US20090269507A1 - Selective cobalt deposition on copper surfaces - Google Patents

Selective cobalt deposition on copper surfaces Download PDF

Info

Publication number
US20090269507A1
US20090269507A1 US12111921 US11192108A US2009269507A1 US 20090269507 A1 US20090269507 A1 US 20090269507A1 US 12111921 US12111921 US 12111921 US 11192108 A US11192108 A US 11192108A US 2009269507 A1 US2009269507 A1 US 2009269507A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
cobalt
substrate
during
surface
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12111921
Inventor
Sang-Ho Yu
Kevin Moraes
Seshadri Ganguli
Hua Chung
See-Eng Phan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material

Abstract

Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. In one embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a contaminated copper surface and a dielectric surface, exposing the contaminated copper surface to a reducing agent while forming a copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the copper surface while leaving exposed the dielectric surface during a vapor deposition process, and depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface. In another embodiment, a deposition-treatment cycle includes performing the vapor deposition process and subsequently a post-treatment process, which deposition-treatment cycle may be repeated to form multiple cobalt capping layers.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • Embodiments of the invention generally relate to a metallization process for manufacturing semiconductor devices, more particularly, embodiments relate to preventing copper dewetting by depositing cobalt materials on a substrate.
  • 2. Description of the Related Art
  • Copper is the current metal of choice for use in multilevel metallization processes that are crucial to semiconductor device manufacturing. The multilevel interconnects that drive the manufacturing processes require planarization of high aspect ratio apertures including contacts, vias, lines, and other features. Filling the features without creating voids or deforming the feature geometry is more difficult when the features have higher aspect ratios. Reliable formation of interconnects is also more difficult as manufacturers strive to increase circuit density and quality.
  • As the use of copper has permeated the marketplace because of its relative low cost and processing properties, semiconductor manufacturers continue to look for ways to improve the boundary regions between copper and dielectric material by reducing copper diffusion and dewetting. Several processing methods have been developed to manufacture copper interconnects as feature sizes have decreased. Each processing method may increase the likelihood of errors such as copper diffusion across boundary regions, copper crystalline structure deformation, and dewetting. Physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), chemical mechanical polishing (CMP), electrochemical plating (ECP), electrochemical mechanical polishing (ECMP), and other methods of depositing and removing copper layers utilize mechanical, electrical, or chemical methods to manipulate the copper that forms the interconnects. Barrier and capping layers may be deposited to contain the copper.
  • In the past, a layer of tantalum, tantalum nitride, or copper alloy with tin, aluminum, or magnesium was used to provide a barrier layer or an adhesion promoter between copper and other materials. These options are costly or only partially effective or both. As the copper atoms along the boundary regions experience changes in temperature, pressure, atmospheric conditions, or other process variables common during multiple step semiconductor processing, the copper may migrate along the boundary regions and become agglomerated copper. The copper may also be less uniformly dispersed along the boundary regions and become dewetted copper. These changes in the boundary region include stress migration and electromigration of the copper atoms. The stress migration and electromigration of copper across the dielectric layers or other structures increases the resistivity of the resulting structures and reduces the reliability of the resulting devices.
  • Barrier layers containing cobalt have been deposited by PVD, CVD, and ALD processes. PVD processes to deposit cobalt are often hard to control precise deposition thicknesses. CVD processes usually suffer from poor conformality and contaminants in the deposited cobalt layer. During a typical ALD process, a cobalt precursor and a reducing agent are sequentially exposed to a substrate to form the desired cobalt layer. ALD processes have several advantages over other vapor deposition processes, such as very conformal films and the ability to deposit into high aspect ratio vias. However, the deposition rates of an ALD process are often too slow, so that ALD processes are not often used in commercial applications.
  • Therefore, a need exists to enhance the stability and adhesion of copper-containing layers, especially for copper seed layers. Also, a need exists to improve the electromigration (EM) reliability of copper-containing layer, especially for copper line formations, while preventing the diffusion of copper into neighboring materials, such as dielectric materials. A further need exists for an improved vapor deposition process to deposit cobalt materials.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. In one embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a contaminated copper surface and a dielectric surface, exposing the contaminated copper surface to a reducing agent while forming a metallic copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, and depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
  • In some examples, the method further includes chemically reducing copper oxides on the contaminated copper surface to form the metallic copper surface during the pre-treatment process. The contaminated copper surface may be exposed to the reducing agent and a plasma is ignited during the pre-treatment process, the reducing agent may contain a reagent such as nitrogen (N2), ammonia (NH3), hydrogen (H2), an ammonia/nitrogen mixture, or combinations thereof. In some examples, the contaminated copper surface may be exposed to the plasma for a time period within a range from about 5 seconds to about 15 seconds. In another example, the reducing agent contains hydrogen gas, the pre-treatment process is a thermal process, and the substrate is heated to a temperature within a range from about 200° C. to about 400° C. during the thermal process.
  • In other examples, the method further includes exposing the cobalt capping layer to a reagent and a plasma during a post-treatment process prior to depositing the dielectric barrier layer. The reagent may contain nitrogen, ammonia, hydrogen, an ammonia/nitrogen mixture, or combinations thereof.
  • In another embodiment, a deposition-treatment cycle includes performing the vapor deposition process and subsequently the post-treatment process, and the deposition-treatment cycle is performed 2, 3, or more times to deposit multiple cobalt capping layers. Each of the cobalt capping layers may be deposited to a thickness within a range from about 3 Å to about 5 Å during each of the deposition-treatment cycles. The overall cobalt capping material or cobalt capping layer may have a thickness within a range from about 4 Å to about 20 Å. In some examples, the cobalt capping layer has a thickness of less than about 10 Å.
  • The substrate may be exposed to a deposition gas containing the cobalt precursor gas and hydrogen gas during the vapor deposition process, the vapor deposition process is a thermal chemical vapor deposition process or an atomic layer deposition process. wherein the cobalt precursor gas contains a cobalt precursor which has the general chemical formula (CO)xCoyLz, wherein X is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12; Y is 1, 2, 3, 4, or 5; Z is 1, 2, 3, 4, 5, 6, 7, or 8; and L is a ligand independently selected from cyclopentadienyl, alkylcyclopentadienyl, methylcyclopentadienyl, pentamethylcyclopentadienyl, pentadienyl, alkylpentadienyl, cyclobutadienyl, butadienyl, allyl, ethylene, propylene, alkenes, dialkenes, alkynes, nitrosyl, ammonia, derivatives thereof, or combinations thereof. The cobalt precursor gas may contain a cobalt precursor selected from the group consisting of tricarbonyl allyl cobalt, cyclopentadienyl cobalt bis(carbonyl), methylcyclopentadienyl cobalt bis(carbonyl), ethylcyclopentadienyl cobalt bis(carbonyl), pentamethylcyclopentadienyl cobalt bis(carbonyl), dicobalt octa(carbonyl), nitrosyl cobalt tris(carbonyl), bis(cyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (cyclohexadienyl), cyclopentadienyl cobalt (1,3-hexadienyl), (cyclobutadienyl) cobalt (cyclopentadienyl), bis(methylcyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (5-methylcyclopentadienyl), bis(ethylene) cobalt (pentamethylcyclopentadienyl), derivatives thereof, complexes thereof, plasmas thereof, or combinations thereof. In one example, the cobalt precursor contains cyclopentadienyl cobalt bis(carbonyl).
  • In another embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a copper oxide surface and a dielectric surface, exposing the copper oxide surface to an ammonia plasma or a hydrogen plasma while forming a metallic copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, exposing the cobalt capping layer to a plasma during a post-treatment process, and depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
  • In some examples, a deposition-treatment cycle is formed by performing the vapor deposition process and subsequently the post-treatment process. The deposition-treatment cycle may be performed 2, 3, or more times to deposit multiple cobalt capping layers. Each of the cobalt capping layers may be deposited to a thickness within a range from about 3 Å to about 5 Å during each of the deposition-treatment cycles.
  • In another example, the copper oxide surface may be exposed to the ammonia plasma or the hydrogen plasma for a time period within a range from about 5 seconds to about 15 seconds during a pre-treatment process. The plasma may be exposed to the cobalt capping layer during the post-treatment process contains nitrogen, ammonia, an ammonia/nitrogen mixture, or hydrogen.
  • In another embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a copper oxide surface and a dielectric surface, exposing the copper oxide surface to an ammonia plasma or a hydrogen plasma while forming a metallic copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas and hydrogen gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, and exposing the cobalt capping layer to a plasma and a reagent selected from the group consisting of nitrogen, ammonia, hydrogen, an ammonia/nitrogen mixture, and combinations thereof during a post-treatment process.
  • In another embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a contaminated copper surface and a dielectric surface, exposing the contaminated copper surface to a reducing agent while forming a metallic copper surface during a pre-treatment process, and depositing a cobalt capping material over the metallic copper surface while leaving exposed the dielectric surface during a deposition-treatment cycle. In one example, the deposition-treatment cycle includes exposing the substrate to a cobalt precursor gas to selectively form a first cobalt layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, exposing the first cobalt layer to a plasma containing nitrogen, ammonia, an ammonia/nitrogen mixture, or hydrogen during a treatment process, exposing the substrate to the cobalt precursor gas to selectively form a second cobalt layer over the first cobalt layer while leaving exposed the dielectric surface during the vapor deposition process, and exposing the second cobalt layer to the plasma during the treatment process. The method further provides depositing a dielectric barrier layer over the cobalt capping material and the dielectric surface.
  • In some examples, the method provides exposing the substrate to the cobalt precursor gas to selectively form a third cobalt layer over the second cobalt layer while leaving exposed the dielectric surface during the vapor deposition process, and exposing the third cobalt layer to the plasma during the treatment process.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
  • FIG. 1 depicts a flow chart illustrating a treatment and deposition process according to an embodiment described herein;
  • FIGS. 2A-2E depict schematic views of a substrate at different process steps according to an embodiment described herein; and
  • FIG. 3 depicts a flow chart illustrating a deposition process according to another embodiment described herein.
  • DETAILED DESCRIPTION
  • Embodiments of the invention provide a method that utilizes a cobalt capping layer or material to prevent copper diffusion and dewetting in interconnect boundary regions. The transition metal, for example, cobalt, improves copper boundary region properties to promote adhesion, decrease diffusion and agglomeration, and encourage uniform roughness and wetting of the substrate surface during processing. Embodiments provide that a cobalt capping layer may be selectively deposited on a copper contact or surface on a substrate while leaving exposed dielectric surfaces on the substrate.
  • FIG. 1 depicts a flow chart illustrating process 100 according to an embodiment of the invention. Process 100 may be used to clean and cap a copper contact surface on a substrate post a polishing process. In one embodiment, steps 110-140 of process 100 may be used on substrate 200, depicted in FIGS. 2A-2E. Process 100 includes exposing a substrate to pre-treatment process (step 110), depositing a cobalt capping layer on exposed copper surfaces of the substrate (step 120), exposing the substrate to post-treatment process (step 130), and depositing a dielectric barrier layer on the substrate (step 140).
  • FIG. 2A depicts substrate 200 containing dielectric layer 204 disposed over underlayer 202 after being exposed to a polishing process. Copper contacts 208 are disposed within dielectric layer 204 and are separated from dielectric layer 204 by barrier layer 206. Dielectric layer 204 contains a dielectric material, such as a low-k dielectric material. In one example, dielectric layer 204 contains a low-k dielectric material, such as a silicon carbide oxide material or a carbon doped silicon oxide material, for example, BLACK DIAMOND® II low-k dielectric material, available from Applied Materials, Inc., located in Santa Clara, Calif.
  • Barrier layer 206 may be conformally deposited into the aperture within dielectric layer 204. Barrier layer 206 may be formed or deposited by a PVD process, an ALD, or a CVD process, and may have a thickness within a range from about 5 Å to about 50 Å, preferably, from about 10 Å to about 30 Å. Barrier layer 206 may contain titanium, titanium nitride, tantalum, tantalum nitride, tungsten, tungsten nitride, suicides thereof, derivatives thereof, or combinations thereof. In some embodiments, barrier layer 206 may contain a tantalum/tantalum nitride bilayer or titanium/titanium nitride bilayer. In one example, barrier layer 206 contains tantalum nitride and metallic tantalum layers deposited by PVD processes.
  • During the polishing process, such as a chemical mechanical polishing (CMP) process, the upper surface of copper contacts 208 are exposed across substrate field 210 and contaminants 212 are formed on copper contacts 212. Contaminants 212 usually contain copper oxides formed during or after the polishing process. The exposed surfaces of copper contacts 208 may be oxidized by peroxides, water, or other reagents in the polishing solution or by oxygen within the ambient air. Contaminants 212 may also include moisture, polishing solution remnants including surfactants and other additives, or particles of polished away materials.
  • At step 110 of process 100, contaminants 212 may be removed from substrate field 210 by exposing substrate 200 to a pre-treatment process. Copper surfaces 214 are exposed once contaminants 212 are treated or removed from copper contacts 208, as illustrated in FIG. 2B. Copper oxides may be chemically reduced by exposing substrate 200 to a reducing agent. The pre-treatment process exposes substrate 200 to the reducing agent during a thermal process or a plasma process. The reducing agent may have a liquid state, a gas state, a plasma state, or combinations thereof. Reducing agent that are useful during the pre-treatment process include hydrogen (e.g., H2 or atomic-H), ammonia (NH3), a hydrogen and ammonia mixture (H2/NH3), atomic-N, hydrazine (N2H4), alcohols (e.g., methanol, ethanol, or propanol), derivatives thereof, plasmas thereof, or combinations thereof. Substrate 200 may be exposed to a plasma formed in situ or remotely during the pre-treatment process.
  • In one embodiment, substrate 200 is exposed to a thermal pre-treatment process to remove contaminants 212 from copper contacts 208 while forming copper surfaces 214. Substrate 200 may be positioned within a processing chamber, exposed to a reducing agent, and heated to a temperature within a range from about 200° C. to about 800° C., preferably, from about 250° C. to about 600° C., and more preferably, from about 300° C. to about 500° C. Substrate 200 may be heated for a time period within a range from about 2 minutes to about 20 minutes, preferably, from about 5 minutes to about 15 minutes. For example, substrate 200 may be heated to about 500° C. in a processing chamber containing a hydrogen atmosphere for about 12 minutes.
  • In another embodiment, substrate 200 is exposed to a plasma pre-treatment process to remove contaminants 212 from copper contacts 208 while forming copper surfaces 214. Substrate 200 may be positioned within a processing chamber, exposed to a reducing agent, and heated to a temperature within a range from about 100° C. to about 400° C., preferably, from about 125° C. to about 350° C., and more preferably, from about 150° C. to about 300° C., such as about 200° C. or about 250° C. The processing chamber may produce an in situ plasma or be equipped with a remote plasma source (RPS). In one embodiment, substrate 200 may be exposed to the plasma (e.g., in situ or remotely) for a time period within a range from about 2 seconds to about 60 seconds, preferably, from about 3 seconds to about 30 seconds, preferably, from about 5 seconds to about 15 seconds, such as about 10 seconds. The plasma may be produced at a power within the range from about 200 watts to about 1,000 watts, preferably, from about 400 watts to about 800 watts. In one example, substrate 200 may be exposed to hydrogen gas while a plasma is generated at 400 watts for about 10 seconds at about 5 Torr. In another example, substrate 200 may be exposed to ammonia gas while a plasma is generated at 800 watts for about 20 seconds at about 5 Torr. In another example, substrate 200 may be exposed to a hydrogen and ammonia gaseous mixture while a plasma is generated at 400 watts for about 15 seconds at about 5 Torr.
  • At step 120 of process 100, cobalt capping layer 216 may be selectively deposited or formed on copper surfaces 214 while leaving bare the exposed surfaces of dielectric layer 204 across substrate field 210, as illustrated in FIG. 2C. Therefore, along substrate field 210, cobalt capping layer 216 is selectively deposited on copper surfaces 214 while leaving the surfaces of dielectric layer 204 free or at least substantially free of cobalt capping layer 216. Initially, cobalt capping layer 216 may be a continuous layer or a discontinuous layer across copper surfaces 214, but is a continuous layer after multiple deposition cycles.
  • Contaminants 218 may collect throughout substrate field 210, such as on cobalt capping layer 216 as well as the surfaces of dielectric layer 204, as depicted in FIG. 2C. Contaminants 218 may include by-products from the deposition process, such as carbon, organic residue, precursor residue, and other undesirable materials collected on substrate field 210.
  • Substrate 200 may be exposed to a plasma formed in situ or remotely during the post-treatment process at step 130 of process 100. The post-treatment process removes or reduces the amount of contaminants from substrate 200 while further densifying cobalt capping layer 216. The post-treatment process may expose substrate 200 and cobalt capping layer 216 to a reducing agent during the plasma process. Reducing agent that are useful during the post-treatment process include hydrogen (e.g., H2 or atomic-H), ammonia (NH3), a hydrogen and ammonia mixture (H2/NH3), nitrogen (e.g., N2 or atomic-N), hydrazine (N2H4), derivatives thereof, plasmas thereof, or combinations thereof. Cobalt capping layer 216 may be exposed to the plasma during the post-treatment process for a time period within a range from about 2 seconds to about 60 seconds, preferably, from about 3 seconds to about 30 seconds, and more preferably, from about 5 seconds to about 15 seconds.
  • In one example, the cobalt capping layer is exposed to a hydrogen plasma, formed by igniting hydrogen gas in situ or remotely of the processing chamber. In another example, the cobalt capping layer is exposed to an ammonia plasma, formed by igniting ammonia gas in situ or remotely of the processing chamber. In another example, the cobalt capping layer is exposed to a hydrogen/ammonia plasma, formed by igniting a mixture of hydrogen gas and ammonia gas in situ or remotely of the processing chamber.
  • A plasma may be generated external from the processing chamber, such as by a remote plasma source (RPS) system, or preferably, the plasma may be generated in situ a plasma capable deposition chamber, such as a PE-CVD chamber during a plasma treatment process, such as in steps 130 or 330. The plasma may be generated from a microwave (MW) frequency generator or a radio frequency (RF) generator. In a preferred example, an in situ plasma is generated by a RF generator. The processing chamber may be pressurized during the plasma treatment process at a pressure within a range from about 0.1 Torr to about 80 Torr, preferably from about 0.5 Torr to about 10 Torr, and more preferably, from about 1 Torr to about 5 Torr. Also, the chamber or the substrate may be heated to a temperature of less than about 500° C., preferably within a range from about 100° C. to about 450° C., and more preferably, from about 150° C. to about 400° C., for example, about 300° C.
  • During treatment processes, a plasma may be ignited within the processing chamber for an in situ plasma process, or alternative, may be formed by an external source, such as a RPS system. The RF generator may be set at a frequency within a range from about 100 kHz to about 60 MHz. In one example, a RF generator, with a frequency of 13.56 MHz, may be set to have a power output within a range from about 100 watts to about 1,000 watts, preferably, from about 250 watts to about 600 watts, and more preferably, from about 300 watts to about 500 watts. In one example, a RF generator, with a frequency of 350 kHz, may be set to have a power output within a range from about 200 watts to about 2,000 watts, preferably, from about 500 watts to about 1,500 watts, and more preferably, from about 800 watts to about 1,200 watts, for example, about 1,000 watts. A surface of substrate may be exposed to a plasma having a power per surface area value within a range from about 0.01 watts/cm2 to about 10.0 watts/cm2, preferably, from about 0.05 watts/cm2 to about 6.0 watts/cm2.
  • In another embodiment, step 120 is repeated at least once, two times, or more. Step 120 may be performed one time to form a single layer of cobalt capping layer 216, or performed multiple times to form multiple layers of cobalt capping layer 216, such as 2, 3, 4, 5, or more layers of cobalt capping layer 216. In another embodiment, steps 120 and 130 are sequentially repeated at least once, if not, 2, 3, 4 or more times. Cobalt capping layer 216 may be deposited having a thickness within a range from about 2 Å to about 30 Å, preferably, from about 3 Å to about 25 Å, more preferably, from about 4 Å to about 20 Å, and more preferably, from about 5 Å to about 10 Å, such as about 7 Å or about 8 Å. In one example, two cycles of steps 120 and 130 and performed to form cobalt capping layer 216 with a thickness of about 7 Å. In another example, three cycles of steps 120 and 130 and performed to form cobalt capping layer 216 with a thickness of about 8 Å.
  • Cobalt capping layer 216 may be deposited by thermal decomposition of a cobalt containing precursor carried by an inert gas during step 120. A reducing gas may be co-flowed or alternately pulsed into the processing chamber along with the cobalt precursor. The substrate may be heated to a temperature within a range from about 50° C. to about 600° C., preferably, from about 100° C. to about 500° C., and more preferably, from about 200° C. to about 400° C. Alternatively, cobalt capping layer 216 may be deposited by exposing the substrate to a cobalt containing precursor gas in an ALD or CVD process.
  • FIG. 3 depicts a flow-chart of process 300 which may be used to form cobalt-containing materials, such as cobalt capping layer 216. In one embodiment, process 300 includes exposing a substrate to a deposition gas to form a cobalt capping material (step 310), optionally purging the deposition chamber (step 320), exposing the substrate to a plasma treatment process (step 330), purging the deposition chamber (step 340), and determining if a predetermined thickness of the cobalt capping material has been formed on the substrate (step 350). In one embodiment, the cycle of steps 310-350 may be repeated if the cobalt capping material has not been formed having the predetermined thickness. In another embodiment, the cycle of steps 310 and 330 may be repeated if the cobalt capping material has not been formed having the predetermined thickness. Alternately, process 300 may be stopped once the cobalt capping material has been formed having the predetermined thickness.
  • In one embodiment, a method for capping a copper surface on a substrate is provided which includes exposing the substrate to a cobalt precursor gas and hydrogen gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, and exposing the cobalt capping layer to a plasma and a reagent, such as nitrogen, ammonia, hydrogen, an ammonia/nitrogen mixture, or combinations thereof during a post-treatment process.
  • In another embodiment, a method for capping a copper surface on a substrate is provided which includes depositing a cobalt capping material over the metallic copper surface while leaving exposed the dielectric surface during a deposition-treatment cycle. In one example, the deposition-treatment cycle includes exposing the substrate to a cobalt precursor gas to selectively form a first cobalt layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process, exposing the first cobalt layer to a plasma containing nitrogen, ammonia, an ammonia/nitrogen mixture, or hydrogen during a treatment process. The method further provides exposing the substrate to the cobalt precursor gas to selectively form a second cobalt layer over the first cobalt layer while leaving exposed the dielectric surface during the vapor deposition process, and exposing the second cobalt layer to the plasma during the treatment process.
  • In some examples, the method provides exposing the substrate to the cobalt precursor gas to selectively form a third cobalt layer over the second cobalt layer while leaving exposed the dielectric surface during the vapor deposition process, and exposing the third cobalt layer to the plasma during the treatment process.
  • Suitable cobalt precursors for forming cobalt-containing materials (e.g., metallic cobalt or cobalt alloys) by CVD or ALD processes described herein include cobalt carbonyl complexes, cobalt amidinates compounds, cobaltocene compounds, cobalt dienyl complexes, cobalt nitrosyl complexes, derivatives thereof, complexes thereof, plasma thereof, or combinations thereof. In some embodiments, cobalt materials may be deposited by CVD and ALD processes further described in commonly assigned U.S. Pat. No. 7,264,846 and U.S. Ser. No. 10/443,648, filed May 22, 2003, and published as US 2005-0220998, which are herein incorporated by reference.
  • In some embodiments, cobalt carbonyl compounds or complexes may be utilized as cobalt precursors. Cobalt carbonyl compounds or complexes have the general chemical formula (CO)xCoyLz, where X may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, Y may be 1, 2, 3, 4, or 5, and Z may be 1, 2, 3, 4, 5, 6, 7, or 8. The group L is absent, one ligand or multiple ligands, that may be the same ligand or different ligands, and include cyclopentadienyl, alkylcyclopentadienyl (e.g., methylcyclopentadienyl or pentamethylcyclopentadienyl), pentadienyl, alkylpentadienyl, cyclobutadienyl, butadienyl, ethylene, allyl (or propylene), alkenes, dialkenes, alkynes, acetylene, bytylacetylene, nitrosyl, ammonia, derivatives thereof, complexes thereof, plasma thereof, or combinations thereof. Some exemplary cobalt carbonyl complexes include cyclopentadienyl cobalt bis(carbonyl) (CpCo(CO)2), tricarbonyl allyl cobalt ((CO)3Co(CH2CH═CH2)), dicobalt hexacarbonyl bytylacetylene (CCTBA, (CO)6Co2(HC≡CtBu)), dicobalt hexacarbonyl methylbytylacetylene ((CO)6Co2(MeC≡CtBu)), dicobalt hexacarbonyl phenylacetylene ((CO)6Co2(HC≡CPh)), hexacarbonyl methylphenylacetylene ((CO)6Co2(MeC≡CPh)), dicobalt hexacarbonyl methylacetylene ((CO)6Co2(HC≡CMe)), dicobalt hexacarbonyl dimethylacetylene ((CO)6Co2(MeC≡CMe)), derivatives thereof, complexes thereof, plasma thereof, or combinations thereof.
  • In another embodiment, cobalt amidinates or cobalt amido complexes may be utilized as cobalt precursors. Cobalt amido complexes have the general chemical formula (RR′N)xCo, where X may be 1, 2, or 3, and R and R′ are independently hydrogen, methyl, ethyl, propyl, butyl, alkyl, silyl, alkylsilyl, derivatives thereof, or combinations thereof. Some exemplary cobalt amido complexes include bis(di(butyldimethylsilyl)amido) cobalt (((BuMe2Si)2N)2Co), bis(di(ethyidimethylsilyl)amido) cobalt (((EtMe2Si)2N)2Co), bis(di(propyidimethylsilyl)amido) cobalt (((PrMe2Si)2N)2Co), bis(di(trimethylsilyl)amido) cobalt (((Me3Si)2N)2Co), tris(di(trimethylsilyl)amido) cobalt (((Me3Si)2N)3Co), derivatives thereof, complexes thereof, plasma thereof, or combinations thereof.
  • Some exemplary cobalt precursors include methylcyclopentadienyl cobalt bis(carbonyl) (MeCpCo(CO)2), ethylcyclopentadienyl cobalt bis(carbonyl) (EtCpCo(CO)2), pentamethylcyclopentadienyl cobalt bis(carbonyl) (Me5CpCo(CO)2), dicobalt octa(carbonyl) (Co2(CO)8), nitrosyl cobalt tris(carbonyl) ((ON)Co(CO)3), bis(cyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (cyclohexadienyl), cyclopentadienyl cobalt (1,3-hexadienyl), (cyclobutadienyl) cobalt (cyclopentadienyl), bis(methylcyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (5-methylcyclopentadienyl), bis(ethylene) cobalt (pentamethylcyclopentadienyl), cobalt tetracarbonyl iodide, cobalt tetracarbonyl trichlorosilane, carbonyl chloride tris(trimethylphosphine) cobalt, cobalt tricarbonyl-hydrotributylphosphine, acetylene dicobalt hexacarbonyl, acetylene dicobalt pentacarbonyl triethylphosphine, derivatives thereof, complexes thereof, plasma thereof, or combinations thereof.
  • Suitable reagents, including reducing agents, that are useful to form cobalt-containing materials (e.g., metallic cobalt, cobalt capping layers, or cobalt alloys) by processes described herein include hydrogen (e.g., H2 or atomic-H), atomic-N, ammonia (NH3), hydrazine (N2H4), a hydrogen and ammonia mixture (H2/NH3), borane (BH3), diborane (B2H6), triethylborane (Et3B), silane (SiH4), disilane (Si2H6), trisilane (Si3H8), tetrasilane (Si4H10), methyl silane (SiCH6), dimethylsilane (SiC2H8), phosphine (PH3), derivatives thereof, plasmas thereof, or combinations thereof.
  • During step 140 of process 100, dielectric barrier layer 220 may be deposited over cobalt capping layer 216 and on substrate 200, as depicted in FIG. 2E. Dielectric barrier layer 220 having a low dielectric constant may be deposited on substrate 200, across substrate field 210, and over cobalt capping layer 216. Dielectric barrier layer 220 may contain a low-k dielectric material, such as silicon carbide, silicon nitride, silicon oxide, silicon oxynitride, silicon carbide oxide or carbon doped silicon oxide material, derivatives thereof, or combinations thereof. In one example, BLOK® low-k dielectric material, available from Applied Materials, Inc., located in Santa Clara, Calif., may be utilized as a low-k dielectric material for dielectric barrier layer 220. An example of a suitable material for dielectric barrier layer 220 is a silicon carbide based film formed using CVD or plasma enhanced CVD (PE-CVD) processes such as the processes described in commonly assigned U.S. Pat. Nos. 6,537,733, 6,790,788, and 6,890,850, which are herein incorporated by reference.
  • An ALD processing chamber used during embodiments described herein is available from Applied Materials, Inc., located in Santa Clara, Calif. A detailed description of an ALD processing chamber may be found in commonly assigned U.S. Pat. Nos. 6,916,398 and 6,878,206, commonly assigned U.S. Ser. No. 10/281,079, filed on Oct. 25, 2002, and published as U.S. Pub. No. 2003-0121608, and commonly assigned U.S. Ser. Nos. 11/556,745, 11/556,752, 11/556,756, 11/556,758, 11/556,763, each filed Nov. 6, 2006, and published as U.S. Pub. Nos. 2007-0119379, 2007-0119371, 2007-0128862, 2007-0128863, and 2007-0128864, which are hereby incorporated by reference in their entirety. In another embodiment, a chamber configured to operate in both an ALD mode as well as a conventional CVD mode may be used to deposit cobalt-containing materials is described in commonly assigned U.S. Pat. No. 7,204,886, which is incorporated herein by reference in its entirety. A detailed description of an ALD process for forming cobalt-containing materials is further disclosed in commonly assigned U.S. Ser. No. 10/443,648, filed on May 22, 2003, and published as U.S. Pub. No. 2005-0220998, and commonly assigned U.S. Pat. No. 7,264,846, which are hereby incorporated by reference in their entirety. In other embodiments, a chamber configured to operate in both an ALD mode as well as a conventional CVD mode that may be used to deposit cobalt-containing materials is the TXZ® showerhead and CVD chamber available from Applied Materials, Inc., located in Santa Clara, Calif.
  • “Substrate surface” or “substrate,” as used herein, refers to any substrate or material surface formed on a substrate upon which film processing is performed during a fabrication process. For example, a substrate surface on which processing may be performed include materials such as monocrystalline, polycrystalline or amorphous silicon, strained silicon, silicon on insulator (SOI), doped silicon, silicon germanium, germanium, gallium arsenide, glass, sapphire, silicon oxide, silicon nitride, silicon oxynitride, and/or carbon doped silicon oxides, such as SiOxCy, for example, BLACK DIAMOND® low-k dielectric, available from Applied Materials, Inc., located in Santa Clara, Calif. Substrates may have various dimensions, such as 200 mm or 300 mm diameter wafers, as well as, rectangular or square panes. Unless otherwise noted, embodiments and examples described herein are preferably conducted on substrates with a 200 mm diameter or a 300 mm diameter, more preferably, a 300 mm diameter. Embodiments of the processes described herein deposit cobalt silicide materials, metallic cobalt materials, and other cobalt-containing materials on many substrates and surfaces, especially, silicon-containing dielectric materials. Substrates on which embodiments of the invention may be useful include, but are not limited to semiconductor wafers, such as crystalline silicon (e.g., Si<100> or Si<111>), silicon oxide, strained silicon, silicon germanium, doped or undoped polysilicon, doped or undoped silicon wafers, and patterned or non-patterned wafers. Substrates may be exposed to a pre-treatment process to polish, etch, reduce, oxidize, hydroxylate, anneal, and/or bake the substrate surface.
  • While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims (25)

  1. 1. A method for capping a copper surface on a substrate, comprising:
    positioning a substrate within a processing chamber, wherein the substrate comprises a contaminated copper surface and a dielectric surface;
    exposing the contaminated copper surface to a reducing agent while forming a metallic copper surface during a pre-treatment process;
    exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process; and
    depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
  2. 2. The method of claim 1, further comprising chemically reducing copper oxides on the contaminated copper surface to form the metallic copper surface during the pre-treatment process.
  3. 3. The method of claim 1, wherein the contaminated copper surface is exposed to the reducing agent and a plasma is ignited during the pre-treatment process, the reducing agent comprises a reagent selected from the group consisting of nitrogen (N2), ammonia (NH3), hydrogen (H2), ammonia/nitrogen mixture, and combinations thereof.
  4. 4. The method of claim 3, wherein the contaminated copper surface is exposed to the plasma for a time period within a range from about 5 seconds to about 15 seconds.
  5. 5. The method of claim 1, wherein the reducing agent comprises hydrogen gas, the pre-treatment process is a thermal process, and the substrate is heated to a temperature within a range from about 200° C. to about 400° C. during the thermal process.
  6. 6. The method of claim 1, further comprising exposing the cobalt capping layer to a reagent and a plasma during a post-treatment process prior to depositing the dielectric barrier layer, the reagent is selected from the group consisting of nitrogen (N2), ammonia (NH3), hydrogen (H2), ammonia/nitrogen mixture, and combinations thereof.
  7. 7. The method of claim 6, wherein a deposition-treatment cycle comprises performing the vapor deposition process and subsequently the post-treatment process, and the deposition-treatment cycle is performed 2, 3, or more times to deposit multiple cobalt capping layers.
  8. 8. The method of claim 7, wherein each of the cobalt capping layers is deposited to a thickness within a range from about 3 Å to about 5 Å during each of the deposition-treatment cycles.
  9. 9. The method of claim 1, wherein the cobalt capping layer has a thickness within a range from about 4 Å to about 20 Å.
  10. 10. The method of claim 1, wherein the cobalt capping layer has a thickness of less than about 10 Å.
  11. 11. The method of claim 10, wherein the substrate is exposed to a deposition gas comprising the cobalt precursor gas and hydrogen gas during the vapor deposition process, the vapor deposition process is a thermal chemical vapor deposition process or an atomic layer deposition process.
  12. 12. The method of claim 1, wherein the cobalt precursor gas comprises a cobalt precursor which has the general chemical formula (CO)xCoyLz, wherein:
    X is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12;
    Y is 1, 2, 3, 4, or 5;
    Z is 1, 2, 3, 4, 5, 6, 7, or 8; and
    L is a ligand independently selected from the group consisting of cyclopentadienyl, alkylcyclopentadienyl, methylcyclopentadienyl, pentamethylcyclopentadienyl, pentadienyl, alkylpentadienyl, cyclobutadienyl, butadienyl, allyl, ethylene, propylene, alkenes, dialkenes, alkynes, nitrosyl, ammonia, derivatives thereof, and combinations thereof.
  13. 13. The method of claim 1, wherein the cobalt precursor gas comprises a cobalt precursor selected from the group consisting of tricarbonyl allyl cobalt, cyclopentadienyl cobalt bis(carbonyl), methylcyclopentadienyl cobalt bis(carbonyl), ethylcyclopentadienyl cobalt bis(carbonyl), pentamethylcyclopentadienyl cobalt bis(carbonyl), dicobalt octa(carbonyl), nitrosyl cobalt tris(carbonyl), bis(cyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (cyclohexadienyl), cyclopentadienyl cobalt (1,3-hexadienyl), (cyclobutadienyl) cobalt (cyclopentadienyl), bis(methylcyclopentadienyl) cobalt, (cyclopentadienyl) cobalt (5-methylcyclopentadienyl), bis(ethylene) cobalt (pentamethylcyclopentadienyl), derivatives thereof, complexes thereof, plasmas thereof, and combinations thereof.
  14. 14. The method of claim 13, wherein the cobalt precursor comprises cyclopentadienyl cobalt bis(carbonyl).
  15. 15. A method for capping a copper surface on a substrate, comprising:
    positioning a substrate within a processing chamber, wherein the substrate comprises a copper oxide surface and a dielectric surface;
    exposing the copper oxide surface to an ammonia plasma or a hydrogen plasma while forming a metallic copper surface during a pre-treatment process;
    exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process;
    exposing the cobalt capping layer to a plasma during a post-treatment process; and
    depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
  16. 16. The method of claim 15, wherein a deposition-treatment cycle comprises performing the vapor deposition process and subsequently the post-treatment process, and the deposition-treatment cycle is performed 2, 3, or more times to deposit multiple cobalt capping layers.
  17. 17. The method of claim 16, wherein each of the cobalt capping layers is deposited to a thickness within a range from about 3 Å to about 5 Å during each of the deposition-treatment cycles.
  18. 18. The method of claim 15, wherein the copper oxide surface is exposed to the ammonia plasma or the hydrogen plasma for a time period within a range from about 5 seconds to about 15 seconds during a pre-treatment process.
  19. 19. The method of claim 15, wherein a reagent and the plasma are exposed to the cobalt capping layer during the post-treatment process, and the reagent is selected from the group consisting of nitrogen (N2), ammonia (NH3), hydrogen (H2), ammonia/nitrogen mixture, and combinations thereof.
  20. 20. A method for capping a copper surface on a substrate, comprising:
    positioning a substrate within a processing chamber, wherein the substrate comprises a copper oxide surface and a dielectric surface;
    exposing the copper oxide surface to an ammonia plasma or a hydrogen plasma while forming a metallic copper surface during a pre-treatment process;
    exposing the substrate to a cobalt precursor gas and hydrogen gas to selectively form a cobalt capping layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process; and
    exposing the cobalt capping layer to a plasma and a reagent selected from the group consisting of nitrogen (N2), ammonia (NH3), hydrogen (H2), ammonia/nitrogen mixture, and combinations thereof during a post-treatment process.
  21. 21. The method of claim 20, wherein a deposition-treatment cycle comprises performing the vapor deposition process and subsequently the post-treatment process, and the deposition-treatment cycle is performed 2, 3, or more times to deposit multiple cobalt capping layers.
  22. 22. The method of claim 21, wherein each of the cobalt capping layers is deposited to a thickness within a range from about 3 Å to about 5 Å during each of the deposition-treatment cycles.
  23. 23. The method of claim 20, further comprising depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
  24. 24. A method for capping a copper surface on a substrate, comprising:
    positioning a substrate within a processing chamber, wherein the substrate comprises a contaminated copper surface and a dielectric surface;
    exposing the contaminated copper surface to a reducing agent while forming a metallic copper surface during a pre-treatment process;
    depositing a cobalt capping material over the metallic copper surface while leaving exposed the dielectric surface during a deposition-treatment cycle, comprising:
    exposing the substrate to a cobalt precursor gas to selectively form a first cobalt layer over the metallic copper surface while leaving exposed the dielectric surface during a vapor deposition process;
    exposing the first cobalt layer to a plasma comprising nitrogen, ammonia, an ammonia/nitrogen mixture, or hydrogen during a treatment process;
    exposing the substrate to the cobalt precursor gas to selectively form a second cobalt layer over the first cobalt layer while leaving exposed the dielectric surface during the vapor deposition process;
    exposing the second cobalt layer to the plasma during the treatment process; and
    depositing a dielectric barrier layer over the cobalt capping material and the dielectric surface.
  25. 25. The method of claim 24, further comprising:
    exposing the substrate to the cobalt precursor gas to selectively form a third cobalt layer over the second cobalt layer while leaving exposed the dielectric surface during the vapor deposition process; and
    exposing the third cobalt layer to the plasma during the treatment process.
US12111921 2008-04-29 2008-04-29 Selective cobalt deposition on copper surfaces Abandoned US20090269507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12111921 US20090269507A1 (en) 2008-04-29 2008-04-29 Selective cobalt deposition on copper surfaces

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US12111921 US20090269507A1 (en) 2008-04-29 2008-04-29 Selective cobalt deposition on copper surfaces
JP2011507595A JP6146948B2 (en) 2008-04-29 2009-04-29 Selective cobalt deposition on the copper surface
KR20177021040A KR101802452B1 (en) 2008-04-29 2009-04-29 A method for capping a copper surface on a substrate
CN 200980113510 CN102007573B (en) 2008-04-29 2009-04-29 Selective cobalt deposition on copper surfaces
KR20177033840A KR20170132901A (en) 2008-04-29 2009-04-29 A method for capping a copper surface on a substrate
KR20107026817A KR101654001B1 (en) 2008-04-29 2009-04-29 Selective cobalt deposited on the copper surface
TW103116576A TWI530580B (en) 2008-04-29 2009-04-29 Selective cobalt deposition on copper surfaces
TW98114236A TWI441939B (en) 2008-04-29 2009-04-29 Selective cobalt deposition on copper surfaces
KR20167022431A KR101764163B1 (en) 2008-04-29 2009-04-29 A method for capping a copper surface on a substrate
PCT/US2009/042030 WO2009134840A3 (en) 2008-04-29 2009-04-29 Selective cobalt deposition on copper surfaces
US14682218 US20150325446A1 (en) 2008-04-29 2015-04-09 Selective cobalt deposition on copper surfaces
US15598687 US20170321320A1 (en) 2008-04-29 2017-05-18 Selective cobalt deposition on copper surfaces

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14682218 Continuation US20150325446A1 (en) 2008-04-29 2015-04-09 Selective cobalt deposition on copper surfaces

Publications (1)

Publication Number Publication Date
US20090269507A1 true true US20090269507A1 (en) 2009-10-29

Family

ID=41215285

Family Applications (3)

Application Number Title Priority Date Filing Date
US12111921 Abandoned US20090269507A1 (en) 2008-04-29 2008-04-29 Selective cobalt deposition on copper surfaces
US14682218 Abandoned US20150325446A1 (en) 2008-04-29 2015-04-09 Selective cobalt deposition on copper surfaces
US15598687 Pending US20170321320A1 (en) 2008-04-29 2017-05-18 Selective cobalt deposition on copper surfaces

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14682218 Abandoned US20150325446A1 (en) 2008-04-29 2015-04-09 Selective cobalt deposition on copper surfaces
US15598687 Pending US20170321320A1 (en) 2008-04-29 2017-05-18 Selective cobalt deposition on copper surfaces

Country Status (5)

Country Link
US (3) US20090269507A1 (en)
JP (1) JP6146948B2 (en)
KR (4) KR101764163B1 (en)
CN (1) CN102007573B (en)
WO (1) WO2009134840A3 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074500A (en) * 2009-11-12 2011-05-25 诺发系统有限公司 Uv and reducing treatment for K recovery and surface clean in semiconductor processing
WO2011156705A2 (en) * 2010-06-10 2011-12-15 Asm International N.V. Selective formation of metallic films on metallic surfaces
US20120161319A1 (en) * 2010-12-23 2012-06-28 Stmicroelectronics Pte Ltd. Ball grid array method and structure
US8524600B2 (en) 2011-03-31 2013-09-03 Applied Materials, Inc. Post deposition treatments for CVD cobalt films
US20130260555A1 (en) * 2012-03-28 2013-10-03 Bhushan N. ZOPE Method of enabling seamless cobalt gap-fill
CN103972156A (en) * 2013-02-06 2014-08-06 中芯国际集成电路制造(上海)有限公司 Semiconductor interconnecting structure and manufacturing method thereof
WO2014189671A1 (en) * 2013-05-24 2014-11-27 Applied Materials, Inc. Cobalt selectivity improvement in selective cobalt process sequence
US20150028483A1 (en) * 2013-07-23 2015-01-29 Semiconductor Manufacturing International (Shanghai) Corporation Novel method for electromigration and adhesion using two selective deposition
US20150093891A1 (en) * 2013-09-27 2015-04-02 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US20150206798A1 (en) * 2014-01-17 2015-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect Structure And Method of Forming
US20150221542A1 (en) * 2014-02-03 2015-08-06 Lam Research Corporation Methods and apparatus for selective deposition of cobalt in semiconductor processing
US20150221596A1 (en) * 2014-02-05 2015-08-06 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
US9112003B2 (en) 2011-12-09 2015-08-18 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9184060B1 (en) 2014-11-14 2015-11-10 Lam Research Corporation Plated metal hard mask for vertical NAND hole etch
US20150380296A1 (en) * 2014-06-25 2015-12-31 Lam Research Corporation Cleaning of carbon-based contaminants in metal interconnects for interconnect capping applications
US20150380272A1 (en) * 2014-06-30 2015-12-31 Lam Research Corporation Liner and barrier applications for subtractive metal integration
WO2016033145A1 (en) * 2014-08-27 2016-03-03 Applied Materials, Inc. Selective deposition with alcohol selective reduction and protection
WO2016040077A1 (en) * 2014-09-14 2016-03-17 Entergris, Inc. Cobalt deposition selectivity on copper and dielectrics
US9349637B2 (en) 2014-08-21 2016-05-24 Lam Research Corporation Method for void-free cobalt gap fill
US9449872B1 (en) * 2015-04-13 2016-09-20 Shanghai Huali Microelectronics Corporation Method for forming cobalt barrier layer and metal interconnection process
US9487860B2 (en) 2014-11-10 2016-11-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for forming cobalt containing films
US9502255B2 (en) 2014-10-17 2016-11-22 Lam Research Corporation Low-k damage repair and pore sealing agents with photosensitive end groups
US9540408B2 (en) 2012-09-25 2017-01-10 Entegris, Inc. Cobalt precursors for low temperature ALD or CVD of cobalt-based thin films
US20170092535A1 (en) * 2015-09-29 2017-03-30 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device
US20170110370A1 (en) * 2011-06-24 2017-04-20 Tessera, Inc. Systems and methods for producing flat surfaces in interconnect structures
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US9748137B2 (en) 2014-08-21 2017-08-29 Lam Research Corporation Method for void-free cobalt gap fill
US9805974B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Selective deposition of metallic films
US9803277B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US9873946B2 (en) 2005-04-26 2018-01-23 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US9895715B2 (en) 2014-02-04 2018-02-20 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US9905458B2 (en) 2014-12-03 2018-02-27 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor device having a via structure and an interconnection structure
US9947582B1 (en) 2017-06-02 2018-04-17 Asm Ip Holding B.V. Processes for preventing oxidation of metal thin films
WO2018085257A1 (en) * 2016-11-01 2018-05-11 Versum Materials Us, Llc Cobalt compounds, method of making and method of use thereof
US9981286B2 (en) 2016-03-08 2018-05-29 Asm Ip Holding B.V. Selective formation of metal silicides
US10014212B2 (en) 2016-06-08 2018-07-03 Asm Ip Holding B.V. Selective deposition of metallic films
US10014255B2 (en) 2016-03-14 2018-07-03 International Business Machines Corporation Contacts having a geometry to reduce resistance
EP3216048A4 (en) * 2014-11-07 2018-07-25 Applied Materials Inc Methods for thermally forming a selective cobalt layer
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
US10121699B2 (en) 2015-08-05 2018-11-06 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069440B1 (en) 2010-04-16 2011-09-30 주식회사 하이닉스반도체 Metal pattern in semiconductor device and the method for fabricating of the same
JP2012175073A (en) * 2011-02-24 2012-09-10 Tokyo Electron Ltd Deposition method and storage medium
CN104152863A (en) * 2014-08-27 2014-11-19 上海华力微电子有限公司 A method for increasing deposition selectivity of a cobalt barrier layer
KR20160122399A (en) * 2015-04-14 2016-10-24 (주)디엔에프 method of manufacturing a cobalt-containing thin film and a cobalt-containing thin film manufactured thereby

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6294836B1 (en) * 1998-12-22 2001-09-25 Cvc Products Inc. Semiconductor chip interconnect barrier material and fabrication method
US20020004293A1 (en) * 2000-05-15 2002-01-10 Soininen Pekka J. Method of growing electrical conductors
US6346477B1 (en) * 2001-01-09 2002-02-12 Research Foundation Of Suny - New York Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt
US20020076837A1 (en) * 2000-11-30 2002-06-20 Juha Hujanen Thin films for magnetic device
US20020081381A1 (en) * 2000-10-10 2002-06-27 Rensselaer Polytechnic Institute Atomic layer deposition of cobalt from cobalt metallorganic compounds
US6444263B1 (en) * 2000-09-15 2002-09-03 Cvc Products, Inc. Method of chemical-vapor deposition of a material
US20020197856A1 (en) * 1997-11-05 2002-12-26 Kimihiro Matsuse Method of forming a barrier film and method of forming wiring structure and electrodes of semiconductor device having a barrier film
US20030022487A1 (en) * 2001-07-25 2003-01-30 Applied Materials, Inc. Barrier formation using novel sputter-deposition method
US6528409B1 (en) * 2002-04-29 2003-03-04 Advanced Micro Devices, Inc. Interconnect structure formed in porous dielectric material with minimized degradation and electromigration
US6627995B2 (en) * 2000-03-03 2003-09-30 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
US20040005753A1 (en) * 2000-05-15 2004-01-08 Juhana Kostamo Method of growing electrical conductors
US20040077158A1 (en) * 2002-10-17 2004-04-22 Hyeon-Ill Um Method of manufacturing semiconductor device through salicide process
US20040105934A1 (en) * 2002-06-04 2004-06-03 Mei Chang Ruthenium layer formation for copper film deposition
US20040203233A1 (en) * 2003-04-08 2004-10-14 Sang-Bom Kang Compositions for depositing a metal layer and methods of forming a metal layer using the same
US20040211665A1 (en) * 2001-07-25 2004-10-28 Yoon Ki Hwan Barrier formation using novel sputter-deposition method
US20040241321A1 (en) * 2002-06-04 2004-12-02 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US20050124154A1 (en) * 2001-12-28 2005-06-09 Hyung-Sang Park Method of forming copper interconnections for semiconductor integrated circuits on a substrate
US6936528B2 (en) * 2002-10-17 2005-08-30 Samsung Electronics Co., Ltd. Method of forming cobalt silicide film and method of manufacturing semiconductor device having cobalt silicide film
US20050208754A1 (en) * 2003-08-04 2005-09-22 Juhana Kostamo Method of growing electrical conductors
US20050220998A1 (en) * 2002-06-04 2005-10-06 Applied Materials, Inc. Noble metal layer formation for copper film deposition
US20060199372A1 (en) * 2005-03-01 2006-09-07 Applied Materials, Inc. Reduction of copper dewetting by transition metal deposition
US20070048991A1 (en) * 2005-08-23 2007-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Copper interconnect structures and fabrication method thereof
US7211506B2 (en) * 2003-07-15 2007-05-01 Samsung Electronics Co., Ltd. Methods of forming cobalt layers for semiconductor devices
US20070119370A1 (en) * 2005-11-04 2007-05-31 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20070184655A1 (en) * 2004-11-08 2007-08-09 Tel Epion Inc. Copper Interconnect Wiring and Method and Apparatus for Forming Thereof
US20070202254A1 (en) * 2001-07-25 2007-08-30 Seshadri Ganguli Process for forming cobalt-containing materials
US20070292615A1 (en) * 2005-08-31 2007-12-20 Lam Research Corporation Processes and systems for engineering a silicon-type surface for selective metal deposition to form a metal silicide
US20080135914A1 (en) * 2006-06-30 2008-06-12 Krishna Nety M Nanocrystal formation
US20080268635A1 (en) * 2001-07-25 2008-10-30 Sang-Ho Yu Process for forming cobalt and cobalt silicide materials in copper contact applications
US7446032B2 (en) * 2003-01-15 2008-11-04 Novellus Systems, Inc. Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
US20090004850A1 (en) * 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US7473634B2 (en) * 2006-09-28 2009-01-06 Tokyo Electron Limited Method for integrated substrate processing in copper metallization
US20090134521A1 (en) * 2007-11-27 2009-05-28 Interuniversitair Microelektronica Centrum Vzw Integrated circuit and manufacturing method of copper germanide and copper silicide as copper capping layer
US7648899B1 (en) * 2008-02-28 2010-01-19 Novellus Systems, Inc. Interfacial layers for electromigration resistance improvement in damascene interconnects

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943451B2 (en) * 2001-07-02 2005-09-13 International Business Machines Corporation Semiconductor devices containing a discontinuous cap layer and methods for forming same
JP4198906B2 (en) * 2001-11-15 2008-12-17 株式会社ルネサステクノロジ The method of manufacturing a semiconductor device and a semiconductor device
JP3992588B2 (en) 2002-10-23 2007-10-17 東京エレクトロン株式会社 Film formation method
KR20040039591A (en) 2002-11-04 2004-05-12 주식회사 하이닉스반도체 Method for forming a copper anti-diffusion film and Method for manufacturing a copper metal line using the same
JP4401656B2 (en) * 2003-01-10 2010-01-20 パナソニック株式会社 A method of manufacturing a semiconductor device
JP2005029821A (en) * 2003-07-09 2005-02-03 Tokyo Electron Ltd Film-forming method
CN1890401A (en) 2003-10-17 2007-01-03 应用材料公司 Selective self-initiating electroless capping of copper with cobalt-containing alloys
US7256111B2 (en) * 2004-01-26 2007-08-14 Applied Materials, Inc. Pretreatment for electroless deposition
US20070184656A1 (en) * 2004-11-08 2007-08-09 Tel Epion Inc. GCIB Cluster Tool Apparatus and Method of Operation
US9117860B2 (en) * 2006-08-30 2015-08-25 Lam Research Corporation Controlled ambient system for interface engineering
KR101506352B1 (en) * 2006-08-30 2015-03-26 램 리써치 코포레이션 Processes and integrated systems for processing a substrate surface for the deposition of metal
US8771804B2 (en) * 2005-08-31 2014-07-08 Lam Research Corporation Processes and systems for engineering a copper surface for selective metal deposition
US10043709B2 (en) * 2014-11-07 2018-08-07 Applied Materials, Inc. Methods for thermally forming a selective cobalt layer

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197856A1 (en) * 1997-11-05 2002-12-26 Kimihiro Matsuse Method of forming a barrier film and method of forming wiring structure and electrodes of semiconductor device having a barrier film
US6861356B2 (en) * 1997-11-05 2005-03-01 Tokyo Electron Limited Method of forming a barrier film and method of forming wiring structure and electrodes of semiconductor device having a barrier film
US6294836B1 (en) * 1998-12-22 2001-09-25 Cvc Products Inc. Semiconductor chip interconnect barrier material and fabrication method
US6812126B1 (en) * 1998-12-22 2004-11-02 Cvc Products, Inc. Method for fabricating a semiconductor chip interconnect
US6365502B1 (en) * 1998-12-22 2002-04-02 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
US6645847B2 (en) * 1998-12-22 2003-11-11 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6627995B2 (en) * 2000-03-03 2003-09-30 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
US20020004293A1 (en) * 2000-05-15 2002-01-10 Soininen Pekka J. Method of growing electrical conductors
US20040005753A1 (en) * 2000-05-15 2004-01-08 Juhana Kostamo Method of growing electrical conductors
US7955979B2 (en) * 2000-05-15 2011-06-07 Asm International N.V. Method of growing electrical conductors
US6444263B1 (en) * 2000-09-15 2002-09-03 Cvc Products, Inc. Method of chemical-vapor deposition of a material
US6527855B2 (en) * 2000-10-10 2003-03-04 Rensselaer Polytechnic Institute Atomic layer deposition of cobalt from cobalt metallorganic compounds
US20020081381A1 (en) * 2000-10-10 2002-06-27 Rensselaer Polytechnic Institute Atomic layer deposition of cobalt from cobalt metallorganic compounds
US20020076837A1 (en) * 2000-11-30 2002-06-20 Juha Hujanen Thin films for magnetic device
US6346477B1 (en) * 2001-01-09 2002-02-12 Research Foundation Of Suny - New York Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt
US20090004850A1 (en) * 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US20030029715A1 (en) * 2001-07-25 2003-02-13 Applied Materials, Inc. An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems
US6740585B2 (en) * 2001-07-25 2004-05-25 Applied Materials, Inc. Barrier formation using novel sputter deposition method with PVD, CVD, or ALD
US20070202254A1 (en) * 2001-07-25 2007-08-30 Seshadri Ganguli Process for forming cobalt-containing materials
US20060276020A1 (en) * 2001-07-25 2006-12-07 Yoon Ki H Deposition methods for barrier and tungsten materials
US20040211665A1 (en) * 2001-07-25 2004-10-28 Yoon Ki Hwan Barrier formation using novel sputter-deposition method
US20030022487A1 (en) * 2001-07-25 2003-01-30 Applied Materials, Inc. Barrier formation using novel sputter-deposition method
US20080268635A1 (en) * 2001-07-25 2008-10-30 Sang-Ho Yu Process for forming cobalt and cobalt silicide materials in copper contact applications
US20050124154A1 (en) * 2001-12-28 2005-06-09 Hyung-Sang Park Method of forming copper interconnections for semiconductor integrated circuits on a substrate
US6528409B1 (en) * 2002-04-29 2003-03-04 Advanced Micro Devices, Inc. Interconnect structure formed in porous dielectric material with minimized degradation and electromigration
US20050220998A1 (en) * 2002-06-04 2005-10-06 Applied Materials, Inc. Noble metal layer formation for copper film deposition
US20040241321A1 (en) * 2002-06-04 2004-12-02 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US20060153973A1 (en) * 2002-06-04 2006-07-13 Applied Materials, Inc. Ruthenium layer formation for copper film deposition
US20040105934A1 (en) * 2002-06-04 2004-06-03 Mei Chang Ruthenium layer formation for copper film deposition
US20040077158A1 (en) * 2002-10-17 2004-04-22 Hyeon-Ill Um Method of manufacturing semiconductor device through salicide process
US6936528B2 (en) * 2002-10-17 2005-08-30 Samsung Electronics Co., Ltd. Method of forming cobalt silicide film and method of manufacturing semiconductor device having cobalt silicide film
US20050196960A1 (en) * 2002-10-17 2005-09-08 Kyeong-Mo Koo Method of forming metal silicide film and method of manufacturing semiconductor device having metal silicide film
US7446032B2 (en) * 2003-01-15 2008-11-04 Novellus Systems, Inc. Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
US20040203233A1 (en) * 2003-04-08 2004-10-14 Sang-Bom Kang Compositions for depositing a metal layer and methods of forming a metal layer using the same
US7211506B2 (en) * 2003-07-15 2007-05-01 Samsung Electronics Co., Ltd. Methods of forming cobalt layers for semiconductor devices
US7067407B2 (en) * 2003-08-04 2006-06-27 Asm International, N.V. Method of growing electrical conductors
US20050208754A1 (en) * 2003-08-04 2005-09-22 Juhana Kostamo Method of growing electrical conductors
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US20070184655A1 (en) * 2004-11-08 2007-08-09 Tel Epion Inc. Copper Interconnect Wiring and Method and Apparatus for Forming Thereof
US20060199372A1 (en) * 2005-03-01 2006-09-07 Applied Materials, Inc. Reduction of copper dewetting by transition metal deposition
US7265048B2 (en) * 2005-03-01 2007-09-04 Applied Materials, Inc. Reduction of copper dewetting by transition metal deposition
US20070048991A1 (en) * 2005-08-23 2007-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Copper interconnect structures and fabrication method thereof
US20070292615A1 (en) * 2005-08-31 2007-12-20 Lam Research Corporation Processes and systems for engineering a silicon-type surface for selective metal deposition to form a metal silicide
US20070128864A1 (en) * 2005-11-04 2007-06-07 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20070119371A1 (en) * 2005-11-04 2007-05-31 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20070119370A1 (en) * 2005-11-04 2007-05-31 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20070128863A1 (en) * 2005-11-04 2007-06-07 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20070128862A1 (en) * 2005-11-04 2007-06-07 Paul Ma Apparatus and process for plasma-enhanced atomic layer deposition
US20080135914A1 (en) * 2006-06-30 2008-06-12 Krishna Nety M Nanocrystal formation
US7473634B2 (en) * 2006-09-28 2009-01-06 Tokyo Electron Limited Method for integrated substrate processing in copper metallization
US20090134521A1 (en) * 2007-11-27 2009-05-28 Interuniversitair Microelektronica Centrum Vzw Integrated circuit and manufacturing method of copper germanide and copper silicide as copper capping layer
US7648899B1 (en) * 2008-02-28 2010-01-19 Novellus Systems, Inc. Interfacial layers for electromigration resistance improvement in damascene interconnects

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US9873946B2 (en) 2005-04-26 2018-01-23 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
CN102074500A (en) * 2009-11-12 2011-05-25 诺发系统有限公司 Uv and reducing treatment for K recovery and surface clean in semiconductor processing
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10049924B2 (en) 2010-06-10 2018-08-14 Asm International N.V. Selective formation of metallic films on metallic surfaces
US8956971B2 (en) 2010-06-10 2015-02-17 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9679808B2 (en) 2010-06-10 2017-06-13 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9257303B2 (en) 2010-06-10 2016-02-09 Asm International N.V. Selective formation of metallic films on metallic surfaces
WO2011156705A3 (en) * 2010-06-10 2012-04-05 Asm America, Inc. Selective formation of metallic films on metallic surfaces
WO2011156705A2 (en) * 2010-06-10 2011-12-15 Asm International N.V. Selective formation of metallic films on metallic surfaces
US20120161319A1 (en) * 2010-12-23 2012-06-28 Stmicroelectronics Pte Ltd. Ball grid array method and structure
US8765601B2 (en) 2011-03-31 2014-07-01 Applied Materials, Inc. Post deposition treatments for CVD cobalt films
US8524600B2 (en) 2011-03-31 2013-09-03 Applied Materials, Inc. Post deposition treatments for CVD cobalt films
US20170110370A1 (en) * 2011-06-24 2017-04-20 Tessera, Inc. Systems and methods for producing flat surfaces in interconnect structures
US9812360B2 (en) * 2011-06-24 2017-11-07 Tessera, Inc. Systems and methods for producing flat surfaces in interconnect structures
US9112003B2 (en) 2011-12-09 2015-08-18 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9502289B2 (en) 2011-12-09 2016-11-22 Asm International N.V. Selective formation of metallic films on metallic surfaces
CN104205302A (en) * 2012-03-28 2014-12-10 应用材料公司 Method of enabling seamless cobalt gap-fill
US9330939B2 (en) * 2012-03-28 2016-05-03 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US9842769B2 (en) * 2012-03-28 2017-12-12 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US20130260555A1 (en) * 2012-03-28 2013-10-03 Bhushan N. ZOPE Method of enabling seamless cobalt gap-fill
US20160247718A1 (en) * 2012-03-28 2016-08-25 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US9540408B2 (en) 2012-09-25 2017-01-10 Entegris, Inc. Cobalt precursors for low temperature ALD or CVD of cobalt-based thin films
CN103972156A (en) * 2013-02-06 2014-08-06 中芯国际集成电路制造(上海)有限公司 Semiconductor interconnecting structure and manufacturing method thereof
US9105695B2 (en) 2013-05-24 2015-08-11 Applied Materials, Inc. Cobalt selectivity improvement in selective cobalt process sequence
WO2014189671A1 (en) * 2013-05-24 2014-11-27 Applied Materials, Inc. Cobalt selectivity improvement in selective cobalt process sequence
US9478460B2 (en) 2013-05-24 2016-10-25 Applied Materials, Inc. Cobalt selectivity improvement in selective cobalt process sequence
US20150028483A1 (en) * 2013-07-23 2015-01-29 Semiconductor Manufacturing International (Shanghai) Corporation Novel method for electromigration and adhesion using two selective deposition
US9824918B2 (en) * 2013-07-23 2017-11-21 Semiconductor Manufacturing International (Shanghai) Corporation Method for electromigration and adhesion using two selective deposition
US20150093891A1 (en) * 2013-09-27 2015-04-02 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US9685371B2 (en) * 2013-09-27 2017-06-20 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
US20150206798A1 (en) * 2014-01-17 2015-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect Structure And Method of Forming
US20150221542A1 (en) * 2014-02-03 2015-08-06 Lam Research Corporation Methods and apparatus for selective deposition of cobalt in semiconductor processing
US9153482B2 (en) * 2014-02-03 2015-10-06 Lam Research Corporation Methods and apparatus for selective deposition of cobalt in semiconductor processing
US9895715B2 (en) 2014-02-04 2018-02-20 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US10008448B2 (en) 2014-02-05 2018-06-26 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
US20150221596A1 (en) * 2014-02-05 2015-08-06 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
WO2015119760A1 (en) * 2014-02-05 2015-08-13 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
US9601431B2 (en) * 2014-02-05 2017-03-21 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
CN105225925A (en) * 2014-06-25 2016-01-06 朗姆研究公司 Cleaning of carbon-based contaminants in metal interconnects for interconnect capping applications
US20150380296A1 (en) * 2014-06-25 2015-12-31 Lam Research Corporation Cleaning of carbon-based contaminants in metal interconnects for interconnect capping applications
CN105225945A (en) * 2014-06-30 2016-01-06 朗姆研究公司 Liner and barrier applications for subtractive metal integration
US20150380272A1 (en) * 2014-06-30 2015-12-31 Lam Research Corporation Liner and barrier applications for subtractive metal integration
US9899234B2 (en) * 2014-06-30 2018-02-20 Lam Research Corporation Liner and barrier applications for subtractive metal integration
US9349637B2 (en) 2014-08-21 2016-05-24 Lam Research Corporation Method for void-free cobalt gap fill
US9748137B2 (en) 2014-08-21 2017-08-29 Lam Research Corporation Method for void-free cobalt gap fill
WO2016033145A1 (en) * 2014-08-27 2016-03-03 Applied Materials, Inc. Selective deposition with alcohol selective reduction and protection
WO2016040077A1 (en) * 2014-09-14 2016-03-17 Entergris, Inc. Cobalt deposition selectivity on copper and dielectrics
US9502255B2 (en) 2014-10-17 2016-11-22 Lam Research Corporation Low-k damage repair and pore sealing agents with photosensitive end groups
US10043709B2 (en) 2014-11-07 2018-08-07 Applied Materials, Inc. Methods for thermally forming a selective cobalt layer
EP3216048A4 (en) * 2014-11-07 2018-07-25 Applied Materials Inc Methods for thermally forming a selective cobalt layer
US9487860B2 (en) 2014-11-10 2016-11-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for forming cobalt containing films
US9184060B1 (en) 2014-11-14 2015-11-10 Lam Research Corporation Plated metal hard mask for vertical NAND hole etch
US10062606B2 (en) 2014-12-03 2018-08-28 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor device having a via structure and an interconnection structure
US9905458B2 (en) 2014-12-03 2018-02-27 Samsung Electronics Co., Ltd. Methods of fabricating a semiconductor device having a via structure and an interconnection structure
US9449872B1 (en) * 2015-04-13 2016-09-20 Shanghai Huali Microelectronics Corporation Method for forming cobalt barrier layer and metal interconnection process
US10121699B2 (en) 2015-08-05 2018-11-06 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US20170092535A1 (en) * 2015-09-29 2017-03-30 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device
US9812355B2 (en) * 2015-09-29 2017-11-07 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device
US9981286B2 (en) 2016-03-08 2018-05-29 Asm Ip Holding B.V. Selective formation of metal silicides
US10014255B2 (en) 2016-03-14 2018-07-03 International Business Machines Corporation Contacts having a geometry to reduce resistance
US10014212B2 (en) 2016-06-08 2018-07-03 Asm Ip Holding B.V. Selective deposition of metallic films
US9805974B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Selective deposition of metallic films
US10041166B2 (en) 2016-06-08 2018-08-07 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US9803277B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
WO2018085257A1 (en) * 2016-11-01 2018-05-11 Versum Materials Us, Llc Cobalt compounds, method of making and method of use thereof
US9947582B1 (en) 2017-06-02 2018-04-17 Asm Ip Holding B.V. Processes for preventing oxidation of metal thin films

Also Published As

Publication number Publication date Type
KR20100137582A (en) 2010-12-30 application
US20170321320A1 (en) 2017-11-09 application
KR20160102574A (en) 2016-08-30 application
JP2011524078A (en) 2011-08-25 application
CN102007573A (en) 2011-04-06 application
KR101764163B1 (en) 2017-08-02 grant
US20150325446A1 (en) 2015-11-12 application
KR20170091171A (en) 2017-08-08 application
WO2009134840A3 (en) 2010-01-14 application
KR20170132901A (en) 2017-12-04 application
KR101802452B1 (en) 2017-11-28 grant
KR101654001B1 (en) 2016-09-05 grant
WO2009134840A2 (en) 2009-11-05 application
JP6146948B2 (en) 2017-06-14 grant
CN102007573B (en) 2013-02-13 grant

Similar Documents

Publication Publication Date Title
US6821909B2 (en) Post rinse to improve selective deposition of electroless cobalt on copper for ULSI application
US6852635B2 (en) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US7067407B2 (en) Method of growing electrical conductors
US7041335B2 (en) Titanium tantalum nitride silicide layer
US7476618B2 (en) Selective formation of metal layers in an integrated circuit
US20030082307A1 (en) Integration of ALD tantalum nitride and alpha-phase tantalum for copper metallization application
US20060246217A1 (en) Electroless deposition process on a silicide contact
US5989623A (en) Dual damascene metallization
US20040211357A1 (en) Method of manufacturing a gap-filled structure of a semiconductor device
US20060108320A1 (en) Molecular self-assembly in substrate processing
US20030143841A1 (en) Integration of titanium and titanium nitride layers
US6720027B2 (en) Cyclical deposition of a variable content titanium silicon nitride layer
US20030203616A1 (en) Atomic layer deposition of tungsten barrier layers using tungsten carbonyls and boranes for copper metallization
US20020114886A1 (en) Method of tisin deposition using a chemical vapor deposition process
US20030104126A1 (en) Method for depositing refractory metal layers employing sequential deposition techniques
US6844258B1 (en) Selective refractory metal and nitride capping
US20100102417A1 (en) Vapor deposition method for ternary compounds
US7405158B2 (en) Methods for depositing tungsten layers employing atomic layer deposition techniques
US6849122B1 (en) Thin layer metal chemical vapor deposition
US20040009336A1 (en) Titanium silicon nitride (TISIN) barrier layer for copper diffusion
US20020068458A1 (en) Method for integrated in-situ cleaning and susequent atomic layer deposition within a single processing chamber
US6524952B1 (en) Method of forming a titanium silicide layer on a substrate
US20060252252A1 (en) Electroless deposition processes and compositions for forming interconnects
US6974768B1 (en) Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
US20100200991A1 (en) Dopant Enhanced Interconnect

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YU, SANG-HO;MORAES, KEVIN;GANGULI, SESHADRI;AND OTHERS;REEL/FRAME:021368/0638;SIGNING DATES FROM 20080627 TO 20080714