JPH06204114A - Lighting system and projection aligner using same - Google Patents

Lighting system and projection aligner using same

Info

Publication number
JPH06204114A
JPH06204114A JP4361591A JP36159192A JPH06204114A JP H06204114 A JPH06204114 A JP H06204114A JP 4361591 A JP4361591 A JP 4361591A JP 36159192 A JP36159192 A JP 36159192A JP H06204114 A JPH06204114 A JP H06204114A
Authority
JP
Japan
Prior art keywords
optical
optical integrator
light
image
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4361591A
Other languages
Japanese (ja)
Other versions
JP3000502B2 (en
Inventor
Yoshinori Miwa
良則 三輪
Shigeru Hayata
滋 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4361591A priority Critical patent/JP3000502B2/en
Publication of JPH06204114A publication Critical patent/JPH06204114A/en
Application granted granted Critical
Publication of JP3000502B2 publication Critical patent/JP3000502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a lighting system and projection aligner using the system, in which a lighting method being the object of the invention is appropriately changed and selected each time manually or automatically, by changing and using a light-intensity distribution formed in the outgoing surface of an optical integrator. CONSTITUTION:When an image is formed in the vicinity of a second focus by luminous flux from a light-emitting part arranged in the vicinity of the first focus of an elliptic mirror 2 and an applied surface is lighted via optical integrator 9 by luminous flux from the image, optical elements 6, 8, which can be inserted into and removed from an optical path, for deflecting incident light flux in a predetermined direction; an image formation system for forming the image by different magnifying powers in the plane of incidence of the optical integrator 9 and a diaphragm member 10 are arranged between the elliptic mirror 2 and optical integrator 9. Then, the optical elements 6, 8, image formation system and diaphragm member 10 are selectively changed according to a pattern on the applied surface so that a light intensity distribution formed in the outgoing surface of the optical integrator 9 is changed and used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明装置及びそれを用い
た投影露光装置に関し、具体的には半導体素子の製造装
置である所謂ステッパーにおいて、レチクル面上のパタ
ーンを適切に照明し、高い解像力が容易に得られるよう
にした照明装置及びそれを用いた投影露光装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminating device and a projection exposure apparatus using the same, and more specifically, in a so-called stepper which is a semiconductor device manufacturing apparatus, a pattern on a reticle surface is appropriately illuminated and high resolution is achieved. And a projection exposure apparatus using the same.

【0002】[0002]

【従来の技術】最近の半導体素子の製造技術の進展は目
覚ましく、又それに伴う微細加工技術の進展も著しい。
特に光加工技術は1MDRAMの半導体素子の製造を境
にサブミクロンの解像力を有する微細加工の技術まで達
している。解像力を向上させる手段としてこれまで多く
の場合、露光波長を固定して、光学系のNA(開口数)
を大きくしていく方法を用いていた。しかし最近では露
光波長をg線からi線に変えて、超高圧水銀灯を用いた
露光法により解像力を向上させる試みも種々と行なわれ
ている。
2. Description of the Related Art The recent progress in manufacturing technology of semiconductor devices is remarkable, and accompanying it, the progress of fine processing technology is remarkable.
In particular, the optical processing technology has reached the level of fine processing technology having submicron resolution at the border of the production of semiconductor elements of 1M DRAM. In many cases, the exposure wavelength has been fixed and the NA (numerical aperture) of the optical system has been fixed as a means for improving the resolution.
Was used. However, recently, various attempts have been made to change the exposure wavelength from g-line to i-line and improve the resolution by an exposure method using an ultra-high pressure mercury lamp.

【0003】露光波長としてg線やi線を用いる方法の
発展と共にレジストプロセスも同様に発展したきた。こ
の光学系とプロセスの両者が相まって、光リソグラフィ
が急激に進歩してきた。
Along with the development of the method of using g-line or i-line as the exposure wavelength, the resist process has also developed. The combination of this optical system and the process has led to a rapid advance in optical lithography.

【0004】一般にステッパーの焦点深度はNAの2乗
に反比例することが知られている。この為サブミクロン
の解像力を得ようとすると、それと共に焦点深度が浅く
なってくるという問題点が生じてくる。
It is generally known that the depth of focus of a stepper is inversely proportional to the square of NA. Therefore, when trying to obtain submicron resolution, a problem arises that the depth of focus becomes shallower with it.

【0005】これに対してエキシマレーザーに代表され
る更に短い波長の光を用いることにより解像力の向上を
図る方法が種々と提案されている。短波長の光を用いる
効果は一般に波長に反比例する効果をもっていることが
知られており、波長を短くした分だけ焦点深度は深くな
る。
On the other hand, various methods have been proposed for improving the resolution by using light having a shorter wavelength, which is represented by an excimer laser. It is known that the effect of using light having a short wavelength is generally inversely proportional to the wavelength, and the depth of focus becomes deeper as the wavelength is shortened.

【0006】短波長化の光を用いる他に解像力を向上さ
せる方法として位相シフトマスクを用いる方法(位相シ
フト法)が種々と提案されている。この方法は従来のマ
スクの一部に、他の部分とは通過光に対して180度の
位相差を与える薄膜を形成し、解像力を向上させようと
するものであり、IBM社(米国)のLevenson
らにより提案されている。解像力RPは波長をλ、パラ
メータをk1 、開口数をNAとすると、一般に式 RP=k1 λ/NA で示される。通常0.7〜0.8が実用域とされるパラ
メータk1 は、位相シフト法によれば0.35ぐらい迄
大幅に改善できることが知られている。
In addition to the use of light with a short wavelength, various methods using a phase shift mask (phase shift method) have been proposed as methods for improving resolution. This method is intended to improve the resolution by forming a thin film on a part of a conventional mask that gives a phase difference of 180 degrees with respect to the passing light with respect to the other part, and is manufactured by IBM (US). Levenson
Proposed by et al. The resolving power RP is generally represented by the equation RP = k 1 λ / NA, where λ is the wavelength, k 1 is the parameter, and NA is the numerical aperture. It is known that the parameter k 1 , which is usually in the practical range of 0.7 to 0.8, can be greatly improved to about 0.35 by the phase shift method.

【0007】位相シフト法には種々のものが知られてお
り、それらは例えば日経マイクロデバイス1990年7
月号108ページ以降の福田等の論文に詳しく記載され
ている。
Various types of phase shift methods are known, for example, Nikkei Microdevice 1990 7
It is described in detail in the papers by Fukuda et al.

【0008】しかしながら実際に空間周波数変調型の位
相シフトマスクを用いて解像力を向上させるためには未
だ多くの問題点が残っている。例えば現状で問題点とな
っているものとして以下のものがある。 (イ).位相シフト膜を形成する技術が未確立。 (ロ).位相シフト膜用の最適なCADの開発が未確
立。 (ハ).位相シフト膜を付けれないパターンの存在。 (ニ).(ハ)に関連してネガ型レジストを使用せざる
をえないこと。 (ホ).検査、修正技術が未確立。
However, many problems still remain in order to actually improve the resolution by using a spatial frequency modulation type phase shift mask. For example, there are the following as problems at present. (I). The technology for forming the phase shift film has not been established. (B). The development of the optimum CAD for the phase shift film has not been established. (C). The existence of a pattern that cannot have a phase shift film. (D). There is no choice but to use a negative resist in relation to (c). (E). Inspection and correction techniques have not been established.

【0009】このため実際に、この位相シフトマスクを
利用して半導体素子を製造するには様々な障害があり、
現在のところ大変困難である。
Therefore, actually, there are various obstacles in manufacturing a semiconductor device using this phase shift mask.
At present it is very difficult.

【0010】これに対して本出願人は照明装置を適切に
構成することにより、より解像力を高めた露光方法及び
それを用いた露光装置を特願平3−28631号(平成
3年2月22日出願)で提案している。
On the other hand, the applicant of the present invention has disclosed an exposure method with a higher resolution by appropriately configuring an illuminating device and an exposure apparatus using the same, as disclosed in Japanese Patent Application No. 3-28631 (February 22, 1991). Japanese application).

【0011】[0011]

【発明が解決しようとする課題】本出願人が先に提案し
た露光装置においては主としてk1 ファクターが0.5
付近の空間周波数が高い領域に注目した照明系を用いて
いる。この照明系は空間周波数が高いところでは焦点深
度が深い。
In the exposure apparatus previously proposed by the present applicant, the k 1 factor is mainly 0.5.
An illumination system is used that focuses on the area with high spatial frequency in the vicinity. This illumination system has a deep depth of focus where the spatial frequency is high.

【0012】実際の半導体集積回路の製造工程はパター
ンの高い解像性能が必要とされる工程、それほどパター
ンの解像性能は必要とされない工程と種々様々である。
従って現在求められているのは各工程独自に求められる
解像性能への要求に対応できる投影露光装置である。
There are various actual manufacturing processes of a semiconductor integrated circuit, including a process requiring high pattern resolution performance and a process not requiring such pattern resolution performance.
Therefore, what is currently required is a projection exposure apparatus that can meet the demand for resolution performance that is uniquely required for each process.

【0013】本発明は投影焼き付けを行なう対象とする
パターン形状及び解像線幅に応じて適切なる照明方法
を、例えば光束の有効利用と像性能を両立させたい場
合、光束の有効利用を重視させたい場合、そして像性能
を重視したい場合等、目的とする照明方法をその都度、
手動又は自動的に適切に切換えて選択するようにした照
明装置及びそれを用いた投影露光装置の提供を目的とす
る。
According to the present invention, an illumination method suitable for the pattern shape and the resolution line width to be subjected to projection printing is emphasized, for example, when it is desired to make effective use of a light flux and image performance compatible with each other. If you want to, and if you want to emphasize the image performance, etc.
It is an object of the present invention to provide an illuminating device and a projection exposure apparatus using the illuminating device that can be appropriately or manually selected by switching appropriately.

【0014】[0014]

【課題を解決するための手段】本発明の照明装置は、楕
円鏡の第1焦点近傍に発光部を配置し、該発光部からの
光束で該楕円鏡を介して該楕円鏡の第2焦点近傍に該発
光部の像を形成し、該発光部の像からの光束で複数の微
小レンズを2次元的に配列したオプティカルインテグレ
ータを介して被照射面を照明する際、該楕円鏡とオプテ
ィカルインテグレータとの間に入射光束を所定方向に偏
向させる光路中より挿脱可能な光学素子と、該発光部の
像を該オプティカルインテグレータの入射面に異った倍
率で切換え可能に結像させる結像系と、該オプティカル
インテグレータの入射面又は射出面近傍に挿脱可能な絞
り部材とを配置し、該被照射面上のパターンに応じて該
光学素子、結像系、そして絞り部材を選択的に切換え
て、該オプティカルインテグレータの射出面に形成され
る光強度分布を変更して使用するようにしたことを特徴
としている。
In the illuminating device of the present invention, a light emitting section is arranged in the vicinity of the first focal point of the elliptic mirror, and a light flux from the light emitting section is passed through the elliptic mirror to the second focal point of the elliptic mirror. When an image of the light emitting unit is formed in the vicinity and the illuminated surface is illuminated through an optical integrator in which a plurality of microlenses are two-dimensionally arranged by the light flux from the image of the light emitting unit, the elliptic mirror and the optical integrator are illuminated. And an optical element that can be inserted into and removed from the optical path that deflects the incident light beam in a predetermined direction, and an imaging system that can switchably form an image of the light emitting unit on the incident surface of the optical integrator at different magnifications. And an iris member that can be inserted and removed near the incident surface or the exit surface of the optical integrator, and selectively switches the optical element, the imaging system, and the iris member according to the pattern on the illuminated surface. The optical Change the light intensity distribution formed on the exit surface of the integrators is characterized in that it has to use.

【0015】特に前記光学素子、結像系、そして絞り部
材を選択的に切換えて、該オプティカルインテグレータ
の入射面の光強度が中心部分が強い回転対称の第2の状
態と、中心部分に比べて周辺部分に強い領域を有する第
1の状態とを選択するようにしたことを特徴としてい
る。
Particularly, by selectively switching the optical element, the image forming system, and the diaphragm member, the light intensity of the incident surface of the optical integrator is stronger than the second state of rotational symmetry where the central portion is strong and the central portion. It is characterized in that the first state having a strong region in the peripheral portion is selected.

【0016】又本発明の投影露光装置は、楕円鏡の第1
焦点近傍に発光部を配置し、該発光部からの光束で該楕
円鏡を介して該楕円鏡の第2焦点近傍に該発光部の像を
形成し、該発光部の像からの光束で複数の微小レンズを
2次元的に配列したオプティカルインテグレータを介し
て第1物体面上のパターンを照明し、該パターンを投影
光学系を介して第2物体面上に投影露光する際、該楕円
鏡とオプティカルインテグレータとの間に入射光束を所
定方向に偏向させる光路中より挿脱可能な光学素子と、
該発光部の像を該オプティカルインテグレータの入射面
に異った倍率で切換え可能に結像させる結像系と、該オ
プティカルインテグレータの入射面又は射出面近傍に挿
脱可能な絞り部材とを配置し、該被照射面上のパターン
に応じて該光学素子、結像系、そして絞り部材を選択的
に切換えて、該オプティカルインテグレータの入射面の
光強度分布を変更し、該投影光学系の瞳面上の光強度分
布を調整したことを特徴としている。
The projection exposure apparatus of the present invention is the first elliptic mirror.
A light emitting unit is arranged in the vicinity of the focal point, an image of the light emitting unit is formed near the second focus of the elliptic mirror by the light flux from the light emitting unit, and a plurality of light beams from the image of the light emitting unit are formed. When a pattern on the first object plane is illuminated through an optical integrator in which the microlenses of (1) are two-dimensionally arranged and the pattern is projected and exposed on the second object plane through a projection optical system, An optical element that can be inserted into and removed from the optical path that deflects the incident light beam in a predetermined direction between the optical integrator and
An image forming system for forming an image of the light emitting unit on the incident surface of the optical integrator so as to be switchable at different magnifications, and an insertable / detachable diaphragm member near the incident surface or the exit surface of the optical integrator are arranged. , The optical element, the image forming system, and the diaphragm member are selectively switched according to the pattern on the illuminated surface to change the light intensity distribution on the incident surface of the optical integrator, and the pupil surface of the projection optical system. The feature is that the above light intensity distribution is adjusted.

【0017】特に前記光学素子、結像系、そして絞り部
材を選択的に切換えて、該オプティカルインテグレータ
の入射面の光強度分布を変更し、該投影光学系の瞳面上
の光強度が中心部分が強い回転対称の第2の状態と中心
部分に比べて周辺部分に強い領域を有する第1の状態と
を選択するようにしたことを特徴としている。
In particular, the optical element, the imaging system, and the diaphragm member are selectively switched to change the light intensity distribution on the incident surface of the optical integrator so that the light intensity on the pupil plane of the projection optical system is the central portion. Is selected between the second state of strong rotational symmetry and the first state having a stronger region in the peripheral portion than in the central portion.

【0018】[0018]

【実施例】図1は本発明の照明装置及びそれを用いた投
影露光装置の実施例1を示す概略構成図であり、ステッ
パーと呼称される縮小型の投影型露光装置に本発明を適
用した例である。図2、図3は各々図1の一部分の説明
図である。図2は後述するように高解像度投影を目的と
した照明方法の第1の状態を示し、図3は通常の照明方
法の第2の状態を示している。
Embodiment 1 FIG. 1 is a schematic configuration diagram showing Embodiment 1 of an illumination apparatus and a projection exposure apparatus using the same according to the present invention. The present invention is applied to a reduction type projection exposure apparatus called a stepper. Here is an example. 2 and 3 are explanatory views of a part of FIG. FIG. 2 shows a first state of the illumination method for high-resolution projection as described later, and FIG. 3 shows a second state of the normal illumination method.

【0019】図中、1は紫外線や遠紫外線等を放射する
高輝度の超高圧水銀灯等の光源で、その発光部1aは楕
円ミラーの第1焦点近傍に配置している。
In the figure, reference numeral 1 denotes a light source such as a high-intensity ultra-high pressure mercury lamp that radiates ultraviolet rays or far ultraviolet rays, and its light emitting portion 1a is arranged near the first focal point of an elliptical mirror.

【0020】光源1より発した光が楕円ミラー2によっ
て集光され、コールドミラー3で反射して楕円ミラー2
の第2焦点近傍に発光部1aの像(発光部像)1bを形
成している。コールドミラー3は多層膜より成り、主に
赤外光を透過させると共に紫外光を反射させている。
The light emitted from the light source 1 is collected by the elliptical mirror 2, reflected by the cold mirror 3, and reflected by the elliptical mirror 2.
An image of the light emitting portion 1a (light emitting portion image) 1b is formed in the vicinity of the second focal point. The cold mirror 3 is composed of a multilayer film, and mainly transmits infrared light and reflects ultraviolet light.

【0021】101は結像系であり、2つのレンズ系
5,7を有しており、第2焦点近傍4に形成した発光部
像1bを後述する光路中から挿脱可能な光学素子6,8
を介して、又は介さないでオプティカルインテグレータ
9の入射面9aに結像している。
Reference numeral 101 denotes an image forming system, which has two lens systems 5 and 7, and which is capable of inserting and removing the light emitting portion image 1b formed in the vicinity 4 of the second focal point from the optical path described later. 8
An image is formed on the incident surface 9a of the optical integrator 9 with or without.

【0022】光学素子6は入射光束を所定方向に偏向さ
せる四角錐プリズムより成っている。光学素子8は入射
光束を所定方向に偏向させるプリズム(例えば円錐プリ
ズム)より成り、オプティカルインテグレータ9により
光束がケラレないようにオプティカルインテグレータ9
の入射面9aへの主光線の入射角が小さくなるようにし
ている。
The optical element 6 is composed of a quadrangular pyramid prism for deflecting an incident light beam in a predetermined direction. The optical element 8 is composed of a prism (for example, a conical prism) that deflects the incident light beam in a predetermined direction, and the optical integrator 9 prevents the light beam from being vignetted by the optical integrator 9.
The angle of incidence of the chief ray on the incident surface 9a is reduced.

【0023】21は保持部材であり、光学素子6を保持
しており、該光学素子6を光路中より退避するようにガ
イド22に沿って移動する。23はモータでピニオン2
4とラック25の連結により保持部材21をガイド22
に沿って移動させる。26,27は各々位置センサーで
あり、保持部材21の位置を検出し、光学素子6が光路
中に入っている状態と光路中より退避した状態とを検知
している。
A holding member 21 holds the optical element 6, and moves along the guide 22 so as to retract the optical element 6 from the optical path. 23 is a motor and pinion 2
4 and the rack 25 are connected to each other to guide the holding member 21 to the guide 22.
Move along. Reference numerals 26 and 27 denote position sensors, which detect the position of the holding member 21 and detect whether the optical element 6 is in the optical path or retracted from the optical path.

【0024】28は保持部材であり、結像系101のう
ちのレンズ系7を保持しており、ガイド29に沿って光
軸上移動することにより、発光部像1bのオプティカル
インテグレータ9の入射面9aへの結像倍率を切り換え
ている。
Reference numeral 28 denotes a holding member, which holds the lens system 7 of the image forming system 101, and moves along the optical axis along the guide 29 to make the incident surface of the optical integrator 9 of the light emitting unit image 1b. The imaging magnification to 9a is switched.

【0025】30はモータで、ピニオン31とラック3
2の連結により保持部材28を光軸上移動させている。
33,34は各々位置センサーであり、保持部材28の
位置を検出し、これにより例えば所定の2種類の結像倍
率の状態を検知している。
Reference numeral 30 is a motor, which is a pinion 31 and a rack 3.
The holding member 28 is moved on the optical axis by connecting the two.
Reference numerals 33 and 34 denote position sensors, which detect the position of the holding member 28, and thereby detect, for example, the states of two predetermined types of imaging magnification.

【0026】35は保持部材であり、光学素子8を保持
しており、該光学素子8を光路中より退避するようにガ
イド36に沿って移動する。37はモータでピニオン3
8とラック39の連結により保持部材35をガイド36
に沿って移動させる。40,41は各々位置センサーで
あり、保持部材35の位置を検出し、光学素子8が光路
中に入っている状態と光路中より退避した状態とを検知
している。
A holding member 35 holds the optical element 8 and moves along the guide 36 so as to retract the optical element 8 from the optical path. 37 is a motor and pinion 3
8 and the rack 39 connect the holding member 35 to the guide 36.
Move along. Reference numerals 40 and 41 respectively denote position sensors, which detect the position of the holding member 35 and detect whether the optical element 8 is in the optical path or is retracted from the optical path.

【0027】オプティカルインテグレータ9は複数の微
小レンズを2次元的に配列して構成しており、その射出
面9b近傍に2次光源9cを形成している。
The optical integrator 9 is constructed by arranging a plurality of minute lenses two-dimensionally, and a secondary light source 9c is formed in the vicinity of its exit surface 9b.

【0028】10は絞り部材であり、オプティカルイン
テグレータ9の射出面9b近傍に配置されており、後述
する投影光学系15の瞳15a近傍に形成される有効光
源形状を設定している。尚、絞り部材10はオプティカ
ルインテグレータ9の入射面9の側に配置しても良い。
A diaphragm member 10 is arranged near the exit surface 9b of the optical integrator 9 and sets an effective light source shape formed near the pupil 15a of the projection optical system 15 which will be described later. The diaphragm member 10 may be arranged on the incident surface 9 side of the optical integrator 9.

【0029】絞り部材10は開口形状の異なった複数の
開口部材10a,10bを有し、その開口形状が光路中
で切り替える機構を有している。
The diaphragm member 10 has a plurality of aperture members 10a and 10b having different aperture shapes, and has a mechanism for switching the aperture shapes in the optical path.

【0030】同図では2つの開口部材10a,10bを
用いた場合を示しているが、開口部材の数は2つ以上あ
っても良い。
Although the drawing shows the case where two opening members 10a and 10b are used, the number of opening members may be two or more.

【0031】42は保持部材であり、絞り部材10を保
持しており、該絞り部材10の開口部材10a,10b
を選択的に光路中に配置するためにガイド43に沿って
移動している。44はモータで、ピニオン45とラック
46の連結により保持部材42を移動させている。4
7,48は各々位置センサーであり、保持部材42の位
置を検出し、絞り部材10の開口部材10a,10bの
うちのどちらが光路中に位置しているかを検知してい
る。
A holding member 42 holds the diaphragm member 10, and the aperture members 10a and 10b of the diaphragm member 10 are held.
Are moved along the guides 43 in order to selectively place them in the optical path. Reference numeral 44 denotes a motor, which moves the holding member 42 by connecting the pinion 45 and the rack 46. Four
Reference numerals 7 and 48 denote position sensors, which detect the position of the holding member 42 and which of the aperture members 10a and 10b of the diaphragm member 10 is located in the optical path.

【0032】11はレンズ系であり、オプティカルイン
テグレータ9の射出面9bからの光束を集光し、絞り部
材10とミラー12を介してレンズ系13と共にレチク
ルステージに載置した被照射面であるレチクル14を照
明している。レンズ系11とレンズ系13は集光レンズ
を構成している。
Reference numeral 11 denotes a lens system, which collects a light beam from the exit surface 9b of the optical integrator 9 and mounts it on the reticle stage together with the lens system 13 via the diaphragm member 10 and the mirror 12, which is the illuminated surface of the reticle. Illuminating 14 The lens system 11 and the lens system 13 form a condenser lens.

【0033】15は投影光学系であり、レチクル14に
描かれたパターンをウエハチャックに載置したウエハ1
6面上に縮小投影している。
Reference numeral 15 denotes a projection optical system, which is a wafer 1 on which a pattern drawn on the reticle 14 is placed on a wafer chuck.
The reduced projection is performed on the six planes.

【0034】本実施例ではオプティカルインテグレータ
9の射出面9b近傍の2次光源9cはレンズ系11と1
3により投影光学系15の瞳15a近傍に形成されてい
る。
In this embodiment, the secondary light source 9c in the vicinity of the exit surface 9b of the optical integrator 9 includes the lens systems 11 and 1.
3 is formed in the vicinity of the pupil 15a of the projection optical system 15.

【0035】本実施例ではレチクル14のパターンの方
向性及び解像線幅等に応じて図2,図3に示すように光
学素子6,8又はレンズ系7を選択的に光路中に切り替
えると共に必要に応じて絞り部材10の開口形状を変化
させている。これにより投影光学系15の瞳面15aに
形成される2次光源像の光強度分布を変化させて前述の
特願平3−28631号で提案した照明方法と同様にし
て高解像度が可能な投影露光を行なっている。
In this embodiment, the optical elements 6 and 8 or the lens system 7 are selectively switched into the optical path as shown in FIGS. 2 and 3 according to the directionality of the pattern of the reticle 14 and the resolution line width. The aperture shape of the diaphragm member 10 is changed as necessary. As a result, the light intensity distribution of the secondary light source image formed on the pupil plane 15a of the projection optical system 15 is changed so that high resolution projection is possible in the same manner as the illumination method proposed in Japanese Patent Application No. 3-28631. It is exposing.

【0036】次に本実施例において光学素子6,8とレ
ンズ系7とを利用することによりオプティカルインテグ
レータ9の入射面9aの光強度分布を変更すると共に絞
り部材10の開口部材10a,10bを用いて投影光学
系15の瞳面15aに形成される2次光源像の光強度分
布の変更方法について説明する。
Next, in the present embodiment, the light intensity distribution on the incident surface 9a of the optical integrator 9 is changed by using the optical elements 6 and 8 and the lens system 7, and the aperture members 10a and 10b of the diaphragm member 10 are used. A method of changing the light intensity distribution of the secondary light source image formed on the pupil plane 15a of the projection optical system 15 will be described.

【0037】図2,図3は各々図1の楕円鏡2から絞り
部材10に至る光路を展開したときの要部概略図であ
る。図2,図3ではミラー3は省略している。図2,図
3では光学素子6,8とレンズ系7を切り替えてオプテ
ィカルインテグレータ9の入射面9aの光強度分布を変
更させている場合を示している。
FIGS. 2 and 3 are schematic views of essential parts when the optical path from the elliptical mirror 2 of FIG. 1 to the diaphragm member 10 is developed. The mirror 3 is omitted in FIGS. 2 and 3. 2 and 3 show a case where the optical elements 6 and 8 and the lens system 7 are switched to change the light intensity distribution on the incident surface 9a of the optical integrator 9.

【0038】図2は光学素子6,8を光路中に配置し、
絞り部材10のうち開口部材10aを用いた場合を、図
3では光学素子6,8を除去し、レンズ系7を光軸上移
動し絞り部材10のうち開口部材10bを用いた場合を
示している。
In FIG. 2, the optical elements 6 and 8 are arranged in the optical path,
FIG. 3 shows the case where the aperture member 10a of the diaphragm member 10 is used, the optical elements 6 and 8 are removed, the lens system 7 is moved on the optical axis, and the aperture member 10b of the diaphragm member 10 is used. There is.

【0039】図3の照明系は主に高解像力をあまり必要
とせず焦点深度を深くした投影を行なう場合(第2の状
態)であり、従来と同じ照明方法である。図2の照明系
は本発明の特徴とする主に高解像力を必要とする投影を
行なう場合(第1の状態)である。
The illumination system of FIG. 3 is mainly used for projection with a deep depth of focus without requiring high resolution (second state), and is the same illumination method as the conventional one. The illumination system shown in FIG. 2 is a feature of the present invention, which is mainly a case of performing projection requiring high resolution (first state).

【0040】図2(C),図3(C)は、それぞれオプ
ティカルインテグレータ9の入射面9aにおける光強度
分布を模式的に示している。図中、斜線の部分が他の領
域に比べ光強度が強い領域である。図2(B),図3
(B)は、それぞれ図2(C),図3(C)に示すX軸
方向に沿った光強度Iの分布を示した説明図である。
2C and 3C schematically show the light intensity distribution on the incident surface 9a of the optical integrator 9, respectively. In the figure, the shaded areas are areas where the light intensity is higher than other areas. 2 (B) and 3
FIG. 2B is an explanatory diagram showing the distribution of the light intensity I along the X-axis direction shown in FIGS. 2C and 3C, respectively.

【0041】図2(A)では光学素子6,8を光路中に
配置し、楕円鏡2の第2焦点4に形成した発光部像1b
を結像系101によりオプティカルインテグレータ9の
入射面9aに結像させている。このとき図2(B)に示
すようにオプティカルインテグレータ9の入射面9aで
のX方向の光強度分布は光軸部分が弱く周辺で強いリン
グ状の光強度分布となっている。
In FIG. 2A, the light emitting portion image 1b is formed by arranging the optical elements 6 and 8 in the optical path and forming the second focal point 4 of the elliptic mirror 2.
Is imaged on the incident surface 9a of the optical integrator 9 by the imaging system 101. At this time, as shown in FIG. 2B, the light intensity distribution in the X direction on the incident surface 9a of the optical integrator 9 is a ring-shaped light intensity distribution in which the optical axis portion is weak and the periphery is strong.

【0042】図3(A)では光学素子6,8を除去し、
レンズ系7を光軸上移動させて発光部像1bを結像系1
01によりオプティカルインテグレータ9の入射面9a
に所定の倍率で結像している。
In FIG. 3A, the optical elements 6 and 8 are removed,
The lens system 7 is moved on the optical axis to form the image 1b of the light emitting portion on the imaging system 1.
01 the incident surface 9a of the optical integrator 9
The image is formed at a predetermined magnification.

【0043】このときオプティカルインテグレータ9の
入射面9aでの光強度分布は図3(B),図3(C)に
示すように略ガウス型の回転対称となっている。
At this time, the light intensity distribution on the incident surface 9a of the optical integrator 9 has a substantially Gaussian rotational symmetry as shown in FIGS. 3 (B) and 3 (C).

【0044】本実施例では図1に示したように光学素子
6及び8、レンズ系7、そして遮光板10の切換えはそ
れぞれ独立して各モータ23,37,30,44で駆動
している。(尚手動で切換えても良い。)この為、図2
及び図3に示した光学系の構成以外の他の組合せも可能
である。
In the present embodiment, as shown in FIG. 1, the switching of the optical elements 6 and 8, the lens system 7, and the light shielding plate 10 are independently driven by the respective motors 23, 37, 30, 44. (Note that it may be switched manually.)
Also, other combinations than the configuration of the optical system shown in FIG. 3 are possible.

【0045】例えば図2に示す状態から絞り部材10の
みを光路中より退避させた場合、前述したように縦横パ
ターンの高解像力及び焦点深度を深くした図2の状態
と、従来照明法である図3の状態との中間的な状態に設
定することができる。この場合は図2と図3の中間的な
結像性能をもつ。
For example, when only the diaphragm member 10 is retracted from the optical path from the state shown in FIG. 2, the state of FIG. 2 in which the vertical and horizontal patterns have high resolution and the depth of focus is deep as described above, and the conventional illumination method. It can be set to an intermediate state between the three states. In this case, the image forming performance is intermediate between those shown in FIGS.

【0046】本実施例ではこのように各切換え部の設定
をレチクル14のパターンの方向性及び線幅に対応して
決めている。
In this embodiment, the setting of each switching portion is determined in this manner in accordance with the directionality and line width of the pattern of the reticle 14.

【0047】例えば図4(A)のように縦及び横のL&
Sにより主に構成されている回路パターンの場合は図4
(B)のような形状の有効光源が望ましい。このときに
は光学素子6を図4(C)のような四角錐プリズムより
構成し、絞り部材10を図4(D)のように4つの開口
部を有したものにするのが良い。
For example, as shown in FIG. 4A, vertical and horizontal L &
In the case of a circuit pattern mainly composed of S, FIG.
An effective light source having a shape as shown in (B) is desirable. At this time, it is preferable that the optical element 6 is composed of a quadrangular pyramid prism as shown in FIG. 4C, and the diaphragm member 10 has four openings as shown in FIG. 4D.

【0048】又、孤立パターンの解像を重視する場合は
図3のような従来から行なわれている照明法の方が良
い。
When emphasis is placed on the resolution of isolated patterns, the conventional illumination method as shown in FIG. 3 is preferable.

【0049】更に本実施例では図2(C)及び図3
(C)に示す2種類の光強度分布の照明状態しか示して
いないが、光学素子6の保持部材21に他のプリズム、
例えば円錐プリズム等を配置すればオプティカルインテ
グレータ9の入射面9aの光強度分布は輪帯状に強い光
強度を持つ状態にすることができる。これ以外にも光学
素子6の場所に種々の形状のプリズムを配置することで
前述の光強度分布を種々と変更することが可能である。
Further, in this embodiment, FIG. 2C and FIG.
Although only the illumination state of the two types of light intensity distribution shown in (C) is shown, another prism is attached to the holding member 21 of the optical element 6,
For example, if a conical prism or the like is arranged, the light intensity distribution on the incident surface 9a of the optical integrator 9 can be made to have a ring-shaped strong light intensity. In addition to this, by disposing prisms of various shapes at the position of the optical element 6, it is possible to variously change the above-mentioned light intensity distribution.

【0050】又、本実施例では図1に示すように光学素
子6及び8、絞り部材10は光路中に入れるか、光路中
から退避するかのいずれかの状態しか設定できないが、
各々に更に別形状の光学素子あるいは絞り部材を複数追
加することで、より多くの照明状態を設定することが可
能となる。
Further, in this embodiment, as shown in FIG. 1, the optical elements 6 and 8 and the diaphragm member 10 can be set only in the state of being put in the optical path or being retracted from the optical path.
By adding a plurality of optical elements or diaphragm members of different shapes to each of them, it becomes possible to set more illumination states.

【0051】この場合は図1に示す切換え機構を、例え
ば回転円板に複数の光学素子あるいは絞り部材を保持
し、任意の光学素子あるいは絞り部材を光路中に配置す
るようにしても良い。この際も、各光学素子又は絞り部
材の切換えは独立してモータ等のアクチュエータを持っ
ていれば本発明の効果は同様に達成することができる。
In this case, the switching mechanism shown in FIG. 1 may be arranged, for example, to hold a plurality of optical elements or diaphragm members on a rotating disk and arrange any optical elements or diaphragm members in the optical path. Even in this case, the effects of the present invention can be similarly achieved by independently switching each optical element or diaphragm member by using an actuator such as a motor.

【0052】又、本発明において最適な照明方法に切換
える場合のレチクルの回路パターンの情報は、例えばレ
チクルに設けたバーコード情報を読み取っても良いし、
又は予めプログラミングしておいても良いし、又はレチ
クルパターンを画像処理することにより行なっても良
い。
Further, as the information of the circuit pattern of the reticle when switching to the optimum illumination method in the present invention, for example, bar code information provided on the reticle may be read.
Alternatively, the programming may be performed in advance, or the image processing may be performed on the reticle pattern.

【0053】[0053]

【発明の効果】本発明によれば投影露光するレチクル面
上のパターンの細かさ、方向性等を考慮して、該パター
ンに適合した照明系を選択することによって最適な高解
像力の投影露光が可能な照明装置及びそれを用いた投影
露光装置を達成している。
According to the present invention, by considering the fineness and directionality of the pattern on the reticle surface to be projected and exposed, an optimal high-resolution projection exposure can be achieved by selecting an illumination system suitable for the pattern. A possible illumination device and a projection exposure apparatus using the same are achieved.

【0054】又、本発明によればそれほど細かくないパ
ターンを露光する場合には従来の照明系そのままで用い
ることができると共に細かいパターンを露光する場合に
は光量の損失が少なく高解像を容易に発揮できる照明装
置を用いて大きな焦点深度が得られるという効果が得ら
れる。
Further, according to the present invention, when exposing a not so fine pattern, the conventional illumination system can be used as it is, and when exposing a fine pattern, the loss of light amount is small and a high resolution can be easily achieved. The effect that a large depth of focus can be obtained by using the illuminating device that can exhibit is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の一部分の説明図FIG. 2 is an explanatory diagram of a part of FIG.

【図3】 図1の一部分の説明図FIG. 3 is an explanatory view of a part of FIG.

【図4】 図1の一部分の他の実施例の説明図FIG. 4 is an explanatory view of another embodiment of a part of FIG.

【符号の説明】[Explanation of symbols]

1 光源 2 楕円ミラー 3 コールドミラー 5,7,11,12 レンズ系 6,8 光学素子 9 オプティカルインテグレータ 10 絞り部材 14 レチクル 15 投影光学系 16 ウエハ 1 Light Source 2 Elliptical Mirror 3 Cold Mirror 5, 7, 11, 12 Lens System 6, 8 Optical Element 9 Optical Integrator 10 Aperture Member 14 Reticle 15 Projection Optical System 16 Wafer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 楕円鏡の第1焦点近傍に発光部を配置
し、該発光部からの光束で該楕円鏡を介して該楕円鏡の
第2焦点近傍に該発光部の像を形成し、該発光部の像か
らの光束で複数の微小レンズを2次元的に配列したオプ
ティカルインテグレータを介して被照射面を照明する
際、該楕円鏡とオプティカルインテグレータとの間に入
射光束を所定方向に偏向させる光路中より挿脱可能な光
学素子と、該発光部の像を該オプティカルインテグレー
タの入射面に異った倍率で切換え可能に結像させる結像
系と、該オプティカルインテグレータの入射面又は射出
面近傍に挿脱可能な絞り部材とを配置し、該被照射面上
のパターンに応じて該光学素子、結像系、そして絞り部
材を選択的に切換えて、該オプティカルインテグレータ
の射出面に形成される光強度分布を変更して使用するよ
うにしたことを特徴とする照明装置。
1. A light emitting section is arranged in the vicinity of a first focal point of an elliptic mirror, and an image of the light emitting section is formed in the vicinity of a second focal point of the elliptic mirror by the light flux from the light emitting section via the elliptic mirror. When illuminating a surface to be illuminated through an optical integrator in which a plurality of microlenses are two-dimensionally arranged by a light beam from the image of the light emitting unit, the incident light beam is deflected in a predetermined direction between the elliptic mirror and the optical integrator. An optical element that can be inserted into and removed from the optical path, an imaging system that forms an image of the light emitting unit on the incident surface of the optical integrator with different magnifications, and an incident surface or an exit surface of the optical integrator. An iris member that can be inserted and removed is disposed in the vicinity, and the optical element, the imaging system, and the iris member are selectively switched according to the pattern on the illuminated surface to be formed on the exit surface of the optical integrator. Light An illumination device characterized in that the intensity distribution is changed before use.
【請求項2】 前記光学素子、結像系、そして絞り部材
を選択的に切換えて、該オプティカルインテグレータの
入射面の光強度が中心部分が強い回転対称の第2の状態
と、中心部分に比べて周辺部分に強い領域を有する第1
の状態とを選択するようにしたことを特徴とする請求項
1の照明装置。
2. The optical integrator, the imaging system, and the diaphragm member are selectively switched so that the light intensity of the incident surface of the optical integrator is a rotationally symmetric second state in which the central portion is strong, and the optical intensity is smaller than that in the central portion. With a strong area in the periphery
2. The lighting device according to claim 1, wherein the state is selected.
【請求項3】 楕円鏡の第1焦点近傍に発光部を配置
し、該発光部からの光束で該楕円鏡を介して該楕円鏡の
第2焦点近傍に該発光部の像を形成し、該発光部の像か
らの光束で複数の微小レンズを2次元的に配列したオプ
ティカルインテグレータを介して第1物体面上のパター
ンを照明し、該パターンを投影光学系を介して第2物体
面上に投影露光する際、該楕円鏡とオプティカルインテ
グレータとの間に入射光束を所定方向に偏向させる光路
中より挿脱可能な光学素子と、該発光部の像を該オプテ
ィカルインテグレータの入射面に異った倍率で切換え可
能に結像させる結像系と、該オプティカルインテグレー
タの入射面又は射出面近傍に挿脱可能な絞り部材とを配
置し、該被照射面上のパターンに応じて該光学素子、結
像系、そして絞り部材を選択的に切換えて、該オプティ
カルインテグレータの入射面の光強度分布を変更し、該
投影光学系の瞳面上の光強度分布を調整したことを特徴
とする投影露光装置。
3. A light emitting portion is arranged near the first focal point of the elliptic mirror, and an image of the light emitting portion is formed near the second focal point of the elliptic mirror through the elliptic mirror with a light beam from the light emitting portion, A pattern on the first object plane is illuminated through an optical integrator in which a plurality of microlenses are two-dimensionally arranged by a light flux from the image of the light emitting unit, and the pattern is projected on a second object plane through a projection optical system. When projection exposure is performed on the optical integrator, the optical element that can be inserted into and removed from the optical path that deflects the incident light beam in a predetermined direction between the elliptic mirror and the optical integrator, and the image of the light emitting unit are different on the incident surface of the optical integrator. An image forming system for forming a switchable image at a different magnification, and a diaphragm member that can be inserted and removed in the vicinity of the incident surface or the exit surface of the optical integrator, and the optical element according to the pattern on the irradiated surface, Imaging system and diaphragm member Is selectively switched to change the light intensity distribution on the incident surface of the optical integrator to adjust the light intensity distribution on the pupil plane of the projection optical system.
【請求項4】 前記光学素子、結像系、そして絞り部材
を選択的に切換えて、該オプティカルインテグレータの
入射面の光強度分布を変更し、該投影光学系の瞳面上の
光強度が中心部分が強い回転対称の第2の状態と中心部
分に比べて周辺部分に強い領域を有する第1の状態とを
選択するようにしたことを特徴とする請求項3の投影露
光装置。
4. The light intensity distribution on the entrance surface of the optical integrator is changed by selectively switching the optical element, the image forming system, and the diaphragm member so that the light intensity on the pupil plane of the projection optical system is the center. 4. The projection exposure apparatus according to claim 3, wherein the second state in which the portion has strong rotational symmetry and the first state in which the peripheral portion has a stronger region than the central portion is selected.
JP4361591A 1992-12-29 1992-12-29 Illumination device and projection exposure apparatus using the same Expired - Lifetime JP3000502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4361591A JP3000502B2 (en) 1992-12-29 1992-12-29 Illumination device and projection exposure apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4361591A JP3000502B2 (en) 1992-12-29 1992-12-29 Illumination device and projection exposure apparatus using the same

Publications (2)

Publication Number Publication Date
JPH06204114A true JPH06204114A (en) 1994-07-22
JP3000502B2 JP3000502B2 (en) 2000-01-17

Family

ID=18474204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4361591A Expired - Lifetime JP3000502B2 (en) 1992-12-29 1992-12-29 Illumination device and projection exposure apparatus using the same

Country Status (1)

Country Link
JP (1) JP3000502B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259512B1 (en) 1997-08-04 2001-07-10 Canon Kabushiki Kaisha Illumination system and exposure apparatus having the same
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
US6522384B2 (en) 1998-10-27 2003-02-18 Canon Kabushiki Kaisha Exposure method and apparatus, and device manufacturing method
US7061576B2 (en) 1998-02-04 2006-06-13 Canon Kabushiki Kaisha Exposure apparatus and method of cleaning optical element of the same
WO2010016288A1 (en) * 2008-08-08 2010-02-11 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
CN109581820A (en) * 2017-06-06 2019-04-05 株式会社Orc制作所 Exposure device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259512B1 (en) 1997-08-04 2001-07-10 Canon Kabushiki Kaisha Illumination system and exposure apparatus having the same
US7061576B2 (en) 1998-02-04 2006-06-13 Canon Kabushiki Kaisha Exposure apparatus and method of cleaning optical element of the same
US7119878B2 (en) 1998-02-04 2006-10-10 Canon Kabushiki Kaisha Exposure apparatus and method of cleaning optical element of the same
US6522384B2 (en) 1998-10-27 2003-02-18 Canon Kabushiki Kaisha Exposure method and apparatus, and device manufacturing method
US6791662B2 (en) 1998-10-27 2004-09-14 Canon Kabushiki Kaisha Exposure method and apparatus, and device manufacturing method
US6392742B1 (en) 1999-06-01 2002-05-21 Canon Kabushiki Kaisha Illumination system and projection exposure apparatus
WO2010016288A1 (en) * 2008-08-08 2010-02-11 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
CN109581820A (en) * 2017-06-06 2019-04-05 株式会社Orc制作所 Exposure device

Also Published As

Publication number Publication date
JP3000502B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
JP3278896B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP3102076B2 (en) Illumination device and projection exposure apparatus using the same
US7023522B2 (en) Multiple exposure method
EP0576297B1 (en) Device for normal or oblique illumination of a mask
KR100563124B1 (en) Lithography apparatus
KR100576750B1 (en) Lithographic Apparatus, and Device Manufacturing method
EP0526242B1 (en) Image projection method and semiconductor device manufacturing method using the same
JP2011135099A (en) Optical integrator, illumination optical device, photolithographic apparatus, photolithographic method, and method for fabricating device
JP5392468B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR100609109B1 (en) Device Manufacturing Method, Mask Set for use in the Method, Data Set for Controlling a Programmable Patterning Device, Method of Generating a Mask Pattern and a Computer Program
JPH09219358A (en) Aligner, and device manufacturing method using the same
JP2008160072A (en) Exposure apparatus and device fabrication method
JP4051473B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
JP3000502B2 (en) Illumination device and projection exposure apparatus using the same
JP3870093B2 (en) Exposure method and apparatus
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPH06204123A (en) Illuminator and projection aligner using the same
JP2003015314A (en) Illumination optical device and exposure device provided with the same
JPH04329623A (en) Exposure method and aligner using it
JP3102077B2 (en) Semiconductor device manufacturing method and projection exposure apparatus
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JP2891219B2 (en) Exposure apparatus and element manufacturing method using the same
JP3323863B2 (en) Projection exposure apparatus and method for manufacturing semiconductor element
JP3459826B2 (en) Projection exposure apparatus and method for manufacturing semiconductor element
JP3548567B2 (en) Projection exposure apparatus and method of manufacturing semiconductor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14