US10770336B2 - Substrate lift mechanism and reactor including same - Google Patents

Substrate lift mechanism and reactor including same Download PDF

Info

Publication number
US10770336B2
US10770336B2 US15/672,096 US201715672096A US10770336B2 US 10770336 B2 US10770336 B2 US 10770336B2 US 201715672096 A US201715672096 A US 201715672096A US 10770336 B2 US10770336 B2 US 10770336B2
Authority
US
United States
Prior art keywords
susceptor
support
substrate
lift pin
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/672,096
Other versions
US20190051555A1 (en
Inventor
Eric Hill
John Disanto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM IP Holding BV
Original Assignee
ASM IP Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM IP Holding BV filed Critical ASM IP Holding BV
Priority to US15/672,096 priority Critical patent/US10770336B2/en
Assigned to ASM IP HOLDING B.V. reassignment ASM IP HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISANTO, JOHN, HILL, ERIC
Publication of US20190051555A1 publication Critical patent/US20190051555A1/en
Application granted granted Critical
Publication of US10770336B2 publication Critical patent/US10770336B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Abstract

A substrate support assembly suitable for use in a reactor including a common processing and substrate transfer region is disclosed. The substrate support assembly includes a susceptor and one or more lift pins that can be used to lower a substrate onto a surface of the susceptor and raise the substrate from the surface, to allow transfer of the substrate from the processing region, without raising or lowering the susceptor.

Description

FIELD OF INVENTION

The disclosure generally relates to apparatus for gas-phase processes. More particularly, exemplary embodiments of the present disclosure relate to a reactor including a common substrate transfer and processing region and to a substrate lift mechanism suitable for use therein.

BACKGROUND OF THE DISCLOSURE

Gas-phase reactors for processing substrates, such as semiconductor wafers, often include a susceptor within a reaction chamber. During processing, one or more substrates are placed within the reaction chamber and onto the susceptor using a robotic arm. After processing, the substrate(s) are removed from the surface of the susceptor and through an opening in the reaction chamber using the robotic arm.

Often, it is desirable to maintain a relatively small reaction space or region within the reaction chamber. The relatively small reaction space allows for more-efficient substrate processing. For example, a smaller amount of reactants can be used when processing substrates in a relatively small reaction space—compared to a larger reaction space and/or an amount of time to process substrates using the relatively small reaction space can be less than the amount of time to process substrates in the larger reaction space. To allow for a relatively small reaction space within a reaction chamber, while allowing placement of substrates onto the susceptor and removal of the substrates from the susceptor, a reaction chamber often includes a separate wafer transfer region that includes the opening within the reaction chamber to allow placement on and removal of the substrates from the susceptor.

During the substrate transfer process, lift pins, which extend through a vertical width of the susceptor and beyond, are sometimes used to facilitate placement and removal of the substrate on and from the surface of the susceptor. In such cases, a substrate can be placed onto the susceptor by placing (lowering) the susceptor to be within the substrate transfer region of the reaction chamber, causing the lift pins to rise above the surface of the susceptor, placing the substrate onto the lift pins, and lowering the lift pins, such that the substrate rests on the susceptor. The susceptor and the substrate can then be moved (raised) to a processing position, such that the substrate is within the reaction region of the reaction chamber.

Although such techniques work relatively well to place substrates within and remove substrates from a reaction space within the reactor, mechanisms to move the susceptor and the lift pins are relatively complex. In addition, reactors employing such techniques can exhibit undesired gas flow between the reaction region and the substrate transfer region—especially during substrate processing. The undesired gas flow can lead to deposition and/or corrosion of the reactor within the substrate transfer region. Furthermore, the volumes of such reactors are relatively large to accommodate both the processing/reaction region and the substrate transfer region of the reaction chamber. In addition, the multi-step process of moving the susceptor to a transfer region and moving the lift pins is a relatively time consuming. Accordingly, improved mechanisms and techniques for transferring and processing substrates are desired.

SUMMARY OF THE DISCLOSURE

Various embodiments of the present disclosure provide an improved method and apparatus for processing and transferring substrates. As set forth in more detail below, various systems and methods provide a reactor and/or use a method that can process substrates within a region and transfer substrates to/from the same region within a reactor. In other words, the reactor can include a reaction chamber including a common processing and transfer region. Accordingly, the overall reactor volume can be relatively small, the reactor can be less complex, more reliable, less expensive, and easier to maintain and/or process substrates in a reduced amount of time and/or in a less expensive manner.

In accordance with at least one exemplary embodiment of the disclosure, a reactor, which includes a common substrate processing and transfer region, includes a reaction chamber comprising a reaction region, a susceptor having a top surface within the reaction region, and a substrate lift mechanism. The substrate lift mechanism can include at least one lift pin, a lift pin support member that engages to (e.g., removably) couple to the at least one pin, and a movable shaft coupled to the lift pin support member. The substrate lift mechanism causes the at least one lift pin to extend above the susceptor surface. In accordance with various aspects of these embodiments, the moveable shaft moves in a vertical direction. The distance that the movable shaft and the lift pins move during a substrate transfer process can range from about 5 mm to about 25 mm, about 10 mm to about 20 mm, or be about 17 mm. In accordance with further aspects of these embodiments, the susceptor includes a center region and a peripheral region. A width of the center region can be greater than a width of the peripheral region. Such a design can facilitate forming the susceptor with a relatively small peripheral width, which in turn can facilitate use of the common region for both substrate processing and transfer. The reactor can further include a rotatable shaft and a susceptor support coupled to the rotatable shaft. The susceptor is coupled to the susceptor support, such that rotational movement of the rotatable shaft is translated to the susceptor. In accordance with various examples of these embodiments, an opening within the reaction chamber, to transfer substrates into and out of the reaction chamber, resides above a top surface of the susceptor when the susceptor is in a processing position.

In accordance with at least one other embodiment of the disclosure, a substrate support assembly includes a susceptor, a susceptor support coupled to the susceptor, a rotatable shaft coupled to the susceptor support, a lift pin support member, one or more lift pins coupled to the lift pin support member, a moveable shaft coupled to the lift pin support member, a lift pin mechanism to cause the moveable shaft to move in a vertical direction, and a susceptor rotation mechanism that causes the susceptor to rotate during substrate processing. The substrate support assembly can be configured, such that the susceptor does not move in a vertical direction during a substrate transfer process. In accordance with various aspects of these embodiments, the susceptor support includes a plurality of susceptor support arms and one or more susceptor support structures coupled to each susceptor support arm. The susceptor arm(s) can include an aperture to receive one of the one or more lift pins. The susceptor can be the same or similar to the susceptor described above and elsewhere in this specification.

In accordance with at least one further exemplary embodiment of the disclosure, a method of transferring and processing a substrate includes the steps of providing a reactor comprising a common region for substrate processing and substrate transfer, providing a substrate support assembly, such as the assembly described above and elsewhere in this specification, providing a substrate to the common region, moving the lift pins in a downward position to place the substrate in a processing position, processing the substrate, moving the lift pins in an upward position, and removing the substrate from the common region. The method can include removing the substrate from the common region through an opening that is located above a top surface of the susceptor—e.g., when the susceptor is in a processing position.

Both the foregoing summary and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure or the claimed invention.

BRIEF DESCRIPTION OF THE DRAWING FIGURES

A more complete understanding of the embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.

FIG. 1 illustrates a reactor in accordance with exemplary embodiments of the disclosure.

FIG. 2 illustrates components of a substrate support assembly in accordance with additional embodiments of the disclosure.

FIGS. 3-5 illustrate a lift/rotate mechanism in accordance with exemplary embodiments of the disclosure.

It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of illustrated embodiments of the present disclosure.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE INVENTION

The description of exemplary embodiments of methods and apparatus provided below is merely exemplary and is intended for purposes of illustration only; the following description is not intended to limit the scope of the disclosure or the claims. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features.

Any ranges indicated in this disclosure may include or exclude the endpoints. Additionally, any values of variables indicated (regardless of whether they are indicated with “about” or not) may refer to precise values or approximate values and include equivalents, and may refer to average, median, representative, majority, or the like.

Turning now to FIG. 1, a reactor 100 in accordance with at least one embodiment of the disclosure is illustrated. Reactor 100 includes a reaction chamber 102 including a reaction region 104 and a substrate lift mechanism 106. As described in more detail below, during a substrate transfer operation, substrate lift mechanism 106 facilitates placement of a substrate 116 onto a top surface 122 of a susceptor 118 within reaction region 104 to allow removal of substrate 116 through an opening 120 of reaction chamber 102.

Reaction chamber 102 can be formed of, for example, quartz, and can be formed as a unitary piece, such as a tube. By way of example, reaction region 104 within reaction chamber 102 can have a rectangular cross section having a width of about 350 mm to about 450 mm (or be about ˜420 mm), a length of about 400 mm to about 800 mm (or be about ˜760 mm), and a height of about 20 mm to about 40 mm (or be about ˜30 mm). As noted above, reaction chamber 102 includes an opening 120 that resides above top surface 122 of susceptor 118 (e.g., when surface 122 is in a processing position).

Reaction chamber 102 can be suitable for a variety of applications, such as film (e.g., epitaxial) deposition processes, etch processes, cleaning processing, and the like. Further, reactor 100 can be a standalone reactor or form part of a cluster tool that may include similar or different reaction chambers.

Substrate lift mechanism 106 includes at least one lift pin 108, 110, a lift pin support member 112 that can engage with and couple to the at least one pin 108, 110, and a movable shaft 114 mechanically coupled to the lift pin support member. During a substrate transfer process, substrate lift mechanism 106 causes the at least one lift pin 108, 110 to be raised or lowered to allow placement of substrate 116 onto surface 122 and/or removal of substrate 116 from surface 122.

Lift pins 108, 110 can be formed of any suitable material. For example, lift pins 108, 110 can be formed of silicon carbide (SiC), SiC-coated graphite, quartz, or glassy carbon. Although two lift pins 108, 110 are shown in FIG. 1, reactor 100 includes three (e.g., equally) spaced apart lift pins. Reactors in accordance with other embodiments of the disclosure can include any suitable number of lift pins and generally include three or three or more lift pins. A length L of lift pins 108, 110 can vary according to application. Generally a length of lift pins 108, 110 allows lift pins 108, 110 to extend through a width W of susceptor 118 and above the susceptor top surface 122—for example, when receiving a substrate 116 from a robotic arm (not illustrated) or presenting substrate 116 to be received by the robotic arm.

In accordance with some embodiments of the disclosure, lift pins 108, 110 have a length L of about 20 to about 40 mm or about 30 mm. This is a significantly shorter length than typical lift pins and allows processing and substrate transfer within a common region, namely reaction region 104. Lift pins 108, 110 can include a beveled section 124 that is received within a portion of susceptor 118. Beveled section 124 allows lift pins 108, 110 to be received within a via 126 within susceptor 118 and to be retained at a desired level (e.g., a top surface of lift pins can be about planar with surface 122 or reside just (e.g., a few mm or less) below surface 122. This allows susceptor 118 to retain lift pins 108, 110 when, for example, lift pin support member 112 is not engaged with lift pins 108, 110. A top surface 128, 130 of lift pins 108, 110 can have a diameter of about 3 to about 6 mm, or about 4 mm. Top surface 128, 130 can be polished to a smooth finish (e.g., a roughness average of about 0.05 to 0.2 μm or less) to prevent or mitigate surface damage to substrate 116 during a transfer process.

