US20040194888A1 - Processing apparatus and method - Google Patents

Processing apparatus and method Download PDF

Info

Publication number
US20040194888A1
US20040194888A1 US10/814,258 US81425804A US2004194888A1 US 20040194888 A1 US20040194888 A1 US 20040194888A1 US 81425804 A US81425804 A US 81425804A US 2004194888 A1 US2004194888 A1 US 2004194888A1
Authority
US
United States
Prior art keywords
processing
chamber
substrate
electrostatic chuck
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/814,258
Inventor
Takashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ITO, TAKASHI
Publication of US20040194888A1 publication Critical patent/US20040194888A1/en
Priority to US12/238,066 priority Critical patent/US8017525B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67236Apparatus for manufacturing or treating in a plurality of work-stations the substrates being processed being not semiconductor wafers, e.g. leadframes or chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76808Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material

Abstract

A multichamber-type processing apparatus and processing method using same, in which a substrate is reliably neutralized without being damaged, thereby ensuring excellent accuracy and throughput. The processing apparatus includes a transfer chamber, etching chambers selectively communicating with the transfer chamber and providing a space to etch a first substrate therein, and ashing chambers selectively communicating with the transfer chamber and providing a space to ash a second substrate therein. A transfer mechanism is installed in the transfer chamber to sequentially transfer the substrate from the transfer chamber into the etching and ashing chambers. The substrate is electrostatically adsorbed to electrostatic chucks in the etching and ashing chambers. An monatomic nitrogen atom supply unit supplies dissociated monatomic nitrogen atoms into the etching and ashing chambers.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a multichamber-type processing apparatus having an arrangement in which a transfer chamber is coupled to a plurality of processing chambers for etching or ashing a substrate to be processed, and a processing method using same. [0001]
  • BACKGROUND OF THE INVENTION
  • Generally, a multichamber-type processing apparatus, which includes a transfer chamber provided with a transfer arm and coupled to a plurality of processing chambers via gate valves, is known as a processing apparatus for performing etching, ashing, and deposition processes on a plurality of substrates, such as semiconductor wafers or glass substrates, producing high throughput. (see Japanese Patent Laid-open Publication No. 1994-31471) [0002]
  • An electrostatic chuck is frequently used as a jig to electrostatically adsorb a substrate to be processed, such as a semiconductor wafer in a processing chamber. Such electrostatic chuck incorporates therein an electrode embedded in a dielectric member, and by applying a direct current to the electrode the substrate is electrostatically adsorbed to a surface of the dielectric member by an electrostatic force, such as a Johnsen-Rahbek force or a Coulomb force. [0003]
  • In case that the substrate is adsorbed to the electrostatic chuck, a small amount of electric charge still remains in the substrate even after the application of the direct current to the electrode is stopped after the substrate is processed. The electric charge remaining on a surface of the substrate in the multichamber-type processing apparatus becomes an issue when transferring a substrate from a processing chamber to another processing chamber by use of the transfer arm. That is, the substrate becomes misaligned on the transfer arm when the transfer arm mounts thereon the substrate from the electrostatic chuck. Hence, when the substrate is transferred from the transfer arm to a processing chamber, the substrate is placed at a misaligned position in the processing chamber. Additionally, such condition also suffers from that it takes a relatively longer amount of time to separate the substrate from the electrostatic chuck, which in turn deteriorates throughput efficiency of the multichamber-type processing apparatus. [0004]
  • In order to eliminate such ill effects thereof, the charge on the substrate needs to be neutralized. For instance, there are a method of applying a current having an opposite polarity to the current applied to an electrode when a substrate is electrostatically adsorbed to an electrostatic chuck as disclosed in Japanese Patent Laid-open Publication 1997-213780 and a method of neutralizing charge on an object to be processed which is electrostatically adsorbed to an electrostatic chuck, by supplying ionized processing gas thereto as disclosed in Japanese Patent Laid-open Publication No. 1994-275546. [0005]
  • However, there are drawbacks associated with the method disclosed in Japanese Patent Laid-open Publication No. 1997-213780. In such method, it is difficult to apply the current to the substrate so as to precisely neutralize the electric charge, and thus either positive or negative electric charge still remains on a surface of the substrate when a desired valance is not obtained, reducing neutralization of the substrate. [0006]
  • Furthermore, in case of employing the process disclosed in Japanese Patent Laid-open Publication No. 1994-275546 there is a concern for damages incurring on the substrate such as the semiconductor wafer, by the ionized processing gas supplied thereto. [0007]
  • SUMMARY OF THE INVENTION
  • It is, therefore, an object of the present invention to provide a multichamber-type processing apparatus and a processing method using same, which reliably neutralizes a charge on a substrate without incurring damage to the substrate, thereby ensuring excellent accuracy and throughput. [0008]
  • In accordance with one aspect of the present invention, there is provided a processing apparatus including: a transfer chamber; a plurality of processing chambers for processing therein a substrate to be processed, the processing chambers being coupled to the transfer chamber; a number of electrostatic chucks which are provided in the processing chambers, to electrostatically adsorb the substrate to be processed thereto; a transfer mechanism installed in the transfer chamber to transfer the substrate to be processed between the processing chambers and the transfer chamber; and a monatomic nitrogen atom supply unit for supplying dissociated monatomic nitrogen N (hereinafter N) atoms into the processing chambers. [0009]
  • In accordance with another aspect of the present invention, there is provided a processing apparatus including: a transfer chamber; a first processing chamber coupled to the transfer chamber, the first processing chamber performing therein a first process on a substrate to be processed; a second processing chamber coupled to the transfer chamber, the second processing chamber performing therein a second process on the substrate to be processed; a transfer mechanism installed in the transfer chamber for sequentially transferring the substrate to be processed into the first and second processing chamber; electrostatic chucks provided in the first and the second processing chambers, the electrostatic chucks electrostatically adsorbing thereto the substrate to be processed; and a monatomic nitrogen atom supply unit for supplying dissociated monatomic N atoms into the first and second processing chamber. [0010]
  • In accordance with still another aspect of the present, there is provided a processing method employing a processing apparatus, which includes a transfer chamber, a plurality of processing chambers coupled to the transfer chamber, to process therein a target substrate, and a number of electrostatic chucks provided in the processing chambers to electrostatically adsorb the target substrate thereto, including the steps of: transferring the target substrate from the transfer chamber into one of the processing chambers by using a transfer mechanism; placing the target substrate on an electrostatic chuck displaced in said one processing chamber; applying a direct current to an electrode embedded in the electrostatic chuck to electrostatically absorb the target substrate to the electrostatic chuck; processing the target substrate in said one processing chamber, to thereby obtain a processed substrate; terminating the application of the direct current to the electrostatic chuck; supplying dissociated monatomic N atoms into said one processing chamber to remove charge on the electrostatic chuck; and transferring the processed substrate into the transfer chamber using the transfer mechanism. [0011]
  • In accordance with yet still another aspect of the invention, there is provided a processing method using a processing apparatus, which includes a transfer chamber, a first processing chamber coupled to the transfer chamber, for performing a first process on a target substrate therein, a second processing chamber coupled to the transfer chamber for performing a second process on the target substrate therein, and a first and second electrostatic chucks provided in the first and second processing chambers, respectively, to electrostatically adsorb the substrate thereto, including the steps of: transferring the target substrate from the transfer chamber into the first processing chamber using a transfer mechanism; placing the target substrate on the first electrostatic chuck in the first processing chamber; applying a direct current to an electrode of the first electrostatic chuck to electrostatically adsorb the target substrate to the first electrostatic chuck; performing a first process on the target substrate in the first processing chamber to thereby obtain a processed substrate; terminating the application of the direct current to the first electrostatic chuck; supplying dissociated monatomic N atoms into the first processing chamber to remove charge on the first electrostatic chuck; transferring the processed substrate into the transfer chamber using the transfer mechanism; transferring the processed substrate from the transfer chamber into the second processing chamber; placing the processed substrate on the second electrostatic chuck in the second processing chamber; applying the direct current to an electrode of the second electrostatic chuck to electrostatically adsorb the processed substrate to the second electrostatic chuck; and performing a second process on the processed substrate in the processed second processing chamber. [0012]
  • In the present invention, N was employed, however, there are elements such as F, O, and Cl that have the electronegativity greater than or equivalent to that of N. Since, however, F reacts with SiO[0013] 2 formed on the substrate; O reacts with a resist; and Cl reacts with Si, N is preferred over F, O, and Cl. Furthermore, N is a non-toxic, non-explosive, incombustible, and relatively cheap substance. Moreover, its treatment is relatively easy, which makes N more of a preferred choice over the other elements.
  • In the present invention it is preferable that the dissociated monatomic N atoms be supplied near the electrostatic chuck, thereby reliably removing a charge on a substrate adsorbed to the electrostatic chuck. [0014]
  • Additionally, a charge on a substrate supporting unit of a transfer mechanism or on the substrate mounted thereon may be removed by supplying the dissociated monatomic N atoms into the transfer chamber, thereby further preventing ill effects of electric charge. [0015]
  • Furthermore, a charge on the substrate is removed at a desired time by controlling a supply timing of the dissociated monatomic N atoms, to effectively remove charge on the substrate. [0016]
  • Moreover, the energy supply unit may include an ultraviolet irradiation unit for irradiating ultraviolet ray to the N[0017] 2 gas. In addition, a portion of a pipe may be made of a dielectric material, and an induction coil as the energy supply unit may be wound around the dielectric portion of the pipe, wherein a high frequency source applies a high frequency to the induction coil. As a result, the dissociated monatomic N atoms are conveniently obtained.
  • Furthermore, the dissociated monatomic N atoms may be effectively generated by applying energy, higher than dissociation energy of the N[0018] 2 gas and lower than ionization energy of the N2 gas, to the N2 gas. When the energy applied to the N2 gas is lower than the dissociation energy, the N2 gas is not dissociated into the monatomic N atoms. On the other hand, when the energy applied to the N2 gas is higher than the ionization energy, more N ions are generated than the dissociated monatomic N atoms, which damages the substrate.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The above and other objects and features of the present invention will become apparent from the following description of the preferred embodiments given in conjunction with the accompanying drawings, in which: [0019]
  • FIG. 1 schematically illustrates a multichamber-type processing apparatus in accordance with the first embodiment of the present invention; [0020]
  • FIG. 2 sets forth an etching chamber provided in the multichamber-type processing apparatus shown in FIG. 1; [0021]
  • FIGS. 3A to [0022] 3C are cross sectional views illustrating the etching and ashing of a substrate using the multichamber-type processing apparatus shown in FIG. 1;
  • FIG. 4 is a flow chart describing the etching and ashing of the substrate using the multichamber-type processing apparatus shown in FIG. 1; [0023]
  • FIGS. 5A and 5B are cross sectional views illustrating states in which trench-etching, ashing, and liner-removal of the substrate shown in FIG. 3 are performed; [0024]
  • FIG. 6 is a cross sectional view of a transfer chamber capable of being neutralized; and [0025]
  • FIG. 7 is a cross sectional view illustrating part of another etching chamber using a monatomic nitrogen atom supply unit.[0026]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, the preferred embodiments of the present invention will now be described in reference to the accompanying drawings. [0027]
  • There is schematically illustrated in FIG. 1 a vacuum processing apparatus in accordance with a first embodiment of the present invention. The vacuum processing apparatus is a multichamber-type processing apparatus used in etching and ashing processes, for etching and ashing an object to be processed, such as a semiconductor wafer (hereinafter, referred to as “wafer”) under a predetermined level of vacuum. [0028]
  • As shown in FIG. 1, the multichamber-[0029] type processing apparatus 100 includes two etching chambers 1 a, 1 b for etching the wafer W, and two ashing chambers 2 a, 2 b for ashing the wafer W, wherein the etching and ashing chambers 1 a, 1 b, 2 a, 2 b are mounted on four sides of a hexagonal transfer chamber 3, respectively. The two remaining sides of the hexagonal transfer chamber 3 are provided with wafer cassette chambers 4 a, 4 b, respectively, which accommodate therein a cassette 5 having a plurality of wafers W mounted therein. Each of the etching chambers 1 a, 1 b and the ashing chambers 2 a, 2 b includes a susceptor 15 on which the wafers W mounted.
  • The [0030] etching chambers 1 a, 1 b, ashing chambers 2 a, 2 b, and wafer cassette chambers 4 a, 4 b are connected to the respective sides of the transfer chamber 3 via respective gate valves G as shown in FIG. 1 such that by opening the gate valve G the corresponding chamber communicates with the transfer chamber 3, and by shutting the gate valve G, the corresponding chamber becomes isolated.
  • Furthermore, a [0031] wafer transfer mechanism 6 is installed in the transfer chamber 3 to take the object to be processed, e.g., wafer W, out of and into the etching chambers 1 a, 1 b, ashing chambers 2 a, 2 b, and wafer cassette chambers 4 a, 4 b. The wafer transfer mechanism 6 is positioned at a substantially center portion of the transfer chamber 3, and has a multi-joint arm structure. In particular, there is provided a hand 7 at an end portion thereof on which the wafer W is mounted to carry the wafer W. In addition, an aligning unit 8 is installed near the wafer cassette chambers 4 a, 4 b in the transfer chamber 3 to align the wafers W.
  • Corresponding to process requirements of etching and ashing of the wafers W which are to be conducted under a predetermine level of vacuum, the [0032] etching chambers 1 a, 1 b, the ashing chambers 2 a, 2 b, and the transfer chamber 3 are all maintained under predetermined vacuum conditions. As for the wafer cassette chambers 4 a, 4 b, when cassettes 5 are transferred into and from the wafer cassette chambers 4 a, 4 b through openings (not shown) provided at the wafer cassette chambers 4 a, 4 b, an atmospheric pressure is established therein, however when the cassettes 5 are loaded in the cassette chambers 4 a, 4 b for processing, the cassette chambers 4 a, 4 b are under a predetermined level of vacuum.
  • Hereinafter, a detailed description of the [0033] etching chambers 1 a, 1 b will now be given in detail.
  • FIG. 2 illustrates an [0034] etching chamber 1 a. The etching chamber 1 a includes a chamber 12 made of a metal, such as aluminum having a surface thereof oxidized, wherein the chamber 12 is frame-grounded. A susceptor 15 serving as a lower electrode of a plate electrode is provided on the floor of the chamber 12 via an insulator 13. Further, the susceptor 15 is connected to a high pass filter 16 (HPF).
  • An [0035] electrostatic chuck 21 having the wafer W mounted thereon is provided on the susceptor 15, and electrostatically adsorbs the wafer W thereto, to thereby prevent the wafer W from being moved on the electrostatic chuck 21. In this respect, the electrostatic chuck 21 is structured such that an electrode 22 is embedded in a dielectric member 21 a. When a direct current is applied to the electrode 22 from a direct current (DC) power supply 23 connected to the electrode 22, the wafer W is electrostatically adsorbed to the electrostatic chuck 21 by an electrostatic force, such as a Johnsen-Rahbek force or a Coulomb force. Furthermore, a focus ring 25 made of Si is provided to surround the wafer W, to thereby enhance uniformity in etching of the wafer W. Moreover, lift pins 24 are elevatably installed in the susceptor 15 to be penetrated through a surface of the electrostatic chuck 21, and are vertically moved by a cylinder 26.
  • A [0036] shower head 31 facing the susceptor 15 is installed thereabove to supply a gas into the chamber 12. The shower head 31 serves as an upper electrode, and is supported in an upper part of the chamber 12 through the insulator 32. In addition, the shower head 31 includes an electrode plate 34 having a plurality of holes and a supporting member 35 for supporting the electrode plate 34.
  • A [0037] gas inlet 36 is formed at a substantially center portion of an upper part of the supporting member 35, and is connected to one of two ends of a gas supply line 37, whereas the other end of the gas supply line 37 is connected to an etching gas source 40 via a mass flow controller 38. Valves 39 are positioned at both an inlet and outlet side of the mass flow controller 38 installed at the gas supply line 37. An etching gas including, for example, a halogen element F, is supplied from the etching gas source 40 to the chamber 12 through the shower head 31.
  • An [0038] exhaust line 41 connected to a gas exhaust unit 45 is provided at a bottom portion of the chamber 12. Additionally, a gate valve G is installed at a sidewall of the chamber 12 so that the wafer W can be transferred between the chamber 12 and the neighboring transfer chamber 3.
  • The [0039] shower head 31 serving as the upper electrode is connected to a low pass filter (LPF) 52 and a high frequency power supply 50 via a matching unit 51. The susceptor 15 serving as the lower electrode is connected to a high frequency power supply 60 via a matching unit 61.
  • One end of a [0040] gas line 71 is connected to the gas supply line 37, and the other end thereof is connected to a N2 gas supply source 70 for supplying an N2 gas used as a charge removal gas into the chamber 12. A valve 72 is installed at the gas line 71. Further, an ultraviolet irradiation unit 75 including an ultraviolet irradiation lamp is provided at the sidewall of the chamber 12 such that the ultraviolet irradiation unit 75 is positioned close to the electrostatic chuck 21, and is connected to an ultraviolet irradiation power supply 76. The valve 72 and ultraviolet irradiation power supply 76 are controlled by a charge removal controller 80. In other words, the charge removal controller 80 signals the valve 72 to be opened at a predetermined timing to supply the N2 gas from the N2 gas supply source 70 through the shower head 31 into the chamber 12. Simultaneously, the charge removal controller 80 signals the ultraviolet irradiation power supply 76 to be turned on at a predetermined timing to irradiate ultraviolet ray from the ultraviolet irradiation unit 75 to the N2 gas, thereby dissociating and converting the N2 gas to monatomic N atoms in the chamber 12. The monatomic N atoms contribute to charge removal of the wafers W electrically charged on the electrostatic chuck 21.
  • An [0041] etching chamber 1 b has the same structure as the etching chamber 1 a. Furthermore, the ashing chambers 2 a, 2 b each have the same structure as the etching chamber 1 a with a minor exception of, e.g., using O2 gas as an ashing gas and a processing pressure different from that of the etching chamber 1 a.
  • Hereinafter, a detailed description will now be given for an operation of the multichamber-[0042] type processing apparatus 100. In this respect, there will be described a process of forming via holes and trenches on a low-k film on a Cu wire by a dual damascene technique in which via holes and trenches are first etched followed by an ashing.
  • In reference to FIG. 3A, a [0043] liner layer 82 made of SiN or SiC is formed on a bottom layer, i.e., Cu wire 81, and a low-k film 83 is formed thereon. With such structure, a via hole 86 is formed in the low-k film 83 by employing a resist film 85 as a mask. Then, the first resist film 85 is removed from the structure by an ashing process and a sacrificial film 87 is formed, as shown in FIG. 3B. In FIG. 3C, a resist film 88 to be used in a trench etching process is formed on the sacrificial film 87. Thus formed structure is subject to the etching and ashing processes in the multichamber-type processing apparatus 100 in accordance with to the present invention.
  • In reference to FIG. 4, the [0044] cassette 5 is loaded into one or both of the wafer cassette chambers 4 a, 4 b of the multichamber-type processing apparatus 100(step 1). In this regard, the wafers W may be mounted in both cassettes 5 of the wafer cassette chambers 4 a, 4 b, or in just one cassette 5 of the wafer cassette chambers 4 a, 4 b, leaving the other cassette 5 empty. At this time, ambient pressures of the transfer chamber 3, etching chambers 1 a, 1 b, and ashing chambers 2 a, 2 b are under predetermined vacuum levels. However, when the cassettes 5 are transferred into the wafer cassette chambers 4 a, 4 b, the ambient pressure of the wafer cassette chambers 4 a, 4 b becomes atmospheric, but prior to processing of the wafer W, the wafer cassette chambers 4 a, 4 b are evacuated, thereby establishing predetermined vacuum levels therein.
  • The hand [0045] 7 of the wafer transfer mechanism 6 of the transfer chamber 3 enters one of the wafer cassette chambers 4 a or 4 b, and a single wafer W is placed on the hand 7 (step 2). The wafer transfer mechanism 6 transfers the wafer W to a position in the transfer chamber 3 adjacent to the etching chamber 1 a while carrying the wafer W on the hand 7, the gate valve G between the etching chamber 1 a and the transfer chamber 3 is opened, and the wafer W is transferred into the etching chamber 1 a (step 3). The wafer W is then mounted on an electrostatic chuck 21 in the etching chamber 1 a (step 4). Specifically, the hand 7 transfers the wafer W onto the lift pin 24 protruding from the electrostatic chuck 21, and after the hand 7 is retracted from the etching chamber 1 a out to the transfer chamber 3 the lift pin 24 is then lowered, to place the wafer W on the electrostatic chuck 21.
  • After the hand [0046] 7 is retracted from the etching chamber 1 a out to the transfer chamber 3 and the gate valve G is closed, the direct current is applied to the electrode 22 embedded in the electrostatic chuck 21 from the DC power supply 23 to electrostatically adsorb the wafer W to the electrostatic chuck 21 by the electrostatic force, such as the Coulomb force or the Johnsen-Rahbek force (step 5). Furthermore, the etching chamber 1 a is preset to have a lower ambient pressure than that of the transfer chamber 3, thereby preventing small amounts of residual gas containing F from flowing from the etching chamber 1 a into the transfer chamber 3 when the gate valve G is opened.
  • Thereafter, the [0047] valves 39 are opened to supply an etching gas of a predetermined flow rate from the etching gas source 40 through the shower head 31 into the chamber 12, and the gas exhaust unit 45 is controlled to maintain an ambient pressure of the chamber 12 ranging from about 1 to about 10 Pa. The high frequency power is applied from the high frequency power supply 50 and the high frequency power supply 60 to the shower head 31 serving as the upper electrode and the susceptor 15 serving as the lower electrode, respectively, enabling a generation of a plasma with the etching gas in order to etch the low-k film 83 of the wafer W to form the trench 89 on the wafer W (step 6), as shown in FIG. 5A.
  • After the completion of the etching process, the supplying of the etching gas into the [0048] chamber 12 along with the application of the direct current to the electrostatic chuck 21 is stopped (step 7). The chamber 12 is then purged using a purge gas (step 8).
  • Despite ceased supply of the direct current to the [0049] electrostatic chuck 21, the charge remains on the wafer W. At such state, there is a great difficulty in separating the wafer W from the electrostatic chuck 21. In addition, when the wafer W is placed on the hand 7 of the wafer transfer mechanism 6, the wafer W is easily misplaced on the hand 7. Accordingly, there remains a need to remove the charge on the wafer W. In accordance with the first embodiment of the present invention, the N2 gas is supplied from the N2 gas supply source 70 through the shower head 31 into the chamber 12, while the ultraviolet ray is irradiated from the ultraviolet irradiation unit 75 to the N2 gas to convert the N2 gas into the monatomic N atoms. As a result, the monatomic N atoms are supplied into the chamber 12 to remove the charge on the wafer W on the electrostatic chuck 21 (step 9).
  • Upon completion of removal of the wafer W, a pressure of the [0050] chamber 12 is adjusted; the gate valve G is opened; and the lift pin 24 emerges from the electrostatic chuck 21 to lift the wafer W from the electrostatic chuck 21. The hand 7 of the wafer transfer mechanism 6 is inserted into the chamber 12 to receive the wafer W (step 10).
  • Then, the wafer W is transferred from the [0051] etching chamber 1 a into the transfer chamber 3, and is placed on the aligning unit 8 to be aligned. Thereafter, the wafer W is transferred using the wafer transfer mechanism 6 to a position in the transfer chamber 3 adjacent to an ashing chamber 2 a, a gate valve G between the ashing chamber 2 a and the transfer chamber 3 is opened, and the wafer W is transferred into the ashing chamber 2 a (step 11). The wafer W is placed on an electrostatic chuck in the ashing chamber 2 a (step 12). Similar to the case of etching chamber 1 a, the wafer W is electrostatically adsorbed to the electrostatic chuck (step 13). Additionally, the ashing gas, such as O2 gas, is used in the ashing process. Because the ashing process is conducted at higher pressure than in the case of the etching process, the ashing chamber 2 a has higher ambient pressure than the transfer chamber 3, thereby preventing the compounds, containing F, from flowing from the transfer chamber 3 into the ashing chamber 2 a.
  • Similar to the etching process, the ashing gas of a predetermined flow rate is supplied from an ashing gas source (not shown) through the [0052] shower head 31 into the chamber 12, and the gas exhaust unit 45 is controlled to maintain an ambient pressure of the chamber 12 ranging from 10 to 20 Pa. Additionally, the ashing gas is converted into a plasma to remove the sacrificial film 87 and a resist film 88 through the ashing process and to simultaneously remove an exposed portion of the liner layer 82 (step 14), as shown in FIG. 5B.
  • Upon completion of the ashing process, the supplying of the ashing gas into the [0053] chamber 12 is stopped and the application of the direct current to the electrostatic chuck 21 is simultaneously stopped (step 15). The chamber 12 of the ashing chamber 2 a is then purged using the purge gas (step 16). Subsequently, charge on the wafer W adsorbed to the electrostatic chuck 21 is subject to charge removal(step 17), similar to the etching process.
  • Upon completion of the charge removal on the wafer W, pressure of the [0054] chamber 12 is adjusted, and the gate valve G is opened. The hand 7 of the wafer transfer mechanism 6 then receives the wafer W from the electrostatic chuck 21 and transfers the wafer W into the cassette 5 of the wafer cassette chamber 4 a or 4 b (step 18), thereby completing the etching and ashing of the single wafer W.
  • While above wafer W is subject to the etching process in the [0055] etching chamber 1 a, a wafer W is transferred by use of the wafer transfer mechanism 6 into the etching chamber 1 b to be etched and then transferred from the etching chamber 1 b into the ashing chamber 2 b to be ashed. In other words, the etching and ashing processes are conducted using the two sets of etching chambers and ashing chambers, thereby ensuring a relatively high throughput.
  • The dissociated monatomic N atoms are used to remove the charge on the wafer W. The monatomic N atoms do not incur damages to the wafer W unlike nitrogen ions and plasmas, while quickly and reliably capturing electrons from the wafer W by merely supplying same to the wafer W. Specifically, because the dissociated monatomic N atoms have lower energy than the nitrogen ions and plasmas, damage to the wafer W by the monatomic N atoms is relatively small. Additionally, since dissociation energy of nitrogen is lower than energy required to convert nitrogen molecules into the nitrogen ions or plasmas, and the monatomic N atoms have relatively high electronegativity, the monatomic N atoms easily capture the electrons from the wafer W, and thus quickly and reliably removing the charge on the wafer W. Accordingly, the multichamber-[0056] type processing apparatus 100 ensures excellent accuracy and throughput.
  • In this respect, energy of the ultraviolet ray required to produce the dissociated monatomic N atoms is controlled to be higher than the dissociation energy of N[0057] 2 and less than ionization energy of N2, so as to effectively convert the N2 gas into the monatomic N atoms without ionizing the N2 gas. Specifically, since the dissociation energy of N2 is about 9.8 eV at 0 K and the ionization energy of N2 is about 15.6 eV at 0 K, it is preferable that the energy of the ultraviolet ray irradiated to the N2 gas be about 9.8 to about 15.6 eV at a temperature of 0 K.
  • Furthermore, since the [0058] etching chambers 1 a, 1 b each have lower ambient pressure than the transfer chamber 3 and the ashing chambers 2 a, 2 b each have higher ambient pressure than the transfer chamber 3, even a small amount of residual etching gas in etching chambers 1 a, 1 b, which contains halogen gas is prevented from flowing into the transfer chamber 3. Additionally, even in a case of the etching gas leaking from the etching chambers 1 a, 1 b into the transfer chamber 3, the flow of the etching gas from the transfer chamber 3 into the ashing chambers 2 a, 2 b is substantially prevented. In case that the Cu wire is applied to the wafer W, due to very high reactivity of Cu, it is vital to prevent the etching gas from flowing into the ashing chambers 2 a, 2 b, in which Cu is exposed to the atmosphere Furthermore, since the trench etching; and the ashing and liner removal are conducted in different chambers, it is possible to avoid the deterioration in etching selectivity due to the residual gas when the trench etching is performed, the ashing and liner removal are conducted in the same chamber, thereby ensuring excellent throughput.
  • As well, the misalignment between the hand [0059] 7 and the wafer W is easily overcome by the charge removal of the wafer W, thereby improving accuracy in aligning the wafer W with the hand 7. Moreover, in the present invention, the aligning unit 8 is installed in the transfer chamber 3 to align the wafer W with the hand 7, thereby further improving accuracy in aligning the wafer W with the hand 7.
  • As described above, the charge removal of the wafer W removes a remaining electric charge from the wafer W on the electrostatic chuck, but the electric charge negatively affects the wafer W when the hand [0060] 7 is electrically charged. Therefore, charge on the hand 7 may be preferably removed before or after the wafer W is loaded from the hand 7 to the electrostatic chuck 21; at the time when the wafer W is loaded from the hand 7 to the electrostatic chuck 21; before or after the hand 7 receives the wafer W from the electrostatic chuck 21; or at the time when the hand 7 receives the wafer W from the electrostatic chuck 21. As shown in FIG. 6, an N2 gas inlet 91 and an ultraviolet irradiation unit 92 may be installed in the transfer chamber 3 to remove the charge on the hand 7 and wafer W in the transfer chamber 3. In the present invention, the N2 gas supply source 70 and the etching gas source 40 are separately installed in the processing apparatus 100, but the etching gas may be supplied through the N2 gas supply source 70 into the chamber 12 in the case of using the N2 gas as the etching gas.
  • With reference to FIG. 7, there is illustrated another etching chamber using a monatomic nitrogen atom supply unit. In FIGS. 2 and 7, the same reference numerals refer to the same elements throughout, and description thereof is omitted. As shown in FIG. 7, an end of a [0061] gas pipe 93 made of a dielectric material communicates with the inside of the chamber 12 through a sidewall of the chamber 12, and the other end of the gas pipe 93 is connected to a N2 gas supply source 94. At this time, the wafer W in the chamber 12 is positioned close to the gas pipe 93. In addition, an induction coil 96 is wound around the gas pipe 93, and the high frequency power is applied from a high frequency power supply 97 to the induction coil 96. Further, a valve 95 is installed at the gas pipe 93.
  • In the [0062] etching chamber 12 of FIG. 7, the valve 95 is opened to supply the N2 gas from the N2 gas supply source 94 through the gas pipe 93 into the etching chamber 12, and the high frequency is simultaneously applied from the high frequency power supply 97 to the induction coil 96. Thereby, the N2 gas passing through the gas pipe 93 is dissociated to the monatomic N atoms due to an electromagnetic induction, and thus the monatomic N atoms are supplied into the chamber 12. Accordingly, the wafer W is effectively neutralized without being damaged. At this time, energy applied from the high frequency power supply 97 to the induction coil 96 is higher than the dissociation energy of N2 and less than the ionization energy of N2.
  • Numerous modifications and variations of the present invention are possible in light of the above teachings. For instance, in the present invention, the processing apparatus is described to include the two etching chambers and the two ashing chambers, however, it may only include one etching chamber and one ashing chamber, or the three or more etching chambers and the three or more ashing chambers. [0063]
  • Additionally, in the present invention, only the trench etching and ashing processes according to the dual damascene structure are disclosed. However, the present invention may be applied to etching and ashing processes for other structures. Further, the present invention may be applied to a repeating processing of different types of etching processes. Furthermore, the present invention may be applied to a film-formation process as well as the etching and ashing processes. Moreover, a unit for supplying the dissociated monatomic N atoms into the chamber can be variously modified within the scope of the appended claims. [0064]
  • Moreover, in the present invention, the semiconductor wafer is used as a substrate, but the present invention may be applied to the other substrates, such as glass substrates for LCD. [0065]
  • As illustrated by the above description, the present invention provides a multichamber-type processing apparatus, which includes the transfer chamber and the processing chambers connected thereto, in which dissociated monatomic N atoms are supplied into the processing chambers. Accordingly, the substrate electrostatically adsorbed to an electrostatic chuck is quickly and reliably neutralized by relatively low energy without being damaged, thereby ensuring excellent accuracy and throughput. [0066]
  • While the invention has been shown and descried with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit ands scope of the invention as defined in the following claims. [0067]

Claims (20)

What is claimed is:
1. A processing apparatus, comprising:
a transfer chamber;
a plurality of processing chambers for processing therein a substrate to be processed, the processing chambers being coupled to the transfer chamber;
a number of electrostatic chucks which are provided in the processing chambers, to electrostatically adsorb the substrate to be processed thereto;
a transfer mechanism installed in the transfer chamber to transfer the substrate to be processed between the processing chambers and the transfer chamber; and
a monatomic nitrogen atom supply unit for supplying dissociated monatomic nitrogen atoms into the processing chambers.
2. A processing apparatus, comprising:
a transfer chamber;
a first processing chamber coupled to the transfer chamber, the first processing chamber performing therein a first process on a substrate to be processed;
a second processing chamber coupled to the transfer chamber, the second processing chamber performing therein a second process on the substrate to be processed;
a transfer mechanism installed in the transfer chamber for sequentially transferring the substrate to be processed into the first and second processing chamber;
electrostatic chucks provided in the first and the second processing chambers, the electrostatic chucks electrostatically adsorbing thereto the substrate to be processed; and
a monatomic nitrogen atom supply unit for supplying dissociated monatomic nitrogen atoms into the first and second processing chamber.
3. The processing apparatus of claim 1, wherein the monatomic nitrogen atom supply unit supplies the dissociated monatomic nitrogen atoms to a close proximity of the electrostatic chucks.
4. The processing apparatus of claim 2, wherein the monatomic nitrogen atom supply unit supplies the dissociated monatomic nitrogen atoms to a close proximity of the electrostatic chucks.
5. The processing apparatus of claim 2, wherein the monatomic nitrogen atom supply unit supplies the dissociated monatomic nitrogen atoms into the transfer chamber.
6. The processing apparatus of claim 2, further comprising a controller for controlling a supply timing of the dissociated monatomic nitrogen atoms from the monatomic nitrogen atom supply unit.
7. The processing apparatus of claim 2, wherein the monatomic nitrogen atom supply unit includes a pipe communicating with the processing chambers, an N2 gas supply source for supplying an N2 gas through the pipe, and an energy supply unit for applying energy to the N2 gas in the pipe or in the processing chambers to convert the N2 gas into the dissociated monatomic nitrogen atoms.
8. The processing apparatus of claim 6, wherein the energy supply unit has an ultraviolet irradiation unit for irradiating ultraviolet ray to the N2 gas.
9. The processing apparatus of claim 6, wherein the pipe has a dielectric portion, and the energy supply unit has an induction coil wound around the dielectric portion and a high frequency power supply for applying a high frequency to the induction coil.
10. The processing apparatus of claims 6, wherein the energy supply unit applies energy which is higher than the dissociation energy of the N2 gas and lower than the ionization energy of the N2 gas, to the N2 gas.
11. A processing method employing a processing apparatus, which includes a transfer chamber, a plurality of processing chambers coupled to the transfer chamber, to process therein a target substrate, and a number of electrostatic chucks provided in the processing chambers to electrostatically adsorb the target substrate thereto, comprising the steps of:
transferring the target substrate from the transfer chamber into one of the processing chambers by using a transfer mechanism;
placing the target substrate on an electrostatic chuck displaced in said one processing chamber;
applying a direct current to an electrode embedded in the electrostatic chuck to electrostatically absorb the target substrate to the electrostatic chuck;
processing the target substrate in said one processing chamber, to thereby obtain a processed substrate;
terminating the application of the direct current to the electrostatic chuck;
supplying dissociated monatomic nitrogen atoms into said one processing chamber to remove charge on the electrostatic chuck; and
transferring the processed substrate into the transfer chamber using the transfer mechanism.
12. The processing method of claim 11, wherein the dissociated monatomic nitrogen atoms are supplied near the electrostatic chucks.
13. A processing method using a processing apparatus, which includes a transfer chamber, a first processing chamber coupled to the transfer chamber, for performing a first process on a target substrate therein, a second processing chamber coupled to the transfer chamber for performing a second process on the target substrate therein, and a first and second electrostatic chucks provided in the first and second processing chambers, respectively, to electrostatically adsorb the substrate thereto, comprising the steps of:
transferring the target substrate from the transfer chamber into the first processing chamber using a transfer mechanism;
placing the target substrate on the first electrostatic chuck in the first processing chamber;
applying a direct current to an electrode of the first electrostatic chuck to electrostatically adsorb the target substrate to the first electrostatic chuck;
performing a first process on the target substrate in the first processing chamber to thereby obtain a processed substrate;
terminating the application of the direct current to the first electrostatic chuck;
supplying dissociated monatomic nitrogen atoms into the first processing chamber to remove charge on the first electrostatic chuck;
transferring the processed substrate into the transfer chamber using the transfer mechanism;
transferring the processed substrate from the transfer chamber into the second processing chamber;
placing the processed substrate on the second electrostatic chuck in the second processing chamber;
applying the direct current to an electrode of the second electrostatic chuck to electrostatically adsorb the processed substrate to the second electrostatic chuck; and
performing a second process on the processed substrate in the processed second processing chamber.
14. The processing method of claim 13, wherein the dissociated monatomic nitrogen atoms are supplied near the electrostatic chucks.
15. The processing method of claim 13, further comprising the step of supplying the dissociated monatomic nitrogen atoms into the transfer chamber.
16. The processing method of claim 13, wherein the dissociated monatomic nitrogen atoms are produced by irradiating ultraviolet ray onto N2 gas.
17. The processing method of claim 13, wherein the dissociated monatomic nitrogen atoms are produced by applying energy, generated during application of a high frequency power to an induction coil, onto N2 gas.
18. The processing method of claim 13, wherein the dissociated monatomic nitrogen atoms are produced by applying energy, higher than dissociation energy of N2 and lower than ionization energy of N2, to the N2 gas. 12. The processing method of claim 10, wherein the dissociated monatomic nitrogen atoms are supplied near the electrostatic chucks.
19. A processing apparatus, comprising:
a processing chamber for processing therein a substrate to be processed;
an electrostatic chuck installed in the processing chamber, for adsorbing the substrate to be process thereto; and
a monatomic N atom supply unit for supplying dissociated monoatomic N atoms into the processing chamber.
20. A processing method employing a processing apparatus, which includes a processing chamber for processing a substrate to be processed and an electrostatic chuck for adsorbing the substrate to be process thereto, comprising the steps of:
mounting the substrate to be processed on the electrostatic chuck disposed in the processing chamber; and
supplying dissociated monatomic N atoms into the processing chamber.
US10/814,258 2003-04-01 2004-04-01 Processing apparatus and method Abandoned US20040194888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/238,066 US8017525B2 (en) 2003-04-01 2008-09-25 Processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003098162A JP4372443B2 (en) 2003-04-01 2003-04-01 Processing apparatus and processing method
JP2003-098162 2003-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/238,066 Division US8017525B2 (en) 2003-04-01 2008-09-25 Processing method

Publications (1)

Publication Number Publication Date
US20040194888A1 true US20040194888A1 (en) 2004-10-07

Family

ID=33095178

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/814,258 Abandoned US20040194888A1 (en) 2003-04-01 2004-04-01 Processing apparatus and method
US12/238,066 Expired - Fee Related US8017525B2 (en) 2003-04-01 2008-09-25 Processing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/238,066 Expired - Fee Related US8017525B2 (en) 2003-04-01 2008-09-25 Processing method

Country Status (2)

Country Link
US (2) US20040194888A1 (en)
JP (1) JP4372443B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287813A1 (en) * 2004-06-29 2005-12-29 Takeshi Kikawa Manufacturing method of semiconductor device and semiconductor manufacturing apparatus
US20060137988A1 (en) * 2004-12-28 2006-06-29 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
US20100166980A1 (en) * 2008-12-26 2010-07-01 Canon Anelva Corporation Inline vacuum processing apparatus, method of controlling the same, and information recording medium manufacturing method
US20110171830A1 (en) * 2004-11-01 2011-07-14 Tokyo Electron Limited Substrate processing method, system and program
US20120031330A1 (en) * 2010-08-04 2012-02-09 Toshiro Tsumori Semiconductor substrate manufacturing apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688764B2 (en) * 2006-09-19 2011-05-25 東京エレクトロン株式会社 Substrate removal method for substrate processing apparatus
US20080247114A1 (en) * 2007-04-06 2008-10-09 Yeo Jong-Mo Method for removing static electricity from a plate
JP2012181445A (en) 2011-03-02 2012-09-20 Seiko Epson Corp Electrical apparatus
JP6770428B2 (en) * 2016-12-28 2020-10-14 株式会社Screenホールディングス Static eliminator and static eliminator
KR20210119203A (en) * 2020-03-24 2021-10-05 (주)선재하이테크 On-off control system of ionizer using VUV
KR20230085050A (en) * 2021-12-06 2023-06-13 (주)선재하이테크 Flexible VUV ionizer for vacuum chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364667A (en) * 1992-01-17 1994-11-15 Amtech Systems, Inc. Photo-assisted chemical vapor deposition method
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5838121A (en) * 1996-11-18 1998-11-17 Applied Materials, Inc. Dual blade robot
US6086679A (en) * 1997-10-24 2000-07-11 Quester Technology, Inc. Deposition systems and processes for transport polymerization and chemical vapor deposition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177087A (en) 1992-12-09 1994-06-24 Sony Corp Manufacture of semiconductor device
JP2837087B2 (en) 1993-12-28 1998-12-14 アプライド マテリアルズ インコーポレイテッド Thin film formation method
JP3163973B2 (en) * 1996-03-26 2001-05-08 日本電気株式会社 Semiconductor wafer chuck device and semiconductor wafer peeling method
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
JP3899150B2 (en) 1996-12-05 2007-03-28 シャープ株式会社 Insulating film formation method
US20010052323A1 (en) 1999-02-17 2001-12-20 Ellie Yieh Method and apparatus for forming material layers from atomic gasses
TW476128B (en) 1999-09-24 2002-02-11 Applied Materials Inc Integrated method and apparatus for forming an enhanced capacitor
JP2001176870A (en) 1999-12-21 2001-06-29 Toyota Motor Corp Method for forming nitride film
US6475930B1 (en) * 2000-01-31 2002-11-05 Motorola, Inc. UV cure process and tool for low k film formation
JP2002151468A (en) 2000-10-31 2002-05-24 Applied Materials Inc Method and system for dry etching and method and system for forming gate electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364667A (en) * 1992-01-17 1994-11-15 Amtech Systems, Inc. Photo-assisted chemical vapor deposition method
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5838121A (en) * 1996-11-18 1998-11-17 Applied Materials, Inc. Dual blade robot
US6086679A (en) * 1997-10-24 2000-07-11 Quester Technology, Inc. Deposition systems and processes for transport polymerization and chemical vapor deposition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287813A1 (en) * 2004-06-29 2005-12-29 Takeshi Kikawa Manufacturing method of semiconductor device and semiconductor manufacturing apparatus
US20110171830A1 (en) * 2004-11-01 2011-07-14 Tokyo Electron Limited Substrate processing method, system and program
US8257601B2 (en) * 2004-11-01 2012-09-04 Tokyo Electron Limited Substrate processing method, system and program
US8475623B2 (en) 2004-11-01 2013-07-02 Tokyo Electron Limited Substrate processing method, system and program
US20060137988A1 (en) * 2004-12-28 2006-06-29 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
US20100166980A1 (en) * 2008-12-26 2010-07-01 Canon Anelva Corporation Inline vacuum processing apparatus, method of controlling the same, and information recording medium manufacturing method
US8900363B2 (en) * 2008-12-26 2014-12-02 Canon Anelva Corporation Inline vacuum processing apparatus, method of controlling the same, and information recording medium manufacturing method
US20120031330A1 (en) * 2010-08-04 2012-02-09 Toshiro Tsumori Semiconductor substrate manufacturing apparatus
US9139933B2 (en) * 2010-08-04 2015-09-22 Nuflare Technology, Inc. Semiconductor substrate manufacturing apparatus

Also Published As

Publication number Publication date
US20090026171A1 (en) 2009-01-29
JP4372443B2 (en) 2009-11-25
JP2004304123A (en) 2004-10-28
US8017525B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
US8017525B2 (en) Processing method
US10354888B2 (en) Method and apparatus for anisotropic tungsten etching
TWI765861B (en) Methods and apparatus for in-situ cleaning of copper surfaces and deposition and removal of self-assembled monolayers
US9396961B2 (en) Integrated etch/clean for dielectric etch applications
TWI654683B (en) Methods for etching a dielectric barrier layer in a dual damascene structure
US9299579B2 (en) Etching method and plasma processing apparatus
JP4657473B2 (en) Plasma processing equipment
US10475659B2 (en) Method of processing target object
JP4049214B2 (en) Insulating film forming method and insulating film forming apparatus
TW201631656A (en) Etching method
KR102107248B1 (en) Method for etching film containing cobalt and palladium
US20070284337A1 (en) Etching method, plasma processing system and storage medium
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
JP4322484B2 (en) Plasma processing method and plasma processing apparatus
JP4656364B2 (en) Plasma processing method
US20110177695A1 (en) Substrate processing method and storage medium
US9953862B2 (en) Plasma processing method and plasma processing apparatus
TW202002014A (en) Method and apparatus for processing substrate
JP2007221165A (en) Plasma-cvd film forming method and apparatus
US7456111B2 (en) Plasma etching method and plasma etching apparatus
KR101559874B1 (en) Substrate treating apparatus and chamber producing method
US10998223B2 (en) Method for processing target object
JP2004006575A (en) Etching method
KR20220011582A (en) Plasma processing method and plasma processing apparatus
US20180366334A1 (en) Substrate treatment method

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITO, TAKASHI;REEL/FRAME:015172/0684

Effective date: 20040323

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION