US5364667A - Photo-assisted chemical vapor deposition method - Google Patents

Photo-assisted chemical vapor deposition method Download PDF

Info

Publication number
US5364667A
US5364667A US08/067,286 US6728693A US5364667A US 5364667 A US5364667 A US 5364667A US 6728693 A US6728693 A US 6728693A US 5364667 A US5364667 A US 5364667A
Authority
US
United States
Prior art keywords
reaction chamber
reactant
ultraviolet light
light
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/067,286
Inventor
Ji H. Rhieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amtech Systems Inc
Original Assignee
Amtech Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/822,361 priority Critical patent/US5215588A/en
Application filed by Amtech Systems Inc filed Critical Amtech Systems Inc
Priority to US08/067,286 priority patent/US5364667A/en
Assigned to AMTECH SYSTEMS, INC. reassignment AMTECH SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RHIEU, JI HYO
Application granted granted Critical
Publication of US5364667A publication Critical patent/US5364667A/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Abstract

In a photo-CVD system, ultraviolet light is introduced into a reaction chamber from light emitting elements of ultraviolet light sources, through transparent bulb surfaces thereof, and through elongated light pipes in a sealed wall bounding the reaction chamber. This prevents molecules of reactant gas in the reaction chamber from reaching and being deposited on the transparent bulb surfaces, and thereby prevents buildup of such reactant molecules from occurring and impeding flow of ultraviolet light into the reaction chamber.

Description

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of my commonly assigned patent application "Photo-CVD System", Ser. No. 07/822,361 filed Jan. 17, 1992, which issued as U.S. Pat. No. 5,215,588 on Jun. 1, 1993.

BACKGROUND OF THE INVENTION

The invention relates to techniques for preventing chemical vapor deposition (CVD) reaction chamber windows from becoming clouded, and more particularly to a technique utilizing narrow light pipes to introduce light into the reactant gas.

Chemical vapor deposition processes are well-known and are used extensively in the manufacture of semiconductor integrated circuits. To avoid subjecting semiconductor wafers in CVD processes to high temperatures that may cause various problems such as lateral diffusion of dopants in highly doped region of the integrated circuit, generation of material defects, and generation of undesired stresses in the semiconductor material, various photo-CVD or photo-assisted CVD deposition processes have been developed wherein the substrate is irradiated with ultraviolet (UV) light while it is being heated, allowing significantly lower temperatures to be used.

Photo-assisted CVD processes have not been widely used to date because no practical technique has been developed for preventing clouding of light windows through which the UV light is introduced into the reaction chamber. The chemical reactants are deposited not only on the semiconductor wafers, but also on the walls of the reactant chamber and the light window thereof.

The deposition of the material on the window clouds it, reducing the amount of UV light entering from one process to the next, and also producing unacceptable non-uniformity in the deposition of oxide layers, nitride layers, and the like on the semiconductor wafers. This results in reduced integrated circuit yields.

Various prior techniques have been used to reduce deposition of material from reactant gases on the window through which UV light is introduced. U.S. Pat. Nos. 4,435,445, 4,556,584, 4,654,226, 4,715,318, 4,778,693, 4,811,684, 4,816,294, 5,005,519 are generally indicative of the state-of-the-art.

There is an unmet need for a practical, economical system for preventing appreciable deposition of material from reactant gases in a photo CVD reaction chamber on the surface of a transparent window thereof through which light is introduced into the reaction chamber.

SUMMARY OF THE INVENTION

It is an object of the invention to provide an apparatus and method for preventing deposition of material from reactant gas in a photo CVD chamber on a window through which light is introduced into the reaction chamber.

It is another object of the invention to reduce attenuation of ultraviolet light introduced into a photo CVD chamber.

It is another object of the invention to provide an improvement that aids in cleaning of deposits from walls of a photo CVD reaction chamber.

It is another object of the invention to provide improved uniformity of the deposited film thickness in a photo CVD process by individually controlling the intensity of light over the entire surface of the substrate on which the film is deposited.

It is another object of the invention to avoid degradation of the light intensity in a photo CVD process as a result of large window thickness.

It is another object of the invention to avoid the expense of using synthetic quartz windows in a window of a photo CVD chamber.

It is another object of the invention to avoid limitations on the size of a photo CVD chamber due to limitations on the thickness and size of chamber windows that can, as a practical matter, be used.

Briefly described, and in accordance with one embodiment thereof, the invention provides a photo-assisted chemical vapor deposition system including a reaction chamber, a susceptor in the reaction chamber supporting a wafer, a source for introducing reactant gas into the reaction chamber through an inlet port and a cover positioned in sealed relationship to the housing and partially bounding the reaction chamber, the cover including a plurality of elongated light pipe openings each having a length greater than the diameter of the pipe and each of a plurality of transparent surfaces which are disposed in sealed relationship with the cover and bound an outer end of each of the light pipe openings, respectively. In one embodiment of the invention, the transparent surfaces are glass bulb covers of individual ultraviolet lamps each containing an internal ultraviolet emitting element. Ultraviolet light through the various transparent surfaces is introduced into the reaction chamber. The light pipes and purging gas introduced within the light pipes adjacent to the bases of the ultraviolet lamps prevent reactant molecules in the reaction gas from reaching the transparent surfaces and being deposited thereon. In one embodiment, the intensities of ultraviolet light entering the reaction chamber through the various transparent surfaces are individually controlled so as to effectuate uniform deposition of reactant molecules from the reactant gas onto the wafers. The intensity of ultraviolet light admitted through the transparent surface into the reaction chamber is increased in accordance with increasing distance of the light pipe openings from the reactant gas inlet port, such that increased intensity of ultraviolet light in the reaction chamber compensates for depletion of reaction molecules in the reactant gas as it flows across the wafer. The diameters of the light pipe openings are sufficiently small to maintain one-dimensional purge gas flow so that reactant gas diffuses against the purge gas flow to reach the transparent surfaces. The cover is composed of conductive metal. rf power is applied to the cover to cause it to function as a plasma electrode. Plasma is produced from gas introduced into the reaction chamber to effectuate plasma cleaning of the interior of the reaction chamber and the light pipe openings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the photo CVD apparatus of the present invention.

FIG. 1A is an enlarged partial view of a portion of the apparatus shown in FIG. 1.

FIG. 2 is a plan view of a panel supporting multiple UV lamps in the embodiment of the invention shown in FIG. 1.

FIG. 3 is a diagram useful in describing control of UV light intensity into a photo CVD reaction chamber to compensate for depletion of reactant species from reactant gas flowing across semiconductor wafers in the reaction chamber.

FIG. 4 is a diagram useful in explaining a proposed theory of operation of the invention.

FIG. 5 is another diagram useful in explaining the proposed theory of operation of the invention.

FIG. 6 is a graph showing normalized deposition rate versus length of a light pipe without purging gas.

FIG. 7 is a graph illustrating the effects on window deposition of reactant species when inner purging gas is introduced into the light pipes.

FIG. 8 is schematic diagram of a photo CVD apparatus of an alternate embodiment of the invention, in which the window disks 30 of FIG. 1A are omitted.

FIG. 9 is an enlarged view of detail A of FIG. 8.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, particularly FIGS. 1, 1A, and 2, photo CVD system 1 includes a reaction chamber 1A bounded by a wall 4. A susceptor 2 supports four six to eight inch semiconductor wafers 11 on a top surface thereof. Susceptor 2 is heated, typically to a temperature in the range from about 150 to 400 degrees Centigrade, by means of heating lamps 3 beneath or within susceptor 2. For six inch wafers, the reaction chamber 1A can be approximately 18 inches long by 16 inches wide by 9 inches deep. The distance 14 between wafers 11 and the bottom of a light admitting cover 25 can be in the range from about 5 to 10 centimeters.

Cover 25 is composed of stainless steel, is approximately 6 centimeters thick, and contains an array of approximately 200 elongated cylindrical, vertical openings or light pipes 22 through which UV light is admitted into reaction chamber 1A. The diameter of each of the light pipes 22 can be approximately 1.5 centimeters.

In FIG. 1A, a separate UV lamp housing 9 is located over the top surface of cover 25 over each light pipe 22. All of the UV light being generated by a UV lamp 32 within each housing 9 is transmitted downward through the corresponding light pipe 22 into reaction chamber 1A. As shown better in FIG. 1A, the interior surface of each UV lamp housing 9 contains a mirrored surface 9A from which the UV light emitted from the UV lamp 32 is reflected downward. The inside surface of each of the light pipes 22 is mirrored.

The UV lamps 32 can be individually controlled, or they can be controlled in groups by a controller 48 (FIG. 1) in accordance with an empirically determined program to provide optimum uniformity of the deposition of material from the reactant gas onto the surfaces of wafers 11. Numeral 13 in FIG. 1 designates the control lines or power lines connected to the various UV lamps 32.

A plurality of thin, circular transparent window disks 30, sealed by suitable O-rings 34, are disposed at the upper edge of each light pipe 22, so that UV light from each UV emitting element 32 passes downward through each of the window disks 30 and through the corresponding light pipe 22 into reaction chamber 1A. As shown in FIGS. 1 and 1A, a tube 40 carries inert argon purging gas supplied from an external source through a suitable mass flow controller (MFC) and a control valve and is introduced into a passage in cover 25. The passage includes subpassages or branches 40A and 40B in each light pipe 22 as shown in FIG. 1A, radially distributing inert argon gas as indicated by arrows 16, to purge each of the light pipes 22 causing reactant gases to diffuse against the purge gas flow in order to reach the window surface.

Reactant gases from one or more of a number of external gas sources, such as SiH4 (silane), Si2 H6 (disilane), NH3 (ammonia), N2 O (nitrous oxide), and PH3 (phosphine) are controlled by corresponding mass flow controllers and pass through manifold 41 and pass into and through reaction chamber 1A, across the surfaces of wafers 11, and are exhausted through exhaust passage 43. In accordance with good practice, a vacuum pump 44 is initially utilized to slowly evacuate reaction chamber 1A through a "sub-gate" valve 46 until the reaction chamber pressure reaches approximately 10 torr, so as to not distribute minute particulates inside chamber due to turbulence that might be caused by faster pumping. Then gate valve 45 is opened and sub-gate valve 46 is closed to effectuate suitable flow of inert argon purging gas and reactant gases out of reaction chamber 1A.

Since entire cover 25 is composed of metal such as stainless steel, it is an electrical conductor. rf power of approximately 500 watts at a frequency of 13.56 MHz can be applied to cover 25 to cause it to generate plasma during cleaning of reaction chamber 1A using NF3 gas.

The window deposition can be explained by first considering the mechanism for deposition on the window surface without light pipes present. In FIG. 4, the light admitting window 30 of length L bounds a reactant region in which reactant gas flow is from right to left, as indicated by the arrow 28. Curve 27 designates the configuration of the velocity profile of boundary layer of reactant gas, which has an average thickness of δ, as indicated in FIG. 5. Curve 29 represents an edge of a boundary layer of reactant gas flow along window surface 30A. The lengths of arrows 26 indicate the velocities of different parts or layers of the boundary layer 29 at various distances from the bottom surface of light admitting window 30. The "flux" of reactant gas molecules from the bulk of the flowing reactant gas to the inner surface 30A of the window is given by the equation

F.sub.1 =h.sub.g (Cg-Cs),                                  (1)

where F1 is the flux or flow rate of reactant gas molecules toward light admitting window 30, hg is the gas phase mass-transfer coefficient, Cg is the reactant concentration in the bulk of the reactant gas, and Cs is the reactant concentration at the surface 30A of light admitting window 30.

The flux F2 corresponding to the consumption of the reactant gas is given by the equation

F.sub.2 =k.sub.s ·Cs,                             (2)

where ks is a chemical surface reaction rate constant.

Under steady state conditions, F1 is equal to F2, so ##EQU1## the growth rate V is given by ##EQU2## where F1 and F2 are equal to F, and N1 is equal to the number of atoms incorporated into a unit volume of the film of reactant gas molecules deposited on surface 3A.

Therefore, ##EQU3## where Cg is equal to CT -Y, where CT is the total number of molecules per cubic centimeter in the reactant gas and Y is the mole fraction of reactant gas species.

According to well known boundary layer theory, the mass transfer of the reactant species across the boundary layer proceeds by diffusion. Therefore, ##EQU4## where Dg is the diffusion coefficient of the reactant gas, and δ is the average boundary layer thickness.

For the present invention, the elongated window pipes 22 provide an additional stagnant layer of reactant gas through which the reactant species of the reactant gas must diffuse. In this case, the mass transfer coefficient hg can be modified as follows: ##EQU5## as can be ascertained from FIG. 5, which shows the boundary layer 29 of average thickness δ along the lower edge of the light pipes, which have a length δL.

Therefore, the reactant concentration at the surface of the window is ##EQU6## if Cso is the value of Cs, in FIG. 4 without use of light pipes (so that δL is equal to zero), and CSL is the value of CS with the window pipes of length δL. The ratio between CSL and CSO then is given by the equation ##EQU7## and the growth rate of reactant species deposited on the surface of the window is ##EQU8##

The ratio of the deposition rate on the surface 30A with light pipes 20 present to the deposition rate without light pipes 20 therefore is given by ##EQU9##

Therefore, RV decreases as δL increases. This ratio depends on process conditions such as process pressure, introduced light intensity, reactant gas flow rate, etc.

FIG. 6 shows the deposition rate ratio as a function of a length δL of the light pipes.

Under normal process conditions, it is not sufficient to avoid the window deposition. My simulations indicate that the ratio VL /VO lies in the range of 0.8 to 0.95 under various process conditions.

Another function of light pipes 20 in the described photo CVD window assembly is to direct a "one-dimensional" inert gas flow inside the pipes to prevent the reactant species from reaching the window surface 30A whereat the deposition reaction causes the above-mentioned fogging problem.

Since the characteristic dimensions of the pipe opening are much larger than the free path of the reactant molecules. This is a viscous flow and the situation can be modeled as a diffusion of reactant molecules, with the drift or convection term representing drift of reactant molecules in the direction opposite to the direction of the diffusion. ##EQU10## where F is the flux of reactant molecules, D is the diffusion constant, V is the velocity, and C is the concentration of the reactant molecules.

The flux of the reactant molecules is given by ##EQU11##

It is necessary to solve the diffusion equation subject to the appropriate boundary conditions. After following procedures to solve the partial differential equations, the following solution is obtained: ##EQU12##

C(x,t) being the concentration of reactant molecules as a function of distance x from the open end of the light pipe, t being the time, and erfc being the complementary error function.

Further reduction of the above equation leads to ##EQU13##

The reaction flux is expressed as: ##EQU14##

By controlling the velocity of inert gas flow, the concentration of the reactant gas near the window surface 30A can be minimized. The graph of FIG. 7 shows how the concentration of the reactant gas, normalized to the concentration of the reactant gas without using light pipes 22, plotted versus distance in the direction into the light pipe from the open end of a light pipe 22 as a function of the flow velocity of the inert purge gas. FIG. 7 shows that at a given inert gas flow velocity out of the light pipes 22, the reactant gas concentration is drastically reduced at points of increasing distance from the mouth of light pipe 22 toward window surface 30A. This results in greatly reduced deposition of the reactant species on the window surface 30A and thereby avoids the above-described problems of prior photo CVD systems. By setting the velocity of the inert gas at approximately 50 centimeters per second and setting the light pipe length at approximately 5 centimeters, window deposition can be reduced to less than 10-3 times the window deposition that occurs if the light pipes 22 and the inert purging gas therein are not used according to the present invention.

As shown in FIG. 3, which includes a graph of the intensity of light emitted by the various UV lamps 32 into reaction chamber 1A, the amount of power applied to the UV lamps 32 can be increased with distance from right to left through reaction chamber 1A under cover 25 in the direction of reactant gas flow 36 to compensate for depletion of reactant gas molecules as they are deposited on the surfaces of semiconductor wafers 11. Providing individual UV lamps 32 allows such control. Controller 48 (FIG. 1) is programmed to achieve very uniform deposition rates on semiconductor wafers 11, improving the yield of integrated circuits being manufactured.

To summarize, in accordance with the present invention, narrow individual light pipes 22 have been used to introduce UV light into photo CVD reaction chamber 1A so that reactant gas molecules must diffuse through a layer of stagnant gas the thickness of which is equal to the length of pipe 22 before the reactant gas molecules can be deposited on surface 30A of the light admitting window 30.

If inert purging gas flows through passages 40, 40A, and 40B near the top ends of light pipes 22, causing one-dimensional flow of the inert purging gas in the direction opposite to that of the diffusing reactant gas molecules, then their deposition on window surface 30A is further reduced by reducing the concentration of reactant gas near window surface 30A. Clouding of transparent surfaces 30 should thereby be avoided or greatly reduced.

Use of individually controlled UV lamps 32 by controller 48 allows the intensity of introduced UV light into photo CVD reaction chamber 1 to be controlled as indicated by curve 53 of FIG. 3 so as to compensate for depletion of reactant gas molecules as the reactant gas flows across the wafers 11. Very uniform deposition of reactant gas molecules across very large semiconductor wafer areas within reaction chamber 1A is thereby achieved. Since the diameter of each of the synthetic quartz windows is only approximately 1.65 centimeters, the light admitting window 22 can be much thinner than the much larger light admitting windows of prior photo CVD reaction chambers and nevertheless have sufficient strength to allow evacuation of reaction chamber 1A by vacuum pump 44 without risk of window breakage.

Since cover 25 is composed of metal, it is used as a plasma electrode to effectuate easy maintenance of the system without designing a plasma electrode located between window surface 30A and the wafer or substrate, which would tend to introduce non-uniformities into the light illumination.

Referring to FIGS. 8 and 9, it should be noted that the glass covers or glass bulbs of UV lamps 32 can perform the same function as transparent window disks 30, i.e., the function of allowing UV light to pass from the internal UV emitting elements 56 of lamps 32 into reaction chamber 1A. Therefore, the window disks 30 of FIGS. 1 and 1A can be omitted in some cases, if appropriate seals are provided between the UV lamps and reaction chamber 4 and chamber cover 4A so that a vacuum can be maintained in reaction chamber 1A and the lamps are located in the vacuum.

FIGS. 8 and 9 show an embodiment of the invention in which the above described window disks are omitted, and the chamber cover 4A are sealed relative to chamber wall 4 to maintain the vacuum in reaction chamber 1A and the UV lamps 32 are located in the vacuum. In FIGS. 8 and 9, the same reference numerals are used as in FIGS. 1 and 1A to designate corresponding parts, where appropriate. Since the window disks are omitted as in FIGS. 8 and 9, the above mentioned purging gas can be introduced into the light pipes 22 near the bases of the various UV lamps 32, rather than below the window disks 30 as shown in FIG. 1A. In FIG. 9, the internal emitting elements of UV lamps 32 are designated by dotted lines 56, and the glass bulbs which perform the function of the omitted window disks are designated by numerals 32A. In FIG. 8, the reaction chamber housing 4 surrounds reaction chamber cover 25A. Housing 4 extends upward over internal reaction chamber cover 25A, as indicated by 4A. Purge gas pipe 40 extends through the wall of housing 4 above internal cover 25A and injects purging gas at the bases of UV lamps 32, rather than extending through the walls 20 between light pipes 22 as shown in the embodiment of FIG. 1A.

While the invention has been described with reference to several particular embodiments thereof, those skilled in the art will be able to make the various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention. It is intended that all combinations of elements and steps which perform substantially the same function in substantially the same way to achieve the same result are within the scope of the invention. The light pipes can be of any suitable shape, and need not be cylindrical. Hexagonal or square cross-sectional shapes of the light pipes can reduce the required wall thickness between adjacent light pipes, leading to greated density of UV light sources illuminating the wafers.