Lift pin support member 112 engages with lift pins 108, 110 and moveable shaft 114. In the illustrated example, lift pin support member 112 removably engages with lift pins 108, 110 and is coupled to moveable shaft 114. This allows movable shaft 114 to move only in a vertical direction (and not rotate), while allowing susceptor 118 to rotate—e.g., during substrate processing, as described in more detail below. Lift pin support member 112 can be formed of, for example, SiC-coated graphite, quartz, or glassy carbon.

As illustrated in more detail in FIG. 2, lift pin support member 112 includes a plurality of lift pin arms 202, 204. Although two lift pin support arms are illustrated in FIG. 2, the illustrated lift pin support member includes three lift pin support arms. Each lift pin support arm 202, 204 includes a first end 206, 208 coupled moveable shaft 114 and a second end 210, 212 that receive and engage with a lift pin (e.g., one or lift pins 108, 110). Second end 210, 212 can include, for example, a recess 214, 216 to receive a bottom portion 218, 220 of one or lift pins 108, 110. Lift pin support member 112 can be a unitary member, as illustrated. Alternatively, lift pin support member can include a plurality of arms coupled to a coupling that is coupled to moveable shaft 114.

FIG. 1 illustrates lift pins 108, 110 when engaged with lift pin support member 112, such that lift pin support member 112 engages with lift pins 108, 110 and causes top surface 128, 130 of lift pins 108, 110 to reside above surface 122. FIG. 2 illustrates lift pin support member 112, when lift pin support member 112 is disengaged from lift pins 108, 110—i.e., when moveable shaft 114 is moved in a downward position relative to the position of moveable shaft 114 in FIG. 1. As illustrated in FIG. 2, when lift pin support member 112 is disengaged from lift pins 108, 110, lift pins 108, 110 are retained by susceptor 118, allowing susceptor 118 to rotate, without requiring support member 112 and/or moveable shaft 114 to rotate.

Moveable shaft 114 is in the form of a hollow tube. Moveable shaft 114 can be formed of, for example, quartz. In accordance with exemplary embodiments of the disclosure, moveable shaft is configured to move a vertical distance of 5 to about 25 mm (or ˜17 mm). As a result, lift pins 108, 110 can move about 5 to about 25 mm (or ˜17 mm), and lift pins 108, can extend to a height of up to about 5, 10, or 20 mm above surface 122.

Susceptor 118 can be formed of, for example, SiC or SiC-coated graphite. In accordance with various examples of the disclosure, width W of susceptor 118 is relatively small to allow lift pin-assisted substrate transfer and processing in a single region—e.g., reaction region 104. In accordance with various embodiments of the disclosure, a width W of susceptor 118 at a peripheral region 222 is less than a width of susceptor 118 at a center region 224 of susceptor 118. This configuration can allow from a relatively thin susceptor—especially at the peripheral region—while allowing susceptor to rotate and perform other functions, such as protecting an end of a thermocouple and providing desired heat transfer to and/or from substrate 116. By way of examples, the width at peripheral region 222 ranges from about 3 to about 6.5 mm (or ˜3.8 mm). A width of center region 224 can range from about 6 to about 10 mm (or ˜6.4 mm).

As noted above, reactor 100 can be configured to cause substrate 116 to rotate during substrate processing. In this illustrated example, reactor 100 includes a rotatable shaft 132 and a susceptor support 134 to cause susceptor 118, and consequently substrate 116, to rotate during processing.

Rotatable shaft 132 can be formed of, for example, quartz. Rotatable shaft 132 can be configured to couple to susceptor support 134 to translate rotational movement of rotatable shaft 132 to susceptor support 134. By way of example, rotatable shaft 132 can be coupled to susceptor support 134 using a coupling 148.

As illustrated in FIGS. 1 and 2, susceptor support 134 includes one or more (e.g., a plurality of) susceptor support arms 226, 228 and structures 136, 138. Structures 136, 138 can engage with susceptor 118 and susceptor support arms 226, 228. Alternatively, structures 136, 138 can be integrally formed with susceptor support arms 226, 228. Susceptor support arms 226, 228 and structures 136, 138 can be formed of, for example, SiC, SiC-coated graphite, or quartz. Although illustrated with one structure 136, 138 for each susceptor support arms 226, 228, susceptor support 134 can include a plurality of structures 136, 138 for each susceptor support arm 226, 228. In accordance with exemplary embodiments of the disclosure, at least one of the plurality of susceptor support arms 226, 228 includes an aperture 140, 142 to receive a lift pin.

Reactor 100 can also include a thermocouple 144. Thermocouple 144 can be used to measure a temperature of susceptor 118—for example—during substrate processing. As illustrated in FIG. 1, thermocouple 144 can include an end 146, which extends through moveable shaft and rotatable shaft. End 146 can reside within center region 224 of susceptor 118. Center region 224 may provide additional radiation shielding for end 146 of thermocouple 144.

In accordance with further exemplary embodiments of the disclosure, a substrate support assembly 230 includes components to cause lift pins 108, 110 to raise and lower and to cause susceptor 118 to rotate. In accordance with these embodiments, substrate support assembly 230 includes susceptor 118, susceptor support 134, rotatable shaft 132, lift pin support member 112, one or more lift pins 108, 110, moveable shaft 114, a lift pin mechanism to cause the moveable shaft to move in a vertical direction during a substrate transfer process, and a susceptor rotation mechanism that causes susceptor 118 to rotate during substrate processing. As noted above, in accordance with various examples of the disclosure, susceptor 118 does not move in a vertical direction during substrate transfer—i.e., susceptor 118 does not move in a vertical direction as lift pins are raised and/or lowered and/or during other steps of a substrate transfer process. As described below, the lift pin mechanism and the susceptor rotation mechanism can be combined.

FIGS. 3-5 illustrate a lift/rotate mechanism 300 in accordance with exemplary embodiments of the disclosure. Lift/rotate mechanism 300 can be used to raise and lower lift pins (e.g., lift pins 108, 110) and to cause a susceptor (e.g., susceptor 118) to rotate. FIG. 3 illustrates a rear isometric view of lift/rotate mechanism 300, FIG. 4 illustrates a front isometric view of lift/rotate mechanism 300, and FIG. 5 illustrates a simplified cross-sectional-view of lift/rotate mechanism 300.

With reference to FIGS. 3 and 4, in the illustrated example, lift/rotate mechanism 300 includes a susceptor rotary actuator 302, a pin lift actuator 304, a rotary signal junction bracket, a tubulation seal 308, a tubulation seal support 310, a susceptor manual actuator 312, a thermocouple signal rotary junction 314, and a mounting bracket 316.

Susceptor rotary actuator 302 is used to provide rotational movement to a susceptor, such as susceptor 118. By way of example, susceptor rotary actuator 302 is configured to provide rotational movement to rotatable shaft 132 to cause susceptor 118 to rotate—e.g., during processing of a substrate—using rotational drive gear 512. Exemplary rotational speed can range from about 5 rpm to about 150 rpm, about 10 rpm to about 50 rpm, or be about 35 rpm.

Pin lift actuator 304 is configured to cause lift pins (e.g., lift pins 108, 110) to move in a vertical direction. By way of example, pin lift actuator 304 causes a pin lift carriage 502 to move vertically along a linear slide rail 504. Carriage 502 is mechanically coupled to moveable shaft 114 (e.g., using a pin lift shaft mounting sleeve 506) to cause lift pins (e.g., by way of lift pin support member 112) to move in a vertical direction. Pin lift shaft mounting sleeve 506 and moveable shaft 114 can be protected from the environment using an upper bellows 508 and a lower bellows 510.

Rotary signal junction box 306 can be used to facilitate provision of signals to and/or from susceptor rotary actuator 302, pin lift linear actuator 304, and/or one or more thermocouples, such as thermocouple 144.

Tubulation seal 308 and a tubulation seal support 310 are used to provide a seal about moveable shaft 114. As illustrated in FIG. 5, tubulation seal 308 can include a seal 514 and a support plate 516 to retain seal 514 as moveable shaft 114 moves relative to seal 308.

Although, in accordance with various embodiments of the disclosure, a susceptor does not move vertically during substrate processing, it may be desirable to move a susceptor for maintenance, installation, or the like. In such cases, susceptor manual actuator 312 can be used to manually move a susceptor (e.g., susceptor 118) in a vertical direction via a susceptor lift carriage 518.

In the illustrated example, lift/rotate mechanism 300 includes a relatively large feedthrough 520 (e.g., having a diameter of about 20 to about 50 mm or be about 34.5 mm), which allows installation of moveable shaft 114, through a rotary feedthrough 522 and a susceptor shaft mounting sleeve 524, from below. A configuration of lift/rotate mechanism 300 is relatively compact, compared to lift/rotate mechanism that cause a susceptor to move vertically during a substrate transfer process.

In accordance with additional embodiments of the disclosure, a method of transferring and processing a substrate is provided. The method can employ the reactor, substrate support assembly, and/or lift/rotate mechanism as described herein. An exemplary method includes the steps of providing a reactor comprising a common region for substrate processing and substrate transfer, providing a substrate support assembly, providing a substrate to the common region, moving the lift pins in a downward position to place the substrate in a processing position, processing the substrate, moving the lift pins in an upward position, and removing the substrate from the common region. The step of removing the substrate can include removing the substrate from the common region through an opening in a reaction or processing region that is above a top surface of the susceptor.

Although exemplary embodiments of the present disclosure are set forth herein, it should be appreciated that the disclosure is not so limited. For example, although the apparatus and methods are described in connection with various specific components, the disclosure is not necessarily limited to these configurations. Various modifications, variations, and enhancements of the apparatus and methods set forth herein can be made without departing from the spirit and scope of the present disclosure.

Claims (16)

What is claimed is:
1. A reactor comprising a common substrate processing and transfer region, the reactor comprising:
a reaction chamber comprising a reaction region; a susceptor having a susceptor top surface within the reaction region;
a substrate lift mechanism comprising:
at least one lift pin;
a lift pin support member that removably engages to the at least one pin;
and a movable shaft coupled to the lift pin support member, a rotatable shaft; and
a susceptor support comprising one or more susceptor support arms and one or more susceptor support structures, the susceptor support coupled to the rotatable shaft,
wherein the substrate lift mechanism causes the at least one lift pin to extend through a width of the susceptor and above the susceptor top surface,
wherein the one or more susceptor support arms comprise an aperture to receive the at least one lift pin at a location radially exterior to a susceptor support structure of the one or more susceptor support structures,
wherein the one or more susceptor support structures engage with the susceptor, and
wherein the susceptor retains the at least one lift pin when the at least one lift pin is not engaged by the lift pin support member.
2. The reactor of claim 1, wherein the moveable shaft traverses a distance of about 5 mm to about 25 mm during a substrate transfer process.
3. The reactor of claim 1, wherein a length of the at least one lift pin ranges from about 20 mm to about 40 mm.
4. The reactor of claim 1, wherein the at least one lift pin comprises a lift pin top surface, and wherein the substrate lift mechanism causes the lift pin top surface to extend from below the susceptor top surface to a distance up to about 22 mm above the susceptor top surface.
5. The reactor of claim 1, wherein the susceptor comprises a center region and a peripheral region and wherein a width of the center region is greater than a width of the peripheral region.
6. The reactor of claim 5, wherein the width of the peripheral region ranges from about 3 mm to about 6.5 mm.
7. The reactor of claim 5, wherein the width of the center region ranges from about 6 mm to about 10 mm.
8. The reactor of claim 5, wherein the reactor further comprises at least one thermocouple having an end, the thermocouple extending through the moveable shaft, and the end received within an opening in the center region.
9. The reactor of claim 1, wherein the susceptor comprises graphite coated with silicon carbide.
10. The reactor of claim 1, wherein the susceptor is coupled to the susceptor support, such that a rotational movement of the rotatable shaft is translated to the susceptor.
11. The reactor of claim 10, wherein the susceptor support comprises a plurality of support structures.
12. The reactor of claim 11, wherein the plurality of susceptor support structures comprise SiC, SiC-coated graphite, or quartz.
13. A substrate support assembly comprising:
a susceptor;
a susceptor support coupled to the susceptor;
a rotatable shaft coupled to the susceptor support;
a lift pin support member;
one or more lift pins coupled to the lift pin support member;
a moveable shaft coupled to the lift pin support member;
a lift pin mechanism to cause the moveable shaft to move in a vertical direction during a substrate transfer process; and
a susceptor rotation mechanism that causes the susceptor to rotate during substrate processing,
wherein the susceptor support comprises a plurality of susceptor support arms and one or more susceptor support structures coupled to or integrated with each of the plurality of support arms,
wherein the susceptor does not move in a vertical direction during substrate transfer, and
wherein the susceptor retains the at least one lift pin at a location radially exterior to a susceptor support structure of the one or more susceptor support structures when the at least one lift pin is not engaged by the lift pin support member.
14. The substrate support assembly of claim 13, wherein at least one of the plurality of susceptor support arms comprises an aperture to receive a lift pin at a location radially exterior to the susceptor support structure.
15. The substrate support assembly of claim 13, wherein the susceptor comprises a center region and a peripheral region and wherein a width of the center region is greater than a width of the peripheral region.
16. The substrate support assembly of claim 15, further comprising at least one thermocouple having an end, the thermocouple extending through the moveable shaft, and the end received within an opening in the center region.
US15/672,096 2017-08-08 2017-08-08 Substrate lift mechanism and reactor including same Active 2038-07-20 US10770336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/672,096 US10770336B2 (en) 2017-08-08 2017-08-08 Substrate lift mechanism and reactor including same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/672,096 US10770336B2 (en) 2017-08-08 2017-08-08 Substrate lift mechanism and reactor including same
CN201810696644.7A CN109390199A (en) 2017-08-08 2018-06-28 Lifting device for substrates and reactor comprising lifting device for substrates
KR1020180074731A KR20190016433A (en) 2017-08-08 2018-06-28 Substrate lift mechanism and reactor including same
JP2018134645A JP2019036717A (en) 2017-08-08 2018-07-18 Substrate lift mechanism and reactor including the same
US16/944,271 US20200365444A1 (en) 2017-08-08 2020-07-31 Substrate lift mechanism and reactor including same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/944,271 Division US20200365444A1 (en) 2017-08-08 2020-07-31 Substrate lift mechanism and reactor including same

Publications (2)

Publication Number Publication Date
US20190051555A1 US20190051555A1 (en) 2019-02-14
US10770336B2 true US10770336B2 (en) 2020-09-08

Family

ID=65275494

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/672,096 Active 2038-07-20 US10770336B2 (en) 2017-08-08 2017-08-08 Substrate lift mechanism and reactor including same
US16/944,271 Pending US20200365444A1 (en) 2017-08-08 2020-07-31 Substrate lift mechanism and reactor including same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/944,271 Pending US20200365444A1 (en) 2017-08-08 2020-07-31 Substrate lift mechanism and reactor including same

Country Status (4)

Country Link
US (2) US10770336B2 (en)
JP (1) JP2019036717A (en)
KR (1) KR20190016433A (en)
CN (1) CN109390199A (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
KR20180119477A (en) 2017-04-25 2018-11-02 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
KR20190056158A (en) 2017-11-16 2019-05-24 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR20190113580A (en) 2018-03-27 2019-10-08 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
KR20190114682A (en) 2018-03-30 2019-10-10 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film

Citations (3321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059480A (en) 1933-09-20 1936-11-03 John A Obermaier Thermocouple
US2161626A (en) 1937-09-25 1939-06-06 Walworth Patents Inc Locking device
US2266416A (en) 1939-01-14 1941-12-16 Western Electric Co Control apparatus
US2280778A (en) 1939-09-29 1942-04-28 John C Andersen Garden tool
US2410420A (en) 1944-01-01 1946-11-05 Robert B Bennett Scraper
US2563931A (en) 1946-04-02 1951-08-14 Honeywell Regulator Co Rate responsive thermocouple
US2660061A (en) 1949-03-05 1953-11-24 Dominion Eng Works Ltd Immersion type thermocouple temperature measuring device
US2745640A (en) 1953-09-24 1956-05-15 American Viscose Corp Heat exchanging apparatus
GB752277A (en) 1953-10-28 1956-07-11 Canadian Ind 1954 Ltd Improved thermocouple unit
US2990045A (en) 1959-09-18 1961-06-27 Lipe Rollway Corp Thermally responsive transmission for automobile fan
US3038951A (en) 1961-01-19 1962-06-12 Leeds & Northrup Co Fast acting totally expendable immersion thermocouple
US3089507A (en) 1963-05-14 Air eject system control valve
US3094396A (en) 1959-07-07 1963-06-18 Continental Can Co Method of and apparatus for curing internal coatings on can bodies
FR1408266A (en) 1964-06-30 1965-08-13 Realisations Electr Et Electro Socket for thermocouples
US3232437A (en) 1963-03-13 1966-02-01 Champlon Lab Inc Spin-on filter cartridge
US3263502A (en) 1964-01-21 1966-08-02 Redwood L Springfield Multiple thermocouple support
US3410349A (en) 1964-01-02 1968-11-12 Ted R. Troutman Tubing scraper and method
US3588192A (en) 1969-06-02 1971-06-28 Trw Inc Hydraulic skid control system
US3647387A (en) 1970-03-19 1972-03-07 Stanford Research Inst Detection device
US3647716A (en) 1970-04-03 1972-03-07 Westvaco Corp Transport reactor with a venturi tube connection to a combustion chamber for producing activated carbon
US3713899A (en) 1970-11-12 1973-01-30 Ford Motor Co Thermocouple probe
US3718429A (en) 1971-03-15 1973-02-27 Du Pont No-no2 analyzer
US3833492A (en) 1971-09-22 1974-09-03 Pollution Control Ind Inc Method of producing ozone
US3854443A (en) 1973-12-19 1974-12-17 Intel Corp Gas reactor for depositing thin films
FR2233614A1 (en) 1973-06-13 1975-01-10 Thermal Syndicate Ltd
US3862397A (en) 1972-03-24 1975-01-21 Applied Materials Tech Cool wall radiantly heated reactor
US3867205A (en) 1972-04-20 1975-02-18 Commissariat Energie Atomique Refractory metal hot-junction thermocouple
US3885504A (en) 1971-01-09 1975-05-27 Max Baermann Magnetic stabilizing or suspension system
US3887790A (en) 1974-10-07 1975-06-03 Vernon H Ferguson Wrap-around electric resistance heater
US3904371A (en) 1974-03-04 1975-09-09 Beckman Instruments Inc Chemiluminescent ammonia detection
US3913058A (en) 1972-07-25 1975-10-14 Ngk Spark Plug Co Thermosensor
US3913617A (en) 1972-11-20 1975-10-21 Hoogovens Ijmuiden Bv Apparatus for mixing two gas flows
SU494614A1 (en) 1974-05-05 1975-12-05 Специальное Проектно-Конструкторское Бюро "Главнефтеснабсбыта" Усср Remote level measurement device
US3947685A (en) 1974-02-15 1976-03-30 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Method and arrangement for determining nitric oxide concentration
US3960559A (en) 1972-10-19 1976-06-01 Fuji Photo Film Co., Ltd. Method of making a semiconductor device utilizing a light-sensitive etching agent
US3997638A (en) 1974-09-18 1976-12-14 Celanese Corporation Production of metal ion containing carbon fibers useful in electron shielding applications
US4048110A (en) 1976-05-12 1977-09-13 Celanese Corporation Rhenium catalyst composition
US4054071A (en) 1975-06-17 1977-10-18 Aetna-Standard Engineering Company Flying saw with movable work shifter
US4058430A (en) 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4093491A (en) 1971-06-24 1978-06-06 Whelpton Hugh G Fastener installation method
USD249341S (en) 1976-11-11 1978-09-12 Umc Industries, Inc. Electro-mechanical pulser
US4126027A (en) 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
US4134425A (en) 1976-03-12 1979-01-16 Siemens Aktiengesellschaft Device for distributing flowing media over a flow cross section
US4145699A (en) 1977-12-07 1979-03-20 Bell Telephone Laboratories, Incorporated Superconducting junctions utilizing a binary semiconductor barrier
US4164959A (en) 1977-04-15 1979-08-21 The Salk Institute For Biological Studies Metering valve
US4176630A (en) 1977-06-01 1979-12-04 Dynair Limited Automatic control valves
US4181330A (en) 1977-03-22 1980-01-01 Noriatsu Kojima Horn shaped multi-inlet pipe fitting
US4194536A (en) 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4217463A (en) 1978-03-13 1980-08-12 National Distillers And Chemical Corporation Fast responsive, high pressure thermocouple
US4229064A (en) 1978-10-25 1980-10-21 Trw Inc. Polarizing adapter sleeves for electrical connectors
US4234449A (en) 1979-05-30 1980-11-18 The United States Of America As Represented By The United States Department Of Energy Method of handling radioactive alkali metal waste
US4322592A (en) 1980-08-22 1982-03-30 Rca Corporation Susceptor for heating semiconductor substrates
US4333735A (en) 1981-03-16 1982-06-08 Exxon Research & Engineering Co. Process and apparatus for measuring gaseous fixed nitrogen species
US4355912A (en) 1980-09-12 1982-10-26 Haak Raymond L Spring loaded sensor fitting
JPS5819462A (en) 1981-07-24 1983-02-04 Kawasaki Steel Corp Electric welded steel pipe
US4389973A (en) 1980-03-18 1983-06-28 Oy Lohja Ab Apparatus for performing growth of compound thin films
US4393013A (en) 1970-05-20 1983-07-12 J. C. Schumacher Company Vapor mass flow control system
USD269850S (en) 1981-07-22 1983-07-26 Drag Specialties, Inc. Handlebar grip
US4401507A (en) 1982-07-14 1983-08-30 Advanced Semiconductor Materials/Am. Method and apparatus for achieving spatially uniform externally excited non-thermal chemical reactions
US4414492A (en) 1982-02-02 1983-11-08 Intent Patent A.G. Electronic ballast system
US4436674A (en) 1981-07-30 1984-03-13 J.C. Schumacher Co. Vapor mass flow control system
US4444990A (en) 1982-09-08 1984-04-24 Servo Corporation Of America Heat sensing device
USD274122S (en) 1983-06-20 1984-06-05 Drag Specialties, Inc. Motorcycle handlebar grip
US4454370A (en) 1982-09-07 1984-06-12 Wahl Instruments, Inc. Thermocouple surface probe
US4455193A (en) 1982-07-01 1984-06-19 Commissariat A L'energie Atomique Process for producing the field oxide of an integrated circuit
US4466766A (en) 1981-05-20 1984-08-21 Ruska Instrument Corporation Transfer apparatus
US4479831A (en) 1980-09-15 1984-10-30 Burroughs Corporation Method of making low resistance polysilicon gate transistors and low resistance interconnections therefor via gas deposited in-situ doped amorphous layer and heat-treatment
JPS59211779A (en) 1983-05-14 1984-11-30 Toshiba Corp Compressor
US4499354A (en) 1982-10-06 1985-02-12 General Instrument Corp. Susceptor for radiant absorption heater system
US4512113A (en) 1982-09-23 1985-04-23 Budinger William D Workpiece holder for polishing operation
US4527005A (en) 1984-03-13 1985-07-02 The United States Of America As Represented By The United States Department Of Energy Spring loaded thermocouple module
US4537001A (en) 1983-05-23 1985-08-27 Uppstroem Leif R Building elements
US4548688A (en) 1983-05-23 1985-10-22 Fusion Semiconductor Systems Hardening of photoresist
US4570328A (en) 1983-03-07 1986-02-18 Motorola, Inc. Method of producing titanium nitride MOS device gate electrode
JPS6138863A (en) 1984-07-30 1986-02-24 Toshiba Corp Polishing apparatus
US4575636A (en) 1984-04-30 1986-03-11 Rca Corporation Deep ultraviolet (DUV) flood exposure system
US4578560A (en) 1982-09-17 1986-03-25 Sumitomo Electric Industries, Ltd. High frequency induction coupled plasma torch with concentric pipes having flanges thereon
US4579080A (en) * 1983-12-09 1986-04-01 Applied Materials, Inc. Induction heated reactor system for chemical vapor deposition
US4579378A (en) 1984-10-31 1986-04-01 Snyders Robert V Mortar joint pointing guide
US4579623A (en) 1983-08-31 1986-04-01 Hitachi, Ltd. Method and apparatus for surface treatment by plasma
US4590326A (en) 1984-06-14 1986-05-20 Texaco Inc. Multi-element thermocouple
US4611966A (en) 1984-05-30 1986-09-16 Johnson Lester R Apparatus for transferring semiconductor wafers
US4620998A (en) 1985-02-05 1986-11-04 Haresh Lalvani Crescent-shaped polygonal tiles
JPS624231B2 (en) 1981-12-19 1987-01-29 Takanobu Yamamoto
USD288556S (en) 1984-02-21 1987-03-03 Pace, Incorporated Ornamental design for a frame of circuit elements utilized to replace damaged elements on printed circuit boards
US4654226A (en) 1986-03-03 1987-03-31 The University Of Delaware Apparatus and method for photochemical vapor deposition
US4653541A (en) 1985-06-26 1987-03-31 Parker Hannifin Corporation Dual wall safety tube
US4664769A (en) 1985-10-28 1987-05-12 International Business Machines Corporation Photoelectric enhanced plasma glow discharge system and method including radiation means
US4681134A (en) 1986-07-23 1987-07-21 Paris Sr Raymond L Valve lock
US4718637A (en) 1986-07-02 1988-01-12 Mdc Vacuum Products Corporation High vacuum gate valve having improved metal vacuum joint
US4721533A (en) 1986-08-01 1988-01-26 System Planning Corporation Protective structure for an immersion pyrometer
US4722298A (en) 1986-05-19 1988-02-02 Machine Technology, Inc. Modular processing apparatus for processing semiconductor wafers
US4724272A (en) 1984-04-17 1988-02-09 Rockwell International Corporation Method of controlling pyrolysis temperature
US4735259A (en) 1984-02-21 1988-04-05 Hewlett-Packard Company Heated transfer line for capillary tubing
US4749416A (en) 1986-08-01 1988-06-07 System Planning Corporation Immersion pyrometer with protective structure for sidewall use
US4753856A (en) 1987-01-02 1988-06-28 Dow Corning Corporation Multilayer ceramic coatings from silicate esters and metal oxides
US4753192A (en) 1987-01-08 1988-06-28 Btu Engineering Corporation Movable core fast cool-down furnace
SU1408319A1 (en) 1987-01-06 1988-07-07 Всесоюзный научно-исследовательский институт аналитического приборостроения Chemoluminescent gas analyzer for nitrogen oxides
US4756794A (en) 1987-08-31 1988-07-12 The United States Of America As Represented By The Secretary Of The Navy Atomic layer etching
US4771015A (en) 1985-12-28 1988-09-13 Canon Kabushiki Kaisha Method for producing an electronic device having a multi-layer structure
US4780169A (en) 1987-05-11 1988-10-25 Tegal Corporation Non-uniform gas inlet for dry etching apparatus
US4789294A (en) 1985-08-30 1988-12-06 Canon Kabushiki Kaisha Wafer handling apparatus and method
US4812201A (en) 1986-07-25 1989-03-14 Tokyo Electron Limited Method of ashing layers, and apparatus for ashing layers
US4821674A (en) 1987-03-31 1989-04-18 Deboer Wiebe B Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment
US4827430A (en) 1987-05-11 1989-05-02 Baxter International Inc. Flow measurement system
US4828224A (en) 1987-10-15 1989-05-09 Epsilon Technology, Inc. Chemical vapor deposition system
US4830515A (en) 1987-12-28 1989-05-16 Omega Engineering, Inc. Mounting clip for a thermocouple assembly
US4837113A (en) 1987-07-16 1989-06-06 Texas Instruments Incorporated Method for depositing compound from group II-VI
US4837185A (en) 1988-10-26 1989-06-06 Intel Corporation Pulsed dual radio frequency CVD process
US4854266A (en) 1987-11-02 1989-08-08 Btu Engineering Corporation Cross-flow diffusion furnace
US4854263A (en) 1987-08-14 1989-08-08 Applied Materials, Inc. Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US4857137A (en) 1986-01-31 1989-08-15 Hitachi, Ltd. Process for surface treatment
US4857382A (en) 1988-04-26 1989-08-15 General Electric Company Apparatus and method for photoetching of polyimides, polycarbonates and polyetherimides
US4882199A (en) 1986-08-15 1989-11-21 Massachusetts Institute Of Technology Method of forming a metal coating on a substrate
JPH01296613A (en) 1988-05-25 1989-11-30 Nec Corp Method of vapor growth of iii-v compound semiconductor
DE3836696C1 (en) 1988-10-28 1989-12-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Lock for transporting material between clean rooms
JPH0293071A (en) 1988-09-29 1990-04-03 Toshiba Corp Thin film formation
US4916091A (en) 1987-11-05 1990-04-10 Texas Instruments Incorporated Plasma and plasma UV deposition of SiO2
US4934831A (en) 1989-03-20 1990-06-19 Claud S. Gordon Company Temperature sensing device
JPH02185038A (en) 1989-01-11 1990-07-19 Nec Corp Thermal treatment equipment
USD309702S (en) 1986-06-25 1990-08-07 Don Hall Safety clamp attachment for a hammer
US4949848A (en) 1988-04-29 1990-08-21 Fluoroware, Inc. Wafer carrier
USD311126S (en) 1986-12-23 1990-10-09 Joseph Crowley Shelf extending mounting bracket for additional product display
US4976996A (en) 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US4978567A (en) 1988-03-31 1990-12-18 Materials Technology Corporation, Subsidiary Of The Carbon/Graphite Group, Inc. Wafer holding fixture for chemical reaction processes in rapid thermal processing equipment and method for making same
US4985114A (en) 1988-10-14 1991-01-15 Hitachi, Ltd. Dry etching by alternately etching and depositing
US4984904A (en) 1987-12-24 1991-01-15 Kawaso Electric Industrial Co., Ltd. Apparatus for continuously measuring temperature of molten metal and method for making same
US4986215A (en) 1988-09-01 1991-01-22 Kyushu Electronic Metal Co., Ltd. Susceptor for vapor-phase growth system
US4987102A (en) 1989-12-04 1991-01-22 Motorola, Inc. Process for forming high purity thin films
US4987856A (en) 1989-05-22 1991-01-29 Advanced Semiconductor Materials America, Inc. High throughput multi station processor for multiple single wafers
US4989992A (en) 1988-07-29 1991-02-05 Pomini Farrel S.P.A. Device for measuring the temperature of the material contained in a closed apparatus
US4991614A (en) 1987-06-25 1991-02-12 Kvaerner Engineering A/S Method and a plant for transport of hydrocarbons over a long distance from an offshore source of hydrocarbons
JPH0344472A (en) 1989-07-11 1991-02-26 Seiko Epson Corp Production of plasma thin film
US5002632A (en) 1989-11-22 1991-03-26 Texas Instruments Incorporated Method and apparatus for etching semiconductor materials
US5013691A (en) 1989-07-31 1991-05-07 At&T Bell Laboratories Anisotropic deposition of silicon dioxide
US5028366A (en) 1988-01-12 1991-07-02 Air Products And Chemicals, Inc. Water based mold release compositions for making molded polyurethane foam
US5027746A (en) 1988-03-22 1991-07-02 U.S. Philips Corporation Epitaxial reactor having a wall which is protected from deposits
JPH03155625A (en) 1989-11-14 1991-07-03 Seiko Epson Corp Manufacture of plasma cvd film
US5049029A (en) 1987-09-10 1991-09-17 Tokyo Electron Limited Handling apparatus for transferring a semiconductor wafer or LCD
USD320148S (en) 1988-12-30 1991-09-24 Andrews Edward A Drill socket
US5053247A (en) 1989-02-28 1991-10-01 Moore Epitaxial, Inc. Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
US5057436A (en) 1989-10-02 1991-10-15 Agmaster, Inc. Method and apparatus for detecting toxic gases
US5061083A (en) 1989-06-19 1991-10-29 The United States Of America As Represented By The Department Of Energy Temperature monitoring device and thermocouple assembly therefor
US5060322A (en) 1989-07-27 1991-10-29 Delepine Jean C Shower room and ceiling element, especially for a shower room
US5062386A (en) 1987-07-27 1991-11-05 Epitaxy Systems, Inc. Induction heated pancake epitaxial reactor
JPH03248427A (en) 1990-02-26 1991-11-06 Nec Corp Manufacture of semiconductor device
US5065698A (en) 1988-04-11 1991-11-19 Canon Kabushiki Kaisha Film forming apparatus capable of preventing adhesion of film deposits
US5069591A (en) 1988-03-24 1991-12-03 Tel Sagami Limited Semiconductor wafer-processing apparatus
US5071258A (en) 1991-02-01 1991-12-10 Vesuvius Crucible Company Thermocouple assembly
US5074017A (en) 1989-01-13 1991-12-24 Toshiba Ceramics Co., Ltd. Susceptor
US5082517A (en) 1990-08-23 1992-01-21 Texas Instruments Incorporated Plasma density controller for semiconductor device processing equipment
US5084126A (en) 1988-12-29 1992-01-28 Texas Instruments Incorporated Method and apparatus for uniform flow distribution in plasma reactors
JPH0429313A (en) 1990-05-24 1992-01-31 Fujitsu Ltd Device for producing semiconductor crystal
US5098638A (en) 1989-04-25 1992-03-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor device
US5098865A (en) 1989-11-02 1992-03-24 Machado Jose R High step coverage silicon oxide thin films
US5104514A (en) 1991-05-16 1992-04-14 The United States Of America As Represented By The Secretary Of The Navy Protective coating system for aluminum
JPH04115531A (en) 1990-09-05 1992-04-16 Mitsubishi Electric Corp Chemical vapor growth device
US5108192A (en) 1990-03-07 1992-04-28 Paul Wurth S.A. Probe for taking gas samples and heat measurements in a shaft furnace
US5110407A (en) 1990-03-07 1992-05-05 Hitachi, Ltd. Surface fabricating device
US5116018A (en) 1991-04-12 1992-05-26 Automax, Inc. Lockout modules
US5119760A (en) 1988-12-27 1992-06-09 Symetrix Corporation Methods and apparatus for material deposition
USD327534S (en) 1987-07-30 1992-06-30 CLM Investments, Inc. Floor drain strainer
US5130003A (en) 1990-06-14 1992-07-14 Conrad Richard H method of powering corona discharge in ozone generators
US5137286A (en) 1991-08-23 1992-08-11 General Electric Company Permanent magnet floating shaft seal
US5151296A (en) 1989-03-31 1992-09-29 Canon Kk Method for forming polycrystalline film by chemical vapor deposition process
US5154301A (en) 1991-09-12 1992-10-13 Fluoroware, Inc. Wafer carrier
US5158128A (en) 1988-09-01 1992-10-27 Sumitec, Inc. Thermocouple for a continuous casting machine
USD330900S (en) 1990-02-08 1992-11-10 Wakegijig William M Drill adapter
US5167716A (en) 1990-09-28 1992-12-01 Gasonics, Inc. Method and apparatus for batch processing a semiconductor wafer
US5176451A (en) 1990-07-02 1993-01-05 Matsushita Electric Industrial Co., Ltd. Temperature sensor
US5178682A (en) 1988-06-21 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin layer on a semiconductor substrate and apparatus therefor
US5181779A (en) 1989-11-22 1993-01-26 Nippon Steel Corporation Thermocouple temperature sensor and a method of measuring the temperature of molten iron
US5183511A (en) 1986-07-23 1993-02-02 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus with a glow discharge system
US5192717A (en) 1989-04-28 1993-03-09 Canon Kabushiki Kaisha Process for the formation of a polycrystalline semiconductor film by microwave plasma chemical vapor deposition method
US5194401A (en) 1989-04-18 1993-03-16 Applied Materials, Inc. Thermally processing semiconductor wafers at non-ambient pressures
US5199603A (en) 1991-11-26 1993-04-06 Prescott Norman F Delivery system for organometallic compounds
JPH05118928A (en) 1991-10-25 1993-05-14 Tokyo Electron Ltd Contact type temperature measuring method
US5213650A (en) 1989-08-25 1993-05-25 Applied Materials, Inc. Apparatus for removing deposits from backside and end edge of semiconductor wafer while preventing removal of materials from front surface of wafer
US5221556A (en) 1987-06-24 1993-06-22 Epsilon Technology, Inc. Gas injectors for reaction chambers in CVD systems
US5225366A (en) 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
JPH05171446A (en) 1991-12-24 1993-07-09 Furukawa Electric Co Ltd:The Formation of thin film
US5226383A (en) 1992-03-12 1993-07-13 Bell Communications Research, Inc. Gas foil rotating substrate holder
US5228114A (en) 1990-10-30 1993-07-13 Tokyo Electron Sagami Limited Heat-treating apparatus with batch scheme having improved heat controlling capability
JPH05230789A (en) 1992-02-20 1993-09-07 Fuji Xerox Co Ltd Transfer paper for electrophotography
US5243195A (en) 1991-04-25 1993-09-07 Nikon Corporation Projection exposure apparatus having an off-axis alignment system and method of alignment therefor
US5242539A (en) 1991-04-04 1993-09-07 Hitachi, Ltd. Plasma treatment method and apparatus
US5243202A (en) 1990-04-25 1993-09-07 Casio Computer Co., Ltd. Thin-film transistor and a liquid crystal matrix display device using thin-film transistors of this type
US5246500A (en) 1991-09-05 1993-09-21 Kabushiki Kaisha Toshiba Vapor phase epitaxial growth apparatus
US5246218A (en) 1992-09-25 1993-09-21 Intel Corporation Apparatus for securing an automatically loaded wafer cassette on a wafer processing equipment
US5259881A (en) 1991-05-17 1993-11-09 Materials Research Corporation Wafer processing cluster tool batch preheating and degassing apparatus
US5266526A (en) 1991-03-19 1993-11-30 Kabushiki Kaisha Toshiba Method of forming trench buried wiring for semiconductor device
US5271967A (en) 1992-08-21 1993-12-21 General Motors Corporation Method and apparatus for application of thermal spray coatings to engine blocks
US5273609A (en) 1990-09-12 1993-12-28 Texas Instruments Incorporated Method and apparatus for time-division plasma chopping in a multi-channel plasma processing equipment
US5278494A (en) 1991-02-19 1994-01-11 Tokyo Electron Yamanashi Limited Wafer probing test machine
US5279886A (en) 1990-01-25 1994-01-18 Ngk Spark Plug Co., Ltd. Alumina sintered body
US5284519A (en) 1990-05-16 1994-02-08 Simon Fraser University Inverted diffuser stagnation point flow reactor for vapor deposition of thin films
US5288684A (en) 1990-03-27 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Photochemical vapor phase reaction apparatus and method of causing a photochemical vapor phase reaction
JPH0653210A (en) 1992-07-28 1994-02-25 Nec Corp Semiconductor device
US5294778A (en) 1991-09-11 1994-03-15 Lam Research Corporation CVD platen heater system utilizing concentric electric heating elements
JPH0684888A (en) 1992-02-27 1994-03-25 G T C:Kk Formation of insulation film
US5305417A (en) 1993-03-26 1994-04-19 Texas Instruments Incorporated Apparatus and method for determining wafer temperature using pyrometry
US5306666A (en) 1992-07-24 1994-04-26 Nippon Steel Corporation Process for forming a thin metal film by chemical vapor deposition
US5306946A (en) 1990-10-15 1994-04-26 Seiko Epson Corporation Semiconductor device having a passivation layer with silicon nitride layers
US5308650A (en) 1991-07-06 1994-05-03 Schott Glaswerke Process and apparatus for the ignition of CVD plasmas
US5310456A (en) 1990-07-30 1994-05-10 Sony Corporation Dry etching method
US5313061A (en) 1989-06-06 1994-05-17 Viking Instrument Miniaturized mass spectrometer system
US5314570A (en) 1990-07-18 1994-05-24 Sumitomo Electric Industries Ltd. Process and apparatus for the production of diamond
US5315092A (en) 1990-10-11 1994-05-24 Dainippon Screen Mfg. Co., Ltd. Apparatus for heat-treating wafer by light-irradiation and device for measuring temperature of substrate used in such apparatus
US5320218A (en) 1992-04-07 1994-06-14 Shinko Electric Co., Ltd. Closed container to be used in a clean room
US5326427A (en) 1992-09-11 1994-07-05 Lsi Logic Corporation Method of selectively etching titanium-containing materials on a semiconductor wafer using remote plasma generation
US5328810A (en) 1990-05-07 1994-07-12 Micron Technology, Inc. Method for reducing, by a factor or 2-N, the minimum masking pitch of a photolithographic process
US5336327A (en) 1992-06-01 1994-08-09 Motorola, Inc. CVD reactor with uniform layer depositing ability
US5338362A (en) 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
US5346961A (en) 1993-04-07 1994-09-13 Union Carbide Chemicals & Plastics Technology Corporation Process for crosslinking
US5348774A (en) 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
US5350480A (en) 1993-07-23 1994-09-27 Aspect International, Inc. Surface cleaning and conditioning using hot neutral gas beam array
US5354580A (en) 1993-06-08 1994-10-11 Cvd Incorporated Triangular deposition chamber for a vapor deposition system
US5356478A (en) 1992-06-22 1994-10-18 Lam Research Corporation Plasma cleaning method for removing residues in a plasma treatment chamber
US5356672A (en) 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5360269A (en) 1989-05-10 1994-11-01 Tokyo Kogyo Kabushiki Kaisha Immersion-type temperature measuring apparatus using thermocouple
JPH06319177A (en) 1993-02-24 1994-11-15 Hewlett Packard Co <Hp> Adaptive remote control system
US5364667A (en) 1992-01-17 1994-11-15 Amtech Systems, Inc. Photo-assisted chemical vapor deposition method
JPH06338497A (en) 1993-05-28 1994-12-06 Nec Corp Chemical vapor growth method
USD353452S (en) 1993-04-27 1994-12-13 Groenhoff Larry C Window adapter for portable box fans
US5374315A (en) 1987-03-31 1994-12-20 Advanced Semiconductor Materials America, Inc. Rotatable substrate supporting mechanism with temperature sensing device for use in chemical vapor deposition equipment
US5380367A (en) 1992-12-04 1995-01-10 Cselt - Centro Studi E Laboratori Telecomunicazioni S.P.A. Vapour generator for chemical vapour deposition systems
US5382311A (en) 1992-12-17 1995-01-17 Tokyo Electron Limited Stage having electrostatic chuck and plasma processing apparatus using same
USD354898S (en) 1992-10-13 1995-01-31 Verdel Innovations Egg holder for use with a stand for decorating eggs
JPH0729836A (en) 1993-07-14 1995-01-31 Sony Corp Deposition of plasma silicon nitride
JPH0734936A (en) 1993-07-16 1995-02-03 Hitachi Ltd Diagnostic device of engine system
US5388945A (en) 1992-08-04 1995-02-14 International Business Machines Corporation Fully automated and computerized conveyor based manufacturing line architectures adapted to pressurized sealable transportable containers
US5397395A (en) 1990-10-29 1995-03-14 Canon Kabushiki Kaisha Method of continuously forming a large area functional deposited film by microwave PCVD and apparatus for the same
US5403630A (en) 1992-10-27 1995-04-04 Kabushiki Kaisha Toshiba Vapor-phase growth method for forming S2 O2 films
US5404082A (en) 1993-04-23 1995-04-04 North American Philips Corporation High frequency inverter with power-line-controlled frequency modulation
US5407449A (en) 1992-03-10 1995-04-18 Asm International N.V. Device for treating micro-circuit wafers
JPH07109576A (en) 1993-10-07 1995-04-25 Shinko Seiki Co Ltd Formation of film by plasma cvd
US5414221A (en) 1991-12-31 1995-05-09 Intel Corporation Embedded ground plane and shielding structures using sidewall insulators in high frequency circuits having vias
US5413813A (en) 1993-11-23 1995-05-09 Enichem S.P.A. CVD of silicon-based ceramic materials on internal surface of a reactor
US5415753A (en) 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
US5418382A (en) 1993-09-23 1995-05-23 Fsi International, Inc. Substrate location and detection apparatus
US5422139A (en) 1990-04-12 1995-06-06 Balzers Aktiengesellschaft Method for a reactive surface treatment of a workpiece and a treatment chamber for practicing such method
US5421893A (en) 1993-02-26 1995-06-06 Applied Materials, Inc. Susceptor drive and wafer displacement mechanism
US5423942A (en) 1994-06-20 1995-06-13 Texas Instruments Incorporated Method and apparatus for reducing etching erosion in a plasma containment tube
US5426137A (en) 1993-01-05 1995-06-20 Halliburton Company Method for continuously mixing fluids
US5430011A (en) 1991-09-17 1995-07-04 Sumitomi Electric Industries, Ltd. Crystal compensated superconducting thin film formed of oxide superconductor material
US5431734A (en) 1994-04-28 1995-07-11 International Business Machines Corporation Aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control
JPH07209093A (en) 1994-01-20 1995-08-11 Tokyo Electron Ltd Thermometer
JPH07225214A (en) 1994-02-14 1995-08-22 Shimadzu Corp Nox measuring apparatus
US5444217A (en) 1993-01-21 1995-08-22 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US5447294A (en) 1993-01-21 1995-09-05 Tokyo Electron Limited Vertical type heat treatment system
US5453124A (en) 1992-12-30 1995-09-26 Texas Instruments Incorporated Programmable multizone gas injector for single-wafer semiconductor processing equipment
JPH07272694A (en) 1994-03-30 1995-10-20 Ushio Inc Dielectric barrier discharge fluorescent lamp
USD363464S (en) 1992-08-27 1995-10-24 Tokyo Electron Yamanashi Limited Electrode for a semiconductor processing apparatus
JPH07283149A (en) 1994-04-04 1995-10-27 Nissin Electric Co Ltd Thin film vapor growth device
US5462899A (en) 1992-11-30 1995-10-31 Nec Corporation Chemical vapor deposition method for forming SiO2
US5463176A (en) 1994-01-03 1995-10-31 Eckert; C. Edward Liquid waste oxygenation
JPH07297271A (en) 1994-04-22 1995-11-10 Shinko Electric Co Ltd Support mechanism for supporting wafer cassettes with different sizes arbitrarily
US5480818A (en) 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
US5482559A (en) 1993-10-21 1996-01-09 Tokyo Electron Kabushiki Kaisha Heat treatment boat
US5484484A (en) 1993-07-03 1996-01-16 Tokyo Electron Kabushiki Thermal processing method and apparatus therefor
US5494494A (en) 1992-06-24 1996-02-27 Anelva Corporation Integrated module multi-chamber CVD processing system and its method for processing substrates
US5496408A (en) 1992-11-20 1996-03-05 Mitsubishi Denki Kabushiki Kaisha Apparatus for producing compound semiconductor devices
US5501740A (en) 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
US5504042A (en) 1994-06-23 1996-04-02 Texas Instruments Incorporated Porous dielectric material with improved pore surface properties for electronics applications
US5503875A (en) 1993-03-18 1996-04-02 Tokyo Electron Limited Film forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily
US5510277A (en) 1994-06-29 1996-04-23 At&T Corp. Surface treatment for silicon substrates
US5514439A (en) 1994-10-14 1996-05-07 Sibley; Thomas Wafer support fixtures for rapid thermal processing
US5518549A (en) 1995-04-18 1996-05-21 Memc Electronic Materials, Inc. Susceptor and baffle therefor
US5523616A (en) 1993-10-29 1996-06-04 Nec Corporation Semiconductor device having laminated tight and coarse insulating layers
WO1996017107A1 (en) 1994-11-28 1996-06-06 Mikrokemia Oy Method and apparatus for growing thin films
US5527417A (en) 1992-07-06 1996-06-18 Kabushiki Kaisha Toshiba Photo-assisted CVD apparatus
US5527111A (en) 1992-12-24 1996-06-18 Pruftechnik Dieter Busch Ag Contact temperature sensor
US5531218A (en) 1993-04-17 1996-07-02 Messer Griesheim Gmbh Apparatus for the monitored metering of no into patients' respiratory air
US5531835A (en) * 1994-05-18 1996-07-02 Applied Materials, Inc. Patterned susceptor to reduce electrostatic force in a CVD chamber
JPH08181135A (en) 1994-12-22 1996-07-12 Sharp Corp Manufacture of semiconductor device
US5540898A (en) 1995-05-26 1996-07-30 Vasogen Inc. Ozone generator with in-line ozone sensor
US5559046A (en) 1992-10-28 1996-09-24 Matsushita Electronics Corporation Semiconductor device having a hollow around a gate electrode and a method for producing the same
US5558717A (en) 1994-11-30 1996-09-24 Applied Materials CVD Processing chamber
US5562947A (en) * 1994-11-09 1996-10-08 Sony Corporation Method and apparatus for isolating a susceptor heating element from a chemical vapor deposition environment
US5574247A (en) 1993-06-21 1996-11-12 Hitachi, Ltd. CVD reactor apparatus
US5576629A (en) 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
US5577331A (en) 1994-06-30 1996-11-26 Nippon Precision Circuits Inc. Downflow spin dryer
US5583736A (en) 1994-11-17 1996-12-10 The United States Of America As Represented By The Department Of Energy Micromachined silicon electrostatic chuck
JPH08335558A (en) 1995-06-08 1996-12-17 Nissin Electric Co Ltd Thin film vapor phase deposition apparatus
US5586585A (en) 1995-02-27 1996-12-24 Asyst Technologies, Inc. Direct loadlock interface
US5589002A (en) 1994-03-24 1996-12-31 Applied Materials, Inc. Gas distribution plate for semiconductor wafer processing apparatus with means for inhibiting arcing
US5595606A (en) 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
WO1997003223A1 (en) 1995-07-10 1997-01-30 Watkins Johnson Company Gas distribution apparatus
US5602060A (en) 1993-08-31 1997-02-11 Fujitsu Limited Process for the production of semiconductor devices
US5601641A (en) 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5604410A (en) 1993-04-05 1997-02-18 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Method to operate an incoherently emitting radiation source having at least one dielectrically impeded electrode
JPH0964149A (en) 1995-08-29 1997-03-07 Hitachi Electron Eng Co Ltd Semiconductor production device
US5616264A (en) 1993-06-15 1997-04-01 Tokyo Electron Limited Method and apparatus for controlling temperature in rapid heat treatment system
US5616947A (en) 1994-02-01 1997-04-01 Matsushita Electric Industrial Co., Ltd. Semiconductor device having an MIS structure
JPH0989676A (en) 1995-09-21 1997-04-04 Casio Comput Co Ltd Electronic clinical thermometer
US5621982A (en) 1992-07-29 1997-04-22 Shinko Electric Co., Ltd. Electronic substrate processing system using portable closed containers and its equipments
US5632919A (en) 1996-01-25 1997-05-27 T.G.M., Inc. Temperature controlled insulation system
JPH09148322A (en) 1995-11-22 1997-06-06 Sharp Corp Method for forming silicon oxide film and plasma cvd film forming apparatus
USD380527S (en) 1996-03-19 1997-07-01 Cherle Velez Sink drain shield
US5656093A (en) 1996-03-08 1997-08-12 Applied Materials, Inc. Wafer spacing mask for a substrate support chuck and method of fabricating same
US5663899A (en) 1995-06-05 1997-09-02 Advanced Micro Devices Redundant thermocouple
US5667592A (en) 1996-04-16 1997-09-16 Gasonics International Process chamber sleeve with ring seals for isolating individual process modules in a common cluster
US5679215A (en) 1996-01-02 1997-10-21 Lam Research Corporation Method of in situ cleaning a vacuum plasma processing chamber
US5681779A (en) 1994-02-04 1997-10-28 Lsi Logic Corporation Method of doping metal layers for electromigration resistance
US5683517A (en) 1995-06-07 1997-11-04 Applied Materials, Inc. Plasma reactor with programmable reactant gas distribution
USD386076S (en) 1996-05-14 1997-11-11 Camco Manufacturing, Inc. Awning clamp
US5685912A (en) 1995-06-20 1997-11-11 Sony Corporation Pressure control system for semiconductor manufacturing equipment
US5695567A (en) 1996-02-26 1997-12-09 Abb Research Ltd. Susceptor for a device for epitaxially growing objects and such a device
US5697706A (en) 1995-12-26 1997-12-16 Chrysler Corporation Multi-point temperature probe
US5700729A (en) 1996-07-15 1997-12-23 Taiwan Semiconductor Manufacturing Company, Ltd. Masked-gate MOS S/D implantation
US5708825A (en) 1995-05-26 1998-01-13 Iconovex Corporation Automatic summary page creation and hyperlink generation
US5709745A (en) 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US5711811A (en) 1994-11-28 1998-01-27 Mikrokemia Oy Method and equipment for growing thin films
US5716133A (en) 1995-01-17 1998-02-10 Applied Komatsu Technology, Inc. Shielded heat sensor for measuring temperature
JPH1041096A (en) 1996-07-19 1998-02-13 Tokyo Electron Ltd Plasma treatment device
US5718574A (en) 1995-03-01 1998-02-17 Tokyo Electron Limited Heat treatment apparatus
JPH1064696A (en) 1996-08-23 1998-03-06 Tokyo Electron Ltd Plasma processing device
US5724748A (en) 1996-07-24 1998-03-10 Brooks; Ray G. Apparatus for packaging contaminant-sensitive articles and resulting package
US5728425A (en) 1992-03-18 1998-03-17 Fujitsu Limited Method for chemical vapor deposition of semiconductor films by separate feeding of source gases and growing of films
US5728223A (en) 1995-06-09 1998-03-17 Ebara Corporation Reactant gas ejector head and thin-film vapor deposition apparatus
US5730802A (en) 1994-05-20 1998-03-24 Sharp Kabushiki Kaisha Vapor growth apparatus and vapor growth method capable of growing good productivity
US5730801A (en) 1994-08-23 1998-03-24 Applied Materials, Inc. Compartnetalized substrate processing chamber
USD392855S (en) 1995-06-26 1998-03-31 Pillow Daryl R Floor protection template for use while spray-painting door frames
US5732744A (en) 1996-03-08 1998-03-31 Control Systems, Inc. Method and apparatus for aligning and supporting semiconductor process gas delivery and regulation components
US5736314A (en) 1995-11-16 1998-04-07 Microfab Technologies, Inc. Inline thermo-cycler
US5753835A (en) 1996-12-12 1998-05-19 Caterpillar Inc. Receptacle for holding a sensing device
US5761328A (en) 1995-05-22 1998-06-02 Solberg Creations, Inc. Computer automated system and method for converting source-documents bearing alphanumeric text relating to survey measurements
JPH10153494A (en) 1996-11-25 1998-06-09 Yamari Sangyo Kk Thermocouple
US5766365A (en) 1994-02-23 1998-06-16 Applied Materials, Inc. Removable ring for controlling edge deposition in substrate processing apparatus
US5777838A (en) 1995-12-19 1998-07-07 Fujitsu Limited Electrostatic chuck and method of attracting wafer
US5779203A (en) 1996-06-28 1998-07-14 Edlinger; Erich Adjustable wafer cassette stand
US5781693A (en) 1996-07-24 1998-07-14 Applied Materials, Inc. Gas introduction showerhead for an RTP chamber with upper and lower transparent plates and gas flow therebetween
KR19980026850A (en) 1996-10-11 1998-07-15 김광호 Rapid heat treatment equipment with the function of inspecting warpage of wafer
US5782979A (en) 1993-04-22 1998-07-21 Mitsubishi Denki Kabushiki Kaisha Substrate holder for MOCVD
WO1998032893A2 (en) 1997-01-23 1998-07-30 Asm America, Inc. Wafer support system
US5792272A (en) 1995-07-10 1998-08-11 Watkins-Johnson Company Plasma enhanced chemical processing reactor and method
US5791782A (en) 1995-09-21 1998-08-11 Fusion Systems Corporation Contact temperature probe with unrestrained orientation
US5796074A (en) 1995-11-28 1998-08-18 Applied Materials, Inc. Wafer heater assembly
JPH10227703A (en) 1997-02-13 1998-08-25 Mitsubishi Heavy Ind Ltd Heat flux meter
US5801104A (en) 1995-10-24 1998-09-01 Micron Technology, Inc. Uniform dielectric film deposition on textured surfaces
US5801945A (en) 1996-06-28 1998-09-01 Lam Research Corporation Scheduling method for robotic manufacturing processes
US5806980A (en) 1996-09-11 1998-09-15 Novellus Systems, Inc. Methods and apparatus for measuring temperatures at high potential
JPH10261620A (en) 1997-03-19 1998-09-29 Hitachi Ltd Surface treater
US5813851A (en) 1995-09-07 1998-09-29 Tokyo Electron, Ltd. Heat treatment method
US5819092A (en) 1994-11-08 1998-10-06 Vermeer Technologies, Inc. Online service development tool with fee setting capabilities
US5819434A (en) 1996-04-25 1998-10-13 Applied Materials, Inc. Etch enhancement using an improved gas distribution plate
US5820685A (en) * 1996-01-17 1998-10-13 Applied Materials, Inc. Wafer support device
US5827757A (en) 1996-07-16 1998-10-27 Direct Radiography Corp. Fabrication of large area x-ray image capturing element
US5827420A (en) 1997-07-29 1998-10-27 World Precision Instruments, Inc. Method and apparatus for the generation of nitric oxide
US5827435A (en) 1994-10-27 1998-10-27 Nec Corporation Plasma processing method and equipment used therefor
US5837320A (en) 1996-02-27 1998-11-17 The University Of New Mexico Chemical vapor deposition of metal sulfide films from metal thiocarboxylate complexes with monodenate or multidentate ligands
US5837058A (en) 1996-07-12 1998-11-17 Applied Materials, Inc. High temperature susceptor
US5836483A (en) 1997-02-05 1998-11-17 Aerotech Dental Systems, Inc. Self-regulating fluid dispensing cap with safety pressure relief valve for dental/medical unit fluid bottles
US5844683A (en) 1996-05-22 1998-12-01 Applied Materials, Inc. Position sensor system for substrate holders
US5846332A (en) 1996-07-12 1998-12-08 Applied Materials, Inc. Thermally floating pedestal collar in a chemical vapor deposition chamber
US5851294A (en) 1995-10-23 1998-12-22 Watkins-Johnson Company Gas injection system for semiconductor processing
US5852879A (en) 1995-04-26 1998-12-29 Schumaier; Daniel R. Moisture sensitive item drying appliance
US5853484A (en) 1995-10-28 1998-12-29 Lg Semicon Co., Ltd. Gas distribution system and method for chemical vapor deposition apparatus
EP0887632A1 (en) 1997-06-24 1998-12-30 Isuzu Ceramics Research Institute Co., Ltd. A ceramic thermocouple for measuring temperature of molten metal
US5855681A (en) 1996-11-18 1999-01-05 Applied Materials, Inc. Ultra high throughput wafer vacuum processing system
US5855680A (en) 1994-11-28 1999-01-05 Neste Oy Apparatus for growing thin films
US5857777A (en) 1996-09-25 1999-01-12 Claud S. Gordon Company Smart temperature sensing device
USD404372S (en) 1997-08-20 1999-01-19 Tokyo Electron Limited Ring for use in a semiconductor wafer heat processing apparatus
USD404370S (en) 1997-08-20 1999-01-19 Tokyo Electron Limited Cap for use in a semiconductor wafer heat processing apparatus
US5863123A (en) 1996-04-24 1999-01-26 Samsung Electronics Co., Ltd. Profile thermocouple of a transverse-type diffusion furnace
US5866795A (en) 1997-03-17 1999-02-02 Applied Materials, Inc. Liquid flow rate estimation and verification by direct liquid measurement
US5865205A (en) 1997-04-17 1999-02-02 Applied Materials, Inc. Dynamic gas flow controller
US5872065A (en) 1997-04-02 1999-02-16 Applied Materials Inc. Method for depositing low K SI-O-F films using SIF4 /oxygen chemistry
US5873942A (en) 1996-08-08 1999-02-23 Samsung Electronics Co., Ltd. Apparatus and method for low pressure chemical vapor deposition using multiple chambers and vacuum pumps
US5877095A (en) 1994-09-30 1999-03-02 Nippondenso Co., Ltd. Method of fabricating a semiconductor device having a silicon nitride film made of silane, ammonia and nitrogen
US5879459A (en) 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US5879128A (en) 1996-07-24 1999-03-09 Applied Materials, Inc. Lift pin and support pin apparatus for a processing chamber
US5884640A (en) 1997-08-07 1999-03-23 Applied Materials, Inc. Method and apparatus for drying substrates
JPH1197163A (en) 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd Device for maintaining gap for positioning high frequency heating coil
US5893741A (en) 1997-02-07 1999-04-13 National Science Council Method for simultaneously forming local interconnect with silicided elevated source/drain MOSFET's
JPH11118615A (en) 1997-10-09 1999-04-30 Kakunenryo Cycle Kaihatsu Kiko Temperature sensor for object to be measured having stretchability
WO1999023690A1 (en) 1997-11-03 1999-05-14 Asm America, Inc. Method of processing wafers with low mass support
USD409894S (en) 1997-12-30 1999-05-18 Mcclurg Ben B Sheet rock plug
US5904170A (en) 1997-05-14 1999-05-18 Applied Materials, Inc. Pressure flow and concentration control of oxygen/ozone gas mixtures
US5908672A (en) 1997-10-15 1999-06-01 Applied Materials, Inc. Method and apparatus for depositing a planarized passivation layer
US5915562A (en) 1996-07-12 1999-06-29 Fluoroware, Inc. Transport module with latching door
USD411516S (en) 1996-03-15 1999-06-29 Tokyo Electron Limited Gas diffusion plate for electrode of semiconductor wafer processing apparatus
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US5920798A (en) 1996-05-28 1999-07-06 Matsushita Battery Industrial Co., Ltd. Method of preparing a semiconductor layer for an optical transforming device
JPH11183265A (en) 1997-12-16 1999-07-09 Tokyo Yogyo Co Ltd Temperature measuring instrument with thermocouple
JPH11183264A (en) 1997-12-16 1999-07-09 Tokyo Yogyo Co Ltd Temperature measuring instrument with thermocouple
JPH11195688A (en) 1997-12-26 1999-07-21 Mc Electronics Kk Substrate treatment device
USD412270S (en) 1998-08-10 1999-07-27 David Frank Fredrickson Article lifter
USD412512S (en) 1998-06-24 1999-08-03 Marc H Boisvert Tool holding device
US5937323A (en) 1997-06-03 1999-08-10 Applied Materials, Inc. Sequencing of the recipe steps for the optimal low-k HDP-CVD processing
US5947718A (en) 1997-03-07 1999-09-07 Semitool, Inc. Semiconductor processing furnace
US5950327A (en) 1996-07-08 1999-09-14 Speedfam-Ipec Corporation Methods and apparatus for cleaning and drying wafers
US5950925A (en) 1996-10-11 1999-09-14 Ebara Corporation Reactant gas ejector head
US5954375A (en) 1995-12-21 1999-09-21 Edstrom Industries, Inc. Sanitary fitting having ferrule with grooved undercut
US5961775A (en) 1987-08-19 1999-10-05 Fujitsu Limited Apparatus for removing organic resist from semiconductor
US5968275A (en) 1997-06-25 1999-10-19 Lam Research Corporation Methods and apparatus for passivating a substrate in a plasma reactor
JPH11287715A (en) 1998-04-02 1999-10-19 Canon Inc Thermocouple
US5970621A (en) 1998-01-16 1999-10-26 Pri Automation, Inc. Semiconductor wafer cassette positioning and detection mechanism
US5975492A (en) 1997-07-14 1999-11-02 Brenes; Arthur Bellows driver slot valve
US5982931A (en) 1995-06-07 1999-11-09 Ishimaru; Mikio Apparatus and method for the manipulation of image containing documents
US5979506A (en) 1995-08-16 1999-11-09 Aker Engineering As Arrangement in a pipe bundle
US5984391A (en) 1997-02-03 1999-11-16 Novellus Systems, Inc. Microfeature wafer handling apparatus and methods
US5987480A (en) 1996-07-25 1999-11-16 Donohue; Michael Method and system for delivering documents customized for a particular user over the internet using imbedded dynamic content
US5989342A (en) 1996-01-30 1999-11-23 Dainippon Screen Mfg, Co., Ltd. Apparatus for substrate holding
US5992453A (en) 1995-10-17 1999-11-30 Zimmer; Johannes Flow-dividing arrangement
US5997588A (en) 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain
US5997768A (en) 1993-06-29 1999-12-07 Ciba Specialty Chemicals Corporation Pelletization of metal soap powders
US5998870A (en) 1994-06-10 1999-12-07 Samsung Electronics Co., Ltd. Wiring structure of semiconductor device and method for manufacturing the same
US6000732A (en) 1995-09-22 1999-12-14 Jenoptik Ag Arrangement for locking and unlocking a door of a container
US6013920A (en) 1997-11-28 2000-01-11 Fortrend Engineering Coirporation Wafer-mapping load post interface having an effector position sensing device
US6013553A (en) 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6015465A (en) 1998-04-08 2000-01-18 Applied Materials, Inc. Temperature control system for semiconductor process chamber
US6015459A (en) 1998-06-26 2000-01-18 Extreme Devices, Inc. Method for doping semiconductor materials
US6017818A (en) 1996-01-22 2000-01-25 Texas Instruments Incorporated Process for fabricating conformal Ti-Si-N and Ti-B-N based barrier films with low defect density
US6017779A (en) 1994-06-15 2000-01-25 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
USD419652S (en) 1997-09-23 2000-01-25 Imbibitive Technologies Corp. Stand-pipe assembly unit for a containment basin which holds a sorbent material containing cartridge and which can hold a silt-collecting sock over its top tray
US6024799A (en) 1997-07-11 2000-02-15 Applied Materials, Inc. Chemical vapor deposition manifold
US6035101A (en) 1997-02-12 2000-03-07 Applied Materials, Inc. High temperature multi-layered alloy heater assembly and related methods
US6035804A (en) 1997-11-07 2000-03-14 Tokyo Electron Limited Process chamber apparatus
US6042652A (en) 1999-05-01 2000-03-28 P.K. Ltd Atomic layer deposition apparatus for depositing atomic layer on multiple substrates
US6045260A (en) 1994-09-27 2000-04-04 Rosemount Inc. Switch for selectively coupling a sensor or calibration element to a terminal block
US6044860A (en) 1999-02-01 2000-04-04 Spx Corporation Adjustable lockout device for knife gate valves
US6048154A (en) 1996-10-02 2000-04-11 Applied Materials, Inc. High vacuum dual stage load lock and method for loading and unloading wafers using a high vacuum dual stage load lock
KR100253664B1 (en) 1997-08-22 2000-04-15 이해광 Operating system of polyimide dryer
US6050506A (en) 1998-02-13 2000-04-18 Applied Materials, Inc. Pattern of apertures in a showerhead for chemical vapor deposition
US6054678A (en) 1997-03-14 2000-04-25 Hakko Corporation Heater-sensor complex
US6054013A (en) 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6053983A (en) 1997-05-08 2000-04-25 Tokyo Electron, Ltd. Wafer for carrying semiconductor wafers and method detecting wafers on carrier
US6053982A (en) 1995-09-01 2000-04-25 Asm America, Inc. Wafer support system
US6060721A (en) 1998-05-06 2000-05-09 Taiwan Semiconductor Manufacturing Co., Ltd Apparatus for detecting correct positioning of a wafer cassette
US6060691A (en) 1997-04-21 2000-05-09 Fujikin Incorporated Device for heating fluid controller
US6063196A (en) * 1998-10-30 2000-05-16 Applied Materials, Inc. Semiconductor processing chamber calibration tool
US6068441A (en) 1997-11-21 2000-05-30 Asm America, Inc. Substrate transfer system for semiconductor processing equipment
KR20000031098A (en) 1998-11-03 2000-06-05 윤종용 Spike thermocouple element for detecting temperature of heating furnace
US6072163A (en) 1998-03-05 2000-06-06 Fsi International Inc. Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate
US6073973A (en) 1996-10-31 2000-06-13 Stanley Aviation Corporation Lightweight positive lock coupling
US6074154A (en) 1996-08-29 2000-06-13 Tokyo Electron Limited Substrate treatment system, substrate transfer system, and substrate transfer method
US6074443A (en) 1996-10-21 2000-06-13 Applied Materials, Inc. Method and apparatus for scheduling wafer processing within a multiple chamber semiconductor wafer processing tool having a multiple blade robot
US6077027A (en) 1996-02-09 2000-06-20 Hitachi, Ltd. Semiconductor manufacturing apparatus for transferring articles with a bearing-less joint and method for manufacturing semiconductor device
US6079927A (en) 1998-04-22 2000-06-27 Varian Semiconductor Equipment Associates, Inc. Automated wafer buffer for use with wafer processing equipment
US6079356A (en) 1997-12-02 2000-06-27 Applied Materials, Inc. Reactor optimized for chemical vapor deposition of titanium
US6083321A (en) 1997-07-11 2000-07-04 Applied Materials, Inc. Fluid delivery system and method
US6086677A (en) 1998-06-16 2000-07-11 Applied Materials, Inc. Dual gas faceplate for a showerhead in a semiconductor wafer processing system
KR20000045257A (en) 1998-12-30 2000-07-15 서평원 Method for searching cell in mobile communication system
US6091062A (en) 1998-01-27 2000-07-18 Kinetrix, Inc. Method and apparatus for temperature control of a semiconductor electrical-test contractor assembly
US6093253A (en) 1998-04-06 2000-07-25 Abb Research Ltd. Method and a device for epitaxial growth of objects by chemical vapor deposition
US6093252A (en) 1995-08-03 2000-07-25 Asm America, Inc. Process chamber with inner support
US6096267A (en) 1997-02-28 2000-08-01 Extraction Systems, Inc. System for detecting base contaminants in air
US6096133A (en) 1994-12-28 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus
US6095083A (en) 1991-06-27 2000-08-01 Applied Materiels, Inc. Vacuum processing chamber having multi-mode access
US6099302A (en) 1998-06-23 2000-08-08 Samsung Electronics Co., Ltd. Semiconductor wafer boat with reduced wafer contact area
US6102565A (en) 1996-07-12 2000-08-15 Isuzu Ceramics Research Institute Co., Ltd. Ceramic sheath type thermocouple
US6104401A (en) 1997-06-12 2000-08-15 Netscape Communications Corporation Link filters
US6104011A (en) 1997-09-04 2000-08-15 Watlow Electric Manufacturing Company Sheathed thermocouple with internal coiled wires
US6106625A (en) 1997-12-02 2000-08-22 Applied Materials, Inc. Reactor useful for chemical vapor deposition of titanium nitride
US6106678A (en) 1996-03-29 2000-08-22 Lam Research Corporation Method of high density plasma CVD gap-filling
US6119710A (en) 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
US6122036A (en) 1993-10-21 2000-09-19 Nikon Corporation Projection exposure apparatus and method
US6120008A (en) 1998-04-28 2000-09-19 Life International Products, Inc. Oxygenating apparatus, method for oxygenating a liquid therewith, and applications thereof
US6121158A (en) 1997-08-13 2000-09-19 Sony Corporation Method for hardening a photoresist material formed on a substrate
US6124600A (en) 1997-05-27 2000-09-26 Ushiodenki Kabushiki Kaisha Ultraviolet irradiation device of the optical path division type
US6127249A (en) 1997-02-20 2000-10-03 Micron Technology, Inc. Metal silicidation methods and methods for using same
US6125789A (en) 1998-01-30 2000-10-03 Applied Materials, Inc. Increasing the sensitivity of an in-situ particle monitor
US6126744A (en) 1996-11-18 2000-10-03 Asm America, Inc. Method and system for adjusting semiconductor processing equipment
US6126848A (en) 1998-05-06 2000-10-03 International Business Machines Corporation Indirect endpoint detection by chemical reaction and chemiluminescence
US6129044A (en) 1996-07-12 2000-10-10 Applied Materials, Inc. Apparatus for substrate processing with improved throughput and yield
US6129546A (en) 1998-06-25 2000-10-10 Tokyo Electron Limited Heat process apparatus and heat process method
US6137240A (en) 1998-12-31 2000-10-24 Lumion Corporation Universal ballast control circuit
US6134807A (en) 1997-05-16 2000-10-24 Tokyo Electron Limited Drying processing method and apparatus using same
US6143079A (en) 1998-11-19 2000-11-07 Asm America, Inc. Compact process chamber for improved process uniformity
US6143659A (en) 1997-11-18 2000-11-07 Samsung Electronics, Co., Ltd. Method for manufacturing aluminum metal interconnection layer by atomic layer deposition method
US6143082A (en) 1998-10-08 2000-11-07 Novellus Systems, Inc. Isolation of incompatible processes in a multi-station processing chamber
US6146463A (en) * 1998-06-12 2000-11-14 Applied Materials, Inc. Apparatus and method for aligning a substrate on a support member
US6148761A (en) 1998-06-16 2000-11-21 Applied Materials, Inc. Dual channel gas distribution plate
US6158941A (en) 1995-10-27 2000-12-12 Brooks Automation, Inc. Substrate transport apparatus with double substrate holders
US6160244A (en) 1998-05-29 2000-12-12 Ngk Insulators, Ltd. Susceptors
US6162323A (en) 1997-08-12 2000-12-19 Tokyo Electron Yamanashi Limited Plasma processing apparatus
US6161500A (en) 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6174809B1 (en) 1997-12-31 2001-01-16 Samsung Electronics, Co., Ltd. Method for forming metal layer using atomic layer deposition
JP2001015698A (en) 1999-07-02 2001-01-19 Matsushita Electronics Industry Corp Semiconductor device and manufacture thereof
JP2001023872A (en) 1999-07-09 2001-01-26 Hitachi Ltd Semiconductor substrate processing apparatus
US6180979B1 (en) 1996-03-12 2001-01-30 Siemens Aktiengesellschaft Memory cell arrangement with vertical MOS transistors and the production process thereof
US6187672B1 (en) 1998-09-22 2001-02-13 Conexant Systems, Inc. Interconnect with low dielectric constant insulators for semiconductor integrated circuit manufacturing
US6187691B1 (en) 1999-05-14 2001-02-13 Asm Japan K.K. Method of forming film on semiconductor substrate in film-forming apparatus
US6190634B1 (en) 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US6190457B1 (en) 1996-03-22 2001-02-20 Nippon Sanso Corporation CVD system and CVD process
US6190037B1 (en) 1999-02-19 2001-02-20 Applied Materials, Inc. Non-intrusive, on-the-fly (OTF) temperature measurement and monitoring system
US6190113B1 (en) * 1997-04-30 2001-02-20 Applied Materials, Inc. Quartz pin lift for single wafer chemical vapor deposition/etch process chamber
US6191399B1 (en) 2000-02-01 2001-02-20 Asm America, Inc. System of controlling the temperature of a processing chamber
US6194037B1 (en) 1995-12-28 2001-02-27 Kokusai Electric Co., Ltd. Method of plasma processing a substrate placed on a substrate table
US6201999B1 (en) 1997-06-09 2001-03-13 Applied Materials, Inc. Method and apparatus for automatically generating schedules for wafer processing within a multichamber semiconductor wafer processing tool
US6203613B1 (en) 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6203969B1 (en) 1998-09-14 2001-03-20 Tokyo Electron Limited Resist processing apparatus which measures temperature of heat-sensing substrate and measuring method therein
US6207932B1 (en) 1997-12-30 2001-03-27 Hyundai Electronics Industries, Co., Ltd. Heater block for heating wafer
US6207936B1 (en) 1996-01-31 2001-03-27 Asm America, Inc. Model-based predictive control of thermal processing
US20010000141A1 (en) 1999-09-03 2001-04-05 Derong Zhou Processes and systems for purification of boron trichloride
US6212789B1 (en) 1998-06-19 2001-04-10 Canon Sales Co., Inc. Semiconductor device manufacturing system
US6214122B1 (en) 1997-03-17 2001-04-10 Motorola, Inc. Rapid thermal processing susceptor
US6218288B1 (en) 1998-05-11 2001-04-17 Micron Technology, Inc. Multiple step methods for forming conformal layers
US6225020B1 (en) 1998-04-30 2001-05-01 Hyundai Electronics Industries Co., Ltd. Polymer and a forming method of a micro pattern using the same
US6231290B1 (en) 1998-03-23 2001-05-15 Tokyo Electron Processing method and processing unit for substrate
US6235858B1 (en) 1992-10-30 2001-05-22 Ppg Industries Ohio, Inc. Aminoplast curable film-forming compositions providing films having resistance to acid etching
US6238734B1 (en) 1999-07-08 2001-05-29 Air Products And Chemicals, Inc. Liquid precursor mixtures for deposition of multicomponent metal containing materials
US20010001953A1 (en) 1997-07-10 2001-05-31 Stewart K. Griffiths Support apparatus for semiconductor wafer processing
US6241822B1 (en) 1999-01-19 2001-06-05 Nec Corporation Vertical heat treatment apparatus
US6242359B1 (en) 1997-08-20 2001-06-05 Air Liquide America Corporation Plasma cleaning and etching methods using non-global-warming compounds
US6243654B1 (en) 1997-10-07 2001-06-05 Telemonitor, Inc. Transducer assembly with smart connector
US20010003191A1 (en) 1999-12-03 2001-06-07 Kovacs Ern?Ouml; Communication device and software for operating multimedia applications
US6245665B1 (en) 1998-12-09 2001-06-12 Nec Corporation Semiconductor device and method of fabricating the same
US6247245B1 (en) 1998-11-18 2001-06-19 Tokyo Electron Limited Processing unit for substrate manufacture
US6250250B1 (en) 1999-03-18 2001-06-26 Yuri Maishev Multiple-cell source of uniform plasma
US20010004880A1 (en) * 1999-07-07 2001-06-28 The Co-Inventors To Applied Materials, Inc. Pedestal with a thermally controlled platen
US20010006070A1 (en) 1998-07-13