JP2000092815A - Stage device and aligner using the same - Google Patents

Stage device and aligner using the same

Info

Publication number
JP2000092815A
JP2000092815A JP10274409A JP27440998A JP2000092815A JP 2000092815 A JP2000092815 A JP 2000092815A JP 10274409 A JP10274409 A JP 10274409A JP 27440998 A JP27440998 A JP 27440998A JP 2000092815 A JP2000092815 A JP 2000092815A
Authority
JP
Japan
Prior art keywords
linear motor
stage
refrigerant
stage device
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10274409A
Other languages
Japanese (ja)
Inventor
Shuichi Yabu
修一 藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10274409A priority Critical patent/JP2000092815A/en
Publication of JP2000092815A publication Critical patent/JP2000092815A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Abstract

PROBLEM TO BE SOLVED: To provide a stage device which can remove the adverse effect on its positioning accuracy by reducing the surface temperature gradient of a coil holder. SOLUTION: A stage device is used for an aligner, etc., provided with a movable stage 1, a linear motor which drives the stage 1 in a prescribed direction and is composed of a magnet 2 and a coil 4, and a cooling apparatus 7 which collects the heat generated from the linear motor by circulating a coolant a flow passage 6 for coolant provided between the coil 4 and a coil holder 5 through pipelines 8 and 9. In this case, flow passage change-over valves 21 and 22 which change the flowing direction of the coolant circulated in a linear motor section are respectively connected to the pipelines 8 and 9 and the adverse effect on the positioning accuracy of the stage device is removed by reducing the temperature gradient generated in the linear motor section by changing the flowing direction of the coolant circulated in the linear motor section by operating the valves 21 and 22 in prescribed periods by means of an arithmetic and control device 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加工対象物を高精
度に位置決めするためのステージ装置に関し、特に半導
体露光装置等に用いられるリニアモータ駆動方式のステ
ージ装置、および該ステージ装置を用いた露光装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stage device for positioning a workpiece with high precision, and more particularly to a stage device of a linear motor drive system used for a semiconductor exposure device and the like, and an exposure using the stage device. It concerns the device.

【0002】[0002]

【従来の技術】半導体集積回路、液晶表示素子、撮像素
子(CCD)などの製造に使用される露光装置には、ウ
エハやガラスプレートを高精度に位置決めするためのス
テージ装置が用いられており、ステージ装置における位
置計測には、レーザ干渉計が使用され、また、駆動機構
としては、高速かつ非接触に駆動するために最近はリニ
アモータが使用されている。そして、その位置決め精度
はナノメートル(nm)のオーダーが要求され、レ−ザ
干渉計光路における空気温度の変化に伴う屈折率変化や
ステージ部材の温度変化に伴う熱膨張収縮が、位置決め
精度に敏感に影響するため、リニアモータ部の発熱対策
が必須になっている。
2. Description of the Related Art A stage device for positioning a wafer or a glass plate with high accuracy is used in an exposure apparatus used for manufacturing a semiconductor integrated circuit, a liquid crystal display device, an image pickup device (CCD), and the like. A laser interferometer is used for position measurement in the stage device, and a linear motor is recently used as a driving mechanism for high-speed and non-contact driving. The positioning accuracy is required to be on the order of nanometers (nm), and a change in the refractive index due to a change in the air temperature in the optical path of the laser interferometer and a thermal expansion and contraction due to a change in the temperature of the stage member are sensitive to the positioning accuracy. Therefore, it is necessary to take measures against the heat generation of the linear motor.

【0003】図3はこの種のステージ装置の従来例を示
す概略図であり、101は位置決め対象物を載置するス
テージ、102はリニアモータの可動子となる磁石、1
03は磁石ホルダー、104はリニアモータの固定子と
なるコイル、105はコイルホルダー、106はコイル
104とコイルホルダー105との間の冷媒流路、10
7は冷却装置、108および109は冷媒を通す供給配
管および排出配管、110はレーザ干渉計、111はレ
ーザ干渉計光路、112はステージ1に固定された反射
ミラーである。
FIG. 3 is a schematic view showing a conventional example of this type of stage device, wherein 101 is a stage on which a positioning object is mounted, 102 is a magnet serving as a movable element of a linear motor, and 1
03 is a magnet holder, 104 is a coil serving as a stator of a linear motor, 105 is a coil holder, 106 is a refrigerant flow path between the coil 104 and the coil holder 105, 10
7 is a cooling device, 108 and 109 are supply pipes and discharge pipes through which the refrigerant passes, 110 is a laser interferometer, 111 is an optical path of the laser interferometer, and 112 is a reflection mirror fixed to the stage 1.

【0004】図3に図示する構成において、ステージ1
01はレーザ干渉計110により計測された位置情報に
基づき、コイル104に適宜通電することにより、図面
左右方向(矢印113)に駆動され位置決めされる。こ
のときコイル104に発生する熱は冷媒により回収され
る。すなわち、冷却装置107から供給配管108を通
してコイル104の回りの冷媒流路106に冷媒が供給
され、熱を吸収した冷媒は排出配管109を通って再び
冷却装置107に戻される。
[0004] In the configuration shown in FIG.
01 is driven and positioned in the left-right direction of the drawing (arrow 113) by appropriately energizing the coil 104 based on the position information measured by the laser interferometer 110. At this time, the heat generated in the coil 104 is recovered by the refrigerant. That is, the refrigerant is supplied from the cooling device 107 to the refrigerant channel 106 around the coil 104 through the supply pipe 108, and the refrigerant that has absorbed the heat is returned to the cooling device 107 again through the discharge pipe 109.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3に
図示するような従来のステージ装置では、コイル104
の回りを流れる冷媒の流れ方向が一定であるため、コイ
ルホルダー105の表面温度に勾配が生じる。つまり、
冷媒の流れの上流側では低温になり、下流側では高温に
なる。このため、レーザ干渉計光路111の空気温度に
ムラが生じ、計測誤差の原因となる。また、ステージ1
01が可動範囲のどの位置にいるかによって、コイルホ
ルダー105からステージ101へ単位時間当たりに流
入する熱量が異なり、ステージ101の移動によってス
テージ部材の温度が変動する。その結果、ステージ部材
の熱変形が生じ、位置決め精度に悪影響を及ぼすという
欠点があった。
However, in the conventional stage apparatus as shown in FIG.
Is constant, the surface temperature of the coil holder 105 has a gradient. That is,
The temperature is low on the upstream side of the flow of the refrigerant and high on the downstream side. Therefore, the air temperature of the laser interferometer optical path 111 becomes uneven, which causes a measurement error. Stage 1
The amount of heat flowing from the coil holder 105 to the stage 101 per unit time varies depending on where the position 01 is in the movable range, and the movement of the stage 101 changes the temperature of the stage member. As a result, there is a disadvantage that the stage member is thermally deformed, which adversely affects the positioning accuracy.

【0006】そこで、本発明は、上記の従来技術の有す
る未解決の課題に鑑みてなされたものであって、コイル
ホルダーの表面温度勾配を低減し、位置決め精度への悪
影響を除去することができるステージ装置および該ステ
ージ装置を用いた露光装置を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and can reduce a surface temperature gradient of a coil holder and remove an adverse effect on positioning accuracy. It is an object of the present invention to provide a stage device and an exposure apparatus using the stage device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明のステージ装置は、可動ステージと、該可動
ステージを所定方向に駆動するリニアモータと、該リニ
アモータに配管系を介して冷媒を循環させて該リニアモ
ータから生じる熱を回収する冷却装置とを備えたステー
ジ装置において、前記リニアモータを循環する冷媒の流
れ方向を正逆反転させる流れ方向切替手段を有すること
を特徴とする。
In order to achieve the above object, a stage device according to the present invention comprises a movable stage, a linear motor for driving the movable stage in a predetermined direction, and a refrigerant connected to the linear motor via a piping system. And a cooling device that circulates the refrigerant to recover heat generated from the linear motor, characterized in that the stage device includes a flow direction switching unit that reverses the flow direction of the refrigerant circulating in the linear motor.

【0008】本発明のステージ装置においては、流れ方
向切替手段は、所定の周期をもってリニアモータを循環
する冷媒の流れ方向を正逆反転させることが好ましい。
In the stage device of the present invention, the flow direction switching means preferably reverses the flow direction of the refrigerant circulating in the linear motor at a predetermined cycle.

【0009】また、本発明のステージ装置は、少なくと
もリニアモータの可動方向両端部近傍にそれぞれ配設し
た温度センサーと演算制御装置とを有し、前記演算制御
装置は、前記温度センサーから得られる温度情報に基づ
いて流れ方向切替手段に指令を出し、前記リニアモータ
を循環する冷媒の流れ方向を制御することが好ましい。
Further, the stage device of the present invention has a temperature sensor and an arithmetic and control unit disposed at least near both ends of the linear motor in the movable direction, respectively, and the arithmetic and control unit is configured to control the temperature obtained from the temperature sensor. Preferably, a command is issued to the flow direction switching means based on the information to control the flow direction of the refrigerant circulating in the linear motor.

【0010】本発明のステージ装置においては、演算制
御装置は、温度センサーから得られる温度情報に基づい
て、冷却装置が循環させる冷媒の温度をも制御するよう
に構成することが好ましい。
[0010] In the stage device of the present invention, it is preferable that the arithmetic and control unit is configured to also control the temperature of the refrigerant circulated by the cooling device based on the temperature information obtained from the temperature sensor.

【0011】そして、本発明の露光装置は、請求項1な
いし4のいずれか1項に記載のステージ装置を用いるこ
とを特徴とする。
An exposure apparatus according to the present invention uses the stage apparatus according to any one of claims 1 to 4.

【0012】[0012]

【作用】本発明によれば、ステージ装置におけるリニア
モータ部を循環する冷媒の流れ方向を正逆反転させる流
れ方向切替手段を設け、所定の周期をもって冷媒の流れ
方向を正逆反転させることにより、リニアモータ部に生
じる温度勾配を低減でき、位置決め精度への悪影響を除
去することができる。
According to the present invention, a flow direction switching means for reversing the flow direction of the refrigerant circulating in the linear motor section of the stage device is provided, and the flow direction of the refrigerant is reversed at a predetermined cycle. The temperature gradient generated in the linear motor can be reduced, and the adverse effect on the positioning accuracy can be eliminated.

【0013】また、リニアモータの可動方向両端部近傍
に温度センサーを設け、温度センサーの温度情報に基づ
き冷媒の流れ方向を制御することにより、リニアモータ
部に生じる温度勾配を所定の範囲内に制御でき、位置決
め精度への悪影響を確実に除去することができ、さら
に、温度センサーの温度情報に基づき冷媒の温度をも制
御でき、よりきめの細かい環境温度制御が可能となる。
A temperature sensor is provided in the vicinity of both ends of the linear motor in the movable direction, and the flow direction of the refrigerant is controlled based on the temperature information of the temperature sensor to control the temperature gradient generated in the linear motor within a predetermined range. As a result, adverse effects on the positioning accuracy can be reliably removed, and the temperature of the refrigerant can be controlled based on the temperature information of the temperature sensor, so that finer environmental temperature control can be performed.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0015】(実施例1)図1の(a)ないし(c)
は、本発明に係るステージ装置の第1の実施例を図示す
る概略図である。
(Embodiment 1) FIGS. 1 (a) to 1 (c)
FIG. 1 is a schematic view illustrating a first embodiment of a stage device according to the present invention.

【0016】図1の(a)において、1は位置決め対象
物を載置するステージ、2はリニアモータの可動子とな
る磁石、3は磁石ホルダー、4はリニアモータの固定子
となるコイル、5はコイルホルダー、6はコイル4とコ
イルホルダー5との間の冷媒流路、7は冷却装置、8お
よび8a、8bは、冷媒を冷媒流路6へ供給する流路を
形成する供給配管およびその分岐配管であり、9および
9a、9bは、冷媒を冷媒流路6から排出する流路を形
成する排出配管およびその分岐配管であり、10はレー
ザ干渉計、11はレーザ干渉計光路、12はステージ1
に固定された反射ミラーであり、また、21は供給配管
8に設けられた流路切替弁であり、供給配管8の流れを
分岐配管8aと8bのいずれかへ連通させるために流路
を切り替えうるように構成され、22は排出配管9に設
けられた流路切替弁であり、排出配管9の流れを分岐配
管9aと9bのいずれかへ連通させるために流路を切り
替えうるように構成されている。23、25はT形継手
であり、24、26は冷媒流路6の両端部にそれぞれ接
続された配管である。そして、20は流路切替弁21、
22を制御する演算制御装置である。
In FIG. 1A, reference numeral 1 denotes a stage on which an object to be positioned is placed, 2 denotes a magnet serving as a mover of a linear motor, 3 denotes a magnet holder, 4 denotes a coil which serves as a stator of the linear motor, 5 Is a coil holder, 6 is a refrigerant flow path between the coil 4 and the coil holder 5, 7 is a cooling device, 8 and 8a and 8b are supply pipes forming a flow path for supplying a refrigerant to the refrigerant flow path 6, and Branch pipes, 9 and 9a, 9b are discharge pipes forming a flow path for discharging refrigerant from the refrigerant flow path 6 and branch pipes thereof, 10 is a laser interferometer, 11 is a laser interferometer optical path, and 12 is a laser interferometer. Stage 1
Is a reflection mirror fixed to the supply pipe 21, and 21 is a flow path switching valve provided in the supply pipe 8, and switches a flow path to connect the flow of the supply pipe 8 to one of the branch pipes 8a and 8b. Reference numeral 22 denotes a flow path switching valve provided in the discharge pipe 9, which is configured to switch a flow path in order to connect the flow of the discharge pipe 9 to one of the branch pipes 9 a and 9 b. ing. Reference numerals 23 and 25 denote T-shaped joints, and reference numerals 24 and 26 denote pipes respectively connected to both ends of the refrigerant channel 6. And 20 is a flow path switching valve 21,
22 is an arithmetic and control unit that controls the control unit 22.

【0017】図1に図示するステージ装置の構成におい
て、ステージ1の駆動位置決め方法は図3に図示する従
来例と同様であり、ステージ1は、レーザ干渉計10に
より計測された位置情報に基づき、コイル4に適宜通電
することにより、図面左右方向に駆動され位置決めされ
る。コイル4の冷却方法は、従来例と異なり、演算制御
装置20の指令に基づき、流路切替弁21、22を作動
させて、コイル4とコイルホルダー5との間の冷媒流路
6を流れる冷媒の流れ方向を所定の周期をもって反転さ
せることにより行なうものである。図1の(b)および
(c)に冷媒の流れを正逆反転させた状態の流れを示
す。
In the configuration of the stage apparatus shown in FIG. 1, the method of driving and positioning the stage 1 is the same as that of the conventional example shown in FIG. 3, and the stage 1 is based on position information measured by the laser interferometer 10. By appropriately energizing the coil 4, it is driven and positioned in the left-right direction in the drawing. The method of cooling the coil 4 differs from the conventional example in that the flow path switching valves 21 and 22 are operated based on a command from the arithmetic and control unit 20 to operate the refrigerant flowing through the refrigerant flow path 6 between the coil 4 and the coil holder 5. By reversing the flow direction at a predetermined cycle. FIGS. 1B and 1C show flows in a state where the flow of the refrigerant is reversed.

【0018】すなわち、図1の(b)において、供給配
管8の流路切替弁21は、供給配管8の流れを分岐配管
8aへ連通するように開き、分岐配管8bへの連通を閉
じるように作用し、そして、排出配管9の流路切替弁2
2は、排出配管9と分岐配管9aの連通を閉じ、排出配
管9と分岐配管9bを連通するように開いている。その
結果、冷却装置7から供給配管8を通して供給される冷
媒は、流路切替弁21を介して分岐配管8aを通り、T
形継手23を経て、配管24の方からコイル4の回りの
冷媒流路6に流入し、そして、冷媒流路6において熱を
吸収した冷媒は、配管26からT形継手25を経て排出
配管9の分岐配管9bを通り、流路切替弁22を介し
て、排出配管9から再び冷却装置7に戻される。
That is, in FIG. 1B, the flow path switching valve 21 of the supply pipe 8 opens so as to communicate the flow of the supply pipe 8 to the branch pipe 8a, and closes the communication to the branch pipe 8b. Actuates and the flow switching valve 2 of the discharge pipe 9
Numeral 2 closes the communication between the discharge pipe 9 and the branch pipe 9a and opens so as to connect the discharge pipe 9 and the branch pipe 9b. As a result, the refrigerant supplied from the cooling device 7 through the supply pipe 8 passes through the branch pipe 8a via the flow path switching valve 21, and
The refrigerant that has flowed into the refrigerant flow path 6 around the coil 4 from the pipe 24 via the joint 23 and that has absorbed heat in the refrigerant flow path 6 is discharged from the pipe 26 through the T-shaped joint 25 to the discharge pipe 9. And is returned to the cooling device 7 from the discharge pipe 9 via the flow path switching valve 22.

【0019】図1の(c)において、供給配管8の流路
切替弁21は、供給配管8と分岐配管8bを連通するよ
うに開き、供給配管8と分岐配管8aの連通を閉じるよ
うに作用し、そして、排出配管9の流路切替弁22は、
排出配管9と分岐配管9aの連通を開き、排出配管9と
分岐配管9bの連通を閉じるように作用している。その
結果、冷却装置7から供給配管8を通して供給される冷
媒は、流路切替弁21を介して分岐配管8bを通り、T
形継手25を経て、配管26の方からコイル4の回りの
冷媒流路6に流入し、そして、冷媒流路6において熱を
吸収した冷媒は、配管24からT形継手23を経て分岐
配管9aを通り、流路切替弁22を介して排出配管9か
ら再び冷却装置7に戻される。
In FIG. 1C, the flow path switching valve 21 of the supply pipe 8 is opened so as to connect the supply pipe 8 and the branch pipe 8b and closes the communication between the supply pipe 8 and the branch pipe 8a. And the flow path switching valve 22 of the discharge pipe 9
The connection between the discharge pipe 9 and the branch pipe 9a is opened, and the communication between the discharge pipe 9 and the branch pipe 9b is closed. As a result, the refrigerant supplied from the cooling device 7 through the supply pipe 8 passes through the branch pipe 8 b via the flow path switching valve 21,
The refrigerant that has flowed into the refrigerant flow path 6 around the coil 4 from the pipe 26 through the joint 25 and that has absorbed the heat in the refrigerant flow path 6 passes from the pipe 24 through the T-joint 23 to the branch pipe 9a. And is returned to the cooling device 7 from the discharge pipe 9 via the flow path switching valve 22 again.

【0020】このように冷媒の流れ方向を反転させる際
の反転の周期は、冷媒をステップ状に供給開始したとき
のコイルホルダー5の表面温度変化の飽和時間から決ま
る時定数以下にすれば、コイルホルダー5の表面温度は
平均化され、温度勾配を低減できる。
If the reversal cycle when reversing the flow direction of the refrigerant is set to be equal to or less than the time constant determined by the saturation time of the surface temperature change of the coil holder 5 when the supply of the refrigerant is started in a stepwise manner, The surface temperature of the holder 5 is averaged, and the temperature gradient can be reduced.

【0021】また、冷却効率の観点からは、冷媒が一巡
する周期以上にするのが望ましく、さらには、図1の
(b)における分岐配管8b、そして、図1の(c)に
おける分岐配管8aへ僅かにリークさせ、流れ方向反転
時に直ちに低温の冷媒がコイル回りの冷媒流路6に流入
するようにすると、冷却効率を向上させることができ
る。
Further, from the viewpoint of cooling efficiency, it is desirable to set the cycle to be longer than the cycle in which the refrigerant makes one cycle. Further, the branch pipe 8b in FIG. 1B and the branch pipe 8a in FIG. When the flow direction is reversed, a low-temperature refrigerant immediately flows into the refrigerant flow path 6 around the coil, whereby the cooling efficiency can be improved.

【0022】(実施例2)図2は本発明に係るステージ
装置の第2の実施例を図示する概略図である。
(Embodiment 2) FIG. 2 is a schematic view illustrating a second embodiment of the stage apparatus according to the present invention.

【0023】本実施例は、図1に図示する第1の実施例
に対して、コイルホルダー5の両端部近傍に温度センサ
ー31、32を付加し、これらの温度センサー31、3
2は検出される温度情報を演算制御装置20に入力する
ように接続しており、その他の構成は同じであって詳細
な説明は省略する。
This embodiment is different from the first embodiment shown in FIG. 1 in that temperature sensors 31, 32 are added near both ends of the coil holder 5, and these temperature sensors 31, 3 are provided.
Reference numeral 2 is connected to input the detected temperature information to the arithmetic and control unit 20, and the other configuration is the same, and the detailed description is omitted.

【0024】図2に図示するステージ装置の構成におい
て、温度センサー31、32からの温度情報T1、T2
は、演算制御装置20に入力され、演算制御装置20
は、例えば温度差(T1−T2)を計算し、その温度差
が所定の一定値を越えると流路切替弁21、22に指令
信号を出し、冷媒の流れ方向を反転させる。その結果、
コイルホルダー5の温度勾配を所定の範囲内に制御する
ことができる。
In the configuration of the stage device shown in FIG. 2, temperature information T1 and T2 from temperature sensors 31 and 32 are provided.
Is input to the arithmetic and control unit 20 and the arithmetic and control unit 20
Calculates, for example, a temperature difference (T1-T2), and when the temperature difference exceeds a predetermined constant value, issues a command signal to the flow path switching valves 21 and 22 to reverse the flow direction of the refrigerant. as a result,
The temperature gradient of the coil holder 5 can be controlled within a predetermined range.

【0025】本実施例においては、さらには、演算制御
装置20において、例えば、平均温度(T1+T2)/
2を計算し、冷却装置7から出る冷媒の温度や、コイル
ホルダー5の両端部の温度を制御することもでき、より
きめの細かい環境温度制御が可能である。
In this embodiment, the arithmetic and control unit 20 further calculates, for example, the average temperature (T1 + T2) /
2 can be calculated to control the temperature of the refrigerant flowing out of the cooling device 7 and the temperature of both ends of the coil holder 5, so that finer environmental temperature control is possible.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
リニアモータ部分を循環する冷媒の流れ方向を正逆反転
させる流れ方向切替手段を設け、所定の周期をもって冷
媒の流れ方向を正逆反転させることにより、リニアモー
タ部分に生じる温度勾配を低減でき、位置決め精度への
悪影響を除去することができる。
As described above, according to the present invention,
A flow direction switching means for reversing the flow direction of the refrigerant circulating in the linear motor portion is provided, and by reversing the flow direction of the refrigerant in a predetermined cycle, the temperature gradient generated in the linear motor portion can be reduced, and positioning can be performed. An adverse effect on accuracy can be eliminated.

【0027】さらに、リニアモータ部分の両端部近傍に
設けた温度センサーの情報に基づき冷媒の流れ方向を制
御することにより、リニアモータ部分に生じる温度勾配
を所定の範囲内に制御でき、位置決め精度への悪影響を
確実に除去することができる。
Further, by controlling the flow direction of the refrigerant based on information of temperature sensors provided near both ends of the linear motor portion, the temperature gradient generated in the linear motor portion can be controlled within a predetermined range, and the positioning accuracy can be improved. Can be reliably removed.

【0028】また、本発明によれば、ステージ装置本体
を格別変更することなく、冷媒を循環させる配管系の簡
単な変更のみで、位置決め精度の向上が望めるという利
点がある。
Further, according to the present invention, there is an advantage that the positioning accuracy can be improved only by a simple change of the piping system for circulating the refrigerant without specially changing the stage device main body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係るステージ装置の第1の実
施例を図示する概略図であり、(b)はステージ装置に
おける冷媒の流れ方向(正方向)を示す図であり、
(c)はステージ装置における冷媒の他の流れ方向(逆
方向)を示す図である。
FIG. 1A is a schematic diagram illustrating a first embodiment of a stage device according to the present invention, FIG. 1B is a diagram illustrating a flow direction (forward direction) of a refrigerant in the stage device,
(C) is a diagram showing another flow direction (reverse direction) of the refrigerant in the stage device.

【図2】本発明に係るステージ装置の第2の実施例を図
示する概略図である。
FIG. 2 is a schematic view illustrating a second embodiment of the stage device according to the present invention.

【図3】従来例のステージ装置を図示する概略図であ
る。
FIG. 3 is a schematic view illustrating a conventional stage device.

【符号の説明】[Explanation of symbols]

1 ステージ 2 磁石(可動子) 3 磁石ホルダー 4 コイル(固定子) 5 コイルホルダー 6 冷媒流路 7 冷却装置 8 供給配管 8a、8b 分岐配管 9 排出配管 9a、9b 分岐配管 10 レーザ干渉計 11 レーザ干渉計光路 12 反射ミラー 20 演算制御装置 21、22 流路切替弁 23、25 T形継手 24、26 配管 31、32 温度センサー Reference Signs List 1 stage 2 magnet (movable element) 3 magnet holder 4 coil (stator) 5 coil holder 6 refrigerant flow path 7 cooling device 8 supply pipe 8a, 8b branch pipe 9 discharge pipe 9a, 9b branch pipe 10 laser interferometer 11 laser interference Metering path 12 Reflecting mirror 20 Arithmetic control unit 21, 22 Flow path switching valve 23, 25 T-shaped joint 24, 26 Piping 31, 32 Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可動ステージと、該可動ステージを所定
方向に駆動するリニアモータと、該リニアモータに配管
系を介して冷媒を循環させ該リニアモータから生じる熱
を回収する冷却装置とを備えたステージ装置において、
前記リニアモータを循環する冷媒の流れ方向を正逆反転
させる流れ方向切替手段を有することを特徴とするステ
ージ装置。
1. A movable stage, a linear motor that drives the movable stage in a predetermined direction, and a cooling device that circulates a refrigerant through a piping system to the linear motor and collects heat generated from the linear motor. In stage equipment,
A stage device comprising a flow direction switching means for reversing the flow direction of the refrigerant circulating in the linear motor in the forward and reverse directions.
【請求項2】 流れ方向切替手段は、所定の周期をもっ
てリニアモータを循環する冷媒の流れ方向を正逆反転さ
せることを特徴とする請求項1記載のステージ装置。
2. The stage device according to claim 1, wherein the flow direction switching means reverses the flow direction of the refrigerant circulating in the linear motor at a predetermined cycle.
【請求項3】 少なくともリニアモータの可動方向両端
部近傍にそれぞれ配設した温度センサーと演算制御装置
とを有し、前記演算制御装置は、前記温度センサーから
得られる温度情報に基づいて流れ方向切替手段に指令を
出し、リニアモータを循環する冷媒の流れ方向を制御す
ることを特徴とする請求項1記載のステージ装置。
3. A temperature sensor and an arithmetic and control unit respectively disposed at least in the vicinity of both ends of the linear motor in the movable direction, wherein the arithmetic and control unit switches the flow direction based on temperature information obtained from the temperature sensor. 2. The stage device according to claim 1, wherein a command is issued to the means to control a flow direction of the refrigerant circulating in the linear motor.
【請求項4】 演算制御装置は、温度センサーから得ら
れる温度情報に基づいて、冷却装置が循環させる冷媒の
温度をも制御することを特徴とする請求項3記載のステ
ージ装置。
4. The stage device according to claim 3, wherein the arithmetic and control unit also controls the temperature of the refrigerant circulated by the cooling device based on the temperature information obtained from the temperature sensor.
【請求項5】 請求項1ないし4のいずれか1項に記載
のステージ装置を用いることを特徴とする露光装置。
5. An exposure apparatus using the stage device according to claim 1. Description:
JP10274409A 1998-09-10 1998-09-10 Stage device and aligner using the same Pending JP2000092815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274409A JP2000092815A (en) 1998-09-10 1998-09-10 Stage device and aligner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274409A JP2000092815A (en) 1998-09-10 1998-09-10 Stage device and aligner using the same

Publications (1)

Publication Number Publication Date
JP2000092815A true JP2000092815A (en) 2000-03-31

Family

ID=17541278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274409A Pending JP2000092815A (en) 1998-09-10 1998-09-10 Stage device and aligner using the same

Country Status (1)

Country Link
JP (1) JP2000092815A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114034A (en) * 1998-10-05 2000-04-21 Nikon Corp Electromagnetic actuator and stage device
WO2006001282A1 (en) * 2004-06-25 2006-01-05 Nikon Corporation Aligning apparatus, aligning method, exposure apparatus, exposure method and device manufacturing method
WO2006012408A2 (en) * 2004-07-21 2006-02-02 Newport Corporation Improved cooling system for linear motors
KR101026497B1 (en) * 2010-09-15 2011-04-01 (주)뉴옵틱스 The vacuum chamber inside where the high precision stage is installed and cooling device
JP2012043916A (en) * 2010-08-18 2012-03-01 Mitsubishi Electric Corp Semiconductor wafer cooling apparatus
JP2012048165A (en) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp Exposure device, stage temperature control method for exposure device, and display panel substrate manufacturing method
KR200464501Y1 (en) 2010-12-08 2013-01-21 미래산업 주식회사 Encoder Device, Linear Motor having the same, and Apparatus for Transferring Substrate
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014011382A (en) * 2012-07-02 2014-01-20 Tokyo Electron Ltd Plasma processing apparatus, and temperature control method
US20140232218A1 (en) * 2013-02-15 2014-08-21 Fanuc Corporation Cooling system and cooling method for cooling rotating electrical machine
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
CN105929291A (en) * 2016-07-13 2016-09-07 常德威迪电气有限责任公司 Intelligent lightning system capable of automatic alarming
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
CN107884098A (en) * 2017-12-13 2018-04-06 辽宁省计量科学研究院 Calorimetry system scene on-line testing device and calibration method based on amendment heat
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2021034516A (en) * 2019-08-22 2021-03-01 東京エレクトロン株式会社 Heat medium circulation system and control method thereof
CN113364241A (en) * 2020-03-06 2021-09-07 埃尔帕特克股份有限公司 Precision linear motor platform
CN116928948A (en) * 2023-06-28 2023-10-24 中国矿业大学 High-thrust electric vibrating table moving coil self-adaptive cooling system and control method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114034A (en) * 1998-10-05 2000-04-21 Nikon Corp Electromagnetic actuator and stage device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006001282A1 (en) * 2004-06-25 2006-01-05 Nikon Corporation Aligning apparatus, aligning method, exposure apparatus, exposure method and device manufacturing method
US7235902B2 (en) * 2004-07-21 2007-06-26 Newport Corporation Cooling system for linear motors
WO2006012408A3 (en) * 2004-07-21 2009-05-07 Newport Corp Improved cooling system for linear motors
WO2006012408A2 (en) * 2004-07-21 2006-02-02 Newport Corporation Improved cooling system for linear motors
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
DE102011079806B4 (en) 2010-08-18 2022-01-13 Rohm Co., Ltd. semiconductor wafer cooling device
JP2012043916A (en) * 2010-08-18 2012-03-01 Mitsubishi Electric Corp Semiconductor wafer cooling apparatus
JP2012048165A (en) * 2010-08-30 2012-03-08 Hitachi High-Technologies Corp Exposure device, stage temperature control method for exposure device, and display panel substrate manufacturing method
KR101026497B1 (en) * 2010-09-15 2011-04-01 (주)뉴옵틱스 The vacuum chamber inside where the high precision stage is installed and cooling device
KR200464501Y1 (en) 2010-12-08 2013-01-21 미래산업 주식회사 Encoder Device, Linear Motor having the same, and Apparatus for Transferring Substrate
JP2014011382A (en) * 2012-07-02 2014-01-20 Tokyo Electron Ltd Plasma processing apparatus, and temperature control method
DE102014001689A1 (en) 2013-02-15 2014-08-21 Fanuc Corporation Cooling system and cooling method for cooling a rotating electrical machine
JP2014158366A (en) * 2013-02-15 2014-08-28 Fanuc Ltd Cooling system and cooling method of dynamo-electric machine
US20140232218A1 (en) * 2013-02-15 2014-08-21 Fanuc Corporation Cooling system and cooling method for cooling rotating electrical machine
CN105929291A (en) * 2016-07-13 2016-09-07 常德威迪电气有限责任公司 Intelligent lightning system capable of automatic alarming
CN107884098A (en) * 2017-12-13 2018-04-06 辽宁省计量科学研究院 Calorimetry system scene on-line testing device and calibration method based on amendment heat
JP2021034516A (en) * 2019-08-22 2021-03-01 東京エレクトロン株式会社 Heat medium circulation system and control method thereof
JP7330017B2 (en) 2019-08-22 2023-08-21 東京エレクトロン株式会社 HEAT MEDIUM CIRCUIT SYSTEM AND HEAT MEDIUM CIRCUIT SYSTEM CONTROL METHOD
CN113364241A (en) * 2020-03-06 2021-09-07 埃尔帕特克股份有限公司 Precision linear motor platform
CN113364241B (en) * 2020-03-06 2024-02-20 埃尔帕特克股份有限公司 Precision linear motor platform
CN116928948A (en) * 2023-06-28 2023-10-24 中国矿业大学 High-thrust electric vibrating table moving coil self-adaptive cooling system and control method
CN116928948B (en) * 2023-06-28 2024-01-23 中国矿业大学 High-thrust electric vibrating table moving coil self-adaptive cooling system and control method

Similar Documents

Publication Publication Date Title
JP2000092815A (en) Stage device and aligner using the same
JP5430204B2 (en) Linear motor, stage apparatus using the same, exposure apparatus, and device manufacturing method
US6552773B2 (en) Stage system with driving mechanism, and exposure apparatus having the same
US7565926B2 (en) Heat exchange method and heat exchange apparatus
JP5641709B2 (en) Device manufacturing apparatus and device manufacturing method
KR100375189B1 (en) Linear motor
TWI251131B (en) Lithographic apparatus and device manufacturing method
US9811007B2 (en) Lithographic apparatus and method of cooling a component in a lithographic apparatus
JP3148512B2 (en) Drive
JP2004259778A (en) Cooling mechanism
JP2000216079A (en) Stage device and aligner
US8164735B2 (en) Regulating device, exposure apparatus and device manufacturing method
JP2994203B2 (en) Drive
JP4689308B2 (en) Exposure apparatus and device manufacturing method
JP3286994B2 (en) Exposure method and exposure apparatus
JPH09320934A (en) Stage device
JP2005136004A (en) Aligner and manufacturing method for device
JP2001244179A (en) Aligner equipped with temperature controller, and method of manufacturing device
JP4770045B2 (en) Mobile system
JP4770046B2 (en) Mobile system
JP2007067193A (en) Exposure device
JP4324354B2 (en) Roll axis moving mechanism
JP5836005B2 (en) Positioning apparatus, exposure apparatus, and device manufacturing method
JP3214494B2 (en) Holder and exposure system, device
WO2007066582A1 (en) Temperature control apparatus, exposure apparatus, temperature control method and device manufacturing method