Claims (2)

What is claimed is:
1. A method of preventing deposition of material from a reactant gas onto a plurality of spaced transparent surfaces admitting an ultraviolet light into a photo-assisted chemical vapor deposition reaction chamber, comprising the steps of:
(a) introducing the reactant gas into the reaction chamber upstream from a substrate supported in the reaction chamber; and
(b) introducing the ultraviolet light into the reaction chamber through the plurality of spaced transparent surfaces located between a plurality of ultraviolet light emitting elements and a plurality of elongated light pipe passages in a sealed wall bounding the reaction chamber, the plurality of ultraviolet light emitting elements being located in alignment with the elongated light pipe passages, respectively, the transparent surfaces each including a glass bulb of a separate ultraviolet light source containing one of the ultraviolet light emitting elements,
whereby reactant molecules of the reactant gas fail to reach and be deposited on the transparent surfaces.
2. The method of claim 1 including the step of introducing an inert gas into a portion of each of the elongated light pipe passages adjacent to a base of each of the ultraviolet light sources, thereby retarding diffusion of the reactant molecules through the elongated light pipe passages toward the corresponding transparent surfaces.
US08/067,286 1992-01-17 1993-05-25 Photo-assisted chemical vapor deposition method Expired - Fee Related US5364667A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/822,361 US5215588A (en) 1992-01-17 1992-01-17 Photo-CVD system
US08/067,286 US5364667A (en) 1992-01-17 1993-05-25 Photo-assisted chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/067,286 US5364667A (en) 1992-01-17 1993-05-25 Photo-assisted chemical vapor deposition method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/822,361 Continuation-In-Part US5215588A (en) 1992-01-17 1992-01-17 Photo-CVD system

Publications (1)

Publication Number Publication Date
US5364667A true US5364667A (en) 1994-11-15

Family

ID=25235810

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/822,361 Expired - Fee Related US5215588A (en) 1992-01-17 1992-01-17 Photo-CVD system
US08/067,286 Expired - Fee Related US5364667A (en) 1992-01-17 1993-05-25 Photo-assisted chemical vapor deposition method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/822,361 Expired - Fee Related US5215588A (en) 1992-01-17 1992-01-17 Photo-CVD system

Country Status (2)

Country Link
US (2) US5215588A (en)
JP (1) JPH05267177A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010147A1 (en) * 1995-09-13 1997-03-20 Tetra Laval Holdings & Finance S.A. Production of packaging material using chemical deposition
WO1999023273A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Coating method and device
US5930456A (en) 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US5960158A (en) 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
EP0976847A2 (en) * 1998-04-29 2000-02-02 MicroCoating Technologies, Inc. Apparatus and process for controlled atmosphere chemical vapor deposition
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6355109B2 (en) * 1998-12-11 2002-03-12 Tokyo Electron Limited Vacuum processing apparatus
US20030200925A1 (en) * 1998-09-03 2003-10-30 Micron Technology, Inc. Methods for forming phosphorus- and/or boron-containing silica layers on substrates
US20040040496A1 (en) * 2000-11-01 2004-03-04 Tadatomo Ohnoda Excimer uv photo reactor
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US20040104354A1 (en) * 2000-11-21 2004-06-03 Thomas Haberer Device and method for adapting the size of an ion beam spot in the domain of tumor irradiation
US20040194888A1 (en) * 2003-04-01 2004-10-07 Tokyo Electron Limited Processing apparatus and method
US20050217985A1 (en) * 2004-04-01 2005-10-06 Fleege Dennis W Terminal support for a circuit breaker trip unit
US20050217585A1 (en) * 2004-04-01 2005-10-06 Blomiley Eric R Substrate susceptor for receiving a substrate to be deposited upon
US20050217569A1 (en) * 2004-04-01 2005-10-06 Nirmal Ramaswamy Methods of depositing an elemental silicon-comprising material over a semiconductor substrate and methods of cleaning an internal wall of a chamber
US20050223993A1 (en) * 2004-04-08 2005-10-13 Blomiley Eric R Deposition apparatuses; methods for assessing alignments of substrates within deposition apparatuses; and methods for assessing thicknesses of deposited layers within deposition apparatuses
US20050223985A1 (en) * 2004-04-08 2005-10-13 Blomiley Eric R Deposition apparatuses, methods of assessing the temperature of semiconductor wafer substrates within deposition apparatuses, and methods for deposition of epitaxial semiconductive material
US20070297775A1 (en) * 2000-12-21 2007-12-27 Zion Koren Heating Configuration for Use in Thermal Processing Chambers
US20080067416A1 (en) * 2006-05-01 2008-03-20 Applied Materials, Inc. UV assisted thermal processing
US20110259432A1 (en) * 2006-11-21 2011-10-27 David Keith Carlson Independent radiant gas preheating for precursor disassociation control and gas reaction kinetics in low temperature cvd systems
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8465991B2 (en) 2006-10-30 2013-06-18 Novellus Systems, Inc. Carbon containing low-k dielectric constant recovery using UV treatment
US8512818B1 (en) 2007-08-31 2013-08-20 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US8715788B1 (en) 2004-04-16 2014-05-06 Novellus Systems, Inc. Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US5155336A (en) 1990-01-19 1992-10-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5681394A (en) * 1991-06-26 1997-10-28 Canon Kabushiki Kaisha Photo-excited processing apparatus and method for manufacturing a semiconductor device by using the same
JP3148004B2 (en) * 1992-07-06 2001-03-19 株式会社東芝 The method of manufacturing an optical cvd device and a semiconductor device using the same
JPH07122500A (en) * 1993-10-28 1995-05-12 Fujitsu Ltd Gas apparatus and gas supply equipment using the same
US5686320A (en) * 1995-01-20 1997-11-11 Goldstar Co., Ltd. Method for forming semiconductor layer of thin film transistor by using temperature difference
US5985032A (en) * 1995-05-17 1999-11-16 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus
US5551985A (en) * 1995-08-18 1996-09-03 Torrex Equipment Corporation Method and apparatus for cold wall chemical vapor deposition
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
GB2327090A (en) * 1997-07-09 1999-01-13 British Aerospace CVD manufacturing a multilayer optical mirror using ultra-violet light
US6036780A (en) * 1997-08-27 2000-03-14 Cypress Semiconductor Corporation Mechanism for detecting particulate formation and/or failures in the removal of gas from a liquid
US20020146356A1 (en) * 1998-11-05 2002-10-10 Sinaiko Robert J. Dual input and outlet electrostatic air transporter-conditioner
JP4731694B2 (en) * 2000-07-21 2011-07-27 東京エレクトロン株式会社 Semiconductor device manufacturing method and substrate processing apparatus
US6755600B2 (en) 2001-10-29 2004-06-29 Burns Bros., Incs Cargo bar
JP3887291B2 (en) * 2002-09-24 2007-02-28 東京エレクトロン株式会社 Substrate processing equipment
US7351656B2 (en) * 2005-01-21 2008-04-01 Kabushiki Kaihsa Toshiba Semiconductor device having oxidized metal film and manufacture method of the same
US7517814B2 (en) * 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
US20060228898A1 (en) * 2005-03-30 2006-10-12 Cory Wajda Method and system for forming a high-k dielectric layer
US7501352B2 (en) * 2005-03-30 2009-03-10 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer
US20070066084A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Method and system for forming a layer with controllable spstial variation
US20070065593A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Multi-source method and system for forming an oxide layer
US7589336B2 (en) * 2006-03-17 2009-09-15 Applied Materials, Inc. Apparatus and method for exposing a substrate to UV radiation while monitoring deterioration of the UV source and reflectors
JP5317852B2 (en) * 2009-06-29 2013-10-16 株式会社クォークテクノロジー UV irradiation equipment
TWI494174B (en) * 2012-05-16 2015-08-01 Kern Energy Entpr Co Ltd Equipment for surface treatment of substrate
EP2989229B1 (en) 2013-04-25 2019-06-05 Polyvalor, Limited Partnership Method for the photo-initiated chemical vapor deposition (picvd) of coatings
US10410890B2 (en) * 2013-06-21 2019-09-10 Applied Materials, Inc. Light pipe window structure for thermal chamber applications and processes
US20160027671A1 (en) * 2014-07-25 2016-01-28 Applied Materials, Inc. Light pipe arrays for thermal chamber applications and thermal processes

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065973A (en) * 1979-12-17 1981-07-01 Sony Corp Processes for manufacturing semiconductor devices
JPS593931A (en) * 1982-06-29 1984-01-10 Fujitsu Ltd Forming of thin film
US4435445A (en) * 1982-05-13 1984-03-06 Energy Conversion Devices, Inc. Photo-assisted CVD
JPS5975621A (en) * 1982-10-22 1984-04-28 Mitsubishi Electric Corp Film forming device using photochemical reaction
JPS59231822A (en) * 1983-06-14 1984-12-26 Toshiba Corp Formation of nitride film
US4556584A (en) * 1984-05-03 1985-12-03 Btu Engineering Corporation Method for providing substantially waste-free chemical vapor deposition of thin-film on semiconductor substrates
JPS60245217A (en) * 1984-05-21 1985-12-05 Semiconductor Energy Lab Co Ltd Thin film formation equipment
US4654226A (en) * 1986-03-03 1987-03-31 The University Of Delaware Apparatus and method for photochemical vapor deposition
US4715318A (en) * 1985-01-17 1987-12-29 Nippon Kogaku K.K. Photochemical reaction apparatus
US4778693A (en) * 1986-10-17 1988-10-18 Quantronix Corporation Photolithographic mask repair system
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US4816294A (en) * 1987-05-04 1989-03-28 Midwest Research Institute Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes
US4846102A (en) * 1987-06-24 1989-07-11 Epsilon Technology, Inc. Reaction chambers for CVD systems
US4887548A (en) * 1987-05-15 1989-12-19 Semiconductor Energy Laboratory Co., Ltd. Thin film manufacturing system
US4981815A (en) * 1988-05-09 1991-01-01 Siemens Aktiengesellschaft Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors
US5005519A (en) * 1990-03-14 1991-04-09 Fusion Systems Corporation Reaction chamber having non-clouded window
JPH055183A (en) * 1991-06-26 1993-01-14 Canon Inc Photoexcitation processing device and production of semiconductor device for using this device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065973A (en) * 1979-12-17 1981-07-01 Sony Corp Processes for manufacturing semiconductor devices
US4435445A (en) * 1982-05-13 1984-03-06 Energy Conversion Devices, Inc. Photo-assisted CVD
JPS593931A (en) * 1982-06-29 1984-01-10 Fujitsu Ltd Forming of thin film
JPS5975621A (en) * 1982-10-22 1984-04-28 Mitsubishi Electric Corp Film forming device using photochemical reaction
JPS59231822A (en) * 1983-06-14 1984-12-26 Toshiba Corp Formation of nitride film
US4556584A (en) * 1984-05-03 1985-12-03 Btu Engineering Corporation Method for providing substantially waste-free chemical vapor deposition of thin-film on semiconductor substrates
JPS60245217A (en) * 1984-05-21 1985-12-05 Semiconductor Energy Lab Co Ltd Thin film formation equipment
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US4715318A (en) * 1985-01-17 1987-12-29 Nippon Kogaku K.K. Photochemical reaction apparatus
US4654226A (en) * 1986-03-03 1987-03-31 The University Of Delaware Apparatus and method for photochemical vapor deposition
US4778693A (en) * 1986-10-17 1988-10-18 Quantronix Corporation Photolithographic mask repair system
US4816294A (en) * 1987-05-04 1989-03-28 Midwest Research Institute Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes
US4887548A (en) * 1987-05-15 1989-12-19 Semiconductor Energy Laboratory Co., Ltd. Thin film manufacturing system
US4846102A (en) * 1987-06-24 1989-07-11 Epsilon Technology, Inc. Reaction chambers for CVD systems
US4981815A (en) * 1988-05-09 1991-01-01 Siemens Aktiengesellschaft Method for rapidly thermally processing a semiconductor wafer by irradiation using semicircular or parabolic reflectors
US5005519A (en) * 1990-03-14 1991-04-09 Fusion Systems Corporation Reaction chamber having non-clouded window
JPH055183A (en) * 1991-06-26 1993-01-14 Canon Inc Photoexcitation processing device and production of semiconductor device for using this device

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728224A (en) * 1995-09-13 1998-03-17 Tetra Laval Holdings & Finance S.A. Apparatus and method for manufacturing a packaging material using gaseous phase atmospheric photo chemical vapor deposition to apply a barrier layer to a moving web substrate
WO1997010147A1 (en) * 1995-09-13 1997-03-20 Tetra Laval Holdings & Finance S.A. Production of packaging material using chemical deposition
US5960158A (en) 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
WO1999023273A1 (en) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Coating method and device
EP0976847A3 (en) * 1998-04-29 2001-10-10 MicroCoating Technologies, Inc. Apparatus and process for controlled atmosphere chemical vapor deposition
EP0976847A2 (en) * 1998-04-29 2000-02-02 MicroCoating Technologies, Inc. Apparatus and process for controlled atmosphere chemical vapor deposition
US5930456A (en) 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US5970214A (en) 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US20030200925A1 (en) * 1998-09-03 2003-10-30 Micron Technology, Inc. Methods for forming phosphorus- and/or boron-containing silica layers on substrates
US7273525B2 (en) 1998-09-03 2007-09-25 Micron Technology, Inc. Methods for forming phosphorus- and/or boron-containing silica layers on substrates
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6727474B2 (en) 1998-12-10 2004-04-27 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6610967B2 (en) 1998-12-10 2003-08-26 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6702899B2 (en) 1998-12-11 2004-03-09 Tokyo Electron Limited Vacuum processing apparatus
US6355109B2 (en) * 1998-12-11 2002-03-12 Tokyo Electron Limited Vacuum processing apparatus
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6771895B2 (en) 1999-01-06 2004-08-03 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US8138451B2 (en) 1999-01-06 2012-03-20 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US20040040496A1 (en) * 2000-11-01 2004-03-04 Tadatomo Ohnoda Excimer uv photo reactor
US20040104354A1 (en) * 2000-11-21 2004-06-03 Thomas Haberer Device and method for adapting the size of an ion beam spot in the domain of tumor irradiation
US7949237B2 (en) 2000-12-21 2011-05-24 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US20070297775A1 (en) * 2000-12-21 2007-12-27 Zion Koren Heating Configuration for Use in Thermal Processing Chambers
US20040194888A1 (en) * 2003-04-01 2004-10-07 Tokyo Electron Limited Processing apparatus and method
US20090026171A1 (en) * 2003-04-01 2009-01-29 Tokyo Electron Limited Processing method
US8017525B2 (en) 2003-04-01 2011-09-13 Tokyo Electron Limited Processing method
US20060180087A1 (en) * 2004-04-01 2006-08-17 Blomiley Eric R Substrate susceptor for receiving a substrate to be deposited upon
US20050217569A1 (en) * 2004-04-01 2005-10-06 Nirmal Ramaswamy Methods of depositing an elemental silicon-comprising material over a semiconductor substrate and methods of cleaning an internal wall of a chamber
US20050217585A1 (en) * 2004-04-01 2005-10-06 Blomiley Eric R Substrate susceptor for receiving a substrate to be deposited upon
US20050217985A1 (en) * 2004-04-01 2005-10-06 Fleege Dennis W Terminal support for a circuit breaker trip unit
US20060180084A1 (en) * 2004-04-01 2006-08-17 Blomiley Eric R Substrate susceptor for receiving a substrate to be deposited upon
US20070012241A1 (en) * 2004-04-08 2007-01-18 Blomiley Eric R Methods of assessing the temperature of semiconductor wafer substrates within deposition apparatuses
US20050223993A1 (en) * 2004-04-08 2005-10-13 Blomiley Eric R Deposition apparatuses; methods for assessing alignments of substrates within deposition apparatuses; and methods for assessing thicknesses of deposited layers within deposition apparatuses
US20060216840A1 (en) * 2004-04-08 2006-09-28 Blomiley Eric R Methods for assessing alignments of substrates within deposition apparatuses; and methods for assessing thicknesses of deposited layers within deposition apparatuses
US20060213445A1 (en) * 2004-04-08 2006-09-28 Blomiley Eric R Deposition apparatuses
US20060231016A1 (en) * 2004-04-08 2006-10-19 Blomiley Eric R Deposition apparatuses
US7662649B2 (en) 2004-04-08 2010-02-16 Micron Technology, Inc. Methods for assessing alignments of substrates within deposition apparatuses; and methods for assessing thicknesses of deposited layers within deposition apparatuses
US20050223985A1 (en) * 2004-04-08 2005-10-13 Blomiley Eric R Deposition apparatuses, methods of assessing the temperature of semiconductor wafer substrates within deposition apparatuses, and methods for deposition of epitaxial semiconductive material
US8715788B1 (en) 2004-04-16 2014-05-06 Novellus Systems, Inc. Method to improve mechanical strength of low-K dielectric film using modulated UV exposure
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8629068B1 (en) 2005-04-26 2014-01-14 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US9873946B2 (en) 2005-04-26 2018-01-23 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
CN101437626B (en) 2006-05-01 2013-10-16 应用材料公司 UV assisted thermal processing
US7547633B2 (en) * 2006-05-01 2009-06-16 Applied Materials, Inc. UV assisted thermal processing
US20080067416A1 (en) * 2006-05-01 2008-03-20 Applied Materials, Inc. UV assisted thermal processing
US8465991B2 (en) 2006-10-30 2013-06-18 Novellus Systems, Inc. Carbon containing low-k dielectric constant recovery using UV treatment
US20110259432A1 (en) * 2006-11-21 2011-10-27 David Keith Carlson Independent radiant gas preheating for precursor disassociation control and gas reaction kinetics in low temperature cvd systems
US8663390B2 (en) * 2006-11-21 2014-03-04 Applied Materials, Inc. Independent radiant gas preheating for precursor disassociation control and gas reaction kinetics in low temperature CVD systems
US8512818B1 (en) 2007-08-31 2013-08-20 Novellus Systems, Inc. Cascaded cure approach to fabricate highly tensile silicon nitride films
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10480072B2 (en) 2016-06-14 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film

Also Published As

Publication number Publication date
JPH05267177A (en) 1993-10-15
US5215588A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
KR100767762B1 (en) A CVD semiconductor-processing device provided with a remote plasma source for self cleaning
US4911102A (en) Process of vapor growth of gallium nitride and its apparatus
US6627268B1 (en) Sequential ion, UV, and electron induced chemical vapor deposition
CN101423937B (en) Multi-gas concentric injection showerhead
US6338756B2 (en) In-situ post epitaxial treatment process
JP4108748B2 (en) Cold wall vapor deposition
US6040022A (en) PECVD of compounds of silicon from silane and nitrogen
US5916369A (en) Gas inlets for wafer processing chamber
US6214116B1 (en) Horizontal reactor for compound semiconductor growth
US6064800A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
JP5209022B2 (en) Method and apparatus for controlling deposit formation in a deposition system, and deposition system and method including them
US5653808A (en) Gas injection system for CVD reactors
US6228173B1 (en) Single-substrate-heat-treating apparatus for semiconductor process system
US20030097977A1 (en) In-situ post epitaxial treatment process
US20090126629A1 (en) Film-forming system and film-forming method
JP4994551B2 (en) Improved apparatus and method for growing thin films
DE10109507B4 (en) Semiconductor manufacturing processes
EP0606751B1 (en) Method for depositing polysilicon films having improved uniformity and apparatus therefor
JP4536662B2 (en) Gas processing apparatus and heat dissipation method
US7060132B2 (en) Method and apparatus of growing a thin film
US5803974A (en) Chemical vapor deposition apparatus
US5891251A (en) CVD reactor having heated process chamber within isolation chamber
KR20120028305A (en) Method and apparatus for growing a thin film onto a substrate
JP4776054B2 (en) Thin film formation method by atomic layer growth
US5229081A (en) Apparatus for semiconductor process including photo-excitation process

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMTECH SYSTEMS, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RHIEU, JI HYO;REEL/FRAME:006804/0987

Effective date: 19931207

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20061115