefore, the illumination pupil just after the micro fly's eye lens 7 is not reached.
  • the spatial light modulator 3 simply installing the spatial light modulator 3 in such a posture that the long side of the rectangular effective reflection region 3d is inclined with respect to the X direction covers the entire effective reflection region 3d as shown in FIG.
  • a light beam 53 having a rectangular cross section needs to be incident on the spatial light modulator 3, and a relatively large light amount loss occurs in the spatial light modulator 3. Therefore, in the modification of FIG. 7, the diffractive optical element 21 and the relay optical system 22 are attached in order from the light incident side in the optical path between the beam transmitter 1 and the optical path bending mirror 2. .
  • the diffractive optical element 21 is disposed at or near the front focal position of the relay optical system 22, and the array surface of the spatial light modulator 3 is disposed at or near the rear focal position of the relay optical system 22. . That is, the diffractive optical element 21 is disposed at a position that is optically Fourier-transformed with the arrangement surface of the spatial light modulator 3.
  • the light beam incident on the diffractive optical element 21 is converted into a light beam that matches the shape of the effective reflection region 3d of the spatial light modulator 3 installed in an inclined posture, and has a rectangular shape without substantial loss of light amount.
  • the effective reflection area 3d is illuminated.
  • the incident light beam is converted into a light beam that matches the shape of the effective reflection area 3 d of the spatial light modulator 3 and emitted as a light beam conversion element that is optically aligned with the arrangement surface of the spatial light modulator 3.
  • a diffractive optical element 21 disposed at a position having a Fourier transform relationship is used.
  • the present invention is not limited to a diffractive optical element, and other suitable optical elements as a light beam conversion element, for example, a fly-eye lens disposed at a position optically Fourier-transformed with the arrangement surface of a spatial light modulator.
  • Such a wavefront division type optical integrator can also be used. In this case, the optical integrator is installed in such a posture that the short side of the rectangular unit wavefront dividing surface is inclined by an angle corresponding to the required angle ⁇ with respect to the Y direction.
  • the present invention is described by taking a spatial light modulator in which a plurality of mirror elements have a rectangular reflecting surface as an example.
  • the present invention is not limited to the rectangular shape, and the present invention can be similarly applied to a spatial light modulation optical system including a spatial light modulator including a plurality of mirror elements having a hexagonal reflecting surface, for example.
  • What is important in the present invention is that the direction of an arbitrary pair of edges facing each other in two adjacent mirror elements of the plurality of mirror elements of the spatial light modulator and the axis of the incident light beam incident on the spatial light modulator.
  • the direction perpendicular to the arrangement plane and the direction of the intersection line of the arrangement plane intersect at a required angle ⁇ that is not 0 °.
  • a pupil intensity distribution is formed in the illumination pupil immediately after the micro fly's eye lens 7 based on the light beam that has passed through the spatial light modulator 3, and the mask M is formed by light from this pupil intensity distribution. Lighting up.
  • the present invention is not limited to this, and the present invention can be similarly applied to an exposure apparatus in which the spatial light modulator of the spatial light modulation optical system is used as a mask.
  • the exposure apparatus includes a projection optical system that projects light from the spatial light modulator onto the substrate, and the spatial light modulator is disposed on the object plane of the projection optical system.
  • the spatial light modulator having a plurality of mirror elements that are two-dimensionally arranged and individually controlled the directions (angle: inclination) of the plurality of two-dimensionally arranged reflecting surfaces are individually set.
  • the controllable spatial light modulator 3 is used.
  • a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used.
  • the spatial light modulator disclosed in FIG. 1d of US Pat. No. 5,312,513 and US Pat. No. 6,885,493 can be used.
  • spatial light modulators by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light.
  • the spatial light modulator having a plurality of reflection surfaces arranged two-dimensionally as described above is modified in accordance with the disclosure of, for example, US Pat. No. 6,891,655 and US Patent Publication No. 2005/0095749. May be.
  • variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask.
  • a spatial light modulation element including a plurality of reflection elements driven based on predetermined electronic data can be used.
  • An exposure apparatus using a spatial light modulator is disclosed, for example, in US Patent Publication No. 2007/0296936.
  • a transmissive spatial light modulator may be used, or a self-luminous image display element may be used.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 10 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer W to be a substrate of the semiconductor device (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the transfer of the wafer W after the transfer is completed.
  • Development that is, development of the photoresist to which the pattern has been transferred is performed (step S46: development process).
  • step S48 processing step.
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. is there.
  • step S48 the surface of the wafer W is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • the exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
  • FIG. 11 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S50
  • a color filter formation process step S52
  • a cell assembly process step S54
  • a module assembly process step S56
  • step S50 a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment.
  • the pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • an exposure apparatus for manufacturing a semiconductor device for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display
  • various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various
  • ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light.
  • the present invention is not limited to this, and other appropriate laser light sources are used.
  • the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm.
  • a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it.
  • a technique for filling the liquid in the optical path between the projection optical system and the photosensitive substrate a technique for locally filling the liquid as disclosed in International Publication No. WO99 / 49504, a special technique, A method of moving a stage holding a substrate to be exposed as disclosed in Kaihei 6-124873 in a liquid tank, or a predetermined stage on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. A method of forming a liquid tank having a depth and holding the substrate therein can be employed.
  • the teachings of WO99 / 49504, JP-A-6-124873 and JP-A-10-303114 are incorporated by reference.
  • the present invention is applied to the illumination optical system that illuminates the mask (or wafer) in the exposure apparatus.
  • the present invention is not limited to this, and an object other than the mask (or wafer) is used.
  • the present invention can also be applied to a general illumination optical system that illuminates the irradiation surface.
  • a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled, Among the plurality of mirror elements of the spatial light modulator, the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator.
  • a spatial light modulation optical system characterized in that the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °. 2.
  • the required angle is such that unnecessary light that passes between any pair of facing edges and is reflected by a surface portion substantially parallel to the predetermined surface passes between the pair of edges and exits from the spatial light modulator.
  • the width dimension between any pair of facing edges is B
  • the thickness of each mirror element is D
  • the distance between each mirror element and the surface portion is G
  • the incident angle of light to the surface portion is
  • is the required angle ⁇ , ⁇ ⁇ sin ⁇ 1 [B / ⁇ 2 ⁇ (D + G) ⁇ tan ⁇ ] 3.
  • the spatial light modulation optical system according to any one of clauses 1 to 3, further comprising an incident side optical system that guides the incident light beam to the spatial light modulator.
  • the incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
  • the plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
  • a plane including the incident optical axis to the optical path bending mirror and the incident optical axis from the optical path bending mirror to the spatial light modulator has an emission optical axis from the spatial light modulator and the first direction.
  • the incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
  • the plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
  • the incident optical axis to the optical path bending mirror, the incident optical axis from the optical path bending mirror to the spatial light modulator, and the outgoing optical axis from the spatial light modulator are included in one plane, 5.
  • the incident-side optical system includes a light beam conversion element that converts an incident light beam into a light beam that matches a shape of an effective reflection region of the spatial light modulator and emits the light beam.
  • Optical system. 8 The clause 7 is characterized in that the light beam conversion element has a diffractive optical element disposed at a position optically Fourier-transformed with the predetermined surface in the optical path ahead of the optical path bending mirror.
  • the light beam conversion element includes a wavefront splitting type optical integrator disposed in a position optically Fourier-transformed with the predetermined surface in the optical path in front of the optical path bending mirror. 8.
  • the spatial light modulation optical system according to 7. 10. 10.
  • the spatial light modulator has a drive unit that individually controls and drives the postures of the plurality of mirror elements.
  • the driving unit changes the directions of the plurality of mirror elements continuously or discretely.
  • An illumination optical system comprising: a distribution forming optical system that forms a predetermined light intensity distribution in an illumination pupil of the illumination optical system based on light that has passed through the spatial light modulator. 14 14.
  • An exposure apparatus comprising the illumination optical system according to any one of clauses 13 to 15 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a substrate. 17. The exposure according to clause 16, further comprising a projection optical system that forms an image of the predetermined pattern on the substrate, wherein the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. apparatus. 18. An exposure apparatus that exposes a substrate with a predetermined pattern, An exposure apparatus comprising the spatial light modulation optical system according to any one of clauses 1 to 12. 19. A projection optical system for projecting light from the spatial light modulator of the spatial light modulation optical system onto the substrate; 19.
  • the exposure apparatus wherein the spatial light modulator is disposed on an object plane of the projection optical system.
  • 20 Using the exposure apparatus according to any one of clauses 16 to 19, exposing the predetermined pattern onto a photosensitive substrate; Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate; Processing the surface of the photosensitive substrate through the mask layer.
  • a device manufacturing method comprising: 21.
  • the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator.
  • a spatial light modulation method characterized in that the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
  • Beam Transmitter 3 Spatial Light Modulator 4, 5 Relay Optical System 7 Micro Fly Eye Lens (Optical Integrator) 8 Condenser optical system 9
  • Mask blind 10 Imaging optical system LS Light source DTr, DTw Pupil intensity distribution measuring unit CR Control system M

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This illumination optical system can achieve a desired pupil intensity distribution by suppressing the effect of unneeded light not from a mirror element of a spatial light modulator. The present invention is provided with: a spatial light modulator having a plurality of mirror elements that are arrayed in a predetermined plane and are controlled individually; and a distribution formation optical system that causes light that has traversed the spatial light modulator to be distributed at a predetermined light strength distribution at the illumination pupil of the illumination optical system. The direction of any given pair of opposing edges of two adjacent mirror elements of the plurality of mirror elements of the spatial light modulator, and the direction of the line of intersection between a predetermined plane and a plane perpendicular to the predetermined plane containing the axis line of an entering light beam entering to the spatial light modulator intersect at a required angle that is not 0°.

Description

空間光変調光学系、照明光学系、露光装置、およびデバイス製造方法Spatial light modulation optical system, illumination optical system, exposure apparatus, and device manufacturing method
 本発明は、空間光変調光学系、照明光学系、露光装置、およびデバイス製造方法に関する。 The present invention relates to a spatial light modulation optical system, an illumination optical system, an exposure apparatus, and a device manufacturing method.
 半導体素子等のデバイスの製造に用いられる露光装置では、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源(一般には照明瞳における所定の光強度分布)を形成する。以下、照明瞳での光強度分布を、「瞳強度分布」という。また、照明瞳とは、照明瞳と被照射面(露光装置の場合にはマスクまたはウェハ)との間の光学系の作用によって、被照射面が照明瞳のフーリエ変換面となるような位置として定義される。 In an exposure apparatus used for manufacturing a device such as a semiconductor element, a light source emitted from a light source is a secondary light source (generally a surface light source consisting of a number of light sources via a fly-eye lens as an optical integrator). Form a predetermined light intensity distribution in the illumination pupil. Hereinafter, the light intensity distribution in the illumination pupil is referred to as “pupil intensity distribution”. The illumination pupil is a position where the illumination surface becomes the Fourier transform plane of the illumination pupil by the action of the optical system between the illumination pupil and the illumination surface (a mask or a wafer in the case of an exposure apparatus). Defined.
 二次光源からの光は、コンデンサー光学系により集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは微細化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。 After the light from the secondary light source is collected by the condenser optical system, the mask on which a predetermined pattern is formed is illuminated in a superimposed manner. The light transmitted through the mask forms an image on the wafer via the projection optical system, and the mask pattern is projected and exposed (transferred) onto the wafer. The pattern formed on the mask is miniaturized, and it is indispensable to obtain a uniform illuminance distribution on the wafer in order to accurately transfer the fine pattern onto the wafer.
 従来、ズーム光学系を用いることなく瞳強度分布(ひいては照明条件)を連続的に変更することのできる照明光学系が提案されている(例えば特許文献1を参照)。従来の照明光学系では、アレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小なミラー要素により構成された可動マルチミラーを用いて、入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換し、ひいては所望の瞳強度分布を実現している。 Conventionally, there has been proposed an illumination optical system capable of continuously changing the pupil intensity distribution (and consequently the illumination condition) without using a zoom optical system (see, for example, Patent Document 1). In a conventional illumination optical system, an incident light flux is made minute for each reflecting surface by using a movable multi-mirror configured by a large number of minute mirror elements that are arranged in an array and whose tilt angle and tilt direction are individually driven and controlled. By dividing the light into units and deflecting, the cross section of the light beam is converted into a desired shape or a desired size, and thus a desired pupil intensity distribution is realized.
米国特許出願公開第2009/0116093号明細書US Patent Application Publication No. 2009/0116093
 従来の照明光学系では、姿勢が個別に制御される多数の微小なミラー要素を有する空間光変調器を用いているので、瞳強度分布の形状および大きさの変更に関する自由度は高い。しかしながら、ミラー要素からの反射光だけでなく、例えばミラー要素を支持する基盤の表面からの反射光も照明瞳に達することがある。この場合、ミラー要素以外からの反射光(一般には不要光)の影響により、所望の瞳強度分布を形成することが困難になる。 Since the conventional illumination optical system uses a spatial light modulator having a large number of minute mirror elements whose postures are individually controlled, the degree of freedom in changing the shape and size of the pupil intensity distribution is high. However, not only the reflected light from the mirror element but also the reflected light from the surface of the substrate supporting the mirror element, for example, may reach the illumination pupil. In this case, it becomes difficult to form a desired pupil intensity distribution due to the influence of reflected light (generally unnecessary light) from other than the mirror elements.
 本発明は、前述の課題に鑑みてなされたものであり、空間光変調器のミラー要素以外からの不要光の影響を抑えて、所望の瞳強度分布を実現することのできる照明光学系を提供することを目的とする。また、本発明は、不要光の影響を抑えて所望の瞳強度分布を実現する照明光学系を用いて、適切な照明条件のもとで良好な露光を行うことのできる露光装置を提供することを目的とする。 The present invention has been made in view of the foregoing problems, and provides an illumination optical system capable of realizing a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror elements of the spatial light modulator. The purpose is to do. The present invention also provides an exposure apparatus that can perform good exposure under appropriate illumination conditions using an illumination optical system that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light. With the goal.
 前記課題を解決するために、第1形態では、第1面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を備える空間光変調光学系において、
 前記空間光変調器の前記複数のミラー要素に光を照射する入射側光学系を備え、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記入射側光学系の光軸を含んで前記第1面に垂直な第2面と交差していることを特徴とする空間光変調光学系を提供する。
 第2形態では、所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を備える空間光変調光学系において、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記対向する任意の一対のエッジ間を通過して前記所定面とほぼ平行な面部分で反射された不要光が低減される角度であることを特徴とする空間光変調光学系を提供する。
In order to solve the above problems, in the first embodiment, in a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled,
An incident-side optical system that irradiates light to the plurality of mirror elements of the spatial light modulator;
Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system. A spatial light modulation optical system characterized by intersecting with a second surface is provided.
In the second embodiment, in a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
Of the plurality of mirror elements of the spatial light modulator, the direction of an arbitrary pair of edges facing each other in two adjacent mirror elements passes between the pair of any facing edges and is substantially the same as the predetermined surface. Provided is a spatial light modulation optical system characterized by an angle at which unnecessary light reflected by parallel plane portions is reduced.
 第3形態では、光源からの光により被照射面を照明する照明光学系において、
 第1形態または第2形態の空間光変調光学系と、
 前記空間光変調器を経た光を前記照明光学系の照明瞳に所定の光強度分布で分布させる分布形成光学系とを備えていることを特徴とする照明光学系を提供する。
In the third embodiment, in the illumination optical system that illuminates the illuminated surface with light from the light source,
A spatial light modulation optical system of the first form or the second form;
There is provided an illumination optical system comprising: a distribution forming optical system that distributes light having passed through the spatial light modulator to an illumination pupil of the illumination optical system with a predetermined light intensity distribution.
 第4形態では、所定のパターンを照明するための第3形態の照明光学系を備え、前記所定のパターンを基板に露光することを特徴とする露光装置を提供する。 In a fourth aspect, there is provided an exposure apparatus comprising the illumination optical system of the third aspect for illuminating a predetermined pattern, and exposing the predetermined pattern onto a substrate.
 第5形態では、所定のパターンを基板に露光する露光装置であって、
 第1形態または第2形態の空間光変調光学系を備えていることを特徴とする露光装置を提供する。
In the fifth embodiment, an exposure apparatus that exposes a predetermined pattern on a substrate,
An exposure apparatus comprising the spatial light modulation optical system of the first form or the second form is provided.
 第6形態では、第4形態または第5形態の露光装置を用いて、前記所定のパターンを感光性基板に露光することと、
 前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
 前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
In a sixth embodiment, using the exposure apparatus of the fourth embodiment or the fifth embodiment, exposing the predetermined pattern to a photosensitive substrate;
Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
And processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method is provided.
 第7形態では、所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向と、前記空間光変調器へ入射する入射光束の軸線を含んで前記所定面に垂直な面と前記所定面との交線の方向とは、0°ではない所要角度で交差することを特徴とする空間光変調方法を提供する。
 第8形態では、第1面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
 入射側光学系を介して前記空間光変調器の前記複数のミラー要素に光を照射することと、
 前記空間光変調器の前記複数のミラー要素で前記光を反射することと、
を含み、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記入射側光学系の光軸を含んで前記第1面に垂直な第2面と交差していることを特徴とする空間光変調方法を提供する。
 第9形態では、所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
 入射側光学系を介して前記空間光変調器の前記複数のミラー要素に光を照射することと、
 前記空間光変調器の前記複数のミラー要素で前記光を反射することと、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジ間を通過して前記所定面とほぼ平行な面部分で反射された不要光を低減することと、
を含むことを特徴とする空間光変調方法を提供する。
In the seventh embodiment, in a spatial light modulation method for spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
Among the plurality of mirror elements of the spatial light modulator, the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator. A spatial light modulation method is provided in which the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
In an eighth aspect, in a spatial light modulation method for spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled,
Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system;
Reflecting the light at the plurality of mirror elements of the spatial light modulator;
Including
Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system. A spatial light modulation method characterized by intersecting a second surface is provided.
In the ninth embodiment, in a spatial light modulation method for spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system;
Reflecting the light at the plurality of mirror elements of the spatial light modulator;
Of the plurality of mirror elements of the spatial light modulator, unnecessary light that passes between any pair of opposing edges in two adjacent mirror elements and is reflected by a surface portion substantially parallel to the predetermined surface is reduced. To do
The spatial light modulation method characterized by including.
 本発明の照明光学系では、空間光変調器のミラー要素以外からの不要光の影響を抑えて、所望の瞳強度分布を実現することができる。また、本発明の露光装置では、不要光の影響を抑えて所望の瞳強度分布を実現する照明光学系を用いて、マスクのパターン特性に応じて実現された適切な照明条件のもとで良好な露光を行うことができ、ひいては良好なデバイスを製造することができる。 In the illumination optical system of the present invention, it is possible to realize a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror elements of the spatial light modulator. In the exposure apparatus of the present invention, the illumination optical system that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light is favorable under appropriate illumination conditions realized according to the mask pattern characteristics. Exposure can be performed, and as a result, a good device can be manufactured.
実施形態にかかる露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning embodiment. 空間光変調器の構成および作用を説明する図である。It is a figure explaining the structure and effect | action of a spatial light modulator. 空間光変調器の要部の部分斜視図である。It is a fragmentary perspective view of the principal part of a spatial light modulator. 実施形態における特徴的な要部構成を概略的に示す図である。It is a figure which shows roughly the characteristic principal part structure in embodiment. ミラー要素のエッジの方向と交差する方向に光が入射する様子を示す図である。It is a figure which shows a mode that light injects in the direction which cross | intersects the direction of the edge of a mirror element. 図5の線A-Aに沿った断面図である。FIG. 6 is a cross-sectional view taken along line AA of FIG. 変形例にかかる露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning a modification. 図7の変形例における特徴的な要部構成を概略的に示す図である。It is a figure which shows roughly the characteristic principal part structure in the modification of FIG. 図7の変形例における光束変換素子の必要性を説明する図である。It is a figure explaining the necessity of the light beam conversion element in the modification of FIG. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device. 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of liquid crystal devices, such as a liquid crystal display element.
 以下、実施形態を添付図面に基づいて説明する。図1は、実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面(露光面)の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向にY軸を、ウェハWの転写面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。 Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to the embodiment. In FIG. 1, the Z-axis is along the normal direction of the transfer surface (exposure surface) of the wafer W, which is a photosensitive substrate, and the Y-axis is in the direction parallel to the paper surface of FIG. In the W transfer surface, the X axis is set in a direction perpendicular to the paper surface of FIG.
 図1を参照すると、本実施形態の露光装置では、光源LSから露光光(照明光)が供給される。光源LSとして、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や、248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源LSから+Z方向に射出された光は、ビーム送光部1を介して、光路折曲げミラー2に入射する。光路折曲げミラー2により反射された光は、空間光変調器3に入射する。 Referring to FIG. 1, in the exposure apparatus of this embodiment, exposure light (illumination light) is supplied from a light source LS. As the light source LS, for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used. Light emitted from the light source LS in the + Z direction is incident on the optical path bending mirror 2 via the beam transmission unit 1. The light reflected by the optical path bending mirror 2 enters the spatial light modulator 3.
 空間光変調器3は、後述するように、所定面内に配列されて個別に制御される複数のミラー要素と、制御系CRからの制御信号に基づいて複数のミラー要素の姿勢を個別に制御駆動する駆動部とを有する。ビーム送光部1は、光源LSからの入射光束を適切な大きさおよび形状の断面を有する光束に変換しつつ空間光変調器3へ導くとともに、空間光変調器3の複数のミラー要素の配列面(以下、「空間光変調器の配列面」という)に入射する光の位置変動および角度変動をアクティブに補正する。 As will be described later, the spatial light modulator 3 individually controls the postures of a plurality of mirror elements arranged in a predetermined plane and individually controlled based on a control signal from the control system CR. And a driving unit for driving. The beam transmitting unit 1 guides the incident light beam from the light source LS to the spatial light modulator 3 while converting the incident light beam into a light beam having a cross section having an appropriate size and shape, and arranges a plurality of mirror elements of the spatial light modulator 3. The position variation and the angle variation of the light incident on the surface (hereinafter referred to as “spatial light modulator array surface”) are actively corrected.
 空間光変調器3から+Z方向へ射出された光は、リレー光学系4の前側レンズ群4aを介して、リレー光学系4の瞳面4cに入射する。前側レンズ群4aは、その前側焦点位置が空間光変調器3の配列面の位置とほぼ一致し且つその後側焦点位置が瞳面4cの位置とほぼ一致するように設定されている。空間光変調器3を経た光は、後述するように、複数のミラー要素の姿勢に応じた光強度分布を瞳面4cに可変的に形成する。 The light emitted in the + Z direction from the spatial light modulator 3 enters the pupil plane 4 c of the relay optical system 4 via the front lens group 4 a of the relay optical system 4. The front lens group 4a is set so that its front focal position substantially coincides with the position of the array surface of the spatial light modulator 3, and its rear focal position substantially coincides with the position of the pupil plane 4c. As will be described later, the light having passed through the spatial light modulator 3 variably forms a light intensity distribution according to the postures of the plurality of mirror elements on the pupil plane 4c.
 瞳面4cに光強度分布を形成した光は、瞳面4cに前側焦点位置が設定されたリレー光学系4の後側レンズ群4bを介して、リレー光学系5に入射する。リレー光学系5は、その前側焦点位置が後側レンズ群4bの後側焦点位置の近傍に位置し、且つその後側焦点位置がマイクロフライアイレンズ7の入射面の近傍に位置しており、後側レンズ群4bの後側焦点位置とマイクロフライアイレンズ7の入射面とを、ひいては空間光変調器3の配列面とマイクロフライアイレンズ7の入射面とを光学的にフーリエ変換の関係に設定している。 The light that forms the light intensity distribution on the pupil plane 4c is incident on the relay optical system 5 via the rear lens group 4b of the relay optical system 4 in which the front focal position is set on the pupil plane 4c. The relay optical system 5 has a front focal position located near the rear focal position of the rear lens group 4b, and a rear focal position located near the incident surface of the micro fly's eye lens 7. The rear focal position of the side lens group 4b and the incident surface of the micro fly's eye lens 7 are set optically in a Fourier transform relationship between the arrangement surface of the spatial light modulator 3 and the incident surface of the micro fly's eye lens 7. is doing.
 リレー光学系5を経た光は、光路折曲げミラー6により+Y方向に反射され、マイクロフライアイレンズ(またはフライアイレンズ)7に入射する。後側レンズ群4bおよびリレー光学系5は、瞳面4cとマイクロフライアイレンズ7の入射面とを光学的に共役に設定している。したがって、空間光変調器3を経た光は、瞳面4cと光学的に共役な位置に配置されたマイクロフライアイレンズ7の入射面に、瞳面4cに形成された光強度分布に対応した光強度分布を形成する。 The light that has passed through the relay optical system 5 is reflected in the + Y direction by the optical path bending mirror 6 and enters the micro fly's eye lens (or fly eye lens) 7. The rear lens group 4b and the relay optical system 5 set the pupil plane 4c and the incident surface of the micro fly's eye lens 7 optically conjugate. Therefore, the light that has passed through the spatial light modulator 3 is light corresponding to the light intensity distribution formed on the pupil plane 4c on the incident surface of the micro fly's eye lens 7 disposed at a position optically conjugate with the pupil plane 4c. Form an intensity distribution.
 マイクロフライアイレンズ7は、たとえば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であり、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。マイクロフライアイレンズでは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、レンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。換言すれば、マイクロフライアイレンズ7は、光軸を横切る平面内に並列配置された複数の波面分割面を備えるオプティカルインテグレータである。 The micro fly's eye lens 7 is an optical element made up of a large number of micro lenses having positive refractive power, which are arranged vertically and horizontally and densely. The micro fly's eye lens 7 is configured by forming a micro lens group by etching a plane parallel plate. Has been. In a micro fly's eye lens, unlike a fly eye lens composed of lens elements isolated from each other, a large number of micro lenses (micro refractive surfaces) are integrally formed without being isolated from each other. However, the micro fly's eye lens is the same wavefront division type optical integrator as the fly's eye lens in that the lens elements are arranged vertically and horizontally. In other words, the micro fly's eye lens 7 is an optical integrator that includes a plurality of wavefront division surfaces arranged in parallel in a plane that crosses the optical axis.
 マイクロフライアイレンズ7における単位波面分割面としての矩形状の微小屈折面は、マスクM上において形成すべき照野の形状(ひいてはウェハW上において形成すべき露光領域の形状)と相似な矩形状である。なお、マイクロフライアイレンズ7として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号明細書に開示されている。 A rectangular minute refracting surface as a unit wavefront dividing surface in the micro fly's eye lens 7 is a rectangular shape similar to the shape of the illumination field to be formed on the mask M (and the shape of the exposure region to be formed on the wafer W). It is. For example, a cylindrical micro fly's eye lens can be used as the micro fly's eye lens 7. The configuration and operation of the cylindrical micro fly's eye lens are disclosed in, for example, US Pat. No. 6,913,373.
 マイクロフライアイレンズ7に入射した光束は多数の微小レンズにより二次元的に分割され、その後側焦点面またはその近傍の照明瞳には、入射面に形成される光強度分布とほぼ同じ光強度分布を有する二次光源(多数の小光源からなる実質的な面光源:瞳強度分布)が形成される。マイクロフライアイレンズ7の直後の照明瞳に形成された二次光源からの光は、コンデンサー光学系8を介して、マスクブラインド9を重畳的に照明する。 The light beam incident on the micro fly's eye lens 7 is two-dimensionally divided by a large number of microlenses, and the light intensity distribution on the rear focal plane or in the vicinity of the illumination pupil is almost the same as the light intensity distribution formed on the incident plane. A secondary light source (substantially surface light source consisting of a large number of small light sources: pupil intensity distribution) is formed. The light from the secondary light source formed on the illumination pupil immediately after the micro fly's eye lens 7 illuminates the mask blind 9 in a superimposed manner via the condenser optical system 8.
 こうして、照明視野絞りとしてのマスクブラインド9には、マイクロフライアイレンズ7の矩形状の微小屈折面の形状と焦点距離とに応じた矩形状の照野が形成される。なお、マイクロフライアイレンズ7の後側焦点面またはその近傍の位置に、すなわち後述する投影光学系PLの入射瞳面と光学的にほぼ共役な位置に、二次光源に対応した形状の開口部(光透過部)を有する照明開口絞りを配置してもよい。 Thus, in the mask blind 9 as the illumination field stop, a rectangular illumination field corresponding to the shape and focal length of the rectangular minute refractive surface of the micro fly's eye lens 7 is formed. Note that an opening having a shape corresponding to the secondary light source is located at the rear focal plane of the micro fly's eye lens 7 or at a position in the vicinity thereof, that is, at a position optically conjugate with an entrance pupil plane of the projection optical system PL described later. You may arrange | position the illumination aperture stop which has (light transmissive part).
 マスクブラインド9の矩形状の開口部(光透過部)を介した光は、結像光学系10の集光作用を受け、且つ結像光学系10の光路中に配置された光路折曲げミラー11により-Z方向へ反射された後、所定のパターンが形成されたマスクMを重畳的に照明する。すなわち、結像光学系10は、マスクブラインド9の矩形状の開口部の像をマスクM上に形成することになる。 The light that passes through the rectangular opening (light transmitting portion) of the mask blind 9 receives the light condensing action of the imaging optical system 10 and is an optical path bending mirror 11 arranged in the optical path of the imaging optical system 10. After that, the mask M on which a predetermined pattern is formed is illuminated in a superimposed manner. That is, the imaging optical system 10 forms an image of the rectangular opening of the mask blind 9 on the mask M.
 マスクステージMS上に保持されたマスクMを透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハステージWSを二次元的に駆動制御しながら、ひいてはウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが順次露光される。 The light transmitted through the mask M held on the mask stage MS forms a mask pattern image on the wafer (photosensitive substrate) W held on the wafer stage WS via the projection optical system PL. In this way, batch exposure or scan exposure is performed while the wafer stage WS is two-dimensionally driven and controlled in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, and thus the wafer W is two-dimensionally driven and controlled. As a result, the pattern of the mask M is sequentially exposed in each exposure region of the wafer W.
 本実施形態の露光装置は、照明光学系(1~11)を介した光に基づいて照明光学系の射出瞳面における瞳強度分布を計測する第1瞳強度分布計測部DTrと、投影光学系PLを介した光に基づいて投影光学系PLの瞳面(投影光学系PLの射出瞳面)における瞳強度分布を計測する第2瞳強度分布計測部DTwと、第1および第2瞳強度分布計測部DTr,DTwのうちの少なくとも一方の計測結果に基づいて空間光変調器3を制御し且つ露光装置の動作を統括的に制御する制御系CRとを備えている。 The exposure apparatus of the present embodiment includes a first pupil intensity distribution measurement unit DTr that measures a pupil intensity distribution on the exit pupil plane of the illumination optical system based on light that passes through the illumination optical system (1 to 11), and a projection optical system. A second pupil intensity distribution measurement unit DTw that measures a pupil intensity distribution on the pupil plane of the projection optical system PL (an exit pupil plane of the projection optical system PL) based on light via the PL, and first and second pupil intensity distributions And a control system CR that controls the spatial light modulator 3 based on the measurement result of at least one of the measurement units DTr and DTw and controls the overall operation of the exposure apparatus.
 第1瞳強度分布計測部DTrは、例えば照明光学系の射出瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、照明光学系による被照射面上の各点に関する瞳強度分布(各点に入射する光が照明光学系の射出瞳位置に形成する瞳強度分布)を計測する。また、第2瞳強度分布計測部DTwは、例えば投影光学系PLの瞳位置と光学的に共役な位置に配置された光電変換面を有する撮像部を備え、投影光学系PLの像面の各点に関する瞳強度分布(各点に入射する光が投影光学系PLの瞳位置に形成する瞳強度分布)を計測する。 The first pupil intensity distribution measurement unit DTr includes, for example, an imaging unit having a photoelectric conversion surface disposed at a position optically conjugate with the exit pupil position of the illumination optical system, and each point on the surface to be irradiated by the illumination optical system. Is measured (pupil intensity distribution formed at the exit pupil position of the illumination optical system by the light incident on each point). In addition, the second pupil intensity distribution measurement unit DTw includes an imaging unit having a photoelectric conversion surface arranged at a position optically conjugate with the pupil position of the projection optical system PL, for example, and includes each image plane of the projection optical system PL. A pupil intensity distribution related to the points (pupil intensity distribution formed by light incident on each point at the pupil position of the projection optical system PL) is measured.
 第1および第2瞳強度分布計測部DTr,DTwの詳細な構成および作用については、例えば米国特許公開第2008/0030707号明細書を参照することができる。また、瞳強度分布計測部として、米国特許公開第2010/0020302号公報の開示を参照することもできる。 For details on the configuration and operation of the first and second pupil intensity distribution measurement units DTr and DTw, reference can be made to, for example, US Patent Publication No. 2008/0030707. As the pupil intensity distribution measuring unit, the disclosure of US Patent Publication No. 2010/0020302 can be referred to.
 本実施形態では、マイクロフライアイレンズ7により形成される二次光源を光源として、照明光学系の被照射面に配置されるマスクM(ひいてはウェハW)をケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系の照明瞳面と呼ぶことができる。また、この二次光源の形成面の像を照明光学系の射出瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。瞳強度分布とは、照明光学系の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。 In the present embodiment, the secondary light source formed by the micro fly's eye lens 7 is used as a light source, and the mask M (and thus the wafer W) disposed on the irradiated surface of the illumination optical system is Koehler illuminated. For this reason, the position where the secondary light source is formed is optically conjugate with the position of the aperture stop AS of the projection optical system PL, and the formation surface of the secondary light source can be called the illumination pupil plane of the illumination optical system. Further, the image of the formation surface of the secondary light source can be called an exit pupil plane of the illumination optical system. Typically, the irradiated surface (the surface on which the mask M is disposed or the surface on which the wafer W is disposed when the illumination optical system including the projection optical system PL is considered) is optical with respect to the illumination pupil plane. A Fourier transform plane. The pupil intensity distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system or a plane optically conjugate with the illumination pupil plane.
 マイクロフライアイレンズ7による波面分割数が比較的大きい場合、マイクロフライアイレンズ7の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ7の入射面および当該入射面と光学的に共役な面、たとえば瞳面4cも照明瞳面と呼ぶことができ、これらの面における光強度分布についても瞳強度分布と称することができる。図1の構成において、リレー光学系4,5からなる集光光学系およびマイクロフライアイレンズ7は、空間光変調器3を経た光束に基づいてマイクロフライアイレンズ7の直後の照明瞳に瞳強度分布を形成する分布形成光学系、すなわち空間光変調器3を経た光をマイクロフライアイレンズ7の直後の照明瞳に所定の光強度分布で分布させる分布形成光学系を構成している。 When the number of wavefront divisions by the micro fly's eye lens 7 is relatively large, the overall light intensity distribution formed on the incident surface of the micro fly's eye lens 7 and the overall light intensity distribution (pupil intensity distribution) of the entire secondary light source. ) And a high correlation. For this reason, the incident surface of the micro fly's eye lens 7 and a surface optically conjugate with the incident surface, for example, the pupil plane 4c, can also be called illumination pupil planes, and the light intensity distribution on these planes is also the pupil intensity distribution. Can be called. In the configuration of FIG. 1, the condensing optical system including the relay optical systems 4 and 5 and the micro fly's eye lens 7 are based on the light beam that has passed through the spatial light modulator 3 and the pupil intensity is applied to the illumination pupil immediately after the micro fly's eye lens 7. A distribution forming optical system that forms a distribution, that is, a distribution forming optical system that distributes light having passed through the spatial light modulator 3 to the illumination pupil immediately after the micro fly's eye lens 7 with a predetermined light intensity distribution.
 次に、空間光変調器3の構成および作用を具体的に説明する。空間光変調器3は、図2に示すように、所定面内に配列された複数のミラー要素3aと、複数のミラー要素3aを保持する基盤3bと、基盤3bに接続されたケーブル(不図示)を介して複数のミラー要素3aの姿勢を個別に制御駆動する駆動部3cとを備えている。図2では、空間光変調器3からリレー光学系4の瞳面4cまでの光路を示している。 Next, the configuration and operation of the spatial light modulator 3 will be specifically described. As shown in FIG. 2, the spatial light modulator 3 includes a plurality of mirror elements 3a arranged in a predetermined plane, a base 3b holding the plurality of mirror elements 3a, and a cable (not shown) connected to the base 3b. ), And a drive unit 3c that individually controls and drives the postures of the plurality of mirror elements 3a. In FIG. 2, the optical path from the spatial light modulator 3 to the pupil plane 4c of the relay optical system 4 is shown.
 空間光変調器3では、制御系CRからの指令に基づいて作動する駆動部3cの作用により、複数のミラー要素3aの姿勢がそれぞれ変化し、各ミラー要素3aがそれぞれ所定の向きに設定される。空間光変調器3は、図3に示すように、二次元的に配列された複数の微小なミラー要素3aを備え、入射した光に対して、その入射位置に応じた空間的な変調を可変的に付与して射出する。説明および図示を簡単にするために、図2および図3では空間光変調器3が4×4=16個のミラー要素3aを備える構成例を示しているが、実際には16個よりもはるかに多数、典型的には4000個~100,000個程度のミラー要素3aを備えている。 In the spatial light modulator 3, the attitude of the plurality of mirror elements 3a is changed by the action of the drive unit 3c that operates based on a command from the control system CR, and each mirror element 3a is set in a predetermined direction. . As shown in FIG. 3, the spatial light modulator 3 includes a plurality of minute mirror elements 3a arranged two-dimensionally, and the spatial modulation corresponding to the incident position of the incident light can be varied. Is applied and injected. For ease of explanation and illustration, FIG. 2 and FIG. 3 show a configuration example in which the spatial light modulator 3 includes 4 × 4 = 16 mirror elements 3a. The number of mirror elements 3a is typically large, typically about 4000 to 100,000.
 図2を参照すると、空間光変調器3に入射する光線群のうち、光線L1は複数のミラー要素3aのうちのミラー要素SEaに、光線L2はミラー要素SEaとは異なるミラー要素SEbにそれぞれ入射する。同様に、光線L3はミラー要素SEa,SEbとは異なるミラー要素SEcに、光線L4はミラー要素SEa~SEcとは異なるミラー要素SEdにそれぞれ入射する。ミラー要素SEa~SEdは、その位置に応じて設定された空間的な変調を光L1~L4に与える。 Referring to FIG. 2, among the light beams incident on the spatial light modulator 3, the light beam L1 is incident on the mirror element SEa of the plurality of mirror elements 3a, and the light beam L2 is incident on the mirror element SEb different from the mirror element SEa. To do. Similarly, the light beam L3 is incident on a mirror element SEc different from the mirror elements SEa and SEb, and the light beam L4 is incident on a mirror element SEd different from the mirror elements SEa to SEc. The mirror elements SEa to SEd give spatial modulations set according to their positions to the lights L1 to L4.
 空間光変調器3では、すべてのミラー要素3aの反射面が1つの平面に沿って設定された基準状態において、光路折曲げミラー2と空間光変調器3との間の光路の光軸AX2と平行な方向に沿って入射した光線が、空間光変調器3で反射された後に、空間光変調器3とリレー光学系4との間の光路の光軸AX3と平行な方向に進むように構成されている。また、上述したように、空間光変調器3の複数のミラー要素3aの配列面とリレー光学系4の瞳面4cとは、前側レンズ群4aを介して光学的にフーリエ変換の関係に位置決めされている。 In the spatial light modulator 3, the optical axis AX <b> 2 of the optical path between the optical path bending mirror 2 and the spatial light modulator 3 in the reference state in which the reflecting surfaces of all the mirror elements 3 a are set along one plane. The configuration is such that the light beam incident along the parallel direction travels in a direction parallel to the optical axis AX3 of the optical path between the spatial light modulator 3 and the relay optical system 4 after being reflected by the spatial light modulator 3. Has been. Further, as described above, the array plane of the plurality of mirror elements 3a of the spatial light modulator 3 and the pupil plane 4c of the relay optical system 4 are optically positioned in a Fourier transform relationship via the front lens group 4a. ing.
 したがって、空間光変調器3の複数のミラー要素SEa~SEdによって反射されて所定の角度分布が与えられた光は、瞳面4cに所定の光強度分布SP1~SP4を形成し、ひいてはマイクロフライアイレンズ7の入射面に光強度分布SP1~SP4に対応した光強度分布を形成する。すなわち、前側レンズ群4aは、空間光変調器3の複数のミラー要素SEa~SEdが射出光に与える角度を、空間光変調器3のファーフィールド(フラウンホーファー回折領域)である瞳面4c上での位置に変換する。こうして、マイクロフライアイレンズ7が形成する二次光源の光強度分布(瞳強度分布)は、空間光変調器3およびリレー光学系4,5がマイクロフライアイレンズ7の入射面に形成する光強度分布に対応した分布となる。 Accordingly, the light reflected by the plurality of mirror elements SEa to SEd of the spatial light modulator 3 and given a predetermined angular distribution forms the predetermined light intensity distributions SP1 to SP4 on the pupil plane 4c, and thus the micro fly's eye A light intensity distribution corresponding to the light intensity distributions SP1 to SP4 is formed on the incident surface of the lens. That is, the front lens group 4a determines the angle that the plurality of mirror elements SEa to SEd of the spatial light modulator 3 gives to the emitted light on the pupil plane 4c that is the far field (Fraunhofer diffraction region) of the spatial light modulator 3. Convert to position. Thus, the light intensity distribution (pupil intensity distribution) of the secondary light source formed by the micro fly's eye lens 7 is the light intensity formed on the incident surface of the micro fly's eye lens 7 by the spatial light modulator 3 and the relay optical systems 4 and 5. The distribution corresponds to the distribution.
 空間光変調器3は、図3に示すように、平面状の反射面を上面にした状態で1つの平面に沿って規則的に且つ二次元的に配列された多数の微小な反射素子であるミラー要素3aを含む可動マルチミラーである。各ミラー要素3aは可動であり、その反射面の傾き、すなわち反射面の傾斜角および傾斜方向は、制御系CRからの制御信号に基づいて作動する駆動部3cの作用により独立に制御される。各ミラー要素3aは、その反射面に平行な二方向であって互いに直交する二方向を回転軸として、所望の回転角度だけ連続的或いは離散的に回転することができる。すなわち、各ミラー要素3aの反射面の傾斜を二次元的に制御することが可能である。 As shown in FIG. 3, the spatial light modulator 3 is a large number of minute reflecting elements regularly and two-dimensionally arranged along one plane with a planar reflecting surface as the upper surface. A movable multi-mirror including a mirror element 3a. Each mirror element 3a is movable, and the inclination of the reflection surface, that is, the inclination angle and the inclination direction of the reflection surface are independently controlled by the action of the drive unit 3c that operates based on a control signal from the control system CR. Each mirror element 3a can be rotated continuously or discretely by a desired rotation angle with two directions parallel to the reflecting surface and orthogonal to each other as rotation axes. That is, it is possible to two-dimensionally control the inclination of the reflecting surface of each mirror element 3a.
 各ミラー要素3aの反射面を離散的に回転させる場合、回転角を複数の状態(例えば、・・・、-2.5度、-2.0度、・・・0度、+0.5度・・・+2.5度、・・・)で切り換え制御するのが良い。図3には外形が正方形状のミラー要素3aを示しているが、ミラー要素3aの外形形状は正方形に限定されない。ただし、光利用効率の観点から、ミラー要素3aの隙間が少なくなるように配列可能な形状(最密充填可能な形状)とすることができる。また、光利用効率の観点から、隣り合う2つのミラー要素3aの間隔を必要最小限に抑えることができる。 When the reflecting surface of each mirror element 3a is discretely rotated, the rotation angle is set in a plurality of states (for example,..., -2.5 degrees, -2.0 degrees,... 0 degrees, +0.5 degrees) ... +2.5 degrees,. Although FIG. 3 shows a mirror element 3a having a square outer shape, the outer shape of the mirror element 3a is not limited to a square. However, from the viewpoint of light utilization efficiency, the shape can be arranged so that the gap between the mirror elements 3a is reduced (a shape that can be packed most closely). Further, from the viewpoint of light utilization efficiency, the interval between two adjacent mirror elements 3a can be minimized.
 本実施形態では、空間光変調器3として、たとえば二次元的に配列された複数のミラー要素3aの向きを連続的にそれぞれ変化させる空間光変調器を用いている。このような空間光変調器として、たとえば欧州特許公開第779530号公報、米国特許第5,867,302号公報、米国特許第6,480,320号公報、米国特許第6,600,591号公報、米国特許第6,733,144号公報、米国特許第6,900,915号公報、米国特許第7,095,546号公報、米国特許第7,295,726号公報、米国特許第7,424,330号公報、米国特許第7,567,375号公報、米国特許公開第2008/0309901号公報、米国特許公開第2011/0181852号公報並びに米国特許公開第2011/188017号公報に開示される空間光変調器を用いることができる。なお、二次元的に配列された複数のミラー要素3aの向きを離散的に複数の段階を持つように制御してもよい。 In the present embodiment, as the spatial light modulator 3, for example, a spatial light modulator that continuously changes the directions of a plurality of mirror elements 3a arranged two-dimensionally is used. As such a spatial light modulator, for example, European Patent Publication No. 779530, US Pat. No. 5,867,302, US Pat. No. 6,480,320, US Pat. No. 6,600,591 U.S. Patent No. 6,733,144, U.S. Patent No. 6,900,915, U.S. Patent No. 7,095,546, U.S. Patent No. 7,295,726, U.S. Patent No. 7, No. 424,330, U.S. Pat. No. 7,567,375, U.S. Patent Publication No. 2008/0309901, U.S. Pat. Publication No. 2011/0181852 and U.S. Pat. Publication No. 2011/188017. A spatial light modulator can be used. Note that the orientations of the plurality of mirror elements 3a arranged two-dimensionally may be controlled to have a plurality of discrete stages.
 空間光変調器3では、制御系CRからの制御信号に応じて作動する駆動部3cの作用により、複数のミラー要素3aの姿勢がそれぞれ変化し、各ミラー要素3aがそれぞれ所定の向きに設定される。空間光変調器3の複数のミラー要素3aによりそれぞれ所定の角度で反射された光は、マイクロフライアイレンズ7の直後の照明瞳に、所望の瞳強度分布を形成する。このように、空間光変調器3は、マイクロフライアイレンズ7の直後の照明瞳に瞳強度分布を可変的に形成する。さらに、マイクロフライアイレンズ7の直後の照明瞳と光学的に共役な別の照明瞳の位置、すなわち結像光学系10の瞳位置および投影光学系PLの瞳位置(開口絞りASが配置されている位置)にも、所望の瞳強度分布が形成される。 In the spatial light modulator 3, the attitude of the plurality of mirror elements 3a is changed by the action of the drive unit 3c that operates according to the control signal from the control system CR, and each mirror element 3a is set in a predetermined direction. The The light reflected at a predetermined angle by each of the plurality of mirror elements 3 a of the spatial light modulator 3 forms a desired pupil intensity distribution on the illumination pupil immediately after the micro fly's eye lens 7. As described above, the spatial light modulator 3 variably forms a pupil intensity distribution on the illumination pupil immediately after the micro fly's eye lens 7. Furthermore, the position of another illumination pupil optically conjugate with the illumination pupil immediately after the micro fly's eye lens 7, that is, the pupil position of the imaging optical system 10 and the pupil position of the projection optical system PL (the aperture stop AS is disposed). The desired pupil intensity distribution is also formed at the (position).
 露光装置では、マスクMのパターンをウェハWに高精度に且つ忠実に転写するために、例えばマスクMのパターン特性に応じた適切な照明条件のもとで露光を行うことが重要である。本実施形態の照明光学系(1~11)では、複数のミラー要素3aの姿勢がそれぞれ個別に変化する空間光変調器3を用いているので、空間光変調器3の作用により形成される瞳強度分布を自在に且つ迅速に変化させることができる。 In the exposure apparatus, in order to transfer the pattern of the mask M onto the wafer W with high accuracy and faithfully, it is important to perform exposure under appropriate illumination conditions according to the pattern characteristics of the mask M, for example. In the illumination optical system (1 to 11) of the present embodiment, since the spatial light modulator 3 in which the postures of the plurality of mirror elements 3a are individually changed is used, the pupil formed by the action of the spatial light modulator 3 is used. The intensity distribution can be changed freely and quickly.
 しかしながら、前述したように、複数のミラー要素を有する反射型の空間光変調器を用いて通常の設計により構成された照明光学系では、ミラー要素からの正反射光(0次光)だけでなく、ミラー要素を支持する基盤の表面からの反射光(0次光、回折光)も照明瞳に達する。この場合、ミラー要素以外からの反射光(不要光)の影響、主として基盤の表面からの0次光の影響により、所望の瞳強度分布を形成することが困難になる。 However, as described above, in an illumination optical system configured by a normal design using a reflective spatial light modulator having a plurality of mirror elements, not only specularly reflected light (0th-order light) from the mirror elements but also Reflected light (0th-order light, diffracted light) from the surface of the substrate supporting the mirror element also reaches the illumination pupil. In this case, it becomes difficult to form a desired pupil intensity distribution due to the influence of reflected light (unnecessary light) from other than the mirror element, mainly due to the influence of zero-order light from the surface of the substrate.
 以下、説明の理解を容易にするために、図1および図2に示すように、空間光変調器3における局所座標系(x1,y1,z1)を設定する。局所座標系(x1,y1,z1)では、空間光変調器3の配列面においてX軸に平行な方向にx1軸が、配列面においてx1軸と直交する方向にy1軸が設定されている。また、図4に示すように、複数のミラー要素3aはx1方向(X方向)およびy1方向に沿ったエッジを有する矩形状の反射面を有し、空間光変調器3はx1方向に沿って長辺を有し且つy1方向に沿って短辺を有する矩形状の有効反射領域3dを有するものとする。 Hereinafter, in order to facilitate understanding of the description, as shown in FIGS. 1 and 2, a local coordinate system (x1, y1, z1) in the spatial light modulator 3 is set. In the local coordinate system (x1, y1, z1), the x1 axis is set in the direction parallel to the X axis on the arrangement plane of the spatial light modulator 3, and the y1 axis is set in the direction orthogonal to the x1 axis on the arrangement plane. Further, as shown in FIG. 4, the plurality of mirror elements 3a have a rectangular reflecting surface having edges along the x1 direction (X direction) and the y1 direction, and the spatial light modulator 3 extends along the x1 direction. Assume that the rectangular effective reflection region 3d has a long side and a short side along the y1 direction.
 本実施形態では、図4に示すように、空間光変調器3の複数のミラー要素3aのうち、隣り合う2つのミラー要素3aにおいて対向する一対のエッジの方向(y1方向)と、空間光変調器3へ入射する入射光束の軸線の方向(光軸AX2の方向)とがXY平面において角度α’で交差するように構成している。ここで、入射光束の軸線とは、入射光束の断面における光量重心を結んだ線、または入射光束の断面における外形中心を結んだ線として定義される。また、上記外形中心とは、例えば入射光束の断面において、強度ピークの半値(あるいは他の適当な値)となる箇所を結んで得られる外形の重心として定義される。 In the present embodiment, as shown in FIG. 4, among a plurality of mirror elements 3 a of the spatial light modulator 3, the direction of a pair of edges (y1 direction) facing each other in two adjacent mirror elements 3 a and the spatial light modulation. The direction of the axis of the incident light beam incident on the device 3 (the direction of the optical axis AX2) intersects the XY plane at an angle α ′. Here, the axis of the incident light beam is defined as a line connecting the center of the light quantity in the cross section of the incident light beam, or a line connecting the outline center in the cross section of the incident light beam. The outer shape center is defined as, for example, the center of gravity of the outer shape obtained by connecting the points where the intensity peak is half value (or other appropriate value) in the cross section of the incident light beam.
 したがって、図5に示すように、隣り合う2つのミラー要素3aにおいてy1方向に延びる一対のエッジ51と52との間に、x1y1平面においてy1方向と角度αで交差する方向(図5中矢印F1で示す方向)に沿って光束が入射する。この交差角度αは、一対のエッジ51と52との間を通過して基盤3b(図5では不図示)の表面で反射された0次光がエッジ51と52との間を通過して空間光変調器3から射出されない角度である。 Therefore, as shown in FIG. 5, between the pair of edges 51 and 52 extending in the y1 direction in two adjacent mirror elements 3a, a direction intersecting the y1 direction at an angle α (arrow F1 in FIG. 5). The light beam enters along the direction indicated by. This crossing angle α is a space where zero-order light passing between the pair of edges 51 and 52 and reflected by the surface of the base 3b (not shown in FIG. 5) passes between the edges 51 and 52. The angle is not emitted from the light modulator 3.
 図6は、図5の線A-Aに沿った断面図であって、交差角度αの最小値αを説明する図である。図5および図6を参照すると、一対のエッジ51と52と間の幅寸法をBとし、各ミラー要素3aの厚さをDとし、各ミラー要素3aと基盤3bの表面3ba(空間光変調器3の配列面とほぼ平行な面部分)との間隔をGとし、表面3baへの光の入射角度をβとするとき、角度αの最小値αは、次の式(1a)を満足する。
B/sin(α)=2×(D+G)×tanβ    (1a)
FIG. 6 is a cross-sectional view taken along line AA in FIG. 5, and is a diagram for explaining the minimum value α m of the crossing angle α. 5 and 6, the width dimension between the pair of edges 51 and 52 is B, the thickness of each mirror element 3a is D, and the surface 3ba of each mirror element 3a and the base 3b (spatial light modulator) 3 is a plane portion substantially parallel to the array plane 3), and G is the incident angle of light on the surface 3ba, the minimum value α m of the angle α satisfies the following formula (1a). .
B / sin (α m ) = 2 × (D + G) × tan β (1a)
 すなわち、一対のエッジ51と52との間を通過して基盤3bの表面で反射された0次光がエッジ51と52との間を通過して空間光変調器3から射出されないように構成するには、x1y1平面において入射光束の方向とy1方向とが交差する角度αが次の条件式(1)を満足する必要がある。
α≧sin-1[B/{2×(D+G)×tanβ}]   (1)
That is, the zero-order light that passes between the pair of edges 51 and 52 and is reflected by the surface of the base 3 b is not passed through the edges 51 and 52 and emitted from the spatial light modulator 3. Therefore, the angle α at which the direction of the incident light beam intersects the y1 direction in the x1y1 plane needs to satisfy the following conditional expression (1).
α ≧ sin −1 [B / {2 × (D + G) × tan β}] (1)
 以上のように、本実施形態では、入射した光を偏向して空間光変調器3へ導く光路折曲げミラー2が、空間光変調器3に入射光束を導く入射側光学系、すなわち空間光変調器3の複数のミラー要素3aに光を照射する入射側光学系を構成している。リレー光学系4は、空間光変調器3の複数のミラー要素3aからの光が入射する射出側光学系を構成している。また、図4に示すように、光路折曲げミラー2への入射光軸AX1と光路折曲げミラー2から空間光変調器3への入射光軸AX2とを含む平面は、空間光変調器3からの射出光軸AX3とy1方向とを含んで空間光変調器3の配列面に垂直な平面に対して、所要角度αに対応する角度α’で交差している。別の表現をすると、光路折曲げミラー2の入射側の光軸AX1と光路折曲げミラー2の射出側の光軸AX2とを含む平面は、エッジの方向であるy1方向と交差している。 As described above, in this embodiment, the optical path bending mirror 2 that deflects the incident light and guides it to the spatial light modulator 3 is the incident side optical system that guides the incident light beam to the spatial light modulator 3, that is, spatial light modulation. An incident side optical system for irradiating light to the plurality of mirror elements 3a of the container 3 is configured. The relay optical system 4 constitutes an emission side optical system into which light from the plurality of mirror elements 3 a of the spatial light modulator 3 enters. As shown in FIG. 4, the plane including the incident optical axis AX <b> 1 to the optical path bending mirror 2 and the incident optical axis AX <b> 2 from the optical path bending mirror 2 to the spatial light modulator 3 is from the spatial light modulator 3. A plane perpendicular to the arrangement plane of the spatial light modulator 3 including the emission optical axis AX3 and the y1 direction intersects at an angle α ′ corresponding to the required angle α. In other words, the plane including the optical axis AX1 on the incident side of the optical path bending mirror 2 and the optical axis AX2 on the exit side of the optical path bending mirror 2 intersects the y1 direction that is the direction of the edge.
 そして、図5に示すように、隣り合う2つのミラー要素3aにおいて対向する一対のエッジ51,52の方向であるy1方向と、空間光変調器3へ入射する入射光束の軸線(光軸AX2に対応)を含んで空間光変調器3の配列面に垂直な面と配列面との交線(図5における方向線F1に対応)の方向とは所要角度αで交差している。別の表現をすると、エッジの方向であるy1方向は、入射側光学系(2)の光軸AX2を含んで空間光変調器3の配列面(第1面)に垂直な面(第2面)と交差している。したがって、本実施形態では、隣り合う2つのミラー要素3aにおいて対向する一対のエッジ51と52との間を通過して基盤3bの表面3baで反射された0次光は、エッジ51と52との間を通過して空間光変調器3から射出されることなく、ひいてはマイクロフライアイレンズ7の直後の照明瞳に達しない。 Then, as shown in FIG. 5, the y1 direction which is the direction of the pair of edges 51 and 52 facing each other in the two adjacent mirror elements 3a and the axis of the incident light beam incident on the spatial light modulator 3 (on the optical axis AX2). And a direction perpendicular to the arrangement plane of the spatial light modulator 3 and the direction of the intersection line (corresponding to the direction line F1 in FIG. 5) intersects at a required angle α. In other words, the y1 direction that is the direction of the edge is a surface (second surface) that includes the optical axis AX2 of the incident-side optical system (2) and is perpendicular to the array surface (first surface) of the spatial light modulator 3. ). Therefore, in the present embodiment, the zero-order light that passes between the pair of opposing edges 51 and 52 in the two adjacent mirror elements 3a and is reflected by the surface 3ba of the base 3b is reflected between the edges 51 and 52. The light is not emitted from the spatial light modulator 3 after passing through, and thus does not reach the illumination pupil immediately after the micro fly's eye lens 7.
 その結果、本実施形態の照明光学系(1~11)では、空間光変調器3のミラー要素3a以外からの不要光の影響を抑えて、所望の瞳強度分布を実現することができる。また、本実施形態の露光装置(1~WS)では、不要光の影響を抑えて所望の瞳強度分布を実現する照明光学系(1~11)を用いて、転写すべきマスクMのパターンの特性に応じて実現された適切な照明条件のもとで、微細パターンをウェハWに正確に転写することができる。 As a result, in the illumination optical system (1 to 11) of the present embodiment, it is possible to achieve a desired pupil intensity distribution while suppressing the influence of unnecessary light from other than the mirror element 3a of the spatial light modulator 3. In the exposure apparatus (1 to WS) of this embodiment, the pattern of the mask M to be transferred is used by using the illumination optical system (1 to 11) that realizes a desired pupil intensity distribution while suppressing the influence of unnecessary light. The fine pattern can be accurately transferred to the wafer W under appropriate illumination conditions realized according to the characteristics.
 なお、上述の実施形態では、図4に示すように、光路折曲げミラー2への入射光軸AX1と、光路折曲げミラー2から空間光変調器3への入射光軸AX2と、空間光変調器3からの射出光軸AX3とが1つの平面に含まれない構成になっている。しかしながら、これに限定されることなく、入射光軸AX1およびAX2と射出光軸AX3とが1つの平面に含まれる構成において、空間光変調器3のミラー要素3a以外からの不要光の影響を抑えることのできる変形例も可能である。 In the above-described embodiment, as shown in FIG. 4, the incident optical axis AX1 to the optical path bending mirror 2, the incident optical axis AX2 from the optical path bending mirror 2 to the spatial light modulator 3, and the spatial light modulation. The emission optical axis AX3 from the device 3 is not included in one plane. However, without being limited to this, in the configuration in which the incident optical axes AX1 and AX2 and the emission optical axis AX3 are included in one plane, the influence of unnecessary light from other than the mirror element 3a of the spatial light modulator 3 is suppressed. Variations that can be made are also possible.
 図7は、変形例にかかる露光装置の構成を概略的に示す図である。図7の変形例は、図1の実施形態と類似の構成を有する。しかしながら、図7の変形例では、入射光軸AX1およびAX2と射出光軸AX3とが1つの平面(YZ平面)に含まれていること、ビーム送光部1と光路折曲げミラー2との間の光路中に回折光学素子21およびリレー光学系22が付設されていることなどが、図1の実施形態と相違している。したがって、図7では、図1に示す構成要素と同様の機能を有する要素に、図1と同じ参照符号を付している。以下、図1の実施形態との相違点に着目して図7の変形例の構成および作用を説明する。 FIG. 7 is a drawing schematically showing a configuration of an exposure apparatus according to a modification. The modification of FIG. 7 has a configuration similar to that of the embodiment of FIG. However, in the modification of FIG. 7, the incident optical axes AX1 and AX2 and the exit optical axis AX3 are included in one plane (YZ plane), and between the beam transmitting unit 1 and the optical path bending mirror 2. 1 is different from the embodiment of FIG. 1 in that a diffractive optical element 21 and a relay optical system 22 are provided in the optical path. Therefore, in FIG. 7, the same reference numerals as those in FIG. 1 are given to elements having the same functions as the components shown in FIG. Hereinafter, the configuration and operation of the modified example of FIG. 7 will be described focusing on the differences from the embodiment of FIG.
 図7の変形例では、多数のミラー要素を有する空間光変調器を用いる通常の設計の場合と同様に、光路折曲げミラー2への入射光軸AX1と、光路折曲げミラー2から空間光変調器3への入射光軸AX2と、空間光変調器3からの射出光軸AX3とが、1つの平面(YZ平面)に含まれるように構成されている。ただし、図8に示すように、空間光変調器3は、その矩形状の有効反射領域3dの長辺がX方向に対して傾くような姿勢で設置されている。図8では、空間光変調器3の配列面における局所座標系(x2,y2)を設定している。局所座標系(x2,y2)では、空間光変調器3の配列面において矩形状の有効反射領域3dの長辺方向にx2軸が、配列面においてx2軸と直交する方向(有効反射領域3dの短辺方向)にy2軸が設定されている。 In the modification of FIG. 7, the incident light axis AX1 to the optical path bending mirror 2 and the spatial light modulation from the optical path bending mirror 2 are the same as in the case of a normal design using a spatial light modulator having a number of mirror elements. The optical axis AX2 incident on the optical device 3 and the optical axis AX3 emitted from the spatial light modulator 3 are included in one plane (YZ plane). However, as shown in FIG. 8, the spatial light modulator 3 is installed in such a posture that the long side of the rectangular effective reflection region 3d is inclined with respect to the X direction. In FIG. 8, a local coordinate system (x2, y2) on the array surface of the spatial light modulator 3 is set. In the local coordinate system (x2, y2), the x2 axis in the long side direction of the rectangular effective reflection region 3d on the arrangement surface of the spatial light modulator 3 is perpendicular to the x2 axis on the arrangement surface (of the effective reflection region 3d). The y2 axis is set in the short side direction.
 具体的に、空間光変調器3は、その矩形状の有効反射領域3dの長辺がX方向と平行な通常の配置から、配列面の法線廻りに所要角度αだけ回転させて得られる姿勢で設置されている。すなわち、入射光軸AX1およびAX2と射出光軸AX3とを含む1つのYZ平面と空間光変調器3の配列面との交線の方向は、配列面上のy2方向に対して所要角度αだけ傾いている。なお、図8では、入射光軸AX1およびAX2と射出光軸AX3とを含む1つのYZ平面とy2方向とがXY平面においてなす角度α''を示しているが、この角度α''は配列面における所要角度αに対応している。別の表現をすると、光路折曲げミラー2の入射側の光軸AX1と、光路折曲げミラー2の射出側の光軸AX2と、射出側光学系(4)の光軸AX3とは1つの平面(YZ平面)に含まれ、この1つの平面と空間光変調器3の配列面との交線の方向は配列面上のy2方向(エッジの方向)に対して所要の角度だけ傾いている。 Specifically, the spatial light modulator 3 is obtained by rotating the rectangular effective reflection region 3d by a required angle α from the normal arrangement in which the long side is parallel to the X direction around the normal of the arrangement surface. It is installed at. That is, the direction of the line of intersection between one YZ plane including the incident optical axes AX1 and AX2 and the outgoing optical axis AX3 and the array surface of the spatial light modulator 3 is the required angle α with respect to the y2 direction on the array surface. Tilted. FIG. 8 shows an angle α ″ formed by one YZ plane including the incident optical axes AX1 and AX2 and the outgoing optical axis AX3 and the y2 direction in the XY plane. This angle α ″ is an array. This corresponds to the required angle α on the surface. In other words, the optical axis AX1 on the entrance side of the optical path bending mirror 2, the optical axis AX2 on the exit side of the optical path folding mirror 2, and the optical axis AX3 of the exit side optical system (4) are one plane. (YZ plane), and the direction of the line of intersection between this one plane and the array plane of the spatial light modulator 3 is inclined by a required angle with respect to the y2 direction (edge direction) on the array plane.
 このように、図7の変形例においても、隣り合う2つのミラー要素3aにおいて対向する一対のエッジの方向であるy2方向と、空間光変調器3へ入射する入射光束の軸線(光軸AX2に対応)を含んで空間光変調器3の配列面に垂直な面と配列面との交線の方向とは所要角度αで交差している。したがって、隣り合う2つのミラー要素3aにおいて対向する一対のエッジ間を通過して基盤の表面で反射された0次光は、一対のエッジ間を通過して空間光変調器3から射出されることなく、ひいてはマイクロフライアイレンズ7の直後の照明瞳に達しない。 Thus, also in the modified example of FIG. 7, the y2 direction that is the direction of a pair of edges facing each other in the two adjacent mirror elements 3a and the axis of the incident light beam incident on the spatial light modulator 3 (on the optical axis AX2). The plane perpendicular to the array plane of the spatial light modulator 3 and the direction of the intersection line of the array plane intersect at a required angle α. Therefore, the zero-order light that passes between a pair of opposing edges in the two adjacent mirror elements 3a and is reflected by the surface of the substrate passes through the pair of edges and is emitted from the spatial light modulator 3. Therefore, the illumination pupil just after the micro fly's eye lens 7 is not reached.
 ただし、矩形状の有効反射領域3dの長辺がX方向に対して傾くような姿勢で空間光変調器3を設置するだけでは、図9に示すように、有効反射領域3dの全体をカバーする照明光束として、矩形状の断面を有する光束53を空間光変調器3に入射させる必要があり、空間光変調器3において比較的大きな光量損失が発生することになる。そこで、図7の変形例では、ビーム送光部1と光路折曲げミラー2との間の光路中に、光の入射側から順に、回折光学素子21とリレー光学系22とを付設している。 However, simply installing the spatial light modulator 3 in such a posture that the long side of the rectangular effective reflection region 3d is inclined with respect to the X direction covers the entire effective reflection region 3d as shown in FIG. As the illumination light beam, a light beam 53 having a rectangular cross section needs to be incident on the spatial light modulator 3, and a relatively large light amount loss occurs in the spatial light modulator 3. Therefore, in the modification of FIG. 7, the diffractive optical element 21 and the relay optical system 22 are attached in order from the light incident side in the optical path between the beam transmitter 1 and the optical path bending mirror 2. .
 具体的に、回折光学素子21はリレー光学系22の前側焦点位置またはその近傍に配置され、リレー光学系22の後側焦点位置またはその近傍に空間光変調器3の配列面が配置されている。すなわち、回折光学素子21は、空間光変調器3の配列面と光学的にフーリエ変換の関係にある位置に配置されている。こうして、回折光学素子21に入射した光束は、傾いた姿勢で設置された空間光変調器3の有効反射領域3dの形状に整合する光束に変換され、実質的に光量損失することなく矩形状の有効反射領域3dを照明する。 Specifically, the diffractive optical element 21 is disposed at or near the front focal position of the relay optical system 22, and the array surface of the spatial light modulator 3 is disposed at or near the rear focal position of the relay optical system 22. . That is, the diffractive optical element 21 is disposed at a position that is optically Fourier-transformed with the arrangement surface of the spatial light modulator 3. Thus, the light beam incident on the diffractive optical element 21 is converted into a light beam that matches the shape of the effective reflection region 3d of the spatial light modulator 3 installed in an inclined posture, and has a rectangular shape without substantial loss of light amount. The effective reflection area 3d is illuminated.
 図7の変形例では、入射した光束を空間光変調器3の有効反射領域3dの形状に整合する光束に変換して射出する光束変換素子として、空間光変調器3の配列面と光学的にフーリエ変換の関係にある位置に配置された回折光学素子21を用いている。しかしながら、回折光学素子に限定されることなく、光束変換素子として他の適当な光学素子、例えば空間光変調器の配列面と光学的にフーリエ変換の関係にある位置に配置されたフライアイレンズのような波面分割型のオプティカルインテグレータを用いることもできる。この場合、オプティカルインテグレータは、その矩形状の単位波面分割面の短辺がY方向に対して所要角度αに対応する角度だけ傾くような姿勢で設置される。 In the modification of FIG. 7, the incident light beam is converted into a light beam that matches the shape of the effective reflection area 3 d of the spatial light modulator 3 and emitted as a light beam conversion element that is optically aligned with the arrangement surface of the spatial light modulator 3. A diffractive optical element 21 disposed at a position having a Fourier transform relationship is used. However, the present invention is not limited to a diffractive optical element, and other suitable optical elements as a light beam conversion element, for example, a fly-eye lens disposed at a position optically Fourier-transformed with the arrangement surface of a spatial light modulator. Such a wavefront division type optical integrator can also be used. In this case, the optical integrator is installed in such a posture that the short side of the rectangular unit wavefront dividing surface is inclined by an angle corresponding to the required angle α with respect to the Y direction.
 なお、上述の実施形態および変形例では、複数のミラー要素が矩形状の反射面を有する空間光変調器を例にとって本発明を説明している。しかしながら、矩形状に限定されることなく、例えば六角形状の反射面を有する複数のミラー要素からなる空間光変調器を備える空間光変調光学系に対しても同様に本発明を適用することができる。本発明において重要なことは、空間光変調器の複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向と、空間光変調器へ入射する入射光束の軸線を含んで配列面に垂直な面と配列面との交線の方向とが0°ではない所要角度αで交差することである。 In the above-described embodiments and modifications, the present invention is described by taking a spatial light modulator in which a plurality of mirror elements have a rectangular reflecting surface as an example. However, the present invention is not limited to the rectangular shape, and the present invention can be similarly applied to a spatial light modulation optical system including a spatial light modulator including a plurality of mirror elements having a hexagonal reflecting surface, for example. . What is important in the present invention is that the direction of an arbitrary pair of edges facing each other in two adjacent mirror elements of the plurality of mirror elements of the spatial light modulator and the axis of the incident light beam incident on the spatial light modulator. In addition, the direction perpendicular to the arrangement plane and the direction of the intersection line of the arrangement plane intersect at a required angle α that is not 0 °.
 また、上述の実施形態および変形例では、空間光変調器3を経た光束に基づいてマイクロフライアイレンズ7の直後の照明瞳に瞳強度分布を形成し、この瞳強度分布からの光によりマスクMを照明している。しかしながら、これに限定されることなく、空間光変調光学系の空間光変調器をマスク代わりとした露光装置に対しても同様に本発明を適用することができる。この場合、一例として、露光装置は空間光変調器からの光を基板に投影する投影光学系を備え、空間光変調器は投影光学系の物体面に配置される。 In the above-described embodiment and modification, a pupil intensity distribution is formed in the illumination pupil immediately after the micro fly's eye lens 7 based on the light beam that has passed through the spatial light modulator 3, and the mask M is formed by light from this pupil intensity distribution. Lighting up. However, the present invention is not limited to this, and the present invention can be similarly applied to an exposure apparatus in which the spatial light modulator of the spatial light modulation optical system is used as a mask. In this case, as an example, the exposure apparatus includes a projection optical system that projects light from the spatial light modulator onto the substrate, and the spatial light modulator is disposed on the object plane of the projection optical system.
 上述の実施形態では、二次元的に配列されて個別に制御される複数のミラー要素を有する空間光変調器として、二次元的に配列された複数の反射面の向き(角度:傾き)を個別に制御可能な空間光変調器3を用いている。しかしながら、これに限定されることなく、たとえば二次元的に配列された複数の反射面の高さ(位置)を個別に制御可能な空間光変調器を用いることもできる。このような空間光変調器としては、たとえば米国特許第5,312,513号公報、並びに米国特許第6,885,493号公報の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば米国特許第6,891,655号公報や、米国特許公開第2005/0095749号公報の開示に従って変形しても良い。 In the above-described embodiment, as the spatial light modulator having a plurality of mirror elements that are two-dimensionally arranged and individually controlled, the directions (angle: inclination) of the plurality of two-dimensionally arranged reflecting surfaces are individually set. The controllable spatial light modulator 3 is used. However, the present invention is not limited to this. For example, a spatial light modulator that can individually control the height (position) of a plurality of two-dimensionally arranged reflecting surfaces can be used. As such a spatial light modulator, for example, the spatial light modulator disclosed in FIG. 1d of US Pat. No. 5,312,513 and US Pat. No. 6,885,493 can be used. In these spatial light modulators, by forming a two-dimensional height distribution, an action similar to that of the diffractive surface can be given to incident light. The spatial light modulator having a plurality of reflection surfaces arranged two-dimensionally as described above is modified in accordance with the disclosure of, for example, US Pat. No. 6,891,655 and US Patent Publication No. 2005/0095749. May be.
 上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含む空間光変調素子を用いることができる。空間光変調素子を用いた露光装置は、たとえば米国特許公開第2007/0296936号公報に開示されている。また、上述のような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。 In the above-described embodiment, a variable pattern forming apparatus that forms a predetermined pattern based on predetermined electronic data can be used instead of a mask. As the variable pattern forming apparatus, for example, a spatial light modulation element including a plurality of reflection elements driven based on predetermined electronic data can be used. An exposure apparatus using a spatial light modulator is disclosed, for example, in US Patent Publication No. 2007/0296936. In addition to the non-light-emitting reflective spatial light modulator as described above, a transmissive spatial light modulator may be used, or a self-luminous image display element may be used.
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図10は、半導体デバイスの製造工程を示すフローチャートである。図10に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。 Next, a device manufacturing method using the exposure apparatus according to the above-described embodiment will be described. FIG. 10 is a flowchart showing a manufacturing process of a semiconductor device. As shown in FIG. 10, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer W to be a substrate of the semiconductor device (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film. (Step S42). Subsequently, using the exposure apparatus of the above-described embodiment, the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the transfer of the wafer W after the transfer is completed. Development, that is, development of the photoresist to which the pattern has been transferred is performed (step S46: development process).
 その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを感光性基板としてパターンの転写を行う。 Thereafter, using the resist pattern generated on the surface of the wafer W in step S46 as a mask, processing such as etching is performed on the surface of the wafer W (step S48: processing step). Here, the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. is there. In step S48, the surface of the wafer W is processed through this resist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like. In step S44, the exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
 図11は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図11に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。 FIG. 11 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in FIG. 11, in the manufacturing process of the liquid crystal device, a pattern formation process (step S50), a color filter formation process (step S52), a cell assembly process (step S54), and a module assembly process (step S56) are sequentially performed. In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment. The pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 In the color filter forming process in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction. In the cell assembly process in step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。 In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
 なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するFレーザ光源などに対して本発明を適用することもできる。 In the above-described embodiment, ArF excimer laser light (wavelength: 193 nm) or KrF excimer laser light (wavelength: 248 nm) is used as the exposure light. However, the present invention is not limited to this, and other appropriate laser light sources are used. For example, the present invention can also be applied to an F 2 laser light source that supplies laser light having a wavelength of 157 nm.
 また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンプレットに開示されているような局所的に液体を満たす手法や、特開平6-124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10-303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6-124873号公報および特開平10-303114号公報の教示を参照として援用する。 In the above-described embodiment, a so-called immersion method is applied in which the optical path between the projection optical system and the photosensitive substrate is filled with a medium (typically liquid) having a refractive index larger than 1.1. You may do it. In this case, as a technique for filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a technique for locally filling the liquid as disclosed in International Publication No. WO99 / 49504, a special technique, A method of moving a stage holding a substrate to be exposed as disclosed in Kaihei 6-124873 in a liquid tank, or a predetermined stage on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. A method of forming a liquid tank having a depth and holding the substrate therein can be employed. Here, the teachings of WO99 / 49504, JP-A-6-124873 and JP-A-10-303114 are incorporated by reference.
 また、上述の実施形態において、米国公開公報第2006/0170901号公報、第2007/0146676号公報、第2007/0195305号公報および第2010/0165318号公報に開示されるいわゆる偏光照明方法を適用することも可能である。ここでは、米国特許公開第2006/0170901号公報、米国特許公開第2007/0146676号公報、第2007/0195305号公報および第2010/0165318号公報の教示を参照として援用する。 In the above-described embodiment, the so-called polarization illumination method disclosed in US Publication Nos. 2006/0170901, 2007/0146676, 2007/0195305, and 2010/0165318 is applied. Is also possible. Here, the teachings of US Patent Publication No. 2006/0170901, US Patent Publication Nos. 2007/0146676, 2007/0195305 and 2010/0165318 are incorporated by reference.
 また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。 In the above-described embodiment, the present invention is applied to the illumination optical system that illuminates the mask (or wafer) in the exposure apparatus. However, the present invention is not limited to this, and an object other than the mask (or wafer) is used. The present invention can also be applied to a general illumination optical system that illuminates the irradiation surface.
 また、本発明は、以下の条項に従って記述することもできる。
1. 所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を備える空間光変調光学系において、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向と、前記空間光変調器へ入射する入射光束の軸線を含んで前記所定面に垂直な面と前記所定面との交線の方向とは、0°ではない所要角度で交差することを特徴とする空間光変調光学系。
2. 前記所要角度は、前記対向する任意の一対のエッジ間を通過して前記所定面とほぼ平行な面部分で反射された不要光が前記一対のエッジ間を通過して前記空間光変調器から射出されない角度であることを特徴とする条項1に記載の空間光変調光学系。
3. 前記対向する任意の一対のエッジ間の幅寸法をBとし、各ミラー要素の厚さをDとし、各ミラー要素と前記面部分との間隔をGとし、前記面部分への光の入射角度をβとするとき、前記所要角度αは、
α≧sin-1[B/{2×(D+G)×tanβ}]
の条件を満たすことを特徴とする条項2に記載の空間光変調光学系。
4. 前記空間光変調器に前記入射光束を導く入射側光学系を備えていることを特徴とする条項1乃至3のいずれか1項に記載の空間光変調光学系。
5. 前記入射側光学系は、入射した光を偏向して前記空間光変調器へ導く光路折曲げミラーを有し、
 前記複数のミラー要素は、第1方向に沿ったエッジを有する矩形状の反射面を有し、
 前記光路折曲げミラーへの入射光軸と前記光路折曲げミラーから前記空間光変調器への入射光軸とを含む平面は、前記空間光変調器からの射出光軸と前記第1方向とを含んで前記所定面に垂直な平面に対して、前記所要角度に対応する角度で交差していることを特徴とする条項4に記載の空間光変調光学系。
6. 前記入射側光学系は、入射した光を偏向して前記空間光変調器へ導く光路折曲げミラーを有し、
 前記複数のミラー要素は、第1方向に沿ったエッジを有する矩形状の反射面を有し、
 前記光路折曲げミラーへの入射光軸と、前記光路折曲げミラーから前記空間光変調器への入射光軸と、前記空間光変調器からの射出光軸とは1つの平面に含まれ、該1つの平面と前記所定面との交線の方向は前記第1方向に対して前記所要角度だけ傾いていることを特徴とする条項4に記載の空間光変調光学系。
7. 前記入射側光学系は、入射した光束を前記空間光変調器の有効反射領域の形状に整合する光束に変換して射出する光束変換素子を有することを特徴とする条項6に記載の空間光変調光学系。
8. 前記光束変換素子は、前記光路折曲げミラーよりも前側の光路中において前記所定面と光学的にフーリエ変換の関係にある位置に配置された回折光学素子を有することを特徴とする条項7に記載の空間光変調光学系。
9. 前記光束変換素子は、前記光路折曲げミラーよりも前側の光路中において前記所定面と光学的にフーリエ変換の関係にある位置に配置された波面分割型のオプティカルインテグレータを有することを特徴とする条項7に記載の空間光変調光学系。
10. 前記空間光変調器は、前記第1方向に沿って短辺を有する矩形状の有効反射領域を有することを特徴とする条項5乃至9のいずれか1項に記載の空間光変調光学系。
11. 前記空間光変調器は、前記複数のミラー要素の姿勢を個別に制御駆動する駆動部を有することを特徴とする条項1乃至10のいずれか1項に記載の空間光変調光学系。
12. 前記駆動部は、前記複数のミラー要素の向きを連続的にまたは離散的に変化させることを特徴とする条項11に記載の空間光変調光学系。
13. 光源からの光により被照射面を照明する照明光学系において、
 条項1乃至12のいずれか1項に記載の空間光変調光学系と、
 前記空間光変調器を経た光に基づいて、前記照明光学系の照明瞳に所定の光強度分布を形成する分布形成光学系とを備えていることを特徴とする照明光学系。
14. 前記分布形成光学系は、オプティカルインテグレータと、該オプティカルインテグレータと前記空間光変調光学系との間の光路中に配置された集光光学系とを有することを特徴とする条項13に記載の照明光学系。
15. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする条項13または14に記載の照明光学系。
16. 所定のパターンを照明するための条項13乃至15のいずれか1項に記載の照明光学系を備え、前記所定のパターンを基板に露光することを特徴とする露光装置。
17. 前記所定のパターンの像を前記基板上に形成する投影光学系を備え、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする条項16に記載の露光装置。
18. 所定のパターンを基板に露光する露光装置であって、
 条項1乃至12のいずれか1項に記載の空間光変調光学系を備えていることを特徴とする露光装置。
19. 前記空間光変調光学系の前記空間光変調器からの光を前記基板に投影する投影光学系を備え、
 前記空間光変調器は前記投影光学系の物体面に配置されていることを特徴とする条項18に記載の露光装置。
20. 条項16乃至19のいずれか1項に記載の露光装置を用いて、前記所定のパターンを感光性基板に露光することと、
 前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
 前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
21. 所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
 前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向と、前記空間光変調器へ入射する入射光束の軸線を含んで前記所定面に垂直な面と前記所定面との交線の方向とは、0°ではない所要角度で交差することを特徴とする空間光変調方法。
The invention can also be described according to the following clauses.
1. In a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
Among the plurality of mirror elements of the spatial light modulator, the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator. A spatial light modulation optical system characterized in that the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
2. The required angle is such that unnecessary light that passes between any pair of facing edges and is reflected by a surface portion substantially parallel to the predetermined surface passes between the pair of edges and exits from the spatial light modulator. The spatial light modulation optical system according to clause 1, wherein the angle is not set.
3. The width dimension between any pair of facing edges is B, the thickness of each mirror element is D, the distance between each mirror element and the surface portion is G, and the incident angle of light to the surface portion is Where β is the required angle α,
α ≧ sin −1 [B / {2 × (D + G) × tan β}]
3. The spatial light modulation optical system according to clause 2, wherein the condition is satisfied.
4). 4. The spatial light modulation optical system according to any one of clauses 1 to 3, further comprising an incident side optical system that guides the incident light beam to the spatial light modulator.
5. The incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
The plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
A plane including the incident optical axis to the optical path bending mirror and the incident optical axis from the optical path bending mirror to the spatial light modulator has an emission optical axis from the spatial light modulator and the first direction. The spatial light modulation optical system according to clause 4, wherein the optical system intersects with a plane perpendicular to the predetermined plane at an angle corresponding to the required angle.
6). The incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
The plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
The incident optical axis to the optical path bending mirror, the incident optical axis from the optical path bending mirror to the spatial light modulator, and the outgoing optical axis from the spatial light modulator are included in one plane, 5. The spatial light modulation optical system according to clause 4, wherein the direction of the line of intersection between one plane and the predetermined plane is inclined by the required angle with respect to the first direction.
7). 7. The spatial light modulation according to clause 6, wherein the incident-side optical system includes a light beam conversion element that converts an incident light beam into a light beam that matches a shape of an effective reflection region of the spatial light modulator and emits the light beam. Optical system.
8). The clause 7 is characterized in that the light beam conversion element has a diffractive optical element disposed at a position optically Fourier-transformed with the predetermined surface in the optical path ahead of the optical path bending mirror. Spatial light modulation optical system.
9. The light beam conversion element includes a wavefront splitting type optical integrator disposed in a position optically Fourier-transformed with the predetermined surface in the optical path in front of the optical path bending mirror. 8. The spatial light modulation optical system according to 7.
10. 10. The spatial light modulation optical system according to any one of clauses 5 to 9, wherein the spatial light modulator has a rectangular effective reflection region having a short side along the first direction.
11. 11. The spatial light modulation optical system according to any one of clauses 1 to 10, wherein the spatial light modulator has a drive unit that individually controls and drives the postures of the plurality of mirror elements.
12 12. The spatial light modulation optical system according to clause 11, wherein the driving unit changes the directions of the plurality of mirror elements continuously or discretely.
13. In the illumination optical system that illuminates the illuminated surface with light from the light source,
The spatial light modulation optical system according to any one of clauses 1 to 12,
An illumination optical system comprising: a distribution forming optical system that forms a predetermined light intensity distribution in an illumination pupil of the illumination optical system based on light that has passed through the spatial light modulator.
14 14. The illumination optical system according to clause 13, wherein the distribution forming optical system includes an optical integrator and a condensing optical system disposed in an optical path between the optical integrator and the spatial light modulation optical system. system.
15. Clause 13, wherein the illumination pupil is used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface, and the illumination pupil is optically conjugate with an aperture stop of the projection optical system. Or the illumination optical system of 14.
16. 16. An exposure apparatus comprising the illumination optical system according to any one of clauses 13 to 15 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a substrate.
17. The exposure according to clause 16, further comprising a projection optical system that forms an image of the predetermined pattern on the substrate, wherein the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. apparatus.
18. An exposure apparatus that exposes a substrate with a predetermined pattern,
An exposure apparatus comprising the spatial light modulation optical system according to any one of clauses 1 to 12.
19. A projection optical system for projecting light from the spatial light modulator of the spatial light modulation optical system onto the substrate;
19. The exposure apparatus according to clause 18, wherein the spatial light modulator is disposed on an object plane of the projection optical system.
20. Using the exposure apparatus according to any one of clauses 16 to 19, exposing the predetermined pattern onto a photosensitive substrate;
Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
Processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method comprising:
21. In a spatial light modulation method of spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
Among the plurality of mirror elements of the spatial light modulator, the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator. A spatial light modulation method characterized in that the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
1 ビーム送光部
3 空間光変調器
4,5 リレー光学系
7 マイクロフライアイレンズ(オプティカルインテグレータ)
8 コンデンサー光学系
9 マスクブラインド
10 結像光学系
LS 光源
DTr,DTw 瞳強度分布計測部
CR 制御系
M マスク
MS マスクステージ
PL 投影光学系
W ウェハ
WS ウェハステージ
1 Beam Transmitter 3 Spatial Light Modulator 4, 5 Relay Optical System 7 Micro Fly Eye Lens (Optical Integrator)
8 Condenser optical system 9 Mask blind 10 Imaging optical system LS Light source DTr, DTw Pupil intensity distribution measuring unit CR Control system M Mask MS Mask stage PL Projection optical system W Wafer WS Wafer stage

Claims (24)

  1. 第1面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を備える空間光変調光学系において、
     前記空間光変調器の前記複数のミラー要素に光を照射する入射側光学系を備え、
     前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記入射側光学系の光軸を含んで前記第1面に垂直な第2面と交差していることを特徴とする空間光変調光学系。
    In a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled,
    An incident-side optical system that irradiates light to the plurality of mirror elements of the spatial light modulator;
    Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system. A spatial light modulation optical system characterized by intersecting the second surface.
  2. 前記第1面と前記第2面との交線の方向と前記エッジの方向との交差角度は、前記対向する任意の一対のエッジ間を通過して前記第1面とほぼ平行な面部分で反射された不要光が前記一対のエッジ間を通過して前記空間光変調器から射出されない角度であることを特徴とする請求項1に記載の空間光変調光学系。 The intersection angle between the direction of the line of intersection of the first surface and the second surface and the direction of the edge is a surface portion that passes between the pair of opposing edges and is substantially parallel to the first surface. 2. The spatial light modulation optical system according to claim 1, wherein the reflected unnecessary light passes through the pair of edges and is not emitted from the spatial light modulator. 3.
  3. 前記対向する任意の一対のエッジ間の幅寸法をBとし、各ミラー要素の厚さをDとし、各ミラー要素と前記面部分との間隔をGとし、前記面部分への光の入射角度をβとするとき、前記交差角度αは、
    α≧sin-1[B/{2×(D+G)×tanβ}]
    の条件を満たすことを特徴とする請求項2に記載の空間光変調光学系。
    The width dimension between any pair of facing edges is B, the thickness of each mirror element is D, the distance between each mirror element and the surface portion is G, and the incident angle of light to the surface portion is Where β is the crossing angle α,
    α ≧ sin −1 [B / {2 × (D + G) × tan β}]
    The spatial light modulation optical system according to claim 2, wherein the following condition is satisfied.
  4. 前記複数のミラー要素からの光が入射する射出側光学系を備え、
     前記入射側光学系は、入射した光を偏向して前記空間光変調器へ導く光路折曲げミラーを有し、
     前記複数のミラー要素は、第1方向に沿ったエッジを有する矩形状の反射面を有し、
     前記入射側光学系における前記光路折曲げミラーの入射側の光軸と前記光路折曲げミラーの射出側の光軸とを含む平面は、前記第1方向と交差していることを特徴とする請求項1乃至3のいずれか1項に記載の空間光変調光学系。
    An emission-side optical system on which light from the plurality of mirror elements is incident;
    The incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
    The plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
    The plane including the optical axis on the incident side of the optical path bending mirror and the optical axis on the exit side of the optical path bending mirror in the incident side optical system intersects the first direction. Item 4. The spatial light modulation optical system according to any one of Items 1 to 3.
  5. 前記複数のミラー要素からの光が入射する射出側光学系を備え、
     前記入射側光学系は、入射した光を偏向して前記空間光変調器へ導く光路折曲げミラーを有し、
     前記複数のミラー要素は、第1方向に沿ったエッジを有する矩形状の反射面を有し、
     前記入射側光学系における前記光路折曲げミラーの入射側の光軸と、前記光路折曲げミラーの射出側の光軸と、前記射出側光学系の光軸とは1つの平面に含まれ、該1つの平面と前記第1面との交線の方向は前記第1方向に対して所要の角度だけ傾いていることを特徴とする請求項1乃至3のいずれか1項に記載の空間光変調光学系。
    An emission-side optical system on which light from the plurality of mirror elements is incident;
    The incident-side optical system has an optical path bending mirror that deflects incident light and guides it to the spatial light modulator,
    The plurality of mirror elements have a rectangular reflecting surface having an edge along the first direction;
    The optical axis on the incident side of the optical path bending mirror, the optical axis on the output side of the optical path bending mirror, and the optical axis of the output optical system in the incident side optical system are included in one plane. 4. The spatial light modulation according to claim 1, wherein a direction of an intersection line between one plane and the first surface is inclined by a predetermined angle with respect to the first direction. 5. Optical system.
  6. 前記入射側光学系は、入射した光束を前記空間光変調器の有効反射領域の形状に整合する光束に変換して射出する光束変換素子を有することを特徴とする請求項5に記載の空間光変調光学系。 The spatial light according to claim 5, wherein the incident-side optical system includes a light beam conversion element that converts an incident light beam into a light beam that matches a shape of an effective reflection region of the spatial light modulator and emits the light beam. Modulation optical system.
  7. 前記光束変換素子は、前記光路折曲げミラーよりも前側の光路中において前記第1面と光学的にフーリエ変換の関係にある位置に配置された回折光学素子を有することを特徴とする請求項6に記載の空間光変調光学系。 7. The light beam converting element includes a diffractive optical element disposed at a position optically Fourier-transformed with the first surface in an optical path in front of the optical path bending mirror. The spatial light modulation optical system described in 1.
  8. 前記光束変換素子は、前記光路折曲げミラーよりも前側の光路中において前記第1面と光学的にフーリエ変換の関係にある位置に配置されて、前記入射側光学系の光軸を横切る平面内に並列配置された複数の波面分割面を備えるオプティカルインテグレータを有することを特徴とする請求項6に記載の空間光変調光学系。 The light beam conversion element is disposed at a position optically Fourier-transformed with the first surface in the optical path in front of the optical path bending mirror, and is in a plane crossing the optical axis of the incident side optical system. The spatial light modulation optical system according to claim 6, further comprising an optical integrator including a plurality of wavefront division surfaces arranged in parallel.
  9. 前記空間光変調器は、前記第1方向に沿って短辺を有する矩形状の有効反射領域を有することを特徴とする請求項4乃至8のいずれか1項に記載の空間光変調光学系。 9. The spatial light modulation optical system according to claim 4, wherein the spatial light modulator includes a rectangular effective reflection region having a short side along the first direction. 10.
  10. 所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を備える空間光変調光学系において、
     前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記対向する任意の一対のエッジ間を通過して前記所定面とほぼ平行な面部分で反射された不要光が低減される角度であることを特徴とする空間光変調光学系。
    In a spatial light modulation optical system including a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
    Of the plurality of mirror elements of the spatial light modulator, the direction of an arbitrary pair of edges facing each other in two adjacent mirror elements passes between the pair of any facing edges and is substantially the same as the predetermined surface. A spatial light modulation optical system, characterized in that the angle is such that unnecessary light reflected by parallel plane portions is reduced.
  11. 前記エッジの方向と、前記空間光変調器へ入射する入射光束の軸線を含んで前記所定面に垂直な面と前記所定面との交線の方向とは、0°ではない所要角度で交差することを特徴とする請求項10に記載の空間光変調光学系。 The direction of the edge and the direction of the intersection of the plane perpendicular to the predetermined plane including the axis of the incident light beam incident on the spatial light modulator and the predetermined plane intersect at a required angle other than 0 °. The spatial light modulation optical system according to claim 10.
  12. 前記空間光変調器は、前記複数のミラー要素の姿勢を個別に制御駆動する駆動部を有することを特徴とする請求項1乃至11のいずれか1項に記載の空間光変調光学系。 The spatial light modulation optical system according to any one of claims 1 to 11, wherein the spatial light modulator includes a drive unit that individually controls and drives the postures of the plurality of mirror elements.
  13. 前記駆動部は、前記複数のミラー要素の向きを連続的にまたは離散的に変化させることを特徴とする請求項12に記載の空間光変調光学系。 The spatial light modulation optical system according to claim 12, wherein the driving unit changes the directions of the plurality of mirror elements continuously or discretely.
  14. 光源からの光により被照射面を照明する照明光学系において、
     請求項1乃至13のいずれか1項に記載の空間光変調光学系と、
     前記空間光変調器を経た光を前記照明光学系の照明瞳に所定の光強度分布で分布させる分布形成光学系とを備えていることを特徴とする照明光学系。
    In the illumination optical system that illuminates the illuminated surface with light from the light source,
    The spatial light modulation optical system according to any one of claims 1 to 13,
    An illumination optical system, comprising: a distribution forming optical system that distributes light having passed through the spatial light modulator to an illumination pupil of the illumination optical system with a predetermined light intensity distribution.
  15. 前記分布形成光学系は、前記分布形成光学系の光軸を横切る平面内に並列配置された複数の波面分割面を備えるオプティカルインテグレータと、該オプティカルインテグレータと前記空間光変調光学系との間の光路中に配置された集光光学系とを有することを特徴とする請求項14に記載の照明光学系。 The distribution forming optical system includes: an optical integrator having a plurality of wavefront splitting surfaces arranged in parallel in a plane crossing the optical axis of the distribution forming optical system; and an optical path between the optical integrator and the spatial light modulation optical system The illumination optical system according to claim 14, further comprising a condensing optical system disposed therein.
  16. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項14または15に記載の照明光学系。 The projection pupil is used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface, and the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. The illumination optical system according to 14 or 15.
  17. 所定のパターンを照明するための請求項14乃至16のいずれか1項に記載の照明光学系を備え、前記所定のパターンを基板に露光することを特徴とする露光装置。 An exposure apparatus comprising the illumination optical system according to any one of claims 14 to 16 for illuminating a predetermined pattern, and exposing the predetermined pattern onto a substrate.
  18. 前記所定のパターンの像を前記基板上に形成する投影光学系を備え、前記照明瞳は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項17に記載の露光装置。 The projection optical system for forming an image of the predetermined pattern on the substrate is provided, and the illumination pupil is at a position optically conjugate with an aperture stop of the projection optical system. Exposure device.
  19. 所定のパターンを基板に露光する露光装置であって、
     請求項1乃至13のいずれか1項に記載の空間光変調光学系を備えていることを特徴とする露光装置。
    An exposure apparatus that exposes a substrate with a predetermined pattern,
    An exposure apparatus comprising the spatial light modulation optical system according to any one of claims 1 to 13.
  20. 前記空間光変調光学系の前記空間光変調器からの光を前記基板に投影する投影光学系を備え、
     前記空間光変調器は前記投影光学系の物体面に配置されていることを特徴とする請求項19に記載の露光装置。
    A projection optical system for projecting light from the spatial light modulator of the spatial light modulation optical system onto the substrate;
    The exposure apparatus according to claim 19, wherein the spatial light modulator is disposed on an object plane of the projection optical system.
  21. 請求項17乃至20のいずれか1項に記載の露光装置を用いて、前記所定のパターンを感光性基板に露光することと、
     前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成することと、
     前記マスク層を介して前記感光性基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
    Using the exposure apparatus according to any one of claims 17 to 20, exposing the predetermined pattern to a photosensitive substrate;
    Developing the photosensitive substrate having the predetermined pattern transferred thereon, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the photosensitive substrate;
    Processing the surface of the photosensitive substrate through the mask layer. A device manufacturing method comprising:
  22. 所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
     前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向と、前記空間光変調器へ入射する入射光束の軸線を含んで前記所定面に垂直な面と前記所定面との交線の方向とは、0°ではない所要角度で交差することを特徴とする空間光変調方法。
    In a spatial light modulation method of spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
    Among the plurality of mirror elements of the spatial light modulator, the predetermined plane includes a direction of an arbitrary pair of edges facing each other in two adjacent mirror elements and an axis of an incident light beam incident on the spatial light modulator. A spatial light modulation method characterized in that the direction of the line of intersection between the plane perpendicular to the predetermined plane and the predetermined plane intersects at a required angle other than 0 °.
  23. 第1面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
     入射側光学系を介して前記空間光変調器の前記複数のミラー要素に光を照射することと、
     前記空間光変調器の前記複数のミラー要素で前記光を反射することと、
    を含み、
     前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジの方向は、前記入射側光学系の光軸を含んで前記第1面に垂直な第2面と交差していることを特徴とする空間光変調方法。
    In a spatial light modulation method of spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on the first surface and individually controlled,
    Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system;
    Reflecting the light at the plurality of mirror elements of the spatial light modulator;
    Including
    Of the plurality of mirror elements of the spatial light modulator, the direction of any pair of edges facing each other in two adjacent mirror elements is perpendicular to the first surface including the optical axis of the incident side optical system. A spatial light modulation method characterized by intersecting the second surface.
  24. 所定面に配列されて個別に制御される複数のミラー要素を有する空間光変調器を用いて入射光を空間的に変調する空間光変調方法において、
     入射側光学系を介して前記空間光変調器の前記複数のミラー要素に光を照射することと、
     前記空間光変調器の前記複数のミラー要素で前記光を反射することと、
     前記空間光変調器の前記複数のミラー要素のうち、隣り合う2つのミラー要素において対向する任意の一対のエッジ間を通過して前記所定面とほぼ平行な面部分で反射された不要光を低減することと、
    を含むことを特徴とする空間光変調方法。
    In a spatial light modulation method of spatially modulating incident light using a spatial light modulator having a plurality of mirror elements arranged on a predetermined surface and individually controlled,
    Irradiating light to the plurality of mirror elements of the spatial light modulator via an incident side optical system;
    Reflecting the light at the plurality of mirror elements of the spatial light modulator;
    Of the plurality of mirror elements of the spatial light modulator, unnecessary light that passes between any pair of opposing edges in two adjacent mirror elements and is reflected by a surface portion substantially parallel to the predetermined surface is reduced. To do
    A spatial light modulation method comprising:
PCT/JP2013/079955 2012-11-07 2013-11-06 Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device WO2014073548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261723600P 2012-11-07 2012-11-07
US61/723,600 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073548A1 true WO2014073548A1 (en) 2014-05-15

Family

ID=50684650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079955 WO2014073548A1 (en) 2012-11-07 2013-11-06 Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device

Country Status (1)

Country Link
WO (1) WO2014073548A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230257A (en) * 1996-02-28 1997-09-05 Fuji Photo Film Co Ltd Micro-mirror device
JP2008058965A (en) * 2006-08-25 2008-03-13 Spatial Photonics Inc Microdevice having antistiction material
WO2009125511A1 (en) * 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
JP2011521445A (en) * 2008-05-09 2011-07-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system including Fourier optics
JP2011170299A (en) * 2010-02-22 2011-09-01 Nikon Corp Spatial light modulator, illumination apparatus, exposure apparatus, and method for manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230257A (en) * 1996-02-28 1997-09-05 Fuji Photo Film Co Ltd Micro-mirror device
JP2008058965A (en) * 2006-08-25 2008-03-13 Spatial Photonics Inc Microdevice having antistiction material
WO2009125511A1 (en) * 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
JP2011521445A (en) * 2008-05-09 2011-07-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination system including Fourier optics
JP2011170299A (en) * 2010-02-22 2011-09-01 Nikon Corp Spatial light modulator, illumination apparatus, exposure apparatus, and method for manufacturing them

Similar Documents

Publication Publication Date Title
KR101644762B1 (en) Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
JP5360057B2 (en) Spatial light modulator inspection apparatus and inspection method, illumination optical system, illumination optical system adjustment method, exposure apparatus, and device manufacturing method
WO2009125511A1 (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
KR20100099157A (en) Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009087805A1 (en) Spatial light modulator, illumination optical system, aligner, and device manufacturing method
CN108107685B (en) Exposure apparatus, exposure method, device manufacturing method, and evaluation method
JP2013502703A (en) Polarization conversion unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5884871B2 (en) Illumination optical apparatus, illumination method, exposure apparatus, exposure method, and device manufacturing method
US20100253927A1 (en) Spatial light modulating unit, illumination optical system, exposure apparatus, and device manufacturing method
KR20100095620A (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2015005676A (en) Illuminating optical system, illuminating optical device, exposure device, and device manufacturing method
JP2014146660A (en) Illumination optical device, exposure device, and method of manufacturing device
JP5532213B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
JP2011222841A (en) Spatial light modulation unit, illumination optical system, exposure device, and device manufacturing method
WO2014073548A1 (en) Spatial-light-modulating optical system, illumination optical system, exposure device, and method for producing device
JP2014123600A (en) Optical integrator, illumination unit, transmission optical system, illumination optical system, exposure device, and device manufacturing method
JP5327715B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2013115208A1 (en) Transmission optical system, illumination optical system, exposure device, and device manufacturing method
JP6183635B2 (en) Optical integrator, illumination unit, transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP2012004558A (en) Illumination optical system, exposure equipment, and device manufacturing method
JP2014086627A (en) Monitoring device, illumination optical system, exposure device, and manufacturing method for device
JP2012028543A (en) Illumination optical system, exposure device, and device manufacturing method
JP2011029596A (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2014107309A (en) Transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP