JP3148512B2 - Drive - Google Patents

Drive

Info

Publication number
JP3148512B2
JP3148512B2 JP11341194A JP11341194A JP3148512B2 JP 3148512 B2 JP3148512 B2 JP 3148512B2 JP 11341194 A JP11341194 A JP 11341194A JP 11341194 A JP11341194 A JP 11341194A JP 3148512 B2 JP3148512 B2 JP 3148512B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
linear motor
refrigerant
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11341194A
Other languages
Japanese (ja)
Other versions
JPH07302747A (en
Inventor
重人 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11341194A priority Critical patent/JP3148512B2/en
Publication of JPH07302747A publication Critical patent/JPH07302747A/en
Application granted granted Critical
Publication of JP3148512B2 publication Critical patent/JP3148512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Control Of Temperature (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体露光装置や形状
計測装置のXYテーブル、高精度加工機などの位置決め
装置に搭載される駆動装置に関する。
The present invention relates, XY table of a semiconductor exposure apparatus and the shape measuring apparatus, a driving device mounted on a position-decided Me apparatus such as a high-precision processing machine.

【0002】[0002]

【従来の技術】ナノメートル(nm)オーダーの位置決
め精度が要求されている今日では、たとえば、100m
mの低熱膨張材(熱膨張係数1×10-6)が1℃の温度
変化で100nm変形し、また、光干渉式測長計の光路
における空気温度の変化が1℃以下であっても位置の測
定値が100nm変化することもあるため、これら温度
変化の防止策として駆動装置から放出される熱を回収す
る駆動装置の冷却は必須となっている。
2. Description of the Related Art Today, positioning accuracy on the order of nanometers (nm) is required.
m low thermal expansion material (coefficient of thermal expansion 1 × 10 −6 ) is deformed by 100 nm with a temperature change of 1 ° C., and even if the change of air temperature in the optical path of the optical interferometer is 1 ° C. or less, Since the measured value may change by 100 nm, cooling of the drive unit for recovering heat released from the drive unit is indispensable as a measure for preventing these temperature changes.

【0003】従来、駆動装置は駆動の際に発熱し、その
発熱が構造体の熱変形や光干渉式測長計の誤差要因とな
る空気揺らぎをもたらすため、精密な位置決め装置にお
いては冷媒、ヒートパイプ、ペルチェ素子等を用いて冷
却を行っている。すなわち、図7に示されるように、駆
動装置(駆動手段)1の発熱時に駆動装置1や駆動装置
1が搭載される装置が所定温度になるように、冷却制御
手段3が冷媒の流量やヒートパイプの放熱部温度、ペル
チェ素子の駆動電流などの冷却手段の冷却量を予め設定
して冷却を行っている。例えば、冷媒を流す場合、流量
を大きく設定したり、所定温度より低めの冷媒を用いる
などして回収熱容量を増して、駆動時に駆動装置もしく
は位置決め装置が所定温度に近づき、かつ温度が一定に
なるようにしている。
Conventionally, a driving device generates heat during driving, and the generated heat causes a thermal deformation of a structure or an air fluctuation which causes an error of an optical interference type length measuring device. , Using a Peltier element or the like. That is, as shown in FIG. 7, the cooling control unit 3 controls the flow rate of the refrigerant and the heat so that the driving device 1 and the device on which the driving device 1 is mounted reach a predetermined temperature when the driving device (driving unit) 1 generates heat. Cooling is performed by presetting the cooling amount of the cooling means such as the temperature of the heat radiating portion of the pipe and the drive current of the Peltier element. For example, when flowing a coolant, the recovery heat capacity is increased by setting a large flow rate or using a coolant lower than a predetermined temperature, so that the driving device or the positioning device approaches the predetermined temperature during driving and the temperature becomes constant. Like that.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、駆動時に平均的な発熱量を基準として予め設
定した冷却量の冷却を常に行っているため次のような欠
点があった。
However, in the above-mentioned conventional example, the following cooling method is used because cooling is always performed at a predetermined cooling amount based on an average heat generation amount during driving.

【0005】駆動装置の発熱量は一定ではなく、駆動
装置の駆動パターンによって発熱量が増減するため、温
度が変化する。
The amount of heat generated by the driving device is not constant, and the amount of heat generated varies depending on the driving pattern of the driving device, so that the temperature changes.

【0006】駆動装置が停止していて発熱が微小か零
のときは、必要以上の冷却を行っているため、冷却装置
が無駄に作動していることになる。
When the driving device is stopped and the heat generation is minute or zero, cooling is performed more than necessary, and the cooling device is operating wastefully.

【0007】さらに、駆動装置の停止時に、用いてい
る冷媒の温度が低い場合、また、常に熱回収量が一定の
場合などは、駆動装置の温度が下がり過ぎてしまう。
Further, when the temperature of the refrigerant used is low when the driving device is stopped, or when the amount of heat recovery is always constant, the temperature of the driving device becomes too low.

【0008】以上の欠点のうち、、など特に温度変
化に関わるものは、駆動装置周囲の構造体や雰囲気の温
度変化をもたらし、構造体の熱変形、温度変化に起因す
る位置の測定誤差などによりナノメートルオーダーの位
置決め精度に悪影響を及ぼしていた。
Among the above disadvantages, those particularly related to temperature change, etc., cause a temperature change in the structure and atmosphere around the drive device, and cause thermal deformation of the structure, measurement error of the position caused by the temperature change, and the like. This had an adverse effect on positioning accuracy on the order of nanometers.

【0009】本発明の目的は、このような従来技術の問
題点に鑑み、駆動装置が発する熱に起因する位置決め精
度への悪影響をより効果的に除去することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to more effectively remove the adverse effect on positioning accuracy due to heat generated by a driving device.

【0010】[0010]

【解決するための手段および作用】この目的を達成する
ため、位置決め装置に使用される本発明の駆動装置は
置決めを行うリニアモータと、冷媒を循環させる冷却
装置を有し、前記リニアモータから生じる熱を回収する
冷却手段と、前記リニアモータ近傍の冷媒もしくは前記
リニアモータを通過した冷媒の温度を計測する温度計測
手段と、前記温度計測手段により得られる温度に応じて
前記冷却手段の冷却量を制御する冷却制御手段とを備
え、これにより、駆動装置、駆動装置周囲の構造体、雰
囲気などの温度変化を少なくし、構造体の熱変形、温度
変化に起因する測長誤差を軽減し、駆動装置による位置
決め精度を向上させたものである。
A and operation for] To achieve this object, the driving device of the present invention used to position-decided Me apparatus,
A linear motor for performing position-decided Me, cooling circulating a refrigerant
Has a device, a cooling unit for recovering heat generated from the linear motor, the linear motor vicinity of the refrigerant or the
Temperature measurement to measure the temperature of refrigerant passing through a linear motor
Means, and cooling control means for controlling the amount of cooling of the cooling means in accordance with the temperature obtained by the temperature measuring means, thereby reducing the temperature change of the driving device, the structure around the driving device, the atmosphere, etc. In addition, the length measurement error caused by thermal deformation and temperature change of the structure is reduced, and positioning accuracy by the driving device is improved.

【0011】却制御手段は冷媒の流量を制御する。す
なわち、発熱が多く温度が上がるときには冷媒の流量を
増やして温度を下げ、また、発熱が少なく温度が下がる
ときには冷媒の流量を減らし冷却量を少なくすることに
より、駆動装置、もしくはその近傍の構造体、もしくは
雰囲気などの温度の変動を防止する。冷媒の流量が増せ
ば単位時間に流れる冷媒の体積が増して熱容量が増える
ために冷却能力が増加することから、冷媒の流量を制御
することにより冷却量が制御される。
[0011] The cold却制control means for controlling the flow rate of the coolant. That is, when the amount of heat generated is high and the temperature rises, the flow rate of the refrigerant is increased to lower the temperature. Or, fluctuation of temperature such as atmosphere is prevented. If the flow rate of the refrigerant increases, the volume of the refrigerant flowing per unit time increases and the heat capacity increases, thereby increasing the cooling capacity. Therefore, the cooling amount is controlled by controlling the flow rate of the refrigerant.

【0012】また、温度計測手段が、リニアモータ近傍
の冷媒の温度を計測するものである場合、例えば、温度
計測手段の温度測定点がリニアモータを通過した冷媒の
温度である場合は、この冷媒の温度が発熱した熱量もし
くはリニアモータの温度の指標となるので、計測される
冷媒の温度を一定にすることにより駆動装置等の温度変
化が防止される。
If the temperature measuring means measures the temperature of the refrigerant near the linear motor , for example, if the temperature measurement point of the temperature measuring means is the temperature of the refrigerant passing through the linear motor , Is used as an index of the amount of heat generated or the temperature of the linear motor. Therefore, by keeping the measured temperature of the refrigerant constant, a change in the temperature of the driving device or the like is prevented.

【0013】さらに、前記温度計測手段が、前記リニア
モータのコイル、永久磁石もしくはそれらの近傍の少な
くとも箇所の温度を計測するものである場合は、温度
の計測点が発熱源であるコイル等の近傍であるため、温
度変化を直ちに測定でき、また、その発熱源もしくはそ
の近傍を冷却しているため、発熱量に対して熱の回収量
が精度よく調整される。また、温度測定点の温度上昇の
遅れによる温度制御および冷却制御の時間遅れが最小限
に抑制される。よって、冷却量の最適化と高効率化によ
り、装置の温度が一定に保持され、熱変形や温度変化に
起因する測長の誤差などの外乱要因が軽減され、駆動装
置の位置決め精度が向上する。特に前記リニアモータが
コイルを複数個有する多極のリニアモータである場合に
は、各コイルに関してそれぞれに温度計測手段を配置す
ることが好ましい。 また、本発明は、位置決めを行う対
象物の位置をレーザ干渉計で計測する駆動装置に特に好
ましく適用される。
Furthermore, prior Symbol temperature measuring means, the linear motor coil, when it is intended to measure the temperature of at least one portion of the permanent magnet or near thereof, coil or the like measuring point temperature is a heat source , The temperature change can be measured immediately, and since the heat source or the vicinity thereof is cooled, the amount of heat recovery can be accurately adjusted with respect to the heat generation amount. Further, the time delay of the temperature control and the cooling control due to the delay of the temperature rise at the temperature measurement point is suppressed to a minimum. Therefore, by optimizing the cooling amount and increasing the efficiency, the temperature of the device is kept constant, disturbance factors such as errors in length measurement due to thermal deformation and temperature change are reduced, and the positioning accuracy of the driving device is improved. . In particular, the linear motor
For a multi-pole linear motor with multiple coils
Has a temperature measurement means for each coil.
Preferably. Further, the present invention relates to a positioning device.
Particularly suitable for a drive that measures the position of an elephant with a laser interferometer.
It is applied well.

【0014】[0014]

【実施例】【Example】

[実施例1]図1は本発明の第1の実施例に係る駆動装
置のブロック構成図であり、本発明の特徴を最もよく表
している。同図において、1は精密な位置決めを行う駆
動手段、2は温度を計測する温度計測手段、3は駆動手
段1に接続されもしくは組み込まれて駆動手段1の熱を
回収する冷却手段、4は温度計測手段2の温度データを
取り込み、そのデータに応じて冷却量を決定し冷却手段
3を制御する冷却制御手段、5は温度計測手段2が駆動
手段1の温度を測定するための温度センサである。
[Embodiment 1] FIG. 1 is a block diagram of a driving apparatus according to a first embodiment of the present invention, which best illustrates the features of the present invention. In the figure, 1 is a driving means for performing precise positioning, 2 is a temperature measuring means for measuring a temperature, 3 is a cooling means connected to or incorporated in the driving means 1 to recover heat of the driving means 1, and 4 is a temperature. Cooling control means for taking in the temperature data of the measuring means 2, determining the cooling amount according to the data, and controlling the cooling means 3, and 5 are temperature sensors for the temperature measuring means 2 to measure the temperature of the driving means 1. .

【0015】駆動手段1は位置決め対象を駆動し精密に
位置決めするためのものであり、駆動するときには熱を
生じ、温度が上昇する。この温度を駆動手段1もしくは
その近傍に配置された温度センサ5によって測定し、温
度計測手段2は温度センサ5によって得られた駆動手段
1の温度を冷却制御手段4に温度データとして送る。冷
却制御手段4は温度計測手段2から得た温度データを基
にして冷却手段3の冷却量を決定する。例えば温度が時
間とともに上昇すれば冷却量を増し、下降すれば冷却量
を減らす。さらに、冷却手段3は冷却制御手段4が決定
した冷却量に応じて駆動手段1の冷却を行う。このと
き、駆動手段1の発熱量に応じて、冷却手段3が冷却を
行うため、駆動手段1が放出した熱量のうち冷却手段3
が回収しない分の熱量をほぼ一定に保つことができる。
従って、駆動手段1およびその周辺の構造物の熱変形や
雰囲気の温度変化による位置決め精度の劣化を防止する
ことができる。
The driving means 1 is for driving and precisely positioning the object to be positioned, and when driven, generates heat and the temperature rises. This temperature is measured by the driving means 1 or a temperature sensor 5 arranged in the vicinity thereof, and the temperature measuring means 2 sends the temperature of the driving means 1 obtained by the temperature sensor 5 to the cooling control means 4 as temperature data. The cooling control unit 4 determines a cooling amount of the cooling unit 3 based on the temperature data obtained from the temperature measuring unit 2. For example, if the temperature rises with time, the cooling amount increases, and if the temperature decreases, the cooling amount decreases. Further, the cooling unit 3 cools the driving unit 1 according to the cooling amount determined by the cooling control unit 4. At this time, the cooling means 3 performs cooling in accordance with the amount of heat generated by the driving means 1, so that the cooling means 3
However, the amount of heat not recovered can be kept almost constant.
Accordingly, it is possible to prevent the positioning accuracy from deteriorating due to the thermal deformation of the driving means 1 and the structure around the driving means 1 and the temperature change of the atmosphere.

【0016】[実施例2]図2は本発明の第2の実施例
を示す構成図であり、4は前記実施例1と同様に温度計
測手段2から得られた温度データを基に冷却量を決定す
る冷却制御手段であり、6は冷却手段3を用いて駆動装
置1の冷却を行う冷却装置である。冷却装置6は冷却制
御手段4が決定した冷却量に従って冷却を行う。図1で
は冷却制御手段4が直接冷却手段3に冷却量の指令を行
なっているのに対し、図2では冷却制御手段4が冷却装
置6に冷却量の指令を出し、それに従って冷却装置6が
冷却手段3に冷却を実行させている点に特徴がある。た
とえば温調器で冷媒を流して駆動装置を冷却する場合、
冷却手段3が冷媒であり、冷却装置6がある温度の冷媒
をある流量で流す温調器となり、この例に当てはまる。
この場合も上記実施例と同様の効果を有する。
[Embodiment 2] FIG. 2 is a block diagram showing a second embodiment of the present invention. Reference numeral 4 denotes a cooling amount based on the temperature data obtained from the temperature measuring means 2 as in the first embodiment. Is a cooling device that cools the driving device 1 by using the cooling device 3. The cooling device 6 performs cooling according to the cooling amount determined by the cooling control means 4. In FIG. 1, the cooling control means 4 directly issues a cooling amount command to the cooling means 3, whereas in FIG. 2, the cooling control means 4 issues a cooling amount command to the cooling device 6, and the cooling device 6 responds accordingly. It is characterized in that the cooling means 3 performs cooling. For example, when cooling a drive device by flowing a refrigerant with a temperature controller,
The cooling means 3 is a refrigerant, and the cooling device 6 is a temperature controller for flowing a refrigerant at a certain temperature at a certain flow rate, which is applicable to this example.
In this case, the same effect as in the above embodiment can be obtained.

【0017】[実施例3]図3は本発明の第3の実施例
を示すブロック構成図であり、冷却手段に冷媒を用いた
場合の実施形態を表している。図中、1aおよび1bは
一対の駆動手段であり、1aは固定側の駆動手段、1b
は図面の左右方向に移動可能な可動側の駆動手段、5は
駆動手段1aもしくは1bに配置された温度センサ、2
は温度センサ5で測定した温度データを外部へ出力する
温度計測手段、3aは駆動手段1a,1bを冷却する供
給側の冷媒、3bは駆動手段1a,1bを冷却する戻り
側の冷媒、4は温度計測手段2から温度データを受け取
り冷却量である冷媒の流量を制御するための指令信号を
出力する冷却制御手段、6aは所定の温度の冷媒を流す
温調器、6bはバルブの開閉やポンプ出力の調節等によ
り冷媒流量を調節する調節器、6cは冷媒流量を測る流
量計、6dは冷却制御手段4からの指令信号により指示
された冷媒流量と流量計6cが計測した冷媒流量とが一
致するように調節器6bの調節量(バルブの開閉量やポ
ンプの出力等)を制御する流量指令手段、10は可動側
駆動手段1bに載置された位置決め対象、11は可動側
駆動手段1bに載置された位置決め対象10の位置基
準、12は位置決め対象10の位置を位置基準11を参
照して計測する位置計測手段、13はこれによって計測
される長さ、14は位置計測手段12から得た位置決め
対象10の位置データにより駆動手段1a,1bの駆動
量を制御するための指令信号を出力するコントローラ、
15はコントローラ14からの指令に従って駆動手段1
a,1bを駆動するドライバである。
[Embodiment 3] FIG. 3 is a block diagram showing a third embodiment of the present invention, and shows an embodiment in which a refrigerant is used for cooling means. In the figure, 1a and 1b are a pair of driving means, 1a is a fixed-side driving means, 1b
Is a movable driving means movable in the left and right direction of the drawing, 5 is a temperature sensor disposed on the driving means 1a or 1b, 2
Is a temperature measuring means for outputting temperature data measured by the temperature sensor 5 to the outside, 3a is a supply-side refrigerant for cooling the driving means 1a and 1b, 3b is a return-side refrigerant for cooling the driving means 1a and 1b, and 4 is Cooling control means that receives temperature data from the temperature measuring means 2 and outputs a command signal for controlling the flow rate of the cooling amount of the cooling medium, 6a is a temperature regulator for flowing a cooling medium having a predetermined temperature, and 6b is a valve opening / closing or pump. A regulator for adjusting the refrigerant flow rate by adjusting the output, etc., 6c is a flow meter for measuring the refrigerant flow rate, 6d is a refrigerant flow rate indicated by a command signal from the cooling control means 4 and the refrigerant flow rate measured by the flow meter 6c match. The flow command means 10 controls the amount of adjustment of the adjuster 6b (the opening and closing amount of the valve, the output of the pump, and the like) so that the positioning target mounted on the movable drive means 1b, and the movable target drive means 1b. Loading The position reference of the positioning target 10 thus obtained, 12 is position measuring means for measuring the position of the positioning target 10 with reference to the position reference 11, 13 is the length measured by this, and 14 is the positioning obtained from the position measuring means 12. A controller for outputting a command signal for controlling the driving amount of the driving means 1a, 1b based on the position data of the object 10;
Reference numeral 15 denotes a driving unit 1 in accordance with a command from the controller 14.
a, 1b.

【0018】固定された駆動手段1aに対して駆動手段
1bが図面の左右方向に動くことにより位置決め対象1
0は同方向に動き、位置決め対象10の位置は位置基準
11を基準として位置計測手段12によって計測され
る。例えば、位置基準11が反射ミラーであり、位置計
測手段12がレーザ干渉計である場合には、長さ13が
光路長となり、これが位置決め対象10の位置となる。
一般に位置決め対象10と位置基準11はいくらか離れ
ているため、かつ位置基準11の位置を位置決め対象1
2の位置としているため、この両者間の距離変動は位置
決めの誤差となる。コントローラ14は位置計測手段1
2の位置データを用いて位置決め対象10が所定の位置
に位置決めされるようドライバ15に指令を与え、ドラ
イバ15は駆動手段1a,1bを駆動する。そのときに
駆動手段1a,1bが発熱すると温度が変化しようとす
る。この温度を温度センサ5を用いて温度計測手段2が
計測し、その結果に基づき冷却制御手段4が温調器6a
が流す冷媒3a,3bの流量を調節器6bを用いて調節
し、これにより駆動手段1a,1bの温度変化がなくな
るようにする。なお、調節器6bを調節するときは流量
指令手段6dが、冷却制御手段4の流量の指令値に流量
計6cが計測する流量が到達するように指令を出してい
る。
When the driving means 1b moves in the horizontal direction in the drawing with respect to the fixed driving means 1a, the positioning object 1 is moved.
0 moves in the same direction, and the position of the positioning target 10 is measured by the position measuring means 12 based on the position reference 11. For example, when the position reference 11 is a reflection mirror and the position measuring means 12 is a laser interferometer, the length 13 is an optical path length, and this is the position of the positioning target 10.
In general, the positioning target 10 and the position reference 11 are somewhat separated, and the position of the position reference 11 is
Since the position 2 is used, a change in the distance between the two results in a positioning error. The controller 14 is a position measuring means 1
A command is given to the driver 15 to position the positioning target 10 at a predetermined position using the position data of 2, and the driver 15 drives the driving means 1a and 1b. At that time, when the driving means 1a and 1b generate heat, the temperature tends to change. This temperature is measured by the temperature measuring means 2 using the temperature sensor 5, and based on the result, the cooling control means 4 makes the temperature controller 6a
The flow rates of the refrigerants 3a and 3b flowing through are adjusted using the controller 6b so that the temperature change of the driving means 1a and 1b is eliminated. When adjusting the controller 6b, the flow command means 6d issues a command so that the flow rate measured by the flow meter 6c reaches the command value of the flow rate of the cooling control means 4.

【0019】駆動手段1bの温度変化がなくなると、駆
動手段1bの熱変形がなくなり、位置決め対象10と位
置基準11との距離変化がなくなる。よって、位置決め
対象10と位置基準11との距離変化がないため、位置
計測手段12が測定した位置基準11の位置を位置決め
対象10の位置とみなすことができ、位置測定の際の誤
差がなくなる。また、駆動手段1aもしくは1bの温度
変化を減らすと、雰囲気温度、特に計測する光路13の
温度変化を防ぎ、位置計測手段12の測定値が変動する
ことを回避できるため、位置測定の際の誤差がなくな
る。
When the temperature change of the driving means 1b stops, the thermal deformation of the driving means 1b stops, and the distance between the positioning object 10 and the position reference 11 does not change. Therefore, since there is no change in the distance between the positioning target 10 and the position reference 11, the position of the position reference 11 measured by the position measuring means 12 can be regarded as the position of the positioning target 10, and there is no error in the position measurement. In addition, when the temperature change of the driving unit 1a or 1b is reduced, a change in the ambient temperature, particularly, the temperature of the optical path 13 to be measured can be prevented, and the measured value of the position measuring unit 12 can be prevented from fluctuating. Disappears.

【0020】このように、位置決め対象の位置決めのた
めに駆動装置を駆動する際に、駆動手段の温度を計測し
て、温度変化がなくなるように冷媒の流量を調節するこ
とにより、駆動手段およびその近傍、もしくは雰囲気の
温度変化を抑えることができ、構造体の熱変形や空気の
ゆらぎを抑えることができるため、位置決め精度を従来
より向上させることができる。
As described above, when the driving device is driven for positioning the positioning object, the temperature of the driving device is measured and the flow rate of the refrigerant is adjusted so that the temperature does not change. Temperature changes in the vicinity or the atmosphere can be suppressed, and thermal deformation of the structure and fluctuations of air can be suppressed, so that positioning accuracy can be improved as compared with the related art.

【0021】図4は図3の波線内を抽出し温度センサの
配置例を示した構成図である。図4において、5は駆動
手段1bに配置された温度センサ、5a,5b,5cは
駆動手段1aに配置された温度センサ、5dは駆動手段
1aもしくは1bの近傍の雰囲気中に配置され雰囲気温
度を計測する温度センサ、5eは戻り側の冷媒3bに配
置された温度センサである。温度センサはこれらの配置
位置のうち駆動手段1a,1bや雰囲気中、冷媒3bな
どのいずれか1点に配置するか、もしくはそれらのうち
2点以上に配置し、温度計測手段2が計測した1点以上
の温度に基づいて冷却制御手段4が冷媒の流量を制御し
ている。温度センサ5dは空気の温度変化を抑えるため
に有効であり、温度センサ5eは冷媒の温度上昇の量に
より発熱量の増減が類推でき、例えば温度が上昇すれば
流量を増やし冷却量を増やして、駆動手段1a,1bお
よびその近傍、もしくは雰囲気の温度変化を抑えること
ができる。
FIG. 4 is a configuration diagram showing an example of the arrangement of the temperature sensors extracted from the dashed line in FIG. In FIG. 4, 5 is a temperature sensor arranged on the driving means 1b, 5a, 5b and 5c are temperature sensors arranged on the driving means 1a, and 5d is arranged in an atmosphere near the driving means 1a or 1b to set the atmospheric temperature. The temperature sensor 5e to be measured is a temperature sensor arranged on the refrigerant 3b on the return side. The temperature sensor is arranged at any one of the driving means 1a, 1b, the atmosphere, the refrigerant 3b, or the like among these arrangement positions, or is arranged at two or more of these points. The cooling control means 4 controls the flow rate of the refrigerant based on the temperature above the point. The temperature sensor 5d is effective for suppressing a change in the temperature of the air, and the temperature sensor 5e can estimate the increase or decrease in the amount of heat generated by the amount of increase in the temperature of the refrigerant. It is possible to suppress a temperature change of the driving means 1a, 1b and its vicinity or the atmosphere.

【0022】[実施例4]図5は本発明の第4の実施例
を示しており、駆動手段としてリニアモータを用いた別
の実施形態を示した構成図(一部断面図)である。図
中、21a,21b,21c,21dは永久磁石、22
は永久磁石21a〜21dが固定されたヨーク、23は
電流が流れるコイル、24はコイル23を支持し冷媒3
a,3bの流路となっているコイル支持具である。な
お、位置計測手段、コントローラ、ドライバ等は図示し
ていない。コイル23は永久磁石21により発生した磁
界中にあるため、コイル23に電流が流れると図の左右
方向にローレンツ力が発生し、ヨーク22とコイル支持
具24は左右方向に互いに相対的に駆動される。このリ
ニアモータを駆動するときコイル23に電流が流れコイ
ル23が発熱する。温度センサ5はコイル23もしくは
その近傍に配置され、その温度を温度計測手段2が計測
し、冷却制御手段4の冷却量指令に従って、冷却装置6
が所定流量の冷媒3aを流す。この冷媒は発熱源である
コイル23やコイル支持具24を直接冷却し熱を回収す
るので、駆動装置の構造体や雰囲気の温度変化を抑える
効果がある。温度センサ5は、コイル支持具24、ヨー
ク22、冷媒3bなどに配置しても同様の効果が得られ
る。
[Embodiment 4] FIG. 5 shows a fourth embodiment of the present invention, and is a configuration diagram (partially sectional view) showing another embodiment using a linear motor as a driving means. In the figure, 21a, 21b, 21c, 21d are permanent magnets, 22
Is a yoke to which the permanent magnets 21a to 21d are fixed, 23 is a coil through which current flows, and 24 is a
It is a coil support which is a flow path of a and 3b. The position measuring means, the controller, the driver and the like are not shown. Since the coil 23 is in the magnetic field generated by the permanent magnet 21, when a current flows through the coil 23, a Lorentz force is generated in the left-right direction in the drawing, and the yoke 22 and the coil support 24 are driven relatively to each other in the left-right direction. You. When this linear motor is driven, a current flows through the coil 23 and the coil 23 generates heat. The temperature sensor 5 is disposed at or near the coil 23, the temperature of which is measured by the temperature measuring means 2, and in accordance with a cooling amount command from the cooling control means 4, the cooling device 6.
Flows a predetermined amount of the refrigerant 3a. Since this refrigerant directly cools the coil 23 and the coil support 24, which are heat sources, and recovers heat, it has the effect of suppressing temperature changes in the structure of the drive device and the atmosphere. The same effect can be obtained by arranging the temperature sensor 5 on the coil support 24, the yoke 22, the refrigerant 3b, and the like.

【0023】[実施例5]図6は駆動手段として多極の
リニアモータを用いた本発明の第5の実施例を示す構成
図であり、リニアモータのコイル部分を抽出した図であ
る。23a,23b,23cはコイル、5A,5B,5
Cはそれぞれコイル23a,23b,23cに配置され
た温度センサである。多極のリニアモータの場合、コイ
ルが複数個あるため、図5の単極の場合と同様に温度セ
ンサを適当な1点に配置することもできるが、図6のよ
うに複数点に温度センサを配置し、温度計測手段2が測
定した複数の温度を基にして冷媒3a,3bの流量を決
定することもできる。各コイルに流れる電流はそれぞれ
異なり、それぞれの温度も異なるため、それぞれの温度
に重み付けを行ったり、それぞれの温度の最大値を選択
するなどして、冷媒の流量を制御することもできる。多
極のリニアモータの場合も上記実施例と同様の効果が得
られる。
[Embodiment 5] FIG. 6 is a block diagram showing a fifth embodiment of the present invention in which a multi-pole linear motor is used as a driving means, in which a coil portion of a linear motor is extracted. 23a, 23b, 23c are coils, 5A, 5B, 5
C is a temperature sensor disposed on each of the coils 23a, 23b and 23c. In the case of a multi-pole linear motor, since there are a plurality of coils, the temperature sensor can be arranged at an appropriate point as in the case of the single pole in FIG. 5, but as shown in FIG. And the flow rates of the refrigerants 3a and 3b can be determined based on the plurality of temperatures measured by the temperature measuring means 2. Since the current flowing through each coil is different and the temperature is also different, the flow rate of the refrigerant can be controlled by weighting each temperature or selecting the maximum value of each temperature. In the case of a multi-pole linear motor, the same effect as in the above embodiment can be obtained.

【0024】[0024]

【発明の効果】以上説明したように、位置決めを行い発
熱を伴うリニアモータに、冷媒を循環させる冷却装置を
有し、その熱を回収する冷却手段と、前記リニアモー
の冷媒もしくはリニアモータを通過した冷媒の温度
を計測する温度計測手段と、その温度に応じて前記冷却
手段の冷却量を制御する冷却制御手段とを設けるように
したため、リニアモータ、その周囲の構造体、雰囲気な
どの温度変化を少なくし、構造体の熱変形、温度変化に
起因する測長誤差を軽減し、駆動装置によるナノメート
ルオーダーの位置決め精度をさらに向上させる効果があ
る。
As described above, according to the present invention, the linear motor exothermic performed Me-position-decided, a cooling device for circulating a refrigerant
A, a cooling means for recovering the heat, the linear motors
Since it provided a temperature measuring means for measuring the temperature of the refrigerant passing through the refrigerant or linear motor of the near neighbor, and a cooling control means for controlling the cooling amount of the cooling means in accordance with the temperature, linear motor, around This has the effect of reducing the temperature change of the structure, atmosphere, etc., reducing the length measurement error caused by the thermal deformation and temperature change of the structure, and further improving the positioning accuracy on the order of nanometers by the driving device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例に係る駆動装置の構成
図である。
FIG. 1 is a configuration diagram of a driving device according to a first embodiment of the present invention.

【図2】 図1の冷却制御手段が冷却手段を駆動する冷
却装置に指令を与えている例を示した本発明の第2の実
施例の構成図である。
FIG. 2 is a configuration diagram of a second embodiment of the present invention showing an example in which the cooling control unit of FIG. 1 gives a command to a cooling device that drives the cooling unit.

【図3】 冷却手段に冷媒を用いたときの本発明の第3
の実施例に係る駆動装置の実施形態を表す構成図であ
る。
FIG. 3 shows a third embodiment of the present invention when a refrigerant is used as a cooling means.
1 is a configuration diagram illustrating an embodiment of a driving device according to an example of FIG.

【図4】 図3の波線内を抽出し温度センサの配置例を
示した構成図である。
FIG. 4 is a configuration diagram showing an example of arrangement of temperature sensors by extracting the inside of a dashed line in FIG. 3;

【図5】 駆動手段をリニアモータとしたときの本発明
の第3の実施例に係る駆動装置の構成図である。
FIG. 5 is a configuration diagram of a drive device according to a third embodiment of the present invention when the drive means is a linear motor.

【図6】 本発明の駆動手段が多極のリニアモータであ
るときの本発明の第4の実施例を表し、そのコイル部分
のみを抽出した構成図である。
FIG. 6 is a block diagram showing a fourth embodiment of the present invention in which the driving means of the present invention is a multi-pole linear motor, in which only the coil portion is extracted.

【図7】 従来の駆動装置の構成図である。FIG. 7 is a configuration diagram of a conventional driving device.

【符号の説明】[Explanation of symbols]

1:駆動手段、1a:固定側の駆動手段、1b:可動側
の駆動手段、2:温度計測手段、3:冷却手段、3a:
供給側の冷媒、3b:戻り側の冷媒、4:冷却制御手
段、5,5a,5b,5c,5d,5e:温度センサ、
6:冷却装置、6a:温調器、6b:調節器、6c:流
量計、6d:流量指令手段、10:位置決め対象、1
1:位置基準、12:位置計測手段、13:計測する長
さ、14:コントローラ、15:ドライバ、21a,2
1b,21c,21d:永久磁石、22:ヨーク、2
3:コイル、24:コイル支持具、23a,23b,2
3c:コイル、5A,5B,5C:温度センサである。
1: driving means, 1a: fixed-side driving means, 1b: movable-side driving means, 2: temperature measuring means, 3: cooling means, 3a:
Supply side refrigerant, 3b: return side refrigerant, 4: cooling control means, 5, 5a, 5b, 5c, 5d, 5e: temperature sensors,
6: cooling device, 6a: temperature controller, 6b: regulator, 6c: flow meter, 6d: flow command means, 10: positioning target, 1
1: Position reference, 12: Position measurement means, 13: Length to be measured, 14: Controller, 15: Driver, 21a, 2
1b, 21c, 21d: permanent magnet, 22: yoke, 2
3: coil, 24: coil support, 23a, 23b, 2
3c: coil, 5A, 5B, 5C: temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/68 H01L 21/68 K 21/30 515G ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI H01L 21/68 H01L 21/68 K 21/30 515G

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】置決め装置に使用される駆動装置であ
って、 置決めを行なうリニアモータと、冷媒を循環させる冷却装置を有し、 前記リニアモータか
ら生じる熱を回収する冷却手段と、前記リニアモータ近傍の冷媒の温度を計測する温度計測
手段と、 前記温度計測手段により得られた温度に応じて前記冷却
手段の冷却量を制御する冷却制御手段とを備えたことを
特徴とする駆動装置。
1. A position A driving device for use in-decided Me apparatus, a linear motor to perform Me-position-decided, and cooling means having a cooling device for circulating a refrigerant, recovering the heat generated from the linear motor Temperature measurement for measuring the temperature of the refrigerant near the linear motor
And a cooling control means for controlling a cooling amount of the cooling means in accordance with the temperature obtained by the temperature measuring means.
【請求項2】 位置決め装置に使用される駆動装置であ
って、 位置決めを行なうリニアモータと、 冷媒を循環させる冷却装置を有し、前記リニアモータか
ら生じる熱を回収する冷却手段と、 前記リニアモータを通過した冷媒の温度を計測する温度
計測手段と、 前記温度センサにより得られた温度に応じて前記冷却手
段の冷却量を制御する冷却制御手段とを備えたことを特
徴とする駆動装置。
2. A driving device used for a positioning device.
A linear motor that performs positioning, and a cooling device that circulates refrigerant.
Cooling means for recovering heat generated from the cooling medium, and a temperature for measuring a temperature of the refrigerant passing through the linear motor.
Measuring means and the cooling means according to the temperature obtained by the temperature sensor.
Cooling control means for controlling the cooling amount of the stage.
Driving device.
【請求項3】 請求項1もしくは2記載の駆動装置にお
いて、 記冷却制御手段はその冷媒の流量を制御するものであ
ることを特徴とする駆動装置。
3. The driving device according to claim 1, wherein
There are, before Symbol cooling control means driving device is characterized in that controls the flow rate of the refrigerant.
【請求項4】 請求項1記載の駆動装置において、前記 温度計測手段が前記リニアモータのコイル、永久磁
石、もしくはそれらの近傍の少なくとも1箇所の温度を
計測するものであることを特徴とする駆動装置。
4. A driving apparatus according to claim 1 Symbol mounting, characterized in that said temperature measuring means is for measuring the linear motor coil, a permanent magnet or a temperature of at least one location in the vicinity thereof, Drive.
【請求項5】 請求項1または4記載の駆動装置におい
て、 前記リニアモータがコイルを複数個有する多極のリニア
モータであることを特徴とする駆動装置。
5. The driving device according to claim 1 , wherein the linear motor is a multi-pole linear motor having a plurality of coils.
【請求項6】 請求項5記載の駆動装置において、 各コイルに関してそれぞれに温度計測手段を配置するこ
とを特徴とする駆動装置。
6. The driving device according to claim 5, wherein a temperature measuring means is arranged for each coil.
【請求項7】 請求項1〜6いずれか記載の駆動装置に
おいて、 位置決めを行なう対象の位置をレーザ干渉計で計測する
ことを特徴とする駆動装置。
7. The driving device according to claim 1, wherein a position of a positioning target is measured by a laser interferometer.
JP11341194A 1994-05-02 1994-05-02 Drive Expired - Fee Related JP3148512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11341194A JP3148512B2 (en) 1994-05-02 1994-05-02 Drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11341194A JP3148512B2 (en) 1994-05-02 1994-05-02 Drive

Publications (2)

Publication Number Publication Date
JPH07302747A JPH07302747A (en) 1995-11-14
JP3148512B2 true JP3148512B2 (en) 2001-03-19

Family

ID=14611595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11341194A Expired - Fee Related JP3148512B2 (en) 1994-05-02 1994-05-02 Drive

Country Status (1)

Country Link
JP (1) JP3148512B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084319A (en) * 1996-10-16 2000-07-04 Canon Kabushiki Kaisha Linear motor, and stage device and exposure apparatus provided with the same
JPH11307430A (en) 1998-04-23 1999-11-05 Canon Inc Aligner, manufacture of device, and drive
JP3870002B2 (en) 2000-04-07 2007-01-17 キヤノン株式会社 Exposure equipment
JP4689058B2 (en) 2001-02-16 2011-05-25 キヤノン株式会社 Linear motor, stage apparatus, exposure apparatus, and device manufacturing method
DE60232568D1 (en) 2001-07-09 2009-07-23 Canon Kk exposure apparatus
JP2006235205A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Temperature control device and temperature control method
JP5278030B2 (en) * 2009-02-24 2013-09-04 株式会社Ihi Lubricating method and system for reversing table device
BR112013021331B1 (en) 2011-02-25 2022-01-04 Koninklijke Philips N.V. AEROSOL GENERATION DEVICE FOR NEBULIZATION OF A LIQUID
US10788762B2 (en) * 2019-02-25 2020-09-29 Applied Materials, Inc. Dynamic cooling control for thermal stabilization for lithography system

Also Published As

Publication number Publication date
JPH07302747A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
US6552773B2 (en) Stage system with driving mechanism, and exposure apparatus having the same
JP3148512B2 (en) Drive
JP3870002B2 (en) Exposure equipment
JP4994842B2 (en) Microthermal chamber with proximity controlled temperature management function for the device under test
US5770899A (en) Linear motor
US7565926B2 (en) Heat exchange method and heat exchange apparatus
JP2000092815A (en) Stage device and aligner using the same
JP2001298939A (en) Cooling control apparatus for linear motor
JP2994203B2 (en) Drive
JPS623473A (en) Positioning control system for magnetic head
JP4632063B2 (en) Cooling mechanism, module cooling method and program
JPH0636997A (en) Electron beam lithography apparatus
JP3335857B2 (en) Heat-resistant measuring instrument
JP4358786B2 (en) Ball screw thermal displacement correction method
JPH11184539A (en) Driving device and stage device and exposure device using it
JP4789456B2 (en) Planar actuator
JP4770045B2 (en) Mobile system
JP2007067193A (en) Exposure device
JP3395512B2 (en) Refrigerator temperature control device
US20090218964A1 (en) Driving apparatus, industrial instrument, exposure apparatus, and device manufacturing method
JP2006005061A (en) Tank for storing cooling medium
JPH11176730A (en) Aligner
KR100478860B1 (en) Temperature controlling apparatus for scanner motor and laser scanner having it
KR100610265B1 (en) Laser head
JPS6388879A (en) Laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees