JP4656364B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP4656364B2
JP4656364B2 JP2003068129A JP2003068129A JP4656364B2 JP 4656364 B2 JP4656364 B2 JP 4656364B2 JP 2003068129 A JP2003068129 A JP 2003068129A JP 2003068129 A JP2003068129 A JP 2003068129A JP 4656364 B2 JP4656364 B2 JP 4656364B2
Authority
JP
Japan
Prior art keywords
chamber
frequency power
wafer
oxygen gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003068129A
Other languages
Japanese (ja)
Other versions
JP2004281528A (en
Inventor
嘉英 木原
貴志 松原
鵬文 邱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003068129A priority Critical patent/JP4656364B2/en
Publication of JP2004281528A publication Critical patent/JP2004281528A/en
Application granted granted Critical
Publication of JP4656364B2 publication Critical patent/JP4656364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、半導体ウエハ(以下、単に「ウエハ」と称す。)等の被処理体にプラズマエッチング(以下、単に「エッチング」と称す。)等の所定のプラズマ処理を施すプラズマ処理方法に関する。
【0002】
【従来の技術】
従来から、半導体装置やLCDの製造工程ではウエハやLCD基板等の被処理体に種々の成膜処理やエッチング処理等のプラズマ処理を施している。
【0003】
例えばエッチングを行なう場合には、例えば図4の(a)に示すような層構造を有する被処理体(例えば、ウエハ)Wのエッチングを行う。このウエハWは、図4の(a)に示すように、下層から上層に向けて拡散防止膜51、層間絶縁膜52、絶縁膜(例えば、シリコン酸化膜)53及びレジスト膜54を表面に有し、エッチングガスのプラズマを用いて図4の(a)、(b)の順序でレジスト膜54に形成されたパターン54Aに即してシリコン酸化膜53をエッチングして例えば配線用のトレンチ53Aを形成する。次いで、ウエハWにアッシングを施して同図の(c)に示すようにレジスト膜54を除去してシリコン酸化膜53を表出させる。更に、図示してないが後工程で層間絶縁膜にビアホールを形成する。
【0004】
このようなエッチングには例えば平行平板型のプラズマ処理装置がプラズマ処理装置として用いられる。この種のプラズマ処理装置は、例えば、気密構造のチャンバと、チャンバ内でウエハを載置し且つ下部電極を兼ねる載置台と、この載置台の上方に配置された上部電極とを備え、下部電極に高周波電力を印加してチャンバ内でプラズマを発生させ、上述のようにレジスト膜54を介して所定のパターン54Aでシリコン酸化膜53のエッチングを行って配線用のトレンチ53Aを形成する。また、エッチング後のアッシングは同一チャンバ内あるいは別のチャンバ内で行われる。図5は、このプラズマ処理装置の載置台の端部を示す断面図の一例である。
【0005】
図5に示す載置台61は、導電性材料、例えば表面がアルマイト加工されたアルミニウムによって形成されている。この載置台61の載置面にはウエハWを固定する静電チャック62が配置されている。この静電チャック62は、シート状の絶縁体62A間に電極62Bが介在し、電極62Bに直流電圧を印加することにより、クーロン力でウエハWを静電吸着する。また、載置台61の外周縁部にはフォーカスリング63が配置され、このフォーカスリング63によって載置台61上に静電チャック62を介して固定されたウエハWを囲んでいる。
【0006】
ところで、載置台61はアルミニウムによって形成されているため、ウエハWの上方に形成されるプラズマに直接曝される部位があると、その部位がプラズマによってスパッタされ、ウエハWにアルミニウム等を含む望ましくない膜が形成される虞がある。そこで、図5に示すように、載置台61の載置面(静電チャック62が配置されている部分)の直径がウエハWの直径より僅かに(例えば、4mm程度)小さく形成されている。そして、フォーカスリング63の載置面がウエハWの外径より大きく形成され、上から見た場合に載置台61の上面がプラズマに直接曝されないようにしてある。
【0007】
ところが、載置台61が図5に示すように構成されていると、シリコン酸化膜やレジスト膜のエッチングによる副生成物がウエハWの端部裏側まで廻り込み、ウエハWの端部裏面側、特に裏面の傾斜部(以下、「ベベル部」と称す。)に副生成物がポリマー等として薄膜状に堆積することがある。ベベル部にポリマー等が堆積すると、後工程でこの堆積物(ポリマー等の物質)がベベル部から剥離してパーティクルの原因になり、あるいは堆積物によって段差ができてレジスト露光時にピントが合わなくなる等のトラブルの原因になる虞がある。そのため、このような堆積物の生成をできる限り防止する必要がある。
【0008】
そこで、このような堆積物を除去するために、例えばウエハをエッチング用のチャンバから別のチャンバへ搬送し、別のチャンバ内でアッシングを行ってレジスト膜を除去すると共にウエハ端部の堆積物を除去している。
【0009】
また、堆積物を除去する別の方法として、例えば、エッチングを行ったチャンバ内でウエハをピンで持ち上げて支持した状態で不活性ガスのプラズマを立ててウエハ裏面側の堆積物を除去するプラズマ処理方法が提案されている(特許文献1)。更に、この文献には不活性ガスに代えて酸化性ガス(例えば、酸素ガス)を供給してウエハ裏面側に酸化膜を形成し、この酸化膜によって不純物の付着を防止する方法が提案されている。これらの場合チャンバ内の圧力を50〜300mTorrに設定すると共に、25〜100Wの高周波電力を載置台に印加してプラズマ処理を行う。
【0010】
また、特許文献1と同種の処理方法として、CVD成膜後、同一チャンバ内でウエハをガスシャワーヘッドの直下までピンで押し上げて保持し、ガスシャワーヘッドからウエハの表面にパージガスを供給した状態で別のガス供給部からチャンバ内にF系ガス等のエッチングガスを供給してプラズマ化してウエハの裏面や側面の堆積物を除去する基板処理方法及び基板処理装置が提案されている(特許文献2)。
【0011】
【特許文献1】
米国特許第4962049号明細書(第2欄〜第3欄、及び実施例1)
【特許文献2】
特開平9−283459号公報(段落[0040]〜[0042])
【0012】
【発明が解決しようとする課題】
しかしながら、アッシング用チャンバ内でウエハ端部の堆積物を除去する方法の場合には、エッチング用のチャンバとは別にアッシング用チャンバが必要になり、装置コストが高くなると共に装置サイズが大きくなり、しかもエッチング用のチャンバからアッシング用のチャンバへウエハを搬送するため、スループットが低下するという課題があった。特許文献1、2のようにピンでウエハを持ち上げる方法の場合には、ウエハ端部の堆積物を除去する場合にも下部電極にプラズマ発生用の高周波電力を印加するため、プラズマ中のイオンが下部電極側に強く衝突し、チャンバ内の各種の部品を損傷する虞があった。
【0013】
一方、近年はマスクパターンが超微細化し、パターン通りにエッチングをすることが難しくなって来ているため、上下の各電極に周波数の異なった高周波電力を印加する二周波印加方式の平行平板型プラズマ処理装置が用いられ、上部電極にはプラズマを発生させるために周波数の高い高周波電力を印加し、下部電極にはプラズマ中のイオンを下部電極側に引き込むために上部電極より周波数の低い高周波電力を印加する。ところが、下部電極に印加する高周波電力は、周波数及び印加電力共に低く設定されているため、特許文献1、2のようにピンを用いてウエハを下部電極から持ち上げてウエハ端部の堆積物を除去する方法では、堆積物を十分に除去することができないという課題があった。
【0014】
本発明は、上記課題を解決するためになされたもので、同一のチャンバ内で連続して行われたエッチング及びアッシングによりウエハ等の被処理体の端部に付着した物質を迅速且つ確実に除去することができ、しかもチャンバ内の各部品のプラズマによる損傷を防止することができるプラズマ処理方法を提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明の請求項1に記載のプラズマ処理方法は、一つのチャンバ内に配置され且つ第1の高周波電力を印加してプラズマを発生させる上部電極と、上記上部電極の下方に配置され且つ上記第1の高周波電力より周波数の低い第2の高周波電力を印加する下部電極を兼ねる被処理体の載置台と、上記載置台に設けられ且つ上記載置台の載置面において上記被処理体を昇降させる複数のピンと、上記各機器を制御する制御装置と、を備えたプラズマ処理装置を用いて、上記制御装置を介して上記第1の高周波電力の周波数を13.56MHz以上に設定すると共に上記第2の高周波電力の周波数を3.2MHz以下に設定した状態で、上記チャンバ内で上記載置台上に載置された上記被処理体に対してエッチングガスを用いてエッチングを行って上記被処理体の端部に付着した物質を、上記エッチングに続いて上記エッチングガスを酸素ガスに置換し酸素ガスの圧力を20〜800mmTorrの範囲内に設定してアッシングを行った後に上記アッシング時から続けて上記チャンバ内に供給される酸素ガスから生成させるプラズマによって除去する方法であって、上記制御装置の制御下で、上記上部電極に印加する第1の高周波電力の密度を2.83〜4.25W/cm に設定すると共に上記載置台に印加する第2の高周波電力の密度を0.28W/cm 以下に設定する工程と、上記チャンバ内の上記酸素ガスの圧力を上記アッシング時とは異なる400〜800mTorrの範囲内に設定すると共に上記チャンバ内での上記酸素ガスの滞留時間を50〜260m秒に設定する工程と、上記複数のピンを介して上記載置台から上記被処理体を離した状態で上記第1の高周波電力を印加した上記上部電極によって上記酸素ガスをプラズマ化する工程と、を備えていることを特徴とするものである。
【0024】
【発明の実施の形態】
以下、図1〜図3に示す実施形態に基づいて本発明を説明する。
まず、本実施形態に用いられるプラズマ処理装置について図1を参照しながら説明する。このプラズマ処理装置1は、例えば図1に示すように二周波印加方式の平行平板型のプラズマ処理装置として構成され、例えば図4に示すウエハW中のシリコン酸化膜(SiO膜)を所定のパターンに即してエッチングする。
【0025】
上記プラズマ処理装置1は、図1に示すように、例えば表面が陽極酸化処理されたアルミニウム等の金属により形成され且つ保安接地されたチャンバ2と、このチャンバ2内の底部に絶縁体3を介して配置され且つ下部電極を兼ねる載置台(以下、適宜「サセプタ」または「下部電極」と称す。)4と、このサセプタ4の上方に配置された上部電極5と、本発明のプラズマ処理方法を実施する際のプログラムを有する制御装置(図示せず)とを備え、制御装置のプログラムによる制御下でウエハWのエッチング、アッシング及びウエハ端部の堆積物を除去する一連のプラズマ処理を行う。そして、上部電極5には整合器6を介して第1の高周波電源7が接続され、下部電極4には整合器8を介して第2の高周波電源9が接続されている。更に、上部電極5にはローパスフィルタ(LPF)10が接続され、サセプタ4にはハイパスフィルタ(HPF)11が接続されている。
【0026】
サセプタ4上には静電チャック12が設けられ、その上にはウエハWが載置されている。静電チャック12は、絶縁体間に電極12Aが介在して構成され、電極12Aに接続された直流電源13から直流電圧を印加することにより、クーロン力でウエハWを静電吸着する。そして、サセプタ4の外周縁部にはウエハWを囲むフォーカスリング14が配置されている。このフォーカスリング14はSi等からなり、エッチングの均一性を向上させている。
【0027】
また、サセプタ4内には複数(例えば、3本)のピン15(図2参照)が昇降可能に設けられ、これらのピン15を介してサセプタ4と搬出入口からチャンバ2内へ進入したウエハ搬送機構(図示せず)との間でウエハWの受け渡しを行う。これらのピン15は、後述のように制御装置の制御下でウエハWのエッチング及びアッシングを連続して行った後、所定寸法だけ上昇し、その位置を所定時間保持し、この間に酸素ガスのプラズマによってウエハW端部の堆積物Dを除去する。
【0028】
更に、サセプタ4内には冷媒流路4Aが形成され、その入口に接続された流入管16Aから冷媒(例えば、エチレングリコール水溶液等)が流入すると共にその出口に接続された流出管16Bから冷媒が流出し、冷媒が冷媒流路4A内を循環してサセプタ4を冷却する。また、サセプタ4内には静電チャック12を貫通して複数箇所で開口するガス流路4Bが形成され、このガス流路4B内にHeガス等の熱伝導度の高い伝熱性ガスを供給してガス流路4Bの開口部から静電チャック12とウエハW間に流出させ、サセプタ4とウエハW間の熱伝達性を高めている。
【0029】
また、上部電極5は、シャワーヘッド状の電極板5Aと、この電極板5Aを支持する支持体5Bとから構成され、絶縁体17を介してチャンバ2の上部に支持されている。この上部電極5と下部電極4は例えば10〜60mm離間している。また、支持体5Bの中央にはガス導入口5Cが設けられ、このガス導入口5Cにはガス供給管18を介して処理ガス供給源19が接続されている。ガス供給管18には上流側から下流側に向けてマスフローコントローラ20及びバルブ21が順次配設されている。処理ガス供給源19は、エッチングガスとして利用する複数のガス源を有している。エッチングガスとしては例えばCとArとO等の従来公知のガスを使用することができる。
【0030】
一方、チャンバ2の底部には排気管22が接続され、この排気管22には排気装置23が接続されている。また、チャンバ2の側壁の搬出入口にはゲートバルブ24が配設され、ゲートバルブ24が開放された搬出入口を介してウエハWを隣接するロードロック室(図示せず)とチャンバ2の間で搬送する。
【0031】
次に、上記プラズマ処理装置1を用いた本発明のプラズマ処理方法の一実施形態について図2の(a)、(b)を参照しながら説明する。まず、ゲートバルブ24を開放してウエハWをチャンバ2内に搬入し、静電チャック12上に載置する。次いで、ゲートバルブ24を閉じ、排気装置23によってチャンバ2内を減圧した後、ガス供給管18のバルブ21を開放し、例えばCとArとOを処理ガス供給源19から供給し、これらのガスをマスフローコントローラ20で所定の流量(例えば、C/Ar/Oの流量=140/650/24sccm)でエッチングガスとして上部電極5からチャンバ2内へ供給すると共にエッチングガスを所定の圧力に設定する。この状態で第1の高周波電源7から上部電極5へ例えば周波数が60MHzの第1の高周波電力を印加すると共に第2の高周波電源9から下部電極4へ例えば周波数が2MHzの第2の高周波電力を印加し、第1の高周波電力によりエッチングガスをプラズマ化すると共に第2の高周波電力によってプラズマ中のイオンを下部電極4に引き込んでイオンアシストによるエッチングの異方性を高め、ウエハW中のSiO膜を、レジスト膜を介してエッチングして例えば配線用のトレンチを形成する。この際、直流電源13を静電チャック12内の電極12Aに印加してウエハWを静電チャック12上に静電吸着する。
【0032】
上述のようにCとArとOとからなるエッチングガスによりSiO膜をエッチングすると、SiO膜及びレジスト膜から副生成物が生成して図2の(a)に模式的に示すようにウエハWの端部にポリマー等が堆積して堆積物を形成する。引き続き、チャンバ2内の残留ガスを窒素ガス等の化学的に不活性なガスで置換した後、チャンバ2内に酸素ガスを供給してチャンバ2内を所定の圧力(例えば、20〜800mTorr)に設定し、上部電極5に第1の高周波電力を印加すると共に下部電極4に第2の高周波電力を印加してレジスト膜をアッシングにより除去し、配線用のトレンチが形成されたSiO膜を表出させる。
【0033】
然る後、ウエハWを次工程へ引き渡すためにピンを上昇させてサセプタ4からウエハWを例えば1〜18mm(本実施形態では18mm)だけ持ち上げて図2の(b)に示すように保持する。この状態で引き続きチャンバ2内に酸素ガスを供給し、アッシング時とは異なった条件で上部電極5に第1の高周波電力を印加すると共にサセプタ4に第2の高周波電力を印加して酸素ガスのプラズマを発生させ、このプラズマにより静電チャック12から持ち上げられたウエハWの端部の堆積物を除去する。
【0034】
堆積物を除去する際、チャンバ2内の酸素ガスの圧力を例えば400〜800mTorrに設定することが好ましく、また、酸素ガスのチャンバ2内の滞留時間を50〜260m秒に設定することが好ましい。酸素ガスの圧力が400mTorr未満ではウエハW端部の堆積物の除去時間が長くなり、800mTorrを超えるとチャンバ2内の圧力の安定化時間が長くなって堆積物除去までに時間を要し、却ってスループットが低下する虞がある。また、酸素ガスの滞留時間が短いほど堆積物の除去時間が短くなるが、50m秒未満では400〜800mTorrの圧力範囲で1500sccm以上の流量が必要となり、消費量の点で好ましくない。260m秒を超えると堆積物の除去時間が長くなる。
【0035】
ここで、酸素ガスの滞留時間は下記(1)式を用いて算出する。また、滞留時間を算出する時には、ウエハWより外側のガスはエッチングに寄与しないと仮定し、計算上は考慮しない。下記▲1▼式において、τは滞留時間(秒)、Vはチャンバ2の体積(L)、Sは酸素ガスの排気速度(L/秒)、pはチャンバ2内の酸素ガスの圧力(Torr)、Qは酸素ガスの総流量(sccm)である。
τ=V/S=pV/Q・・・・(1)
【0036】
また、ウエハWの端部裏面側の堆積物を除去する場合には、上部電極5には第1の高周波電源7から13.56MHz以上の周波数で2000〜3000W(電力密度に換算で2.83〜4.25W/cm)の高周波電力を印加することが好ましい。第1の高周波電力の周波数が13.56MHz未満では十分なプラズマ密度が得られないため、好ましくない。また、第1の高周波電力が2000W未満では堆積物除去のスループットが低下し、その電力が3000Wを超えるとオーバーエッチング気味になると共にチャンバ2内の部品の損傷を招く虞がある。
【0037】
また、下部電極4には第2の高周波電源9から3.2MHz以下の周波数で200W(電力密度に換算で0.28W/cm)以下の高周波電力を印加する。第2の高周波電力の周波数が3.2MHzを超え、あるいはその電力が200Wを超えると下部電極4のセルフバイアス電位が高くなってプラズマ中のイオンの引き込みが強く、トレンチの肩落ちや下部電極4及びその周辺の部品のプラズマによる損傷を招く虞があるため、好ましくない。
【0038】
従って、上下各電極4、5の印加電力が大きいほど堆積物の除去速度は大きくなるが、チャンバ2内の各部品が消耗し易く、エッチング特性の低下(例えば、ホール等の肩落ち等)があり、印加電力には上限がある。また、堆積物を除去する場合には酸素ガス流量が大きいほど、つまり同一の圧力において酸素ガスの滞留時間が短いほど除去速度が大きくなるが、消費量増大の観点から、酸素ガス流量にも自ずと上限がある。
【0039】
ところで、アッシングの最適条件と堆積物除去の最適条件は相違するため、上述したようにアッシングを行った後、堆積物の除去を行うようにしている。アッシング時には上部電極5の印加電力を大きく設定すると共に下部電極4の印加電力を小さく設定する必要があり、また、酸素ガスの流量も堆積物除去の場合よりも小さく設定する必要がある。また、アッシング時には、例えばチャンバ2内の酸素ガスの圧力を20mTorr、酸素ガスの流量を300sccm、上部電極5を1500W、下部電極4の電力を400Wにそれぞれ設定することによりアッシングを円滑に行なうことができる。
【0040】
上述のようにウエハ端部の堆積物を除去した後、チャンバ2内の残存ガスを窒素ガス等の不活性ガスで置換した後、ゲートバルブ24を開いて処理済のウエハWをチャンバ2から搬出し、次工程へ搬送する。
【0041】
以上説明したように本実施形態によれば、チャンバ2内でサセプタ4に載置されたウエハWに対してエッチングとアッシングを連続して行ってウエハWの端部に付着した堆積物Dをチャンバ2内に供給される酸素ガスのプラズマによって除去する際に、チャンバ2内でサセプタ4からウエハWを持ち上げる工程と、チャンバ2内でサセプタ4からウエハWを持ち上げた状態で上部電極5によって酸素ガスをプラズマ化する工程を有し、チャンバ2内の酸素ガスの圧力をアッシング時とは異なる400〜800mTorrに設定すると共に上記チャンバ内での上記酸素ガスの滞留時間を50〜260m秒に設定する工程を有するため、下部電極4に印加する第2の高周波電源9の周波数及び電力が低くても、最適化された酸素ガスの供給条件下で、ウエハWの端部に付着した堆積物Dを迅速且つ確実に除去してスループットを高めることができ、しかもチャンバ2内の各部品のプラズマによる損傷を防止することができる。また、更に、その後のウエハ搬送機構の汚染や後工程での汚染を防止することができる。
【0042】
また、本実施形態によれば、上部電極5に印加する第1の高周波電力の周波数を13.56MHz以上に設定し、下部電極4に印加する第2の高周波電力の周波数を3.2MHz以下に設定するようにしたため、ウエハ端部の堆積物をより短時間で除去してスループットを高めることができ、チャンバ2内の各部品の消耗をより確実に防止することができる。
【0043】
また、チャンバ2内の酸素ガスの滞留時間を50〜260m秒に設定するようにしたため、より確実にウエハ端部の堆積物を除去することができる。更に、堆積物を除去するに先立ってウエハWに対してエッチング及びアッシングを連続して行うようにしたため、エッチング、アッシング及びウエハ端部の堆積物除去に至る一連の処理を効率良く行なうことができ、これら一連の工程のスループットを高めることができる。
【0044】
【実施例】
次に、本発明の具体的な実施例について説明する。本実施例では全面をレジスト膜で被覆した300mmのウエハを4枚準備し、プラズマ処理装置を用いてシリコン酸化膜をエッチング条件に準じた下記条件で、これらのウエハについてエッチングを行ってレジスト膜による副生成物をウエハの端部に堆積物として付着させ、試料ウエハを作成した。
[エッチング条件]
▲1▼上部電極に印加する第1の高周波電源の周波数:60MHz
▲2▼上部電極に印加する第1の高周波電力:1500W
▲3▼下部電極に印加する第2の高周波電源の周波数:2MHz
▲4▼下部電極に印加する第2の高周波電力:1500W
▲5▼サセプタ温度:−10℃
▲6▼チャンバ内の圧力:120mTorr
▲7▼エッチングガスの流量:
=140sccm、Ar=650sccm、O=24sccm
▲8▼処理時間:230秒
【0045】
実施例1
本実施例は、ウエハの堆積物をエッチングにより除去する場合のチャンバ2内の酸素ガスの圧力と第1、第2の高周波電力の関係を調べた。即ち、上記試料ウエハの堆積物の初期の膜厚を走査型電子顕微鏡(以下、「SEM」と称す。)により観察し、その写真に基づいて測定した。その後、チャンバ2内のサセプタ4上に試料ウエハを載置した後、酸素ガスの流量を1200sccmに制御して供給し、実験計画法(DOE)に基づいて下記表1に示すように第1、第2の高周波電力及びチャンバ2内の酸素ガス圧力をレベル1〜レベル4の範囲で振り、ウエハ端部の堆積物をエッチングにより5秒間除去した。その後、チャンバ2から試料ウエハを取り出し、各ウエハのノッチA、B及びトップA、Bにおける堆積物の残存膜厚/減少膜厚をSEMの観察写真に基づいて測定し、その結果を下記表2及び下記表3に示した。また、下記表1及び下記表2の測定結果を纏めて図示したものが図3である。尚、下記表1及び表2において、膜厚の単位はオングストロームである。
【0046】
下記表2、下記表3及び図3において、ノッチとはウエハ端部のうち、ウエハのノッチ部分のことを云い、トップとはウエハ端部のうち、ノッチとは180°反対側の部分のことを云う。そして、ノッチAはノッチ部分の裏面側を指し、ノッチBはノッチ部分の裏面側の傾斜部(ベベル部)を指す。トップAはトップ部分の裏面側を指し、トップBはトップ部分の裏面側の傾斜部(ベベル部)を指す。
【0047】
【表1】

Figure 0004656364
【0048】
【表2】
Figure 0004656364
【0049】
【表3】
Figure 0004656364
【0050】
上記表2及び上記表3を纏めた図3に示す結果によれば、チャンバ2内の酸素ガスの圧力が高いほどウエハ端部の堆積物の膜厚減少量が大きくなり、除去速度の速いことが判った。また、図3に示すように上部電極5の電力が大きいほどウエハ端部の堆積物の膜厚減少量が大きくなり、除去速度の速いことが判った。しかし、図3に示すように下部電極4の電力は図3に示すようにウエハ端部の堆積物除去には上述した他のファクターほどの効果がないことも判った。
【0051】
実施例2
実際に堆積物を除去する場合には単に堆積物を除去する時間以外にも、チャンバ2内の圧力安定化時間を加算した時間で処理速度を評価する必要がある。そこで、本実施例では、実施例1において得られた結果を基に、上部電極の印加電圧を2000Wに設定し、下記表4に示すようにチャンバ内の酸素ガス圧力を振って各圧力の安定化時間と各圧力での堆積物除去時間(下記表4ではクリーニング時間)とを測定し、これら両者の合計時間を実際の処理時間として評価した。
【0052】
【表4】
Figure 0004656364
【0053】
上記表4に示す結果によれば、400mTorr、600mTorr及び800mTorrのうち、600mTorrにおける処理時間が最も短くなることが判った。即ち、堆積物除去時間は圧力が高くなるほど短くなるが、圧力安定化時間は圧力が低くなるほど短くなるため、処理時間の最短化をするためにはチャンバ内の圧力を最適化する必要がある。よって、酸素ガスの好ましい圧力範囲は400〜800mTorrである。
【0054】
実施例3
本実施例では、下記表5に示すように酸素ガス流量を振ってウエハを5秒間処理し、チャンバ内における酸素ガス流量と堆積物除去速度との関係をウエハのトップA及びトップBのSEMによって観察した。そして、SEMの観察写真に基づいて各部位の堆積物の残存膜厚を測定し、この残存膜厚と処理時間とから除去速度を求めた。これらの測定結果を下記表5に示した。尚、下記表5では残存膜厚及び除去速度は、残存膜厚/除去速度として示した。また、膜厚の単位はオングストローム、除去速度の単位はオングストローム/秒である。
【0055】
【表5】
Figure 0004656364
【0056】
上記表5に示す結果によれば、酸素ガス流量が大きいほど堆積物の除去速度が大きいことが判った。堆積物の除去速度と酸素ガスの消費量の点から酸素ガスの流量は600〜1500sccmの範囲が好ましい。また、酸素ガス流量が1200sccmの場合の結果から、下部電極4の第2の高周波電力の高い方が堆積物の除去速度の大きいことが判った。
【0057】
上述の実施例2、3によって、酸素ガスの圧力範囲は400〜800mTorrが好ましく、酸素ガスの流量範囲は600〜1500sccmが好ましいことが判った。そこで、前記式(1)を用いて酸素ガスの好ましい圧力範囲及び好ましい流量範囲における酸素ガスの滞留時間を計算したところ、下記表6に示す結果が得られた。下記表6の結果によれば、酸素ガスの滞留時間は50〜260m秒が好ましいことが判った。
【0058】
【表6】
Figure 0004656364
【0059】
尚、本発明は上記実施形態に何等制限されるものではなく、本発明のプラズマ処理装置は、本発明方法を実施することができるプログラム仕様を有するものであれば、本発明に包含される。例えば、上記実施形態では上下の電極に互いに異なる周波数を有する高周波電力を印加してプラズマを発生させるプラズマ処理装置に場合について説明したが、上下の電極のいずれか一方に高周波電力を印加するプラズマ処理装置、上下の電極に更に別の周波数を有する高周波電力を印加するプラズマ処理装置、あるいは、これらのプラズマ処理装置に磁場形成手段を付加したプラズマ処理装置についても本発明を適用することができる。
【0060】
本発明によれば、一つのチャンバ内に配置され且つ第1の高周波電力を印加してプラズマを発生させる上部電極と、上記上部電極の下方に配置され且つ上記第1の高周波電力より周波数の低い第2の高周波電力を印加する下部電極を兼ねる被処理体の載置台と、上記載置台に設けられ且つ上記載置台の載置面において上記被処理体を昇降させる複数のピンと、上記各機器を制御する制御装置と、を備えたプラズマ処理装置を用いて、上記制御装置を介して上記第1の高周波電力の周波数を13.56MHz以上に設定すると共に上記第2の高周波電力の周波数を3.2MHz以下に設定した状態で、上記チャンバ内で上記載置台上に載置された上記被処理体に対してエッチングガスを用いてエッチングを行って上記被処理体の端部に付着した物質を、上記エッチングに続いて上記エッチングガスを酸素ガスに置換し酸素ガスの圧力を20〜800mmTorrの範囲内に設定してアッシングを行った後に上記アッシング時から続けて上記チャンバ内に供給される酸素ガスから生成させるプラズマによって除去する方法であって、上記制御装置の制御下で、上記上部電極に印加する第1の高周波電力の密度を2.83〜4.25W/cm に設定すると共に上記載置台に印加する第2の高周波電力の密度を0.28W/cm 以下に設定する工程と、上記チャンバ内の上記酸素ガスの圧力を上記アッシング時とは異なる400〜800mTorrの範囲内に設定すると共に上記チャンバ内での上記酸素ガスの滞留時間を50〜260m秒に設定する工程と、上記複数のピンを介して上記載置台から上記被処理体を離した状態で上記第1の高周波電力を印加した上記上部電極によって上記酸素ガスをプラズマ化する工程と、を備えているため、同一チャンバ内で連続して行われるエッチング及びアッシングによりウエハ等の被処理体の端部に付着した物質を、最適化された酸素ガスの供給条件下で迅速且つ確実に除去してスループットを高めることができ、しかもチャンバ内の各部品のプラズマによる損傷を防止することができるプラズマ処理方法を提供することができる。
【図面の簡単な説明】
【図1】本発明のプラズマ処理装置の一実施形態の概略を示す断面図である。
【図2】図1に示すプラズマ処理装置を用いた本発明方法の一実施形態を説明するための模式図で、(a)はアッシング処理後のサセプタを示す図、(b)は本発明方法の一実施形態でウエハ端部の堆積物を除去する時のサセプタを示す図である。
【図3】図1に示すプラズマ処理装置の処理条件を実験計画法によって振ってウエハ端部の堆積物を除去した時の結果を示すグラフである。
【図4】エッチング工程を説明するための工程図で、(a)はエッチング直前の状態を示す図、(b)はエッチング後の状態を示す図、(c)はアッシング後の状態を示す図である。
【図5】プラズマ処理装置のサセプタの一部を拡大して示す断面図である。
【符号の説明】
1 プラズマ処理装置
2 チャンバ
4 サセプタ(載置台兼下部電極、保持体)
5 上部電極(プラズマ発生手段)
7 第1の高周波電源
9 第2の高周波電源
15 ピン(離間手段)
W ウエハ
P プラズマ
D 堆積物(物質)[0001]
BACKGROUND OF THE INVENTION
  The present invention provides a plasma processing method for subjecting an object to be processed such as a semiconductor wafer (hereinafter simply referred to as “wafer”) to a predetermined plasma process such as plasma etching (hereinafter simply referred to as “etching”).To the lawRelated.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device or an LCD, plasma processing such as various film forming processes or etching processes is performed on an object to be processed such as a wafer or an LCD substrate.
[0003]
For example, when etching is performed, an object to be processed (for example, a wafer) W having a layer structure as shown in FIG. As shown in FIG. 4A, the wafer W has a diffusion prevention film 51, an interlayer insulating film 52, an insulating film (for example, a silicon oxide film) 53, and a resist film 54 on the surface from the lower layer to the upper layer. Then, using the etching gas plasma, the silicon oxide film 53 is etched according to the pattern 54A formed on the resist film 54 in the order of FIGS. 4A and 4B to form, for example, a trench 53A for wiring. Form. Next, ashing is performed on the wafer W to remove the resist film 54 and expose the silicon oxide film 53 as shown in FIG. Further, although not shown, a via hole is formed in the interlayer insulating film in a later process.
[0004]
For such etching, for example, a parallel plate type plasma processing apparatus is used as the plasma processing apparatus. This type of plasma processing apparatus includes, for example, a chamber having an airtight structure, a mounting table on which a wafer is mounted in the chamber and also serving as a lower electrode, and an upper electrode disposed above the mounting table. Then, high frequency power is applied to generate plasma in the chamber, and the silicon oxide film 53 is etched with a predetermined pattern 54A through the resist film 54 as described above to form a trench 53A for wiring. Further, ashing after etching is performed in the same chamber or in another chamber. FIG. 5 is an example of a cross-sectional view showing the end of the mounting table of the plasma processing apparatus.
[0005]
The mounting table 61 shown in FIG. 5 is formed of a conductive material, for example, aluminum whose surface is anodized. An electrostatic chuck 62 for fixing the wafer W is disposed on the mounting surface of the mounting table 61. In this electrostatic chuck 62, an electrode 62B is interposed between sheet-like insulators 62A, and a DC voltage is applied to the electrode 62B to electrostatically attract the wafer W with Coulomb force. Further, a focus ring 63 is disposed on the outer peripheral edge of the mounting table 61, and the focus ring 63 surrounds the wafer W fixed on the mounting table 61 via the electrostatic chuck 62.
[0006]
By the way, since the mounting table 61 is made of aluminum, if there is a part that is directly exposed to the plasma formed above the wafer W, the part is sputtered by the plasma, and the wafer W is not desirable to contain aluminum or the like. A film may be formed. Therefore, as shown in FIG. 5, the diameter of the mounting surface (portion where the electrostatic chuck 62 is disposed) of the mounting table 61 is formed slightly smaller (for example, about 4 mm) than the diameter of the wafer W. The mounting surface of the focus ring 63 is formed to be larger than the outer diameter of the wafer W so that the top surface of the mounting table 61 is not directly exposed to plasma when viewed from above.
[0007]
However, when the mounting table 61 is configured as shown in FIG. 5, a by-product due to etching of the silicon oxide film or the resist film goes around to the back side of the end of the wafer W, and particularly on the back side of the end of the wafer W. A by-product may be deposited in the form of a thin film as a polymer or the like on an inclined portion (hereinafter referred to as “bevel portion”) on the back surface. If a polymer or the like is deposited on the bevel part, this deposit (a material such as a polymer) is peeled off from the bevel part in the subsequent process, causing particles, or a step is formed by the deposit and the focus is not adjusted during resist exposure. May cause trouble. Therefore, it is necessary to prevent the generation of such deposits as much as possible.
[0008]
Therefore, in order to remove such deposits, for example, the wafer is transferred from the etching chamber to another chamber, and ashing is performed in the other chamber to remove the resist film and remove the deposit at the edge of the wafer. It has been removed.
[0009]
As another method for removing deposits, for example, plasma processing for removing deposits on the back side of the wafer by raising an inert gas plasma in a state where the wafer is lifted and supported by a pin in an etched chamber. A method has been proposed (Patent Document 1). Further, this document proposes a method of supplying an oxidizing gas (for example, oxygen gas) instead of an inert gas to form an oxide film on the back side of the wafer and preventing the adhesion of impurities by this oxide film. Yes. In these cases, the pressure in the chamber is set to 50 to 300 mTorr, and plasma processing is performed by applying high frequency power of 25 to 100 W to the mounting table.
[0010]
Also, as a processing method similar to Patent Document 1, after CVD film formation, a wafer is pushed up and held by a pin to the position immediately below the gas shower head in the same chamber, and a purge gas is supplied from the gas shower head to the surface of the wafer. There has been proposed a substrate processing method and a substrate processing apparatus in which an etching gas such as an F-based gas is supplied from another gas supply unit into a chamber to form plasma and remove deposits on the back surface and side surfaces of the wafer (Patent Document 2). ).
[0011]
[Patent Document 1]
US Pat. No. 4,962,209 (columns 2 to 3 and Example 1)
[Patent Document 2]
JP-A-9-28359 (paragraphs [0040] to [0042])
[0012]
[Problems to be solved by the invention]
However, in the method of removing the deposit at the wafer edge in the ashing chamber, an ashing chamber is required in addition to the etching chamber, which increases the apparatus cost and the apparatus size. Since the wafer is transferred from the etching chamber to the ashing chamber, there is a problem that throughput is lowered. In the case of the method of lifting the wafer with pins as in Patent Documents 1 and 2, since the high frequency power for generating plasma is applied to the lower electrode even when the deposit on the edge of the wafer is removed, ions in the plasma are There was a risk of violently colliding with the lower electrode side and damaging various components in the chamber.
[0013]
On the other hand, since the mask pattern has become extremely fine in recent years and it has become difficult to perform etching according to the pattern, a parallel plate plasma of a two-frequency application type that applies high-frequency power with different frequencies to the upper and lower electrodes. A high-frequency power having a high frequency is applied to the upper electrode in order to generate plasma, and a high-frequency power having a lower frequency than that of the upper electrode is used to attract ions in the plasma to the lower electrode. Apply. However, since the high frequency power applied to the lower electrode is set to be low both in frequency and applied power, the wafer is lifted from the lower electrode by using pins as in Patent Documents 1 and 2, and the deposit at the edge of the wafer is removed. However, this method has a problem that the deposit cannot be sufficiently removed.
[0014]
  The present invention has been made to solve the above problems,Etching and ashing performed continuously in the same chamberA plasma processing method capable of quickly and surely removing a substance adhering to an end of an object to be processed such as a wafer and preventing damage of each component in the chamber due to plasma.The lawIt is intended to provide.
[0015]
[Means for Solving the Problems]
  The plasma processing method according to claim 1 of the present invention is the same as that in one chamber.Arranged in andPlasma is generated by applying first high frequency powerAn upper electrode, disposed below the upper electrode, andA second high frequency power having a lower frequency than the first high frequency power.Also serves as the lower electrode to be appliedWork tableAnd a plurality of pins that are provided on the mounting table and raise and lower the object to be processed on the mounting surface of the mounting table, and a control device that controls the devices.Using plasma processing equipmentWith the frequency of the first high frequency power set to 13.56 MHz or higher and the frequency of the second high frequency power set to 3.2 MHz or lower via the control device,For the object to be processed placed on the mounting table in the chamberUsing etching gasEtch the material adhering to the edge of the object to be processed.Subsequently, the etching gas is replaced with oxygen gas, and the pressure of the oxygen gas is set within a range of 20 to 800 mmTorr.After ashing, it is a method of removing by plasma generated from oxygen gas supplied into the chamber continuously from the time of ashing,Under the control of the control device, the density of the first high frequency power applied to the upper electrode is 2.83 to 4.25 W / cm. 2 And the density of the second high-frequency power applied to the mounting table is 0.28 W / cm. 2 The steps set below:The pressure of the oxygen gas in the chamber is 400 to 800 mTorr which is different from the ashing time.WithinAnd setting the residence time of the oxygen gas in the chamber to 50 to 260 milliseconds,Through the above pinsIn a state where the object to be processed is separated from the mounting tableBy the upper electrode to which the first high frequency power is appliedAnd a step of converting the oxygen gas into plasma.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
First, the plasma processing apparatus used in this embodiment will be described with reference to FIG. The plasma processing apparatus 1 is configured, for example, as a parallel plate type plasma processing apparatus of a two-frequency application type as shown in FIG. 1, for example, a silicon oxide film (SiO2The film) is etched according to a predetermined pattern.
[0025]
As shown in FIG. 1, the plasma processing apparatus 1 includes a chamber 2 formed of a metal such as aluminum whose surface is anodized and grounded for safety, and an insulator 3 at the bottom of the chamber 2. And a lower electrode 4 (hereinafter referred to as “susceptor” or “lower electrode” as appropriate) 4, an upper electrode 5 disposed above the susceptor 4, and the plasma processing method of the present invention. A control device (not shown) having a program for execution is provided, and under the control of the program of the control device, a series of plasma processing is performed for removing etching of the wafer W, ashing and deposits on the edge of the wafer. A first high frequency power source 7 is connected to the upper electrode 5 via a matching unit 6, and a second high frequency power source 9 is connected to the lower electrode 4 via a matching unit 8. Further, a low pass filter (LPF) 10 is connected to the upper electrode 5, and a high pass filter (HPF) 11 is connected to the susceptor 4.
[0026]
An electrostatic chuck 12 is provided on the susceptor 4, and a wafer W is placed thereon. The electrostatic chuck 12 is configured by interposing an electrode 12A between insulators, and applies a DC voltage from a DC power source 13 connected to the electrode 12A, thereby electrostatically adsorbing the wafer W with Coulomb force. A focus ring 14 surrounding the wafer W is disposed on the outer peripheral edge of the susceptor 4. The focus ring 14 is made of Si or the like, and improves etching uniformity.
[0027]
In addition, a plurality of (for example, three) pins 15 (see FIG. 2) are provided in the susceptor 4 so as to be movable up and down, and the wafers that have entered the chamber 2 from the susceptor 4 and the loading / unloading port via these pins 15 are conveyed. The wafer W is transferred to and from a mechanism (not shown). As will be described later, these pins 15 continuously etch and ash the wafer W under the control of the control device, and then rise by a predetermined dimension and hold the position for a predetermined time. Thus, the deposit D at the edge of the wafer W is removed.
[0028]
Further, a refrigerant flow path 4A is formed in the susceptor 4, and a refrigerant (for example, an ethylene glycol aqueous solution) flows from an inflow pipe 16A connected to the inlet, and the refrigerant flows from an outflow pipe 16B connected to the outlet. The refrigerant flows out and circulates in the refrigerant flow path 4A to cool the susceptor 4. A gas flow path 4B that penetrates the electrostatic chuck 12 and opens at a plurality of locations is formed in the susceptor 4, and a heat transfer gas having high thermal conductivity such as He gas is supplied into the gas flow path 4B. Thus, the heat is transferred between the electrostatic chuck 12 and the wafer W from the opening of the gas flow path 4B to enhance the heat transfer between the susceptor 4 and the wafer W.
[0029]
The upper electrode 5 includes a showerhead-like electrode plate 5A and a support 5B that supports the electrode plate 5A, and is supported on the upper portion of the chamber 2 via an insulator 17. The upper electrode 5 and the lower electrode 4 are separated by, for example, 10 to 60 mm. A gas inlet 5C is provided at the center of the support 5B, and a processing gas supply source 19 is connected to the gas inlet 5C via a gas supply pipe 18. A mass flow controller 20 and a valve 21 are sequentially arranged in the gas supply pipe 18 from the upstream side to the downstream side. The processing gas supply source 19 has a plurality of gas sources used as an etching gas. As an etching gas, for example, C5F8And Ar and O2A conventionally known gas such as can be used.
[0030]
On the other hand, an exhaust pipe 22 is connected to the bottom of the chamber 2, and an exhaust device 23 is connected to the exhaust pipe 22. Further, a gate valve 24 is provided at the loading / unloading port on the side wall of the chamber 2, and the wafer W is placed between the adjacent load lock chamber (not shown) and the chamber 2 through the loading / unloading port where the gate valve 24 is opened. Transport.
[0031]
Next, an embodiment of the plasma processing method of the present invention using the plasma processing apparatus 1 will be described with reference to FIGS. First, the gate valve 24 is opened, and the wafer W is loaded into the chamber 2 and placed on the electrostatic chuck 12. Next, after the gate valve 24 is closed and the inside of the chamber 2 is decompressed by the exhaust device 23, the valve 21 of the gas supply pipe 18 is opened.5F8And Ar and O2Are supplied from the processing gas supply source 19 and these gases are supplied to the gas flow controller 20 at a predetermined flow rate (for example, C5F8/ Ar / O2The flow rate is 140/650/24 sccm), and the etching gas is supplied into the chamber 2 from the upper electrode 5 as an etching gas, and the etching gas is set to a predetermined pressure. In this state, for example, a first high-frequency power having a frequency of 60 MHz is applied from the first high-frequency power supply 7 to the upper electrode 5 and a second high-frequency power having a frequency of 2 MHz is applied from the second high-frequency power supply 9 to the lower electrode 4. The etching gas is turned into plasma by the first high-frequency power, and ions in the plasma are drawn into the lower electrode 4 by the second high-frequency power to increase the anisotropy of etching by ion assist, so that SiO in the wafer W is increased.2The film is etched through the resist film to form, for example, a wiring trench. At this time, the DC power supply 13 is applied to the electrode 12 </ b> A in the electrostatic chuck 12 to electrostatically attract the wafer W onto the electrostatic chuck 12.
[0032]
C as above5F8And Ar and O2The etching gas consisting of2When the film is etched, SiO2By-products are generated from the film and the resist film, and a polymer or the like is deposited on the edge of the wafer W to form a deposit as schematically shown in FIG. Subsequently, after the residual gas in the chamber 2 is replaced with a chemically inert gas such as nitrogen gas, oxygen gas is supplied into the chamber 2 to bring the inside of the chamber 2 to a predetermined pressure (for example, 20 to 800 mTorr). The first high-frequency power is applied to the upper electrode 5 and the second high-frequency power is applied to the lower electrode 4 to remove the resist film by ashing, and SiO in which a trench for wiring is formed2Let the membrane appear.
[0033]
Thereafter, in order to deliver the wafer W to the next process, the pins are raised and the wafer W is lifted from the susceptor 4 by, for example, 1 to 18 mm (18 mm in this embodiment) and held as shown in FIG. . In this state, oxygen gas is continuously supplied into the chamber 2, and first high frequency power is applied to the upper electrode 5 under conditions different from those during ashing, and second high frequency power is applied to the susceptor 4 to supply oxygen gas. Plasma is generated, and deposits at the edge of the wafer W lifted from the electrostatic chuck 12 are removed by the plasma.
[0034]
When removing the deposit, the pressure of the oxygen gas in the chamber 2 is preferably set to 400 to 800 mTorr, for example, and the residence time of the oxygen gas in the chamber 2 is preferably set to 50 to 260 msec. If the pressure of the oxygen gas is less than 400 mTorr, the removal time of the deposit at the end of the wafer W becomes longer, and if it exceeds 800 mTorr, the stabilization time of the pressure in the chamber 2 becomes longer and it takes time to remove the deposit. There is a risk that the throughput will decrease. Further, the shorter the residence time of the oxygen gas, the shorter the removal time of the deposit, but if it is less than 50 msec, a flow rate of 1500 sccm or more is required in the pressure range of 400 to 800 mTorr, which is not preferable in terms of consumption. If it exceeds 260 milliseconds, the removal time of the deposit becomes longer.
[0035]
Here, the residence time of oxygen gas is calculated using the following equation (1). Further, when calculating the residence time, it is assumed that the gas outside the wafer W does not contribute to the etching and is not considered in the calculation. In the following formula (1), τ is the residence time (seconds), V is the volume (L) of the chamber 2, S is the exhaust speed of the oxygen gas (L / second), p is the pressure of the oxygen gas in the chamber 2 (Torr) ), Q is the total flow rate (sccm) of oxygen gas.
τ = V / S = pV / Q (1)
[0036]
When removing the deposit on the back side of the edge of the wafer W, the upper electrode 5 is supplied to the upper electrode 5 at a frequency of 13.56 MHz or more from the first high frequency power source 7 to 2000 to 3000 W (2.83 in terms of power density). ~ 4.25W / cm2It is preferable to apply a high frequency power of If the frequency of the first high-frequency power is less than 13.56 MHz, a sufficient plasma density cannot be obtained, which is not preferable. Further, if the first high-frequency power is less than 2000 W, the deposit removal throughput decreases, and if the power exceeds 3000 W, overetching tends to occur and parts in the chamber 2 may be damaged.
[0037]
Further, the lower electrode 4 has 200 W (0.28 W / cm in terms of power density) at a frequency of 3.2 MHz or less from the second high-frequency power source 9.2) Apply the following high frequency power. When the frequency of the second high-frequency power exceeds 3.2 MHz or the power exceeds 200 W, the self-bias potential of the lower electrode 4 becomes high, and ions are strongly attracted to the plasma. And there is a possibility of causing damage to the surrounding parts by plasma, which is not preferable.
[0038]
Accordingly, the higher the applied power to the upper and lower electrodes 4 and 5, the higher the removal rate of the deposits. However, the components in the chamber 2 are easily consumed, and the etching characteristics are deteriorated (for example, a shoulder drop such as a hole). Yes, the applied power has an upper limit. In addition, when removing deposits, the larger the oxygen gas flow rate, that is, the shorter the oxygen gas residence time at the same pressure, the greater the removal rate. From the viewpoint of increasing consumption, naturally the oxygen gas flow rate is also increased. There is an upper limit.
[0039]
Incidentally, since the optimum conditions for ashing are different from the optimum conditions for removing deposits, the deposits are removed after ashing as described above. At the time of ashing, it is necessary to set the applied power of the upper electrode 5 to be large and the applied power to the lower electrode 4 to be set small, and it is also necessary to set the flow rate of oxygen gas to be smaller than that in the case of deposit removal. In ashing, for example, the pressure of the oxygen gas in the chamber 2 is set to 20 mTorr, the flow rate of the oxygen gas is set to 300 sccm, the upper electrode 5 is set to 1500 W, and the power of the lower electrode 4 is set to 400 W, so that ashing can be performed smoothly. it can.
[0040]
After removing the deposits at the edge of the wafer as described above, the residual gas in the chamber 2 is replaced with an inert gas such as nitrogen gas, and then the gate valve 24 is opened to carry out the processed wafer W from the chamber 2. And then transported to the next process.
[0041]
  As described above, according to the present embodiment, the deposit D adhered to the end of the wafer W by performing etching and ashing on the wafer W placed on the susceptor 4 in the chamber 2 in succession. 2, when the wafer W is removed by the plasma of oxygen gas supplied into the chamber 2, the process of lifting the wafer W from the susceptor 4 in the chamber 2 and the upper electrode 5 in the state where the wafer W is lifted from the susceptor 4 in the chamber 2. The pressure of oxygen gas in the chamber 2Different from ashingSet to 400-800mTorrAnd a step of setting the residence time of the oxygen gas in the chamber to 50 to 260 milliseconds.Therefore, even if the frequency and power of the second high-frequency power source 9 applied to the lower electrode 4 are lowUnder optimized oxygen gas supply conditions,The deposit D adhering to the edge of the wafer W is removed quickly and reliably.To increase throughputIn addition, damage to each component in the chamber 2 due to plasma can be prevented. Further, it is possible to prevent subsequent contamination of the wafer transfer mechanism and contamination in the subsequent process.
[0042]
Further, according to the present embodiment, the frequency of the first high-frequency power applied to the upper electrode 5 is set to 13.56 MHz or higher, and the frequency of the second high-frequency power applied to the lower electrode 4 is set to 3.2 MHz or lower. Since the setting is made, it is possible to remove the deposits at the edge of the wafer in a shorter time and increase the throughput, and it is possible to more reliably prevent the consumption of each component in the chamber 2.
[0043]
In addition, since the residence time of the oxygen gas in the chamber 2 is set to 50 to 260 milliseconds, deposits on the wafer edge can be more reliably removed. Furthermore, since the etching and ashing are continuously performed on the wafer W prior to the removal of the deposit, a series of processes from the etching, the ashing, and the removal of the deposit at the edge of the wafer can be performed efficiently. The throughput of these series of steps can be increased.
[0044]
【Example】
Next, specific examples of the present invention will be described. In this embodiment, four 300 mm wafers whose entire surfaces are covered with a resist film are prepared, and a silicon oxide film is etched using a plasma processing apparatus under the following conditions in accordance with the etching conditions. By-products were deposited as deposits on the edge of the wafer to create a sample wafer.
[Etching conditions]
(1) Frequency of the first high frequency power source applied to the upper electrode: 60 MHz
(2) First high frequency power applied to the upper electrode: 1500 W
(3) Frequency of the second high frequency power source applied to the lower electrode: 2 MHz
(4) Second high frequency power applied to the lower electrode: 1500 W
(5) Susceptor temperature: -10 ° C
(6) Pressure in the chamber: 120 mTorr
(7) Etching gas flow rate:
C5F8= 140 sccm, Ar = 650 sccm, O2= 24sccm
(8) Processing time: 230 seconds
[0045]
Example 1
In this example, the relationship between the pressure of oxygen gas in the chamber 2 and the first and second high-frequency powers when the wafer deposits are removed by etching was examined. That is, the initial film thickness of the sample wafer deposit was observed with a scanning electron microscope (hereinafter referred to as “SEM”) and measured based on the photograph. Thereafter, after placing the sample wafer on the susceptor 4 in the chamber 2, the flow rate of oxygen gas is controlled to 1200 sccm and supplied based on the experimental design method (DOE) as shown in Table 1 below. The second high-frequency power and the oxygen gas pressure in the chamber 2 were swung in the range of level 1 to level 4, and the deposit at the edge of the wafer was removed by etching for 5 seconds. Thereafter, the sample wafer is taken out from the chamber 2, and the remaining film thickness / reduced film thickness of the deposits on the notches A and B and the tops A and B of each wafer are measured based on SEM observation photographs. And in Table 3 below. FIG. 3 shows the measurement results in Table 1 and Table 2 below. In Tables 1 and 2 below, the unit of film thickness is angstrom.
[0046]
In Table 2, Table 3 and FIG. 3 below, the notch refers to the notch portion of the wafer at the wafer edge, and the top refers to the portion 180 ° opposite to the notch of the wafer edge. Say. And notch A points out the back side of a notch part, and notch B points out the inclined part (bevel part) of the back side of a notch part. Top A refers to the back side of the top portion, and top B refers to an inclined portion (bevel portion) on the back side of the top portion.
[0047]
[Table 1]
Figure 0004656364
[0048]
[Table 2]
Figure 0004656364
[0049]
[Table 3]
Figure 0004656364
[0050]
  According to the results shown in FIG. 3 in which Table 2 and Table 3 are summarized, the higher the pressure of oxygen gas in the chamber 2, the greater the reduction in the thickness of the deposit on the wafer edge, and the faster the removal rate. I understood. Further, as shown in FIG. 3, it was found that the larger the electric power of the upper electrode 5, the larger the amount of decrease in the film thickness of the deposit at the edge of the wafer, and the faster the removal rate. However, as shown in FIG.Electric powerAs shown in FIG. 3, it was also found that removal of deposits at the edge of the wafer was not as effective as the other factors described above.
[0051]
Example 2
When the deposit is actually removed, it is necessary to evaluate the processing speed by the time obtained by adding the pressure stabilization time in the chamber 2 in addition to the time for simply removing the deposit. Therefore, in this example, based on the result obtained in Example 1, the applied voltage of the upper electrode was set to 2000 W, and the oxygen gas pressure in the chamber was varied as shown in Table 4 below to stabilize each pressure. The sedimentation time at each pressure and the deposit removal time at each pressure (cleaning time in Table 4 below) were measured, and the total time of both was evaluated as the actual processing time.
[0052]
[Table 4]
Figure 0004656364
[0053]
According to the results shown in Table 4 above, it was found that the processing time at 600 mTorr was the shortest among 400 mTorr, 600 mTorr and 800 mTorr. That is, the deposit removal time becomes shorter as the pressure becomes higher, but the pressure stabilization time becomes shorter as the pressure becomes lower. Therefore, in order to minimize the processing time, it is necessary to optimize the pressure in the chamber. Therefore, a preferable pressure range of the oxygen gas is 400 to 800 mTorr.
[0054]
Example 3
In this embodiment, as shown in Table 5 below, the wafer was processed for 5 seconds by varying the oxygen gas flow rate, and the relationship between the oxygen gas flow rate in the chamber and the deposit removal rate was determined by SEM of the top A and top B of the wafer. Observed. And the residual film thickness of the deposit of each site | part was measured based on the observation photograph of SEM, and the removal rate was calculated | required from this residual film thickness and processing time. These measurement results are shown in Table 5 below. In Table 5 below, the remaining film thickness and removal rate are shown as remaining film thickness / removal rate. The unit of film thickness is angstrom, and the unit of removal rate is angstrom / second.
[0055]
[Table 5]
Figure 0004656364
[0056]
According to the results shown in Table 5 above, it was found that the higher the oxygen gas flow rate, the higher the deposit removal rate. From the viewpoint of deposit removal rate and oxygen gas consumption, the flow rate of oxygen gas is preferably in the range of 600-1500 sccm. Further, from the result when the oxygen gas flow rate is 1200 sccm, it was found that the higher the second high-frequency power of the lower electrode 4 is, the higher the deposit removal rate is.
[0057]
  According to the above-described Examples 2 and 3, the pressure range of the oxygen gas is preferably 400 to 800 mTorr, and the flow range of the oxygen gas is600It has been found that ˜1500 sccm is preferred. Thus, when the oxygen gas residence time in the preferred pressure range and preferred flow rate range of the oxygen gas was calculated using the formula (1), the results shown in Table 6 below were obtained. According to the results in Table 6 below, it was found that the residence time of oxygen gas is preferably 50 to 260 milliseconds.
[0058]
[Table 6]
Figure 0004656364
[0059]
In addition, this invention is not restrict | limited at all to the said embodiment, The plasma processing apparatus of this invention is included by this invention, if it has a program specification which can implement the method of this invention. For example, in the above-described embodiment, the case of the plasma processing apparatus that generates plasma by applying high-frequency power having different frequencies to the upper and lower electrodes has been described. However, plasma processing that applies high-frequency power to either one of the upper and lower electrodes The present invention can also be applied to an apparatus, a plasma processing apparatus that applies high-frequency power having a different frequency to the upper and lower electrodes, or a plasma processing apparatus in which a magnetic field forming means is added to these plasma processing apparatuses.
[0060]
  According to the present invention,An upper electrode disposed in one chamber and generating a plasma by applying a first high-frequency power; and a second high-frequency power disposed below the upper electrode and having a lower frequency than the first high-frequency power. A mounting table for a target object that also serves as a lower electrode to be applied; a plurality of pins that are provided on the mounting table and move the target object up and down on the mounting surface of the mounting table; and a control device that controls each of the above devices. The frequency of the first high frequency power is set to 13.56 MHz or higher and the frequency of the second high frequency power is set to 3.2 MHz or lower using the plasma processing apparatus including Then, the substance attached to the end of the object to be processed by etching the object to be processed placed on the mounting table in the chamber with an etching gas is removed from the edge of the object to be processed. After the ashing, the etching gas is replaced with oxygen gas, and the pressure of the oxygen gas is set in the range of 20 to 800 mmTorr. After ashing, the gas is generated from the oxygen gas supplied into the chamber continuously after the ashing. The density of the first high-frequency power applied to the upper electrode under the control of the control device is 2.83 to 4.25 W / cm. 2 And the density of the second high-frequency power applied to the mounting table is 0.28 W / cm. 2 The following steps are set, and the pressure of the oxygen gas in the chamber is set within a range of 400 to 800 mTorr, which is different from that during the ashing, and the residence time of the oxygen gas in the chamber is set to 50 to 260 msec. And a step of converting the oxygen gas into plasma by the upper electrode to which the first high frequency power is applied in a state where the object to be processed is separated from the mounting table via the plurality of pins. BecauseIncrease the throughput by removing the material adhering to the edge of the object such as wafer by etching and ashing continuously in the same chamber quickly and surely under the optimized oxygen gas supply condition. In addition, it is possible to provide a plasma processing method capable of preventing damage of each component in the chamber due to plasma.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an embodiment of a plasma processing apparatus of the present invention.
2A and 2B are schematic views for explaining an embodiment of the method of the present invention using the plasma processing apparatus shown in FIG. 1, wherein FIG. 2A is a view showing a susceptor after ashing, and FIG. 2B is a method of the present invention. It is a figure which shows a susceptor when removing the deposit of a wafer edge part by one Embodiment.
FIG. 3 is a graph showing the results when the processing conditions of the plasma processing apparatus shown in FIG.
FIGS. 4A and 4B are process diagrams for explaining an etching process, in which FIG. 4A shows a state immediately before etching, FIG. 4B shows a state after etching, and FIG. 4C shows a state after ashing; It is.
FIG. 5 is an enlarged cross-sectional view of a part of the susceptor of the plasma processing apparatus.
[Explanation of symbols]
1 Plasma processing equipment
2 chambers
4 Susceptor (mounting table and lower electrode, holder)
5 Upper electrode (plasma generating means)
7 First high frequency power supply
9 Second high frequency power supply
15 pin (spacer)
W wafer
P Plasma
D Deposit (material)

Claims (1)

一つのチャンバ内に配置され且つ第1の高周波電力を印加してプラズマを発生させる上部電極と、上記上部電極の下方に配置され且つ上記第1の高周波電力より周波数の低い第2の高周波電力を印加する下部電極を兼ねる被処理体の載置台と、上記載置台に設けられ且つ上記載置台の載置面において上記被処理体を昇降させる複数のピンと、上記各機器を制御する制御装置と、を備えたプラズマ処理装置を用いて、上記制御装置を介して上記第1の高周波電力の周波数を13.56MHz以上に設定すると共に上記第2の高周波電力の周波数を3.2MHz以下に設定した状態で、上記チャンバ内で上記載置台上に載置された上記被処理体に対してエッチングガスを用いてエッチングを行って上記被処理体の端部に付着した物質を、上記エッチングに続いて上記エッチングガスを酸素ガスに置換し酸素ガスの圧力を20〜800mmTorrの範囲内に設定してアッシングを行った後に上記アッシング時から続けて上記チャンバ内に供給される酸素ガスから生成させるプラズマによって除去する方法であって、
上記制御装置の制御下で、
上記上部電極に印加する第1の高周波電力の密度を2.83〜4.25W/cm に設定すると共に上記載置台に印加する第2の高周波電力の密度を0.28W/cm 以下に設定する工程と、
上記チャンバ内の上記酸素ガスの圧力を上記アッシング時とは異なる400〜800mTorrの範囲内に設定すると共に上記チャンバ内での上記酸素ガスの滞留時間を50〜260m秒に設定する工程と、
上記複数のピンを介して上記載置台から上記被処理体を離した状態で上記第1の高周波電力を印加した上記上部電極によって上記酸素ガスをプラズマ化する工程と、を備えている
ことを特徴とするプラズマ処理方法。
An upper electrode disposed in one chamber and generating a plasma by applying a first high-frequency power; and a second high-frequency power disposed below the upper electrode and having a lower frequency than the first high-frequency power. A mounting table for a target object that also serves as a lower electrode to be applied ; a plurality of pins that are provided on the mounting table and move the target object up and down on the mounting surface of the mounting table; and a control device that controls each of the above devices. The frequency of the first high frequency power is set to 13.56 MHz or higher and the frequency of the second high frequency power is set to 3.2 MHz or lower using the plasma processing apparatus including in the material by etching using an etching gas to the placed the object to be processed on the mounting table attached to an end portion of the object to be processed within said chamber, said edge Following packaging continues from the time of the ashing after ashing was set within a range of 20~800mmTorr the pressure of oxygen gas was replaced with oxygen gas the etching gas generated from the oxygen gas supplied into the chamber A method of removing by plasma to
Under the control of the control device,
The density of the first high frequency power applied to the upper electrode is set to 2.83 to 4.25 W / cm 2 and the density of the second high frequency power applied to the mounting table is set to 0.28 W / cm 2 or less. A setting process;
Setting the pressure of the oxygen gas in the chamber within a range of 400 to 800 mTorr different from that during the ashing , and setting the residence time of the oxygen gas in the chamber to 50 to 260 msec;
And a step of converting the oxygen gas into plasma by the upper electrode to which the first high frequency power is applied in a state where the object to be processed is separated from the mounting table via the plurality of pins. A plasma processing method.
JP2003068129A 2003-03-13 2003-03-13 Plasma processing method Expired - Fee Related JP4656364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068129A JP4656364B2 (en) 2003-03-13 2003-03-13 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068129A JP4656364B2 (en) 2003-03-13 2003-03-13 Plasma processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010180425A Division JP2010263244A (en) 2010-08-11 2010-08-11 Plasma processing method

Publications (2)

Publication Number Publication Date
JP2004281528A JP2004281528A (en) 2004-10-07
JP4656364B2 true JP4656364B2 (en) 2011-03-23

Family

ID=33285548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068129A Expired - Fee Related JP4656364B2 (en) 2003-03-13 2003-03-13 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4656364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263244A (en) * 2010-08-11 2010-11-18 Tokyo Electron Ltd Plasma processing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522888B2 (en) * 2005-03-01 2010-08-11 東京エレクトロン株式会社 F density measuring method, plasma processing method and plasma processing apparatus in plasma processing apparatus
JP4588595B2 (en) * 2005-09-15 2010-12-01 株式会社日立ハイテクノロジーズ Plasma processing apparatus and processing method
CN100423187C (en) * 2005-12-08 2008-10-01 北京北方微电子基地设备工艺研究中心有限责任公司 Silicon-chip separating process
JP2007227529A (en) * 2006-02-22 2007-09-06 Tokyo Electron Ltd Method for manufacturing semiconductor device, plasma processing apparatus, and storage medium
US7432209B2 (en) * 2006-03-22 2008-10-07 Applied Materials, Inc. Plasma dielectric etch process including in-situ backside polymer removal for low-dielectric constant material
JP4755963B2 (en) * 2006-10-30 2011-08-24 株式会社東芝 Manufacturing method of semiconductor device
US20080179287A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Process for wafer backside polymer removal with wafer front side gas purge
US20080179288A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Process for wafer backside polymer removal and wafer front side scavenger plasma
KR101362815B1 (en) * 2007-04-13 2014-02-13 참엔지니어링(주) Method for plasma-treatment
JP5349341B2 (en) * 2007-03-16 2013-11-20 ソースル シーオー エルティディー Plasma processing apparatus and plasma processing method
KR101357699B1 (en) * 2007-03-16 2014-02-04 참엔지니어링(주) Apparatus for plasma treatment and the plasma-treating method using it
KR101495288B1 (en) * 2012-06-04 2015-02-24 피에스케이 주식회사 An apparatus and a method for treating a substrate
JP2022079159A (en) * 2020-11-16 2022-05-26 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817798A (en) * 1994-06-28 1996-01-19 Oki Electric Ind Co Ltd Dry etching processing method for benzocyclobutene layer, and forming method for insulating layer for multilayer interconnection by it
JPH0831808A (en) * 1994-03-09 1996-02-02 Texas Instr Inc <Ti> Method and apparatus for etching of trench at inside of semiconductor material
JPH08195382A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Semiconductor manufacturing device
JP2000101086A (en) * 1998-09-18 2000-04-07 Toshiba Corp Fabrication of semiconductor device
JP2000269202A (en) * 1999-03-18 2000-09-29 Toshiba Corp Plasma treatment method and apparatus
JP2001283475A (en) * 1999-09-01 2001-10-12 Matsushita Electric Ind Co Ltd Direct mastering substrate and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831808A (en) * 1994-03-09 1996-02-02 Texas Instr Inc <Ti> Method and apparatus for etching of trench at inside of semiconductor material
JPH0817798A (en) * 1994-06-28 1996-01-19 Oki Electric Ind Co Ltd Dry etching processing method for benzocyclobutene layer, and forming method for insulating layer for multilayer interconnection by it
JPH08195382A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Semiconductor manufacturing device
JP2000101086A (en) * 1998-09-18 2000-04-07 Toshiba Corp Fabrication of semiconductor device
JP2000269202A (en) * 1999-03-18 2000-09-29 Toshiba Corp Plasma treatment method and apparatus
JP2001283475A (en) * 1999-09-01 2001-10-12 Matsushita Electric Ind Co Ltd Direct mastering substrate and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263244A (en) * 2010-08-11 2010-11-18 Tokyo Electron Ltd Plasma processing method

Also Published As

Publication number Publication date
JP2004281528A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US20210134604A1 (en) Etching method
US9607811B2 (en) Workpiece processing method
US10475659B2 (en) Method of processing target object
US9911607B2 (en) Method of processing target object
US9911622B2 (en) Method of processing target object
TWI492296B (en) Substrate handling method
JP4656364B2 (en) Plasma processing method
TW200915402A (en) Method and apparatus for cleaning a substrate surface
US20180190505A1 (en) Method of selectively etching silicon oxide film on substrate
JP6017928B2 (en) Plasma etching method and plasma etching apparatus
TWI743123B (en) Plasma processing method
US7335601B2 (en) Method of processing an object and method of controlling processing apparatus to prevent contamination of the object
US9177781B2 (en) Plasma processing method and manufacturing method of semiconductor device
KR101540816B1 (en) Plasma etching method, computer storage medium and plasma etching apparatus
JP2010263244A (en) Plasma processing method
JP6788400B2 (en) How to process the object to be processed
TW200921785A (en) Ashing apparatus
JP4123428B2 (en) Etching method
US20130330920A1 (en) Method and apparatus for substrate preclean with hydrogen containing high frequency rf plasma
JP4775834B2 (en) Etching method
US8268721B2 (en) Semiconductor device and semiconductor device manufacturing method
US20220028670A1 (en) Plasma processing method and plasma processing apparatus
JP3362093B2 (en) How to remove etching damage
JP2004259819A (en) Device and method for treating surface of specimen
TWI802266B (en) Etching method, manufacturing method of semiconductor device, and plasma processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees