TW538327B - System and method for a mass flow controller - Google Patents

System and method for a mass flow controller Download PDF

Info

Publication number
TW538327B
TW538327B TW91108305A TW91108305A TW538327B TW 538327 B TW538327 B TW 538327B TW 91108305 A TW91108305 A TW 91108305A TW 91108305 A TW91108305 A TW 91108305A TW 538327 B TW538327 B TW 538327B
Authority
TW
Taiwan
Prior art keywords
mass flow
action
patent application
scope
item
Prior art date
Application number
TW91108305A
Other languages
Chinese (zh)
Inventor
John M Lull
Chiun Wang
William S Valentine
Joseph A Saggio Jr
Original Assignee
Unit Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unit Instr Inc filed Critical Unit Instr Inc
Application granted granted Critical
Publication of TW538327B publication Critical patent/TW538327B/en

Links

Landscapes

  • Flow Control (AREA)

Abstract

A system and method for controlling a mass flow controller to have a constant control loop gain under a variety of different types of fluids and operating conditions, and for configuring the mass flow controller for operation with a fluid and/or operating conditions different from that used during a production of the mass flow controller. Further, the system and method includes providing control by reducing the effects of hysteresis in solenoid actuated devices by providing a non-operational signal to the solenoid actuated device.

Description

A7 538327 五、發明說明(ί ) 本申請案根據35U.S.C.§119 (e)依美國臨 時專利申請案第6 0/285,801號主張優先權’前揭 臨時專利申請案名稱爲「用於質量流控制器之系統及方法 (SYSTEM AND METHOD FOR A MASS FLOW CONTROLLER)」,於2 〇0 1年4月2 4日提出申請,在此以引用方式倂入該案 之完整內容。 發明之領域 本發明係槪括關於用於控制流體之流率的方法及系統 ,特別是關於一種質量流控制器,其可被裝配用於任何製 程流體及/或製程操作條件,而此等製程流體及/或製程 操作條件可不同於在質量流控制器之生產過程中所使用的 製程流體及/或製程操作條件。 發明背景 許多工業生產過程需要精確控制各式不同的製程流體 。例如,在製藥業和半導體工業中,質量流控制器係用於 精確測量及控制導入處理室內的製程流體量。流體一詞在 It匕係指在任何狀態下能夠流動的任何一種物質。吾人應瞭 解的是··流體一詞適用於液體、氣體和電漿,其包括任何 或許需要控制其流率的物質或材料之組合。 習知的質量流控制器通常包括四個主要部件··一流量 5十、一控制閥門、一閥門致動器,以及一控制器。流量計 -—— --- ^_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公t ) -- ---------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A7 538327 __B7 五、發明說明(> ) 係酒ί量流體在流通路徑中的質量流率,並提供標示該流率 之訊號。流量計可包含質量流感應器和旁通管。質量流感 應器係測量感應器導管內流體之質量流率,該感應器導管 係以流體方式接合於旁通管。感應器導管內流體之質量流 率大約正比於旁通管內流體之質量流率,而上述兩種流率 之總和係通過由質量流控制器所控制的流通路徑之總流率 。然而,應瞭解的是:某些質量流控制器或許並未使用旁 通管;有鑑於此,所有流體可通過感應器導管。 在許多質量流控制器中會使用到具備一對電阻器的熱 質量流感應器,其中該對電阻器在彼此間隔的位置上纏繞 於感應器導管,且各電阻器之電阻隨著溫度而改變。當流 體通過感應器導管時,熱會從位於上游的電阻器被帶往位 於下游的電阻器,且溫度差値係正比於通過感應器導管和 旁通管的流體之質量流率。 控制閥門係位於主要流動路徑內(通常位於旁通管與 質量流感應器之下游),並可藉由質量流控制器加以控制 (例如:開啓或關閉)而改變流過主要流動路徑的流體之 質量流率。上述閥門通常係由閥門致動器予以控制,其範 例J包括:螺線管致動器、壓電致動器、步進致動器等。 控制電子裝置係根據指示流體之質量流率的設定點來 控制控制閥門之位置,而吾人希望該設定點係由質量流控 制J器提供,且來自於質量流感應器的流量訊號會指出通過 感應器導管的流體之實際質量流率。習用的反饋控制方法 隨後可用於控制流體在質量流控制器內的流率,其中反饋 --------------裝--- (請先閱讀背面之注意事項再填寫本頁) .. 線· 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) A7 538327 _B7_____ 五、發明說明(巧) ----I----I----· I I (請先閱讀背面之注意事項再填寫本頁) 控制方法的實例包括:比例控制、積分控制、比例一積分 (P I )控制、微分控制、比例-微分(P D )控制、積 分一微分(I D )控制,以及比例一積分一微分(P I D )控制等。在上述任何一^種反饋控制方法中’ 一^控制訊號 (例如··一控制閥門驅動訊號)係根據一錯誤訊號而產生 ,該錯誤訊號係代表所欲流體質量流率之設定點訊號與反 饋訊號之間的差値,而該反饋訊號與質量流感應器所感應 到的實際質量流率有關。 許多習用的質量流控制器容易受到元件性能所造成的 外在因素影響,此等外在因素取決於若干操作條件,其中 包括:流體類別、流率、入口及/或出口壓力、溫度等。 此外,習用的質量流控制器可能會呈現某些不規則特性, 特別是在質量流控制器之生產所運用的元件組合中,其可 會皀會使質量流控制器產生不一致且不穩定的性能。 i線· 爲解決上述某些問題,質量流控制器可在生產過程中 力口以調整及/或校準。生產過程一般包括在一組操作條件 下操作質量流控制器,以及調整及/或校準該質量流控制 器,使其能夠展現令人滿意的性能。 如熟習此項技術之人士所知者,調整及/或校準質量 流控制器係一項昂貴且需要大量勞力的程序,其經常需要 一位或一位以上技術嫻熟的操作人員以及專用設備。例如 ’在典型的生產過程中,質量流控制器之質量流感應器部 件的調整方式係藉由使已知量的已知流體通過感應器部件 ,並調整某些濾波器或元件,以提供適當的響應。旁通管 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 538327 A7 五、發明說明(七) 係設置於感應器上,且該旁通管係以已知的流體加以調整 ,藉以反映在不同已知流率下通過主要流動路徑的流體之 適當比率。質量流感應器部件和旁通管然後配接於控制閥 門及控制電子部件,而後在已知狀態下再加以調整。 當直接使用者所使用的流體類型不同於調整及/或校 準所使用的流體類型時,或當直接使用者所運用的操作條 件一例如:入口及出口壓力、溫度、流率範圍等’不同於 調整及/或校準所運用的操作條件時,質量流控制器之運 作勢必會變差。爲此原因,經常要調整或校準額外的流體 (稱爲「替代流體」)及/或操作條件,且必須進行必要 的更改,以提供存放在查詢表內令人滿意的響應。 雖然以不同流體在不同操作條件下使用額外的 /或校準能夠改善質量流控制器之性能,但此稹替代1調整 及/或校準非常耗時且昂貴,因爲調整及/或校準程序必 須爲至少各種替代流體重複進行,而且可能必須針對各種 替代流體在不同操作條件下重複進行。再者,由於替代流 體僅近似於直接使用者所運用的各種不同流體之特性’因 此質量流控制器在直接使用者所在位置上的實際運作情況 可能會在實質上不同於調整及/或校準過程中的運作情況 。當吾人考量到範圍廣泛的工業界及應用場合在運用質量 流控制器時,儘管利用若干不相同的替代流體和操作條件 來調整及/或校準質量流控制器,直接使用者運用於質量 流控制器的製程流體及操作條件仍然可能會不同於在調整 及/或校準質量流控制器時所運用的測試流體和操作條件。 _______ ______6_ — ____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------Μ--------ti-------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 -----------2Z___ __ 五、發明說明(ζ ) 除上述會影響質量流控制器之性能和響應的外在因素 (例1如:流體種類、流率、入口及/或出口壓力、溫度等 )以外’質量流控制器之實體運作所伴隨的因素也會影響 到質量流控制器對於外在因素及狀態改變的整體靈敏度。 舉例1而g,許多運用於控制質量流控制器內流體的閥門爲 螺線管致動裝置。 雖然有些質量流控制器的製造商使用壓電致動器,但 由於螺線管致動器的簡單性、快速回應及低成本,使其普 遍受到歡迎。然而,螺線管致動控制閥門確實存在某些缺 點’其中螺線管致動控制閥門(以及一般的螺線管致動裝 置)所呈現的fe滯現象爲其最大缺點。磁滯係一^種爲人熟 知的現象,其普遍存在於運用磁學原理、電磁學原理或磁 性材料的裝置。一般而言,磁滯現象係應用於利用磁化力 的改變而使磁化程度產生延遲或阻礙。在許多螺線管致動 裝置中,如此會產生一種情況,其中裝置運作不僅取決於 裝置當時所處狀態,而且取決於先前狀態。 眾所周知,螺線管致動控制閥門會呈現磁滯現象。亦 爲眾所周知者,此種磁滯現象對於不存在流體與質量流控 制器內的控制流體狀態之間的轉變會有不良影響。然而, 在習知的質量流控制器設計中,此項缺點通常被視爲使用 螺線管致動控制閥門的必然缺點而被接受;對於許多製造 商而言,螺線管致動控制閥門的優點比上述缺點更爲重要 ,其優點包括:簡單性、成本低以及可靠性。 _____Z-----— 適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------裝--- (請先閱讀背面之注意事項再填寫本頁) · ;線· 538327 A7 ----- - B7______ 五、發明說明(k ) 發明槪要 ---------------- (請先閱讀背面之注意事項再填寫本頁) 根據本發明之一實施例,其提供一種用於設定質量流 控制_]器之方法’使該質量流控制器與製程操作條件共同運 ί乍’ g亥等製程操作條件至少有一部分不同於該質量流控制 器於生產過程中所使用的測試操作條件。上述方法包含下 歹[J動作:以該等測試操作條件來建立該質量流控制器之一 響應;以及根據該等製程操作條件來更改該質量流控制器 之至少一控制參數,使得以該等製程操作條件進行操作的 質量流控制器之響應不會產生實質變化。 ;線- 本發明之另一實施例包含一種電腦可讀媒體,該媒體 經過在處理器上執行的程式加以編碼,當該程式於該處理 器上執行時’該程式會執行設定質量流控制器之方法,使 該質量流控制器與製程操作條件共同運作,該等製程操作 fl条件至少有一部分不同於質量流控制器於生產過程中所使 用的測試操作條件。上述方法包含下列動作:接收至少一 製程流體物種資訊及製程操作條件以做爲一輸入;以及根 據製程操作條件來更改該質量流控制器之至少一控制參數 ’使得以該等製程操作條件進行操作的質量流控制器之響 應不會產生實質變化。 根據本發明之另一實施例,其提供一種用於設定質量 流控制器之方法,該質量流控制器具有當運用第一組操作 條件時的第一響應,以及當運用設定之前的第二組操作條 件的第二響應,且該第二響應在實質上不同於該第一響應 。上述方法包含下列動作:以該第一組操作條件來操作該 _____8_______ 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 538327 五、發明說明(' ) 質窶流控制器;在該操作過程中,從該質量流控制器取得 設定資料;根據該設定資料來設定該質量流控制器之至少 一控制參數,以利用該第一組操作條件來提供該第一響應 :以及根據至少一部分的設定資料來更改該至少一控制參 數,以利用該第二組操作條件來提供該第二響應。 根據本發明之另一實施例,其提供一種用於設定質量 流控制器之方法’該質量流控制器具有一控制迴路,該控 制迴路包括一監測該質量流控制器所提供的實際流體的流 量計,並提供一已調整的輸出訊號,該流量計具有第一增 益項(g a i n t e r m)及一控制部件,該控制部件 係接收將由該質量流控制器提供標示所欲流體之第二輸入 訊號,並提供一控制訊號,該控制部件具有第二增益項、 一閥門及一閥門致動器,該第二增益項爲至少一可變操作 條件之函數,該閥門係根據該閥門之一或數個元件之位移 而允許流體通過,且該閥門具有第三增益項,該閥門致動 器係接收該控制訊號,並調整該閥門之一或數個元件之位 移,且該閥門致動器具有第四增益項,使其具有實質上爲 固定的控制迴路增益。上述方法包含下列動作:以第一流 體利用第一組操作條件來決定第一、第三及第四增益項; 利用至少一第二流體及第二組操作條件來預估該第一、第 三及第四增益項將如何改變;以及將該第二增益項改變爲 一常數乘以該第一、第三及第四增益項之乘積的倒數,以 提供關於該至少一可變操作條件之實質爲固定的控制迴路 增益。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A7 538327 __B7____ 五、發明說明(名) 根據本發明之另一實施例,其提供一種用於控制質量 流控制器之方法,該質量流控制器具有數個定義該質量流 控制器之控制迴路的元件。上述方法包含下列動作:形成 至少一控制迴路控制參數,該控制參數爲至少一可變操作 條件之函數;以及藉由將該至少一控制迴路控制參數應用 於該質量流控制器之控制迴路,以使關於該至少一可變操 作條件的控制迴路之迴路增益保持固定。 本發明之另一實施例包含一種質量流控制器,該質量 流控制器包含:一流量計,其適配於感測一流動路徑內的 流體,並提供標示該流動路徑內的質量流率之流量訊號; —控制器,其耦合該流量計,以至少部分根據該流量訊號 而提供一驅動訊號;一閥門致動器,用以接收來自該控制 器的驅動訊號;以及一閥門,其由該閥門致動器予以控制 並耦合於該流動路徑。上述質量流控制器另包含該質量流 控制器之控制迴路,且該控制迴路具有固定的閉合迴路增 益。 本發明之另一實施例包含一種具備控制迴路的質量流 控制器.,該質量流控制器包含:一流量計,其適配於感測 一流動路徑內的流體,並提供標示該流動路徑內的質量流 率之流量訊號;一控制器,其耦合該流量計,並適配以至 少部分根據該流量訊號而提供一驅動訊號;一閥門致動器 ,其適配於接收來自該控制器的驅動訊號;一閥門’其由 言亥閥門致動器予以控制並耦合於該流動路徑;其中’該質 量流控制器之控制迴路包含該流量計、該控制器、該閥門 ---1Q____________ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) --------------裝—— (請先閱讀背面之注意事項再填寫本頁) · 線· 538327 A7 _____B7____ 五、發明說明(1 ) 致動器,以及該閥門,且其中該控制迴路適配於具有相對 , 於操作期間之可變操作條件實質上爲固定的控制迴路增益 項。 根據本發明之另一實施例,其提供一種質量流控制器 。上述質量流控制器包含:一流量計,其具有第一增益項 ,藉以感應流體於該質量流控制器內之流動路徑中的質量 流率’並提供標示該流體於該質量流控制器內之流動路徑 中的質量流率之流量訊號;一閥門,其具有第二增益項, 用以接收控制該流體於該流動路徑內之流率的控制訊號; —閥門致動器,其具有第三增益項,用以接收一驅動訊號 ’並將該驅動訊號提供到該閥門;以及一控制器。上述控 制器具有一第一輸入端,其用以接收該流量訊號;一第二 輸入端,用以接收一標示該流體所欲流率的設定點訊號; 以及一輸出,其將該驅動訊號提供到該閥門致動器。上述 控制器適配於提供藉由取得該第一增益項、該第二增益項 及該第三增益項至少其中之一乘積的倒數而產生的互逆增 益項。 根據本發明之另一實施例,其提供一種決定閥門位移 之方法,該閥門具有一閥門入口及一閥門出口,該閥門入 口係用以接收在一入口壓力下的流體,而該閥門出口係在 —出口壓力下提供該流體。上述方法包含下列動作:選擇 介於該入口壓力與該出口壓力之間的中間壓力;根據從該 人口壓力下降到該中間壓力的黏滯壓力來決定該閥門之第 一位移;根據從該中間壓力下降到該出口壓力的非黏滯壓 ----U_____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I--I--I--I------I I — I 1 訂----I I I I (請先閱讀背面之注意事項再填寫本頁) 538327 B7 五N發明說明(V〇 ) --------------裝--- (請先閱讀背面之注意事項再填寫本頁) 力來決定該閥門之第二位移;判斷該第一位移是否約等於 該第二位移;以及當第一位移約等於該第二位移時,選擇 該第一位移及該第二位移其中之一做爲該閥門之位移。 根據本發明之另一樣態’其提供一種降低螺線管致動 裝置內磁滯效應之方法。在某實施例中,上述方法包含一 項動作,其將預定的非操作性訊號應用於螺線管致動裝置 ’期使該裝置處於預定狀態。 根據另一實施例,一種操作螺線管致動裝置之方法包 含下列動作:(a )將第一數量的能量提供到該螺線管致 動裝置,以使該螺線管致動裝置從第一位置移動到第二位 置;(b )將第二數量的能量提供到該螺線管致動裝置, 以使該螺線管致動裝置回復到該第一位置;以及(C )當 該第一數量的能量超過一預定數量的能量時,在完成動作 (b )之後,將該螺線管致動裝置設定爲一預定狀態。 --線· 根據本發明之另一實施例,其提供一種裝置,該裝置 包含:一螺線管致動裝置以及一螺線管致動器,該螺線管 致動器係耦合於該螺線管致動裝置。上述致動器適配於將 一非操作性訊號提供到該螺線管致動裝置’藉以將該裝置 設定爲預定狀態。 根據本發明之另一實施例,其提供一種設定質量流控 制J器之方法,使該質量流控制器與一組製程操作條件共同 運作,該等製程操作條件至少有一部分不同於質量流控制 器於生產過程中用於建立該質量流控制器之第一響應的一 糸且測試操作條件。上述方法包含下列動作··以第一組操作 ________________ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A7 __________Β7 _____ 五、發明說明(ύ ) 條件來描繪該質量流控制器之特性;在該描繪動作過程中 取得設定資料;以及根據該設定資料及該等製程操作條件 來更改至少一控制參數,使得該質量流控制器之響應不會 產生實質改變。 參閱以下關於本發明之詳細說明並參照圖式,當可明 瞭本發明之各式不同優點、新穎特徵及目的,其中該等圖 式僅爲槪要性圖式而未特意以符合比例的方式加以繪製。 在圖式中,各個顯示於不同圖式中的相同或相似元件係以 單一數字來表示。爲簡明起見,並非所有元件均標示於所 有圖式中,且若有元件對於熟習此項技藝之人士瞭解本發 明爲非必要時,圖式中即未圖示出本發明各項實施例中的 該等元件。 圖式簡單說明 在圖式中: 圖1係根據本發明之質量流控制器實施例的示意方塊 圖,該質量流控制器可搭配用於不同的流體及各式不同的 ί喿作條件; 圖2爲圖1所示流量計之更詳盡的示意方塊圖; 圖3係根據本發明之實施例圖示質量流感應器回應流 動j步驟變化的各種不同輸出訊號; 圖4爲圖1所示增益/引導/延遲控制器電路之更爲 言羊盡的示意圖; 圖5爲圖1所示閥門致動器之更爲詳盡的示意方塊圖; ______13 ___ 本紙張尺复適用中國國家標準(CNS)A4規格(21〇χ 297公釐) ---I-----------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _____Β7 _ 五、發明說明( 圖6爲圖4所示若干訊號之訊號波形; 圖7 a — 7 f係根據本發明之實施例圖示用於設定質 量巯感應器之方法,使其與製程流體及/或製程操作條件 共同運作; 圖8係根據先前技術圖示質量流控制器之正常狀況閉 合的螺線管致動控制閥當中的磁滯原理; 圖9係根據本發明之實施例圖示縮減振幅的正弦形訊 號’其可提供給螺線管致動控制閥門,藉以降低磁滯效應; 圖10係根據本發明之另一實施例圖示縮減振幅的正 弦形訊號,其可提供給螺線管致動控制閥門,藉以降低磁 滯效應; 圖11係根據本發明之另一實施例圖示另一縮減振幅 的正弦形訊號,其可提供給螺線管致動控制閥門,藉以降 低磁滞效應; 圖12係根據本發明之另一實施例圖示固定振幅的鋸 齒形訊號,其可提供給螺線管致動控制閥門,藉以降低磁 滯效應; 圖1 3係根據本發明之另一實施例圖示脈衝訊號,其 可提供給螺線管致動控制閥門,藉以降低磁滯效應; 圖14係圖示本發明包含有電腦和質量流控制器的實 施例,其中該質量流控制器可藉由電腦加以自動設定; 圖1 5係圖示本發明之一實施例,其顯示可自動設定 的7質量流控制器;及 圖1 6爲一閥門之剖面圖。 _______14___ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _B7_ 五、發明說明(0 ) 元件符號說明 ----------------- (請先閱讀背面之注意事項再填寫本頁) 100 質量流控制器 103 流動路徑 110 流量計 120 濾波器 130 上升率限制器或濾波器A7 538327 V. Description of the Invention (ί) This application claims priority according to 35U.SC§119 (e) in accordance with US Provisional Patent Application No. 6 0 / 285,801. "SYSTEM AND METHOD FOR A MASS FLOW CONTROLLER" was filed on April 24, 2001, and is hereby incorporated by reference in its entirety. FIELD OF THE INVENTION The present invention relates to methods and systems for controlling the flow rate of fluids, and more particularly to a mass flow controller that can be assembled for any process fluid and / or process operating conditions, and such processes The fluid and / or process operating conditions may be different from the process fluid and / or process operating conditions used in the production process of the mass flow controller. BACKGROUND OF THE INVENTION Many industrial processes require precise control of a wide variety of process fluids. For example, in the pharmaceutical and semiconductor industries, mass flow controllers are used to accurately measure and control the amount of process fluid introduced into a process chamber. The term fluid in It refers to any substance that can flow in any state. I should be aware that the term fluid applies to liquids, gases, and plasmas, and includes any substance or combination of materials that may need to control its flow rate. Conventional mass flow controllers typically include four main components: a flow rate, a control valve, a valve actuator, and a controller. Flowmeter ------ --- ^ _ This paper size is applicable to China National Standard (CNS) A4 (210 x 297mm t)-------------------- --Order --------- line (please read the precautions on the back before filling this page) A7 538327 __B7 V. Description of the invention (>) The mass flow rate of wine in the circulation path And provide a signal indicating the flow rate. The flow meter may include a mass flow sensor and a bypass pipe. A mass flu reactor measures the mass flow rate of the fluid in a sensor tube, which is fluidly coupled to the bypass tube. The mass flow rate of the fluid in the sensor tube is approximately proportional to the mass flow rate of the fluid in the bypass tube, and the sum of the two flow rates is the total flow rate through the flow path controlled by the mass flow controller. However, it should be understood that some mass flow controllers may not use bypass tubes; for this reason, all fluids can pass through the sensor conduit. Thermal mass flow sensors with a pair of resistors are used in many mass flow controllers, where the pair of resistors are wound around the inductor conduit at spaced locations, and the resistance of each resistor changes with temperature . As the fluid passes through the sensor conduit, heat is carried from the resistor located upstream to the resistor located downstream, and the temperature difference is directly proportional to the mass flow rate of the fluid through the sensor conduit and the bypass. The control valve is located in the main flow path (usually downstream of the bypass pipe and the mass flow sensor) and can be controlled by the mass flow controller (for example, opening or closing) to change the flow of fluid through the main flow path. Mass flow rate. The above valves are usually controlled by valve actuators, and examples J include: solenoid actuators, piezoelectric actuators, step actuators, and the like. The control electronic device controls the position of the control valve according to the set point indicating the mass flow rate of the fluid, and I hope that the set point is provided by the mass flow control device, and the flow signal from the mass flow sensor will indicate that the The actual mass flow rate of the fluid in the catheter. The conventional feedback control method can then be used to control the flow rate of the fluid in the mass flow controller. The feedback -------------- install --- (Please read the precautions on the back before filling (This page) .. Line · This paper size is applicable to China National Standard (CNS) A4 (21〇X 297 mm) A7 538327 _B7_____ V. Description of the Invention (Clever) ---- I ---- I --- -· II (Please read the notes on the back before filling this page) Examples of control methods include: proportional control, integral control, proportional-integral (PI) control, differential control, proportional-derivative (PD) control, integral-derivative (ID) control, and proportional-integral-derivative (PID) control. In any of the above-mentioned feedback control methods, a control signal (for example, a control valve driving signal) is generated based on an error signal, which is a set-point signal and feedback representing the desired mass flow rate of the fluid. The difference between the signals, and the feedback signal is related to the actual mass flow rate sensed by the mass flow sensor. Many conventional mass flow controllers are susceptible to external factors due to component performance. These external factors depend on a number of operating conditions, including: fluid type, flow rate, inlet and / or outlet pressure, temperature, etc. In addition, the conventional mass flow controller may exhibit some irregular characteristics, especially in the component combination used in the production of the mass flow controller, which may cause inconsistent and unstable performance of the mass flow controller. . i-line · To solve some of the above problems, the mass flow controller can be adjusted and / or calibrated during the production process. The production process generally includes operating the mass flow controller under a set of operating conditions, and adjusting and / or calibrating the mass flow controller so that it can exhibit satisfactory performance. As known to those skilled in the art, adjusting and / or calibrating a mass flow controller is an expensive and labor-intensive procedure, which often requires one or more skilled operators and specialized equipment. For example, 'in a typical production process, the mass flow sensor component of a mass flow controller is adjusted by passing a known amount of a known fluid through the sensor component and adjusting certain filters or components to provide appropriate the response to. The size of the bypass pipe is in accordance with Chinese National Standard (CNS) A4 (210 x 297 mm) 538327 A7. 5. Description of the invention (7) The bypass pipe is installed on the sensor, and the bypass pipe is filled with a known fluid. An adjustment to reflect the appropriate ratio of fluids that pass through the main flow path at different known flow rates. The mass flow sensor component and the bypass tube are then fitted to the control valve and control electronics, and then adjusted in a known state. When the type of fluid used by the direct user is different from the type of fluid used for adjustment and / or calibration, or when the operating conditions used by the direct user are such as: inlet and outlet pressure, temperature, flow rate range, etc. When adjusting and / or calibrating the operating conditions used, the operation of the mass flow controller is bound to deteriorate. For this reason, additional fluids (called “alternative fluids”) and / or operating conditions are often adjusted or calibrated, and necessary changes must be made to provide a satisfactory response stored in the look-up table. Although the use of additional and / or calibration with different fluids under different operating conditions can improve the performance of the mass flow controller, this alternative 1 adjustment and / or calibration is very time consuming and expensive because the adjustment and / or calibration procedure must be at least Various alternative fluids are repeated and may have to be repeated for each alternative fluid under different operating conditions. Furthermore, since the replacement fluid is only approximate to the characteristics of various fluids used by the direct user, the actual operation of the mass flow controller at the location of the direct user may be substantially different from the adjustment and / or calibration process. Operation. When I consider a wide range of industries and applications when using mass flow controllers, although a number of different alternative fluids and operating conditions are used to adjust and / or calibrate the mass flow controller, direct users apply it to mass flow control The process fluid and operating conditions of the device may still differ from the test fluid and operating conditions used when adjusting and / or calibrating the mass flow controller. _______ ______6_ — ____ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ------------- M -------- ti ---- --- line (please read the precautions on the back before filling this page) 538327 A7 ----------- 2Z___ __ V. Description of the Invention (ζ) In addition to the above, it will affect the performance of the mass flow controller and Response to external factors (such as: fluid type, flow rate, inlet and / or outlet pressure, temperature, etc.). The factors that accompany the physical operation of the mass flow controller will also affect the external flow of the mass flow controller. Factors and overall sensitivity to state changes. Example 1g. Many of the valves used to control fluids in mass flow controllers are solenoid actuated devices. Although some manufacturers of mass flow controllers use piezo actuators, the simplicity, fast response, and low cost of solenoid actuators have made them popular. However, the solenoid actuated control valve does have some shortcomings. Among them, the hysteresis phenomenon exhibited by the solenoid actuated control valve (and the general solenoid actuated device) is its biggest disadvantage. Hysteresis is a well-known phenomenon that is commonly found in devices that use magnetic principles, electromagnetic principles, or magnetic materials. In general, hysteresis is used to delay or hinder the degree of magnetization by using changes in the magnetizing force. In many solenoid actuated devices, this creates a situation where the device operation depends not only on the state of the device at the time, but also on its previous state. It is well known that solenoid actuated control valves exhibit hysteresis. It is also well known that such hysteresis can adversely affect the transition between the absence of fluid and the state of the control fluid within the mass flow controller. However, in conventional mass flow controller designs, this disadvantage is generally accepted as a necessary disadvantage of using solenoid-actuated control valves; for many manufacturers, the solenoid-actuated control valve's The advantages are more important than the disadvantages mentioned above. The advantages include simplicity, low cost, and reliability. _____ Z -----— Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) -------------- install --- (Please read the precautions on the back before (Fill this page) ·; line · 538327 A7 ------B7______ V. Description of the invention (k) Summary of invention ---------------- (Please read the note on the back first Please fill in this page again) According to an embodiment of the present invention, a method for setting a mass flow control device is provided so that the mass flow controller and the process operating conditions are operated together. At least part of it is different from the test operating conditions used by the mass flow controller during production. The above method includes the following [J action: establishing a response of the mass flow controller based on the test operating conditions; and changing at least one control parameter of the mass flow controller according to the process operating conditions, such that There is no substantial change in the response of the mass flow controller operating under process operating conditions. ; Line-another embodiment of the present invention includes a computer-readable medium, the medium is encoded by a program executing on a processor, and when the program is executed on the processor, the program will execute the set mass flow controller The method is to make the mass flow controller and the process operating conditions work together. At least a part of the process operation fl conditions is different from the test operating conditions used by the mass flow controller in the production process. The above method includes the following actions: receiving at least one process fluid species information and process operating conditions as an input; and changing at least one control parameter of the mass flow controller according to the process operating conditions so as to operate with the process operating conditions The response of the mass flow controller does not change substantially. According to another embodiment of the present invention, it provides a method for setting a mass flow controller, the mass flow controller having a first response when a first set of operating conditions is applied, and a second set when a setting is applied. A second response to an operating condition, and the second response is substantially different from the first response. The above method includes the following actions: Operate the _____8_______ with the first set of operating conditions. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) A7 538327. 5. Description of the invention (') Mass flow Controller; during the operation, obtaining setting data from the mass flow controller; setting at least one control parameter of the mass flow controller according to the setting data to use the first set of operating conditions to provide the first response And changing the at least one control parameter according to at least a part of the setting data to provide the second response by using the second set of operating conditions. According to another embodiment of the present invention, a method for setting a mass flow controller is provided. The mass flow controller has a control loop including a flow meter that monitors the actual fluid provided by the mass flow controller. And provides an adjusted output signal, the flow meter has a first gain term and a control unit, the control unit receives a second input signal indicating the desired fluid provided by the mass flow controller, and provides A control signal having a second gain term, a valve, and a valve actuator. The second gain term is a function of at least one variable operating condition. The valve is based on one or more components of the valve. Displacement to allow fluid to pass through, and the valve has a third gain term, the valve actuator receives the control signal, and adjusts the displacement of one or more components of the valve, and the valve actuator has a fourth gain term So that it has a substantially fixed control loop gain. The above method includes the following actions: using the first fluid to determine the first, third, and fourth gain terms using the first set of operating conditions; using at least one second fluid and the second set of operating conditions to estimate the first, third, and third gain terms; And how the fourth gain term will change; and changing the second gain term to the inverse of a constant multiplied by the product of the first, third, and fourth gain terms to provide the substance of the at least one variable operating condition Is a fixed control loop gain. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ------------- Installation -------- Order -------- -Line (please read the notes on the back before filling this page) A7 538327 __B7____ V. Description of the Invention (Name) According to another embodiment of the present invention, it provides a method for controlling a mass flow controller, the mass flow The controller has several elements that define the control loop of the mass flow controller. The above method includes the following actions: forming at least one control loop control parameter, the control parameter being a function of at least one variable operating condition; and by applying the at least one control loop control parameter to a control loop of the mass flow controller, The loop gain of the control loop with respect to the at least one variable operating condition is kept fixed. Another embodiment of the present invention includes a mass flow controller. The mass flow controller includes: a flow meter adapted to sense a fluid in a flow path, and provide a label indicating a mass flow rate in the flow path. Flow signal; a controller coupled to the flow meter to provide a drive signal based at least in part on the flow signal; a valve actuator to receive a drive signal from the controller; and a valve from the controller A valve actuator is controlled and coupled to the flow path. The above-mentioned mass flow controller further includes a control loop of the mass flow controller, and the control loop has a fixed closed loop gain. Another embodiment of the present invention includes a mass flow controller with a control loop. The mass flow controller includes: a flow meter adapted to sense a fluid in a flow path, and provide a marking in the flow path. A mass flow rate flow signal; a controller coupled to the flow meter and adapted to provide a drive signal based at least in part on the flow signal; a valve actuator adapted to receive a signal from the controller Drive signal; a valve 'which is controlled by a Yanhai valve actuator and coupled to the flow path; where the control loop of the mass flow controller includes the flow meter, the controller, and the valve --- 1Q____________ this paper Dimensions are applicable to China National Standard (CNS) A4 specifications (210 x 297 mm) -------------- installation-(Please read the precautions on the back before filling this page) · Line · 538327 A7 _____B7____ 5. Description of the invention (1) The actuator and the valve, and wherein the control loop is adapted to a control loop gain term having a relatively fixed, variable operating condition during operation. According to another embodiment of the present invention, a mass flow controller is provided. The mass flow controller includes: a flow meter having a first gain term, by which a mass flow rate of a fluid in a flow path in the mass flow controller is sensed, and a label indicating the fluid in the mass flow controller is provided. A mass flow rate flow signal in a flow path; a valve having a second gain term for receiving a control signal that controls the flow rate of the fluid in the flow path; a valve actuator having a third gain Item for receiving a driving signal 'and providing the driving signal to the valve; and a controller. The controller has a first input terminal for receiving the flow signal, a second input terminal for receiving a setpoint signal indicating a desired flow rate of the fluid, and an output that provides the driving signal to The valve actuator. The controller is adapted to provide a reciprocal gain term generated by obtaining an inverse of a product of at least one of the first gain term, the second gain term, and the third gain term. According to another embodiment of the present invention, a method for determining a valve displacement is provided. The valve has a valve inlet and a valve outlet. The valve inlet is used to receive a fluid under an inlet pressure, and the valve outlet is at -The fluid is supplied at outlet pressure. The above method includes the following actions: selecting an intermediate pressure between the inlet pressure and the outlet pressure; determining a first displacement of the valve according to a viscous pressure falling from the population pressure to the intermediate pressure; and according to the pressure from the intermediate pressure Non-viscous pressure falling to the outlet pressure ---- U_____ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) I--I--I--I ------ II — I 1 Order ---- IIII (Please read the notes on the back before filling out this page) 538327 B7 Five N Invention Description (V〇) -------------- Install- -(Please read the precautions on the back before filling this page) to determine the second displacement of the valve; determine whether the first displacement is approximately equal to the second displacement; and when the first displacement is approximately equal to the second displacement, One of the first displacement and the second displacement is selected as the displacement of the valve. According to another aspect of the present invention, it provides a method for reducing the hysteresis effect in a solenoid-actuated device. In one embodiment, the above method includes an action that applies a predetermined non-operational signal to the solenoid actuated device 'to place the device in a predetermined state. According to another embodiment, a method of operating a solenoid actuating device includes the following actions: (a) providing a first amount of energy to the solenoid actuating device to cause the solenoid actuating device to move from the first Moving a position to a second position; (b) providing a second amount of energy to the solenoid actuating device to return the solenoid actuating device to the first position; and (C) when the first When a quantity of energy exceeds a predetermined quantity of energy, the solenoid actuating device is set to a predetermined state after completing the action (b). --Wire. According to another embodiment of the present invention, it provides a device comprising: a solenoid actuating device and a solenoid actuator, the solenoid actuator is coupled to the solenoid Bobbin actuating device. The above actuator is adapted to provide a non-operational signal to the solenoid actuating device 'to set the device to a predetermined state. According to another embodiment of the present invention, a method for setting a mass flow control device is provided, so that the mass flow controller works with a set of process operating conditions, and at least a part of the process operating conditions is different from the mass flow controller. Used to establish the first response of the mass flow controller during the production process and test the operating conditions. The above method includes the following actions: · Operate in the first group ________________ This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 538327 A7 __________ Β7 _____ V. Description of the condition (ύ) conditions to depict the mass flow Characteristics of the controller; obtaining setting data during the drawing operation; and changing at least one control parameter according to the setting data and the process operating conditions, so that the response of the mass flow controller does not substantially change. With reference to the following detailed description of the present invention and reference to the drawings, the various advantages, novel features, and purposes of the present invention can be clearly understood, wherein the drawings are only essential drawings and are not intentionally added in a proportional manner. draw. In the drawings, each identical or similar element shown in a different drawing is represented by a single number. For the sake of brevity, not all elements are marked in all drawings, and if there are elements that are not necessary for those skilled in the art to understand the present invention, the drawings do not illustrate the various embodiments of the present invention. Of these components. The drawings are briefly explained in the drawings: FIG. 1 is a schematic block diagram of an embodiment of a mass flow controller according to the present invention. The mass flow controller can be used with different fluids and different operating conditions; 2 is a more detailed schematic block diagram of the flow meter shown in FIG. 1; FIG. 3 is a diagram illustrating various output signals of the mass flow sensor responding to the flow j step changes according to an embodiment of the present invention; FIG. 4 is the gain shown in FIG. / Guide / Delay controller circuit diagram is more complete; Figure 5 is a more detailed schematic block diagram of the valve actuator shown in Figure 1; ______13 ___ This paper rule is applicable to China National Standard (CNS) A4 Specifications (21〇χ 297mm) --- I ----------------- Order --------- Line (Please read the precautions on the back first Fill in this page) 538327 A7 _____ Β7 _ 5. Description of the invention (Figure 6 is the signal waveforms of several signals shown in Figure 4; Figures 7 a-7 f are diagrams illustrating the method for setting the mass sulfur sensor according to the embodiment of the present invention To work with process fluids and / or process operating conditions; Figure 8 illustrates mass flow control according to the prior art The hysteresis principle in the closed solenoid-actuated control valve in the normal condition of the actuator; FIG. 9 is a sinusoidal signal illustrating reduced amplitude according to the embodiment of the present invention, which can be provided to the solenoid-actuated control valve, thereby Decrease the hysteresis effect; FIG. 10 is a sine-shaped signal illustrating amplitude reduction according to another embodiment of the present invention, which can be provided to a solenoid actuated control valve to reduce the hysteresis effect; Another embodiment illustrates another sinusoidal signal with reduced amplitude, which can be provided to a solenoid to actuate a control valve to reduce the hysteresis effect; FIG. 12 is a diagram illustrating a fixed amplitude sawtooth according to another embodiment of the invention Shape signal, which can be provided to the solenoid-actuated control valve, thereby reducing the hysteresis effect; FIG. In order to reduce the hysteresis effect; FIG. 14 is a diagram illustrating an embodiment of the present invention including a computer and a mass flow controller, wherein the mass flow controller can be automatically set by a computer; Example, which shows a 7-mass flow controller that can be set automatically; and Figure 16 is a sectional view of a valve. _______14___ This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) ---- ----------------- Order --------- line (please read the notes on the back before filling this page) 538327 A7 _B7_ V. Description of the invention (0 ) Component symbol description ----------------- (Please read the notes on the back before filling this page) 100 Mass flow controller 103 Flow path 110 Flow meter 120 Filter 130 Rise Rate limiter or filter

140 增益項G 150 增益/引導/延遲控制器 160 閥門致動器 170 控制閥門 210 旁通管 220 感應器電路 230 感應器及感應電子裝置 240 歸一化電路 -1線· 250 響應補償電路 260 線性化電路 4 10 D —項電路 420 減法電路 440 比例增益項 450 積分增益項 460 積分器 470 加法電路 510 閥門驅動電子電路 520 電子機械致動器 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A7 _ — _ B7 五、發明說明(A) 7 10 生產 7 12 設定資料 8 0 0 電腦 8 0 2 記憶體 8 0 4 處理器 8 0 8 輸入裝置 8 10 程式 10 0 0 質量流控制器 10 0 2 記憶體 10 0 4 處理器 10 0 6 質量流控制器 10 0 8 輸入裝置 10 12 設定資料 16 4 0 孔口 16 5 0 平頂 --------------裝--- (請先閱讀背面之注意事項再填寫本頁) · 線· 貌佳實施例之詳細說昍 由於質量流控制器之各種不同元件中的非線性以及/ 或質量流控制器與各種不同操作條件之關聯性等因素,使 得質量流控制器經常會受到不穩定性的不良影響。操作條 件一詞係槪括指稱任何一種可加以控制且會影響質量流控 芾[J器之操作條件。操作條件的範例包括:流體種類、設定 黑占或流率、入口及/或出口壓力、溫度閥門供給/排出壓 力等,但不以上述者爲限。 ------------- 16___ __ 本紙張尺度適用中國國家標準(q\JS)A4規格(210 x 297公釐) 538327 A7 ----------B7______ 五、發明說明(θ ) 然而,應瞭解的是:其它狀態亦可能在質量流控制器 的操作過程中出現,例如:系統雜訊及/或如操作頻率等 無法加以控制的狀態。除非另有特別說明,否則此類狀態 並不包含於在此揭露內容所述操作條件一詞所指狀態。 在此將會交替使用質量流率、流體流量和流率等用語 ’用以描述每單位時間內流體通過某流動路徑(例如圖1 之流動路徑1 0 3 )或部分流動路徑之單位體積的流量( 亦即流體質量之通量)。 物種一詞係槪括指稱某特定流體之性質。物種之改變 可包括流體種類之改變(例如由氮變成氫)、流體組成之 改變(例如流體爲氣體或液體等之組合),以及/或流體 或流體之組合改變狀態。特定而言,物種的改變適用於至 少一項流體性質的變化,而此變化可能會改變或影響質量 流控制器之性能。物種資訊一詞槪括適用於任何數目定義 特定流體物種的性質。例如,物種資訊可包括:流體種類 (例如氫或氮等)、流體組成(例如氫和氮)、分子量、 比:熱、相態C例如液體、氣體等)、黏滯性等,但不以上 述者爲限。 質量流控制器通常具備若干連接於閉合迴路中的不同 元件(例如:流量計、反饋控制器、閥門等)。控制迴路 中的各個元件部分會有其相關增益。一般而言,增益一詞 係指某特定元件或一群元件之輸入端與輸出端之間的關係 。例如’增益可代表輸出變化與輸入變化的比率。增益可 爲一個或一個以上變數之函數;例如,質量流控制器之一 本紙張尺度適用中國國豕標準(CNS)A4規格(210 X 297公釐) ---------------------訂---------線 (請先閱讀背面之沒意事項再填寫本頁) 538327 A7 __B7__ 五、發明說明(A ) 或數個操作條件及/或特性(例如:流率、入口及/或出 口壓力、溫度、閥門位移等)。一般而言,此類增益函數 被稱爲增益項。增益項一特別是增益項之表述式一可爲一 曲線、函數之樣本、離散的資料點、點數對及常數等。 質量流控制器之各種不同元件或元件組會有其相關增 益項(一個沒有可測得增益項的元件可將其增益項視爲單 位增益項)。質量流控制器中各種元件之相關增益項之間 的關係通常很複雜。例如,不同的增益項可爲不同變數( 如元件之操作條件及/或特性)之函數,或許部分爲非 線性,且彼此之間可能不成比例。 因此,在質量流控制器之控制迴路中,各元件的相關 增益項之貢獻本身即爲增益項。此複合增益項本身可爲一 或數個變數之函數,且至少部分是導致不穩定性的原因, 而質量流控芾[]器經常會在運作過程中受到不良影響,且會 使質量流控锒[1器非常容易受到質量流控制器之各種元件操 作條件及/或特性改變的影響。 根據本發明之一樣態,其提供一種質量流控制器,該 質量流控制器具有一具備固定迴路增益的控制迴路。根據 本發明之一實施例,固定迴路增益係藉由形成質量流控制 器之控制迴路上之一或數個元件的相關增益項之乘積,並 決定該增益項之倒數而被提供,同時將該互逆增益項應用 於控制迴路。 固定迴路增益項係描述質量流控制器控制迴路之增益 ’其相對於質量流控制器之操作條件爲固定値。特定而言 ........— --- 18 械献度i®用 國家標隼(CNS)A4規格(210 x 297公釐厂 一 I-------I-----------"訂----— I! (請先閱讀背面之注意事項再填寫本頁) A7 538327 _______B7_____ 五、發明說明(V\) ,固定迴路增益不會隨著質量流控制器之相關特定操作狀 態之函數而改變,或隨著控制迴路之相關個別增益項之函 數而改變。吾人應瞭解的是:質量流控制器之特定元件的 增益會隨著操作頻率(亦即質量流控制器之各種訊號的頻 率分量)而改變。然而,頻率並未被視爲操作條件,因而 不會被視爲使固定迴路增益維持不變的條件。 以下將會更詳細說明與本發明用於控制及設定質量流 控制器之方法及設備有關的各種觀念及其實施例。吾人應 瞭解的是:本發明之上述及以下進一步描述的各種樣態可 以任何一種方式加以實施,因爲本發明不限定於任何特定 實施例。特定實施例僅係用於說明。 本文將說明本發明之各式樣態及特點。爲求簡明起見 ,各式樣態及特點係分別加以討論。熟習此項技藝者當可 瞭解,在此描述的技術特點可依照特定應用場合而於質量 流控制器中加以選擇組合。 Α.質量流控制器之控制 圖1係根據本發明圖示質量流控制器之示意方塊圖。 圖1所示質量流控制器包含一流量計1 1 0、一增益/引 導/延遲(G L L )控制器1 5 0、一閥門致動器1 6 0 及一閥門1 7 〇。 流量計1 1 〇係耦合於流動路徑1 0 3。流量計1 1 〇可感應流體於流動路徑或部分流動路徑內的流率,並提 供標示被感應流率的流量訊號F S 2。流量訊號F S 2係 _ ___19______ 本紙張尺度適用?國國家標準(CNS)A4規格(210 X 297公釐) --I---I - I----111111 I --------- (請先閱讀背面之注意事項再填寫本頁) A7 538327 _ B7___ 五、發明說明() 被提供到增益/引導/延遲控制器1 5 〇之第一輸入端。 此外,增益/引導/延遲控制器1 5 0包含第二輸入 端,用以接收一設定點訊號s 1 2 °設定點係指由質量流 控制器1 ο 〇提供的所欲流量之指標。如圖1所示,首先 設定點訊號s I 2會在被提供到增益/引導/延遲控制器 1 5 0之前先通過上升率限制器或濾波器1 3 0。濾波器 1 30係用於限制訊號SI1之設定點瞬時變化而直接被 提供到增益/引導/延遲控制器1 5 0,使得流量變化在 待定時間發生。應瞭解的是:實施本發明時不一定要使用 上升率限制器或濾波器1 3 0,且在本發明之某些實施例 中可予以省略,而任何能提供所欲流量指標的訊號均被視 爲合適的設定點訊號。設定點一詞並非相對特定訊號而言 ,其係描述代表所欲流量的數値。 部分依據流量訊號F S 2及設定點訊號S I 2,增益 /引導/延遲控制器1 5 0提供驅動訊號D S至控制閥門 1 7 0的閥門致動器1 6 0。閥門1 7 0通常定位於流量 計1 1 0之下游,並至少部分取決於閥門之受控部件而允 許特定質量流率。閥門之受控部件可以是設置於流動路徑 之截面處的可移動式活塞,更詳細之描述如圖1 6所示。 上述閥門係藉由增加或減少容許流體通過截面開口之面積 來控制流動路徑中的流率。在典型情況下,質量流率係藉 由機械式地使閥門之受控部件位移至所欲程度來加以控制 。位移一詞係槪括指稱至少與質量流率有部分關聯的閥門 〇 ______20_ 本紙張尺度遠用中國國家標準(CNS)A4規格(210 X 297公釐) I I I I---II----· I I I I I I I 訂· —---1!_ *5^ (請先閱讀背面之注意事項再填寫本頁) A7 538327 ________B7________ 五、發明說明(θ ) 閥門之位移通常係由閥門致動器予以控制,例如:螺 糸泉管致動器、壓電致動器、步進致動器等。在圖1中,閥 rg致動器1 6 〇係爲螺線管式致動器’然而本發明並不限 定於此種致動器,其它類型的致動器亦可使用。閥門致動 器1 6 〇接收到來自控制器的驅動訊號d s ’並將訊號D s轉換成電流;當該電流施加到閥門時’將會使閥門之受 控部件產生所欲之機械位移。 如上所述,質量流控制器之不同元件各有其相關的增 益項。例如,圖1分別圖示流量計1 1 〇、增益/引導/ 延遲控制器1 5 0、閥門致動器1 6 0和閥門1 7 0所附 帶的增益項A、B、C和D。此等元件及其相關的輸入及 輸T出訊號一特別是流量訊號F S 2、驅動訊號D S、閥門 言刊號AD以及流過流動路徑1 〇 3的流體等,形成質量流 控制器之控制迴路。增益A、B、C及D依序結合該等輸 人及輸出之關係。應瞭解的是:在此控制迴路上的增益項 係促成合成控制迴路增益。 以典型情況而言,此控制迴路增益項係爲控制迴路上 白勺增益項之乘積(亦即控制迴路增益項等於A * B * C * D之乘積)。合成增益項在此係用於描述任何由數個單獨 增益項之貢獻所組成的增益項。在此所使用的合成增益項 符號,將呈現爲代表組成該合成增益項的單獨增益項所用 之連鎖符號。例如,上述控制迴路增益項將表示成增益項 A B C D。除非另外註明,否則上述合成增益項之標記預 設爲其組成增益項之乘積。 ^______21___ 木紙張尺度適用中國國冢標準(CNS)A4規格(210 x 297公釐) ---I---· I -----訂--— — — — —-- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ___ B7_ 五、發明說明(产,) 質量流控制器之控制迴路所附帶的單獨增益項可能具 有不同特徵及關聯性,因而造成具多重關聯性的合成增益 項。此類關聯性或變數可包括設定點或流率、流體物種、 溫度、入口及/或出口壓力、閥門位移等。本案申請人已 確認並瞭解具備任一控制迴路增益項的質量流控制器容易 受到不穩定性的影響,而且對以上所提及的某些或所有關 耳緒性之變化非常敏感。以下將說明圖1所示各個增益項之 範例。 增益項A係伴隨於流量計,其代表通過質量流控制器 白勺實際流量與流量計所標示之流量(例如F S 2 )之間的 關係(例如:標示流量之變化量除以實際流量之變化量) 。增益項A被校準成最低流率之常數函數。然而,此常數 至少與質量流控制器所操作的流體物種有關。 增益項B係伴隨於增益/引導/延遲控制器,其代表 接收來自流量計的標示流量訊號F S 2與提供於閥門致動 器的驅動訊號D S之間的關係。增益項B與增益/引導/ 延遲控制器之反饋控制所使用的各式不同增益及常數有關 〇 增益項C係伴隨於閥門致動器,其代表驅動訊號與閥 rg位移之間的關係。增益項c可包含兩單獨增益之結合, 其中包括驅動訊號轉換成電流或電壓控制訊號所伴隨的增 益,以及閥門受控部件之控制訊號和機械位移所伴隨的增 益。 增益項D係伴隨於閥門,其代表質量流控制器之流率 ___________22___— ___ 本紙張尺度it用中國國家標準(CNS)A4規格(210 x 297公釐) I--I-------- — II 訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ______B7_ 五、發明說明(〆丨) 與閥門位移之間的關係(例如:流率之變化量除以閥門位 移之變化量)。增益項D與多種操作條件有關,其中包括 流:體物種、人口及出口壓力、溫度、閥門位移等。根據以 下將會詳細說明的本發明之樣態,茲提供一種閥門實體模 型’其有助於決定具任何流體和操作條件的閥門所伴隨之 增益項。 增益項G係增益項A、C和D之乘積的倒數。由本說 明書可進一歩得知,增益項G允許質量流控制器以固定方 式加以操作,且與提供給質量流控制器之控制迴路的固定 迴路增益所得操作條件無關。 根據本發明之一樣態,特定質量流控制器之系統增益 項係由決定質量流控制器之控制迴路上各種元件之合成增 益項來加以決:定。互逆增益項係取自系統增益項之倒數。 It匕互逆增益項隨後應用於控制迴路,使控制迴路以固定的 迴路增益進行操作。因此,當控制迴路上的各個增益項改 變時,互逆增益項會改變,以便維持固定的迴路增益。 由於質量流控制器之迴路增益保持不變而與質量流控 芾(J器所使用的流體類型無關,且與質量流控制器之操作條 伴無關,因此:質量流控制器對於不同流體及/或操作條件 可得穩定的響應’並呈現與質量流控制器在測試流體和測 試操作條件之生產過程中所觀察到的相同性能。除非另外 註明,否則系統增益項係控制迴路上的增益項之合成,且 該等增益項會隨著一或多個操作條件之函數而改變。舉例 而言,圖1中的系統增益項爲合成增益項A C D。 _23_______ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)~ 裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A7140 Gain item G 150 Gain / Guide / Delay controller 160 Valve actuator 170 Control valve 210 Bypass 220 Sensor circuit 230 Sensor and induction electronics 240 Normalization circuit-1 line 250 Response compensation circuit 260 Linear Chemical circuit 4 10 D —term circuit 420 subtraction circuit 440 proportional gain term 450 integral gain term 460 integrator 470 addition circuit 510 valve drive electronic circuit 520 electromechanical actuator This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 538327 A7 _ — _ B7 V. Description of invention (A) 7 10 Production 7 12 Setting data 8 0 0 Computer 8 0 2 Memory 8 0 4 Processor 8 0 8 Input device 8 10 Program 10 0 0 Mass flow controller 10 0 2 Memory 10 0 4 Processor 10 0 6 Mass flow controller 10 0 8 Input device 10 12 Setting data 16 4 0 Orifice 16 5 0 Flat top ---------- ---- Install --- (Please read the notes on the back before filling this page) · Line · Detailed description of the good-looking embodiment 昍 Due to the non-linearity and / or mass flow of the various components of the mass flow controller Controllers are different Relevance of such factors as the condition of the mass flow controllers are often adversely affected by instability. The term operating conditions refers to any condition that can be controlled and affects mass flow control. [J device operating conditions. Examples of operating conditions include, but are not limited to, the type of fluid, set black ratio or flow rate, inlet and / or outlet pressure, and temperature valve supply / discharge pressure. ------------- 16___ __ This paper size applies to Chinese National Standard (q \ JS) A4 (210 x 297 mm) 538327 A7 ---------- B7______ 5 Explanation of the invention (θ) However, it should be understood that other states may also occur during the operation of the mass flow controller, such as: system noise and / or states that cannot be controlled such as operating frequency. Unless otherwise stated, such states are not included in the states referred to in the operating conditions described in the disclosure. The terms 'mass flow rate, fluid flow rate, and flow rate' will be used interchangeably here to describe the flow rate of a unit volume per unit time through a certain flow path (such as the flow path 1 0 3 in Figure 1) or part of the flow path. (That is, the flux of fluid mass). The term species refers to the nature of a particular fluid. Changes in species can include changes in the type of fluid (such as from nitrogen to hydrogen), changes in the composition of the fluid (such as a combination of a gas or a liquid, etc.), and / or a change in the state of a fluid or a combination of fluids. In particular, a change in species applies to at least one change in the properties of the fluid, and this change may alter or affect the performance of the mass flow controller. The term species information is intended to apply to any number that defines the nature of a particular fluid species. For example, species information may include: fluid type (such as hydrogen or nitrogen, etc.), fluid composition (such as hydrogen and nitrogen), molecular weight, ratio: heat, phase C (such as liquid, gas, etc.), viscosity, etc. The above is limited. Mass flow controllers usually have several different components (eg flow meters, feedback controllers, valves, etc.) connected in a closed loop. Each component of the control loop has its associated gain. In general, the term gain refers to the relationship between the input and output of a particular component or group of components. For example, 'gain may represent the ratio of output change to input change. The gain can be a function of one or more variables; for example, one of the mass flow controllers is sized to the Chinese National Standard (CNS) A4 (210 X 297 mm) ----------- ---------- Order --------- line (please read the unintentional matter on the back before filling this page) 538327 A7 __B7__ V. Description of the invention (A) or several operating conditions And / or characteristics (eg flow rate, inlet and / or outlet pressure, temperature, valve displacement, etc.). In general, such gain functions are called gain terms. The gain term 1 and especially the expression 1 of the gain term may be a curve, a sample of a function, discrete data points, point pairs, and constants. Various components or groups of components of a mass flow controller will have their associated gain terms (a component that has no measurable gain term can treat its gain term as a unit gain term). The relationship between the related gain terms of various components in a mass flow controller is often complex. For example, different gain terms may be functions of different variables (such as the operating conditions and / or characteristics of the component), and may be partially non-linear and may not be proportional to each other. Therefore, in the control loop of the mass flow controller, the contribution of the relevant gain term of each element is itself the gain term. The compound gain term itself can be a function of one or more variables, and at least part of it is the cause of instability. The mass flow control unit [] is often adversely affected during operation and can cause mass flow control锒 [1 device is very susceptible to changes in the operating conditions and / or characteristics of various elements of the mass flow controller. According to the aspect of the present invention, it provides a mass flow controller having a control loop having a fixed loop gain. According to an embodiment of the present invention, the fixed loop gain is provided by forming a product of related gain terms of one or several elements on a control loop of a mass flow controller, and determining the inverse of the gain term, while providing the The reciprocal gain term is applied to the control loop. The fixed loop gain term describes the gain of the control loop of the mass flow controller ′, and its operating condition relative to the mass flow controller is fixed. Specifically .............. --- 18 National Standard (CNS) A4 size (210 x 297 mm factory one I ------- I --- -------- " Order ----— I! (Please read the notes on the back before filling in this page) A7 538327 _______B7_____ 5. Description of the invention (V \), the fixed loop gain will not follow The function of the relevant specific operating state of the mass flow controller changes, or as a function of the relevant individual gain terms of the control loop. What I should know is that the gain of certain elements of the mass flow controller will vary with the operating frequency ( (Ie, the frequency components of various signals of the mass flow controller). However, the frequency is not considered as an operating condition, and therefore will not be considered as a condition for maintaining the fixed loop gain constant. The following will explain in more detail with Various concepts and embodiments related to the method and equipment of the present invention for controlling and setting a mass flow controller. I should understand that the various aspects of the present invention described above and further below can be implemented in any way, because The invention is not limited to any particular embodiment. The examples are only for illustration. This article will explain the various forms and characteristics of the present invention. For the sake of brevity, the various forms and characteristics are discussed separately. Those skilled in the art will understand the techniques described here. Features can be selected and combined in the mass flow controller according to specific applications. A. Control of the mass flow controller Figure 1 is a schematic block diagram illustrating a mass flow controller according to the present invention. The mass flow controller shown in Figure 1 It includes a flow meter 1 1 0, a gain / guidance / delay (GLL) controller 150, a valve actuator 16 0, and a valve 1 7 0. The flow meter 1 1 0 is coupled to the flow path 1 0 3. The flow meter 1 1 〇 can sense the flow rate of the fluid in the flow path or part of the flow path, and provide a flow signal FS indicating the sensed flow rate 2. The flow signal FS 2 is _ ___19______ This paper is applicable? National standards (CNS) A4 specification (210 X 297 mm) --I --- I-I ---- 111111 I --------- (Please read the precautions on the back before filling this page) A7 538327 _ B7___ V. Description of the invention () is provided to gain / guide / delay control The first input terminal of 150. In addition, the gain / guide / delay controller 150 includes a second input terminal for receiving a setpoint signal s 12 °. The setpoint refers to the mass flow controller 1 ο 〇 Provide an indicator of the desired flow. As shown in Figure 1, the set point signal s I 2 will first pass through the rise rate limiter or filter 130 before being provided to the gain / guide / delay controller 150. The filter 1 30 is used to limit the instantaneous change of the set point of the signal SI1 and is directly provided to the gain / guide / delay controller 150, so that the flow change occurs at a certain time. It should be understood that when implementing the present invention, it is not necessary to use a rise rate limiter or filter 130, and it may be omitted in some embodiments of the present invention, and any signal that can provide the desired flow index is Deemed an appropriate setpoint signal. The term set point is not relative to a specific signal, it describes the number that represents the desired flow. Based in part on the flow signal F S 2 and the setpoint signal S I 2, the gain / guide / delay controller 1 50 provides a drive signal D S to a valve actuator 160 that controls the valve 170. The valve 170 is usually positioned downstream of the flow meter 110 and depends at least in part on the valve's controlled components to allow a specific mass flow rate. The controlled part of the valve may be a movable piston provided at the cross section of the flow path. A more detailed description is shown in FIG. 16. These valves control the flow rate in the flow path by increasing or decreasing the area that allows fluid to pass through the cross-sectional opening. In typical cases, the mass flow rate is controlled by mechanically displacing the controlled components of the valve to the desired level. The term displacement refers to valves that are at least partially associated with mass flow rate. ______20_ This paper is far from the Chinese National Standard (CNS) A4 (210 X 297 mm) III I --- II ---- · IIIIIII order · --- 1! _ * 5 ^ (Please read the notes on the back before filling this page) A7 538327 ________B7________ V. Description of the invention (θ) The valve displacement is usually controlled by the valve actuator. For example: Spiral spring actuator, piezoelectric actuator, stepper actuator, etc. In Fig. 1, the valve rg actuator 16 is a solenoid type actuator '. However, the present invention is not limited to this type of actuator, and other types of actuators may be used. The valve actuator 160 receives the driving signal d s ′ from the controller and converts the signal D s into a current; when the current is applied to the valve, it will cause the controlled part of the valve to produce the desired mechanical displacement. As mentioned above, the different components of the mass flow controller each have their associated gain terms. For example, FIG. 1 illustrates the gain terms A, B, C, and D attached to the flowmeter 110, the gain / guidance / delay controller 150, the valve actuator 160, and the valve 170, respectively. These components and their related input and output T signals—especially the flow signal FS 2, the drive signal DS, the valve signal AD, and the fluid flowing through the flow path 103—form the control loop of the mass flow controller. . The gains A, B, C, and D sequentially combine these input and output relationships. It should be understood that the gain term on this control loop contributes to the resultant control loop gain. Typically, this control loop gain term is the product of the gain terms on the control loop (that is, the control loop gain term is equal to the product of A * B * C * D). The synthetic gain term is used here to describe any gain term that consists of the contributions of several separate gain terms. The synthetic gain term symbol used herein will be presented as a chain symbol used to represent the individual gain terms that make up the synthetic gain term. For example, the above control loop gain term will be expressed as a gain term A B C D. Unless otherwise noted, the markers for the aforementioned synthetic gain terms are preset to the product of their constituent gain terms. ^ ______ 21___ The size of wood and paper is applicable to China National Standard (CNS) A4 (210 x 297 mm) --- I --- · I ----- Order --- — — — —-- (Please read first Note on the back, please fill out this page again) 538327 A7 ___ B7_ V. Description of the Invention (Production) The separate gain terms attached to the control loop of the mass flow controller may have different characteristics and correlations, resulting in a composite with multiple correlations. Gain term. Such correlations or variables may include set points or flow rates, fluid species, temperature, inlet and / or outlet pressure, valve displacement, and the like. The applicant of this case has confirmed and understood that mass flow controllers with any control loop gain term are susceptible to instability, and are very sensitive to some or all of the aforementioned changes in earness. An example of each gain term shown in Fig. 1 will be described below. The gain term A is accompanied by the flow meter, which represents the relationship between the actual flow through the mass flow controller and the flow rate (for example, FS 2) marked by the flow meter (for example, the change in the indicated flow rate divided by the change in the actual flow rate) the amount) . The gain term A is calibrated as a constant function of the lowest flow rate. However, this constant is at least related to the species of fluid being operated by the mass flow controller. The gain term B is accompanied by a gain / guide / delay controller, which represents the relationship between receiving the marked flow signal F S 2 from the flow meter and the drive signal DS provided to the valve actuator. The gain term B is related to various gains and constants used in the feedback control of the gain / guide / delay controller. The gain term C is accompanied by the valve actuator, which represents the relationship between the driving signal and the valve rg displacement. The gain term c may include a combination of two separate gains, including the gain associated with the conversion of a drive signal into a current or voltage control signal, and the gain associated with the control signal and mechanical displacement of a valve-controlled component. The gain term D is accompanied by the valve, which represents the flow rate of the mass flow controller. ___________ 22 ___— ___ This paper size uses the Chinese National Standard (CNS) A4 specification (210 x 297 mm) I--I ----- --- — Order II --------- line (please read the precautions on the back before filling this page) 538327 A7 ______B7_ 5. The relationship between the description of the invention (〆 丨) and the valve displacement (for example: The amount of change in flow rate divided by the amount of change in valve displacement). The gain term D is related to a variety of operating conditions, including flow: species, population and outlet pressure, temperature, valve displacement, and so on. In accordance with the aspect of the present invention, which will be described in detail below, a physical model of a valve is provided to help determine the gain terms that accompany a valve with any fluid and operating conditions. The gain term G is the inverse of the product of the gain terms A, C, and D. As can be further understood from this specification, the gain term G allows the mass flow controller to operate in a fixed manner and is independent of the operating conditions derived from the fixed loop gain of the control loop provided to the mass flow controller. According to the state of the present invention, the system gain term of a specific mass flow controller is determined by determining the synthetic gain terms of various components on the control loop of the mass flow controller. The reciprocal gain term is taken from the inverse of the system gain term. The It reciprocal gain term is then applied to the control loop, causing the control loop to operate with a fixed loop gain. Therefore, as each gain term on the control loop changes, the reciprocal gain term changes in order to maintain a fixed loop gain. Because the loop gain of the mass flow controller remains unchanged, it is independent of the type of fluid used by the mass flow controller, and has nothing to do with the operating bar of the mass flow controller. Therefore: the mass flow controller is different for different fluids and / Or stable response to operating conditions' and presents the same performance as observed by the mass flow controller during the production of the test fluid and test operating conditions. Unless otherwise noted, the system gain term is one of the gain terms on the control loop And the gain terms will change as a function of one or more operating conditions. For example, the system gain term in Figure 1 is the synthetic gain term ACD. _23_______ This paper size applies Chinese National Standard (CNS) A4 Specifications (210 X 297 mm) ~ installed -------- order --------- line (please read the precautions on the back before filling this page) A7

538327 五、發明說明( 在圖1之方塊1 4 0中,互逆增益項G之形成係取自 系統增益項A C D之倒數,並將該倒數提供做爲增益/引 導/延遲控制器其中一個輸入端。應瞭解的是:上述互逆 增溢項可爲小於質量流控制器之控制迴路上各種元件所伴 隨之所有增益項的倒數。例如,可藉由形成合成增益項A C 、AD和C D等來改善控制及穩定性。然而’在較佳實 施例中,增益項G之形成係使得迴路增益保持定値(即增 益G爲系統增益項之倒數)。 圖2係圖示流量計1 1 〇之更詳細的示意方塊圖。流 量計係槪括指稱任何能夠感應通過流動路徑或部分流動路 徑之流率並提供標示該流率之訊號的元件。圖2中的流量 計1 1 0包含有一旁通管2 1 0 ; —感應器及感應電子裝 置2 3 0 ; —歸一化電路2 4 0,用以接收來自該感應器 及感應電子裝置2 3 0之感應器訊號F S 1 ; —響應補償 電路2 5 0,其耦合於該歸一化電路2 4 0 ;以及一線性 化電路2 6 0,其耦合於該響應補償電路2 5 0。如圖1 所示之質量流控制器,線性化電路2 6 0之輸出係爲流量 訊號F S 2。 雖然未圖示於圖2,但在某些實施例中,吾人可利用 類比至數位(A/D)轉換器,將感應器訊號F S 1轉換 成數位訊號;有鑑於此,質量流控制器1 〇 〇之其它所有 雲Η號的處理均可由數位電腦或數位訊號處理器(D S P ) 加[以執行。雖然在實施例中,所有藉由質量流控制器所執 行的訊號處理均係以數位方式執行,但本發明不限定於此 ________24 _ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---------I----i I (請先閱讀背面之注意事項再填寫本頁) · -—線- 538327 A7 ___B7 _ 五、發明說明( >今) 種方式,吾人亦可選用類比式處理技術。 在圖2中,感應器電路2 2 0會使部分流經流動路徑 的领ί體轉向,並使剩餘大部分的流體通過旁通管。感應器 及感應電子裝置2 3 0係耦合於感應器導管’其測量通過 該導管的流率。通過導管的流量係正比於流過旁通管的流 量。然而,在爲質量流控制器之運作所預設的流率範圍內 ,導管內之流率與旁通管內流率之間可能並非線性關係。 此外,熱感應器係藉由偵測導管內某區間的溫度變化 來领J量流率。因此,在某些實施例中一特別是運用到熱感 應器的實施例,其中可能存在溫度關聯性一尤其是在質量 流控制器運作之流率範圍的兩個極端溫度上(在此分別稱 爲零流量與全流量)。 歸一化電路2 4 0係接收感應器訊號F S 1,並校正 在零流量和全流量時的潛在溫度關聯性。特定而言’當導 管及/或旁通管內沒有流體通過時(即零流量時)’感應 器可能會產生非零的感應器訊號。再者,此不實的流量標 示或許和溫度有關。同樣地,感應器訊號F S 1可能會經 歷到在全流量時與溫度有關的變動。吾人可於若干不同的 溫度下,在零流量時測量感應器訊號F S 1的數値’而後 再根據感應器之溫度,運用校正因子在零流量時校正訊號 F S 1中與溫度有關的變動。在全流量時校正訊號F S 1 中與溫度有關的變動亦可以類似方式執行’其根據在不同 溫度時的感應器訊號測量値,並根據該溫度運用適當的校 正因子。 _______ι___ 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) -------------裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _B7_ 五、發明說明(AT) 此外,對於質量流控制器所欲運作的整個範圍,可以 類丫以方式測量範圍內之特徵點的溫度關聯性。因此,流率 和溫度函數的校正曲線可與在零流量、全流量和其間任意 個數的特徵點所取得之測量値相互擬合。此校正曲線可爲 質量流控制器設計運作的流率範圍提供溫度之校正。此外 ,對於所用流體以及已知感應器性質隨溫度之變化的了解 可提供或改善歸一化電路2 4 0之校正因子及/或校正曲 線。 歸一化電路2 4 0亦可將固定的歸一化增益提供至訊 號F S 1,使得在全流量下通過感應器導管時,可獲得特 定數値的歸一化訊號F S 1’ ,並且在零流量時,可獲得 另一^特定數値(例如零)。 舉例而言,在某實施例中,歸一化電路2 4 0在沒有 流體通過感應器導管時,歸一化訊號FS1’之數値爲〇. 0 ,且以全流量通過該導管時,歸一化訊號F S 1 ’之數 値爲1.0。應瞭解的是:在零流量和全流量時,可爲歸一 化訊號F S 1 ’選擇任何數値;在此所用的數値僅用以示 範說明。 應瞭解的是:歸一化訊號FS1’可能有較差的動態 特徵,以致在回應流體中的階梯變化時,訊號FS1’會 產生時間延遲,且相對於通過流量感應器的實際流量較爲 平順。此係由於熱流量感應器之響應時間通常較慢,因爲 熱變化需要較長的時間才會發生。 圖3係圖示上述特性,其中時間標繪於橫軸一即X軸 _____ ^ ----- - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---I----· I I I----訂-- ----— II (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ____B7__ 五、發明說明() ,3流量標繪於縱軸一即γ軸。如圖3所示,在回應通過熱 質量流感應器的實際流體中之單位階梯變化時,由該感應 器戶/ΐ提供的訊號F S 1會產生時間延遲且較爲平順。 爲校正上述感應器之效應,並爲流量變化提供較佳的 動氣肖響應,歸一化訊號FS1’被提供到響應補償電路2 5 0。響應補償電路250之運作方式即如同濾波器’此 濾波器近似於感應器及感應電子裝置2 3 0之轉換函數的 反函數。響應補償電路2 5 0可加以校正或調整,使得由 響應補償電路2 5 0所提供的調節訊號F S 1”具預定的 上升時間、預定的正尖峰及/或負尖峰最大程度、在預定 時間框中使其趨向平穩,以及/或在質量流控制器的特定 操作情況下,調整其它所欲得到的特性。 如圖3所示,補償訊號F S 1”之輪廓較接近反映出 通過圖中所示感應器之流量階梯變化的輪廓。質量流控制 器之流量計可加以調整,以便在質量流控制器之生產過程 中提供此種補償訊號。特定而言’吾人可利用以下將會詳 紐說明的感應器校準步驟來調整動態響應。 如以上已簡要說明者,通過感應器導管之流量相對於 通過旁通管之流量的比率與流體之流率有關。此外,感應 器與感應器電子裝置中的非線性,會使實際流量與感應器 在不同流率下所提供的被感應流量訊號之間的關係變得更 爲複雜。此結果會導致代表被感應流量對流體流量的曲線 可能不是線性曲線。 應瞭解的是··許多此等非線性會傳至歸一化電路2 4 ______ -----—_ 本紙張尺度_適用中國國家標準(CNS)A4規格(210x297公f ) ----------------I----訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _______B7 _ 五、發明說明(>4 ) --------------裝--- (請先閱讀背面之注音W事項再填寫本頁) 0及響應補償電路2 5 0。因此,緊接著要說明的是密切 相關的感應器訊號F S1、FS1’或FS1” 。感應器 輸出一詞在此係用以描述經過線性化處理(例如前置線性 化電路2 6 0 )之前的感應器訊號。特定而言,除非另外 註明,否則感應器輸出係描述感應器所產生的訊號(例如 F S’),且該訊號已經過歸一化和補償處理一例如分別 藉由歸一化電路2 4 0及響應補償電路2 5 0加以處理, 但該訊號尙未經過線性化處理。同時應瞭解的是:圖2中 的歸一化和補償步驟之運用次序不需考慮;事實上,可以 丰目互調換。 線性化電路2 6 0係校正感應器輸出(例如F S 1” --線· )之非線性。舉例而言,線性化電路2 6 0可提供流量訊 號,此流量訊號在零流量時爲0 ;在全流量之2 5 %時爲 0 .2 5 ;在全流量之5 0 %時爲0.5,而在全流量時爲1 .〇。線性化電路2 6 0係提供流量訊號F S 2,而此訊號 争皮提供到如圖1所示之增益/引導/延遲控制器1 5 0之 輸Γ入端。在此,標示流量一詞係槪括描述流量計所提供已 糸翌過線性化處理的流量訊號(例如流量訊號F S 2 ) ° 雖然有許多方式可用來線性化感應器輸出一例如多項 式線性化、片段線性近似法等,但本發明之實施例係利用 木禁條(s p 1 i n e ) —特別是三次樣條一使此訊號線性 f匕。Si 1 v e rman B . W.所著之「對於非參數型 迴歸曲線配合之樣條平滑處理的若干觀點(S 〇 m e A s p e c t s of the Spline Sm〇〇 _______28_— _______ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 538327 A7 _____B7 _— ___ 五、發明說明(/1 ) t h i n g Approach t o Non — Par a metric regression Curve F i t t i n g )」對於三次樣條已有所討論;該著作出 版於皇家統計學會期刊,在此以引用方式倂入其完整內容 〇 根據本發明之上述樣態,吾人會針對測試液體或氣體 在若干不同(且已知)流率下測量來自感應器及感應電子 裝置2 3 0的實際輸出訊號F S 1,且會將測量到的流率 丰目對於已知流率繪製所有測量點。此測量到的流率相對於 已知流率的圖形係定義感應器及感應電子裝置2 3 0之轉 換函數,而後再使三次樣條擬合於感應器及感應電子裝置 2 30之轉換函數的反函數。感應器輸出之測量値隨後當 作三次樣條之輸入,以提供歸一化、經過補償及線性化的 標不流量訊號(例如F S 2 )。 如以下將會詳細說明者,線性化電路2 6 0可包含一 芽泉性化列表(未予以圖示),以期有助於感應器輸出之線 1生化。在本發明之另一實施例中,三次樣條被擬合於感應 器及感應電子裝置2 3 0本身之轉換函數’而不是擬合於 其反函數。 當感應器及感應電子裝置2 3 〇當中的非線性以及通 過感應器導管2 2 0之流量變化比率經過補償之後,既已 調整的流量訊號F S 2會被提供到增益/引導/延遲控制 器1 5 0,並可被提供到濾波器1 2 〇 (圖1 )以供顯示 。既已調整的流量訊號FS2即如圖3所示之「既已調整 _______29_____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公 -------------裝--------訂---------線 (請先閲讀背面之注意事項再填寫本頁) 538327538327 V. Description of the invention (In block 140 of Figure 1, the formation of the reciprocal gain term G is taken from the inverse of the system gain term ACD, and the inverse is provided as one of the inputs of the gain / guide / delay controller It should be understood that the above-mentioned reciprocal spillover term may be less than the reciprocal of all gain terms accompanied by various elements on the control loop of the mass flow controller. For example, the synthetic gain terms AC, AD, and CD may be formed To improve control and stability. However, in the preferred embodiment, the formation of the gain term G is such that the loop gain is kept constant (that is, the gain G is the inverse of the system gain term). Figure 2 illustrates the flow meter 1 1 〇 A more detailed schematic block diagram. A flow meter refers to any element that can sense the flow rate through a flow path or part of a flow path and provide a signal indicating the flow rate. The flow meter 1 1 0 in Figure 2 includes a bypass Tube 2 1 0;-sensor and inductive electronic device 2 3 0;-normalizing circuit 2 4 0 for receiving the sensor signal FS 1 from the sensor and the inductive electronic device 2 3 0;-response compensation circuit 2 5 0, Coupled to the normalization circuit 24 0; and a linearization circuit 26 0, which is coupled to the response compensation circuit 250. The mass flow controller shown in FIG. 1 and the output of the linearization circuit 26 0 It is the traffic signal FS 2. Although not shown in Figure 2, in some embodiments, we can use the analog-to-digital (A / D) converter to convert the sensor signal FS 1 into a digital signal; Therefore, all other processes of the mass flow controller 100 can be performed by a digital computer or a digital signal processor (DSP) plus [to execute. Although in the embodiment, all the processes performed by the mass flow controller Signal processing is performed digitally, but the present invention is not limited to this ________24 _ This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) --------- I-- --i I (Please read the notes on the back before filling this page) · -—line- 538327 A7 ___B7 _ V. Description of the invention (> this), I can also choose the analog processing technology. In Figure 2 In the sensor circuit 2 2 0, part of the collar flowing through the flow path is turned, Pass most of the remaining fluid through the bypass tube. The sensor and the sensing electronics 230 are coupled to the sensor tube, which measures the flow rate through the tube. The flow through the tube is proportional to the flow through the bypass tube. However, within the flow rate range preset for the operation of the mass flow controller, there may be a non-linear relationship between the flow rate in the duct and the flow rate in the bypass. In addition, the thermal sensor detects the duct by The temperature change in a certain interval leads to the flow rate of J. Therefore, in some embodiments, especially the embodiment applied to the thermal sensor, there may be temperature correlation-especially in the flow of the mass flow controller operation. Two extreme temperature ranges (referred to herein as zero flow and full flow, respectively). The normalizing circuit 24 0 receives the sensor signal F S 1 and corrects the potential temperature correlation at zero flow and full flow. In particular, 'when no fluid is flowing through the duct and / or the bypass (ie at zero flow)' the sensor may produce a non-zero sensor signal. Furthermore, this false flow indication may be temperature dependent. Similarly, the sensor signal F S 1 may experience temperature-related changes at full flow. We can measure the number of the sensor signal F S 1 at zero flow at several different temperatures, and then use the correction factor to correct the temperature-related changes in the signal F S 1 at zero flow based on the temperature of the sensor. The temperature-related change in the correction signal F S 1 at full flow can also be performed in a similar manner ′, which measures 値 based on the sensor signal at different temperatures and applies an appropriate correction factor based on the temperature. _______ ι ___ This paper size is applicable to China National Standard (CNS) A4 (210x 297 mm) ------------- Installation -------- Order -------- -Line (please read the notes on the back before filling this page) 538327 A7 _B7_ V. Description of the invention (AT) In addition, for the entire range of the mass flow controller to operate, you can measure the characteristic points in the range in a similar way Temperature dependence. Therefore, the calibration curves of the flow rate and temperature functions can be fitted to each other with the measured values obtained at zero flow, full flow, and any number of characteristic points in between. This calibration curve provides temperature correction for the flow rate range in which the mass flow controller is designed to operate. In addition, an understanding of the fluid used and the properties of known sensors as a function of temperature can provide or improve correction factors and / or correction curves for the normalization circuit 240. The normalization circuit 2 4 0 can also provide a fixed normalization gain to the signal FS 1, so that when the sensor tube is passed at full flow, a specific number of normalization signals FS 1 'can be obtained, and at zero At the time of flow, another specific number (for example, zero) can be obtained. For example, in a certain embodiment, when the normalization circuit 24 0 has no fluid passing through the sensor duct, the number 归 of the normalization signal FS1 ′ is 0.0, and when passing through the duct at full flow, the normalization circuit The number of the first chemical signal FS 1 'is 1.0. It should be understood that, at zero flow and full flow, any number can be selected for the normalized signal F S 1 ′; the numbers used here are for illustration only. It should be understood that the normalized signal FS1 ′ may have poor dynamic characteristics, so that when responding to a step change in the fluid, the signal FS1 ′ may cause a time delay and be smoother than the actual flow through the flow sensor. This is because the response time of the heat flow sensor is usually slow, because thermal changes take a long time to occur. Figure 3 illustrates the above characteristics, where time is plotted on the horizontal axis, that is, the X axis _____ ^ ------This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) --- I ---- · II I ---- Order-----— II (Please read the notes on the back before filling this page) 538327 A7 ____B7__ 5. Description of the invention (), 3 flow rate is plotted on the vertical One axis is the γ axis. As shown in Fig. 3, in response to a change in unit steps in the actual fluid passing through the thermal mass flow sensor, the signal F S 1 provided by the sensor user / ΐ will cause a time delay and be smoother. In order to correct the effect of the above-mentioned sensors and provide a better dynamic response for the change in flow, the normalized signal FS1 'is provided to the response compensation circuit 250. The operation of the response compensation circuit 250 is like a filter. This filter approximates the inverse function of the transfer function of the inductor and the inductive electronic device 230. The response compensation circuit 2 50 can be corrected or adjusted so that the adjustment signal FS 1 "provided by the response compensation circuit 2 50 has a predetermined rise time, a predetermined maximum of positive spikes and / or negative spikes, and a predetermined time frame. Make it tend to be stable, and / or adjust other desired characteristics under the specific operating conditions of the mass flow controller. As shown in Figure 3, the outline of the compensation signal FS 1 "is more closely reflected by the figure shown in the figure The profile of the sensor's flow ladder. The mass flow controller's flowmeter can be adjusted to provide this compensation signal during the mass flow controller's production process. In particular, we can use the sensor calibration procedure that will be explained in detail below to adjust the dynamic response. As explained briefly above, the ratio of the flow rate through the sensor tube to the flow rate through the bypass tube is related to the flow rate of the fluid. In addition, the non-linearity in the sensor and sensor electronics makes the relationship between the actual flow and the sensed flow signal provided by the sensor at different flow rates more complicated. This result may result in a curve representing the induced flow versus fluid flow that may not be a linear curve. It should be understood that ... many of these non-linearities will be passed to the normalization circuit 2 4 ______ -----—_ This paper size _ applies the Chinese National Standard (CNS) A4 specifications (210x297 male f) ---- ------------ I ---- Order --------- line (please read the notes on the back before filling this page) 538327 A7 _______B7 _ 5. Description of the invention ( > 4) -------------- install --- (please read the note W on the back before filling out this page) 0 and response compensation circuit 2 5 0. Therefore, the closely related sensor signal F S1, FS1 'or FS1 "is explained immediately below. The term sensor output is used here to describe the linearization process (such as the pre-linearization circuit 2 6 0). Sensor signal. In particular, unless otherwise noted, the sensor output describes the signal generated by the sensor (such as F S '), and the signal has been normalized and compensated-for example by normalization, respectively The processing circuit 2 40 and the response compensation circuit 2 50 process it, but the signal 尙 is not linearized. It should also be understood that the order of application of the normalization and compensation steps in Figure 2 need not be considered; in fact It can be interchanged with a variety of eyes. The linearization circuit 260 is used to correct the non-linearity of the sensor output (such as FS 1 "-line ·). For example, the linearization circuit 260 can provide a flow signal. This flow signal is 0 at zero flow; 0.25 at 25% of full flow; 0.5 at 50% of full flow. It is 1.0 at full flow. The linearization circuit 26 0 provides a flow signal F S 2, and this signal is provided to the input Γ of the gain / guide / delay controller 150 as shown in FIG. 1. Here, the term flow rate is used to describe the linearized flow signal provided by the flow meter (such as the flow signal FS 2) ° Although there are many ways to linearize the sensor output, such as polynomial linearization, Fragment linear approximation, etc., but the embodiment of the present invention uses a spline ine-especially a cubic spline one to make this signal linear. Si 1 ve rman B. W., "S omeme spects of the Spline Sm〇〇 _______ 28_— _______ This paper standard applies to Chinese papers. (CNS) A4 specification (210 x 297 mm) 538327 A7 _____B7 _ — ___ V. Description of the invention (/ 1) thing Approach to Non — Par a metric regression Curve F itting ”has been discussed for the three splines; the The work is published in the journal of the Royal Statistical Society, and the full content is incorporated herein by reference. According to the above aspect of the present invention, we will measure the test liquid or gas at several different (and known) flow rates from the sensor and The actual output signal FS 1 of the inductive electronic device 230 is to plot all measured points for the known flow rate. The graph of the measured flow rate relative to the known flow rate defines the transfer function of the sensor and the sensing electronic device 230, and then the cubic spline is fitted to the conversion function of the sensor and the sensing electronic device 2 30 Inverse function. The measurement of the sensor output is then used as the input of the three splines to provide a normalized, compensated and linearized standard flow signal (eg F S 2). As will be described in detail below, the linearization circuit 2 60 may include a bud-spring sexualization list (not shown) in order to help the biochemistry of line 1 of the sensor output. In another embodiment of the invention, the cubic spline is fitted to the transfer function 'of the sensor and the sensing electronic device 230 itself rather than to its inverse function. After the non-linearity in the sensor and the sensing electronic device 2 3 0 and the flow rate change rate through the sensor tube 2 2 0 are compensated, the adjusted flow signal FS 2 will be provided to the gain / guide / delay controller 1 50, and can be provided to the filter 12 (Figure 1) for display. The adjusted traffic signal FS2 is shown in Figure 3, "Already adjusted _______29_____ This paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 male ------------- Install -------- order --------- line (please read the precautions on the back before filling this page) 538327

五、發明說明( >》) 感應流(F S 2 )」。 如圖1所不,增益項A係伴隨於流量計1 1 〇。此增 益碩係代表經過流動路徑1 〇 3的流體與標示流量(即流 量訊號FS2)之間的關係。特定而言,增益項A係標示 流量變化與實際流量變化之間的比率。從以上對於流量計 1 1 0的說明當可瞭解,此關係(即流體流量相對於標示 的曲線)已成爲線性關係。因此,標示流量變化與實 際流量變化之間的比率(即流體流量相對於標示流量的曲 線之導數)即爲流率之常數函數。因此,增益項A對於某 特定流體物種而言係爲一常數。 由於增益項A爲常數,且由於標示流量已在全流量時 被定義爲一特定數値,因此可根據質量流控制器在生產過 程中所使用之流體所伴隨的全流量來決定特定流體之增益 項A °在標示流量已被調整的流量計範例中,增益項a即 爲全流量之倒數。 應瞭解的是:通過質量流控制器的全流量與流體物種 有關。因此,儘管增益項A爲在最低流率時的常數函數, 當以不同流體物種來操作質量流控制器時,此常數仍然會 己欠變。 然而,本案申請人已得知流量計所伴隨的增益(例如 增益項A )如何隨著流體物種而改變。如上所述,流量計 之:增益可直接經由計算全流量範圍而得。因此,定出任一 流體之全流量範圍,即可直接決定流量計之增益。如以下 將會詳細說明者,本案申請人已開發出一種根據任一流體 _______30__ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝 ιδ]·- 線. 538327 A7 _______B7 ___ 五、發明說明(>f ) 和伴隨該測試流體之全流量的物種資訊來決定任一流體之 全疏量等級的方法。因此,藉由儲存伴隨某測試流體之全 流量,即可爲任一流體決定流量計所伴隨的增益項。在此 ,全流量等級一詞係描述以任一流體操作質量流控制器時 所袂定的全流量數値。 圖4係圖示增益/引導/延遲控制器1 5 0之實施例 的細節。雖然控制器1 5 0在此係描述爲增益/引導/延 遲控制器,但應瞭解的是:本發明並不限定於此種控制器 。舉例而言,本發明之各式不同樣態可與別種反饋控制器 倂用,例如:比例積分微分(P I D )控制器、積分(P I )控制器、積分微分(I D )控制器等。應瞭解的是: 圖4所示各種不同數學等效於增益/引導/延遲控制器1 5 ◦的控制器均可替代使用,因本發明不限定於圖中所示 具特定結構的控制器。 增益/引導/延遲控制器1 5 0接收三種輸入訊號: 流量訊號F S 2 (亦稱作標示流量);設定點訊號S I 2 ;以及互逆增益項G。如上所述,設定點訊號S I 2可首 先傳遞到上升率限制器或濾波器1 3 0,藉以避免在被提 供到增益/引導/延遲控制器時,設定點訊號產生瞬時變 化。 如上所述,增益項G 1 4 0係一互逆增益項,其形 成係取自質量流控制器之控制迴路上各種元件所伴隨增益 項之乘積的倒數(即系統增益項之倒數);在此詳細說明 女口下。增益G可應用於沿者控制迴路上的任何一處,且不 31 中國國家標準(CNS)A4規格(210 X 297公釐) ---I----— II--------I I 訂 *111 I 111· *5^ (請先閱讀背面之注意事項再填寫本頁) 538327 B7 五、發明說明(和) 限定於應用在質量流控制器之控制器輸入端。然而,互逆 增益項G可方便地應用於如圖丄及圖4所示增益/引導/ 延遲控制器1 5 0之輸入端。 根據本發明之一實施例,增益項G可由伴隨於質量流 控制器的微處理器或數位訊號處理器加以決定。如以下之 說明’此種處理器可整合於質量流控制器或置於外部。 如圖4所示,流量訊號F S 2被提供到微分或D -項 電路4 1 〇。由於電路4 1 0並非等同於一微分器,因而 在此稱爲「D -項」電路。更確切而言,在D -項電路4 1 0中,流量訊號F S 2被微分並乘以一常數,而後再與 調整過的流量訊號F S 2相加。應瞭解的是:本發明不限 定於在此描述D -項電路4 1 0的特定實施例,亦可使用 另[]種微分器電路。在功能上,D -項電路4 1 0係提供經 過更改的流量訊號F S 3,此訊號相對於既已調整訊號F S 2已被「加速」,因而構成增益/引導/延遲控制器1 5 0內的「引導」。D-項電路4 1 0亦可提供阻尼。熟 習此項技術之人士當可得知,D-項電路4 1 0可功能性 地提供經過更改的流量訊號F S 3,此流量訊號係標示流 量訊號如何改變以及如何快速改變。 隨後可將經過更改的流量訊號F S 3連同設定點訊號 提供到減法電路4 2 0,此電路取得經過更改的流量訊號 F S 3及設定點訊號S I 2,並根據其差値而產生誤差訊 號E。誤差訊號E隨後乘以增益項G (即增益/引導/延 遲控制器中的「增益」一詞),並被提供到比例增益項4 _— _32__ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 Λ7 ___ΚΙ _______ 五、發明說明(Μ) ----I--— II------- (請先閱讀背面之注意事項再填寫本頁) 4 0和積分增益項4 5 0。比例增益項係以一固定常數ΚΡ 乘上訊號E G,ifi丨後再將輸出訊號E GKP提供到加法電路 4 7 0。比例增益項4 4 0係用以功能性地提供驅動訊號 之分量,以便根據訊號E G將控制閥門移動某定量距離, 藉以讓控制閥門在誤差訊號E改變時能夠迅速停止。 比例增益項4 4 0亦提供阻尼,其有助於防止驅動訊 號D S及所形成流體內產生阻尼振盪。例如,當誤差訊號 E減少且來自積分器4 6 0的輸出訊號增加時,誤差訊號 E乘以ΚΡ之數値增加;由於常數ΚΡ較佳地小於1單位, 因而降低所出現的正尖峰量。 積分增益項4 5 0以另一固定常數K i乘上訊號E G ,而後再將輸出訊號E GKi提供到積分器4 6 0之輸入端 。積分器4 6 0針對訊號E G K i加以積分,並將積分輸出 提供到加法電路4 7 0之第二輸入端。在功能上,積分器 4 6 0之輸出係提供隨著時間標示誤差訊號E之訊號,且 代表誤差訊號在過去時間內如何改變(即增益/引導/延 遲控制器中的「延遲」一詞)。給定一誤差訊號E,積分 器4 6 0於特定斜率開始;當標示流量(例如f S 2 )增 加時(假設已輸入新且較高的設定點),誤差訊號將會降 低’使得積分器4 6 0停止積分(即減緩其改變速度), 且由積分器4 6 0輸出的驅動訊號分量停止增加。應瞭解 的是:雖然圖4圖示積分增益項4 5 0之輸出被提供到積 分器4 6 0之輸入端,但可反向配置此等電路,使得積分 器4 6 0之輸出被提供到比例增益項4 5 0之輸入端。積 -—_33___^^ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 Λ7 ...............................—__ /, H 叫:兑明(;)>,) Κ (; Κ !;ίΜΑ與加法電路4 7 〇中的比例增益項 1’: h丨\ I广輸UI丨丨II,Ifn▲相加後的輸出訊號c> s被提供做爲 災1Γ h々㈣;’丨〉;1㈠ϋ之驅動訊號。 如_^所示,加法電路之輸出被提供到閥門致動器1 Π (),該閥門致動器槪括包含耦合於電子機械致動器5 2 U的閥門驅動電子電路5 1 〇。任何適當的閥門驅動電子 電路5 1 0可用以接收驅動訊號d S,並將驅動訊號d S 轉換成能使閥門1 7 0移動到所欲位置以提供所欲流率的 電壓、電流或其它訊號。此外,閥門驅動電子電路5 1 〇 可包含任何合適且習知的閥門驅動致動電路,以驅動螺線 管致動控制閥門、壓電式致動控制閥門等。根據本發明利 用螺線管致動控制閥門之實施例,閥門驅動電子電路5 1 0包含可降低螺線管致動控制閥門內之磁滯影響的電路系 統;以下將會進一步說明。 圖6係圖示對於圖4所描述之若干訊號,其中橫軸一 即X軸一係代表時間,縱軸一即Υ軸一係代表偵測到的訊 號強度。如圖6 Α所示,在時間Τ 〇時,在訊號S I 2內設 定點出現階梯變化(變化到強度F。)。此時,由於誤差訊 號E等於既已調整流量訊號FS2(其仍處於先前狀態) 與此時數値爲F〇的訊號S I 2內設定點數値之間的差値’ 因而誤差訊號E會上升到強度F。。誤差訊號乘上增益項G (即訊號E G)因此躍升到較高的數値,而後再隨時間下 降,其過程即如圖6 B所示。如圖6 C所示,由於比例增 益項4 4 0之輸出係爲訊號E G乘以常數Kp (其小於1 ) _ 34____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱〉 ----------------------1 訂·--------線 (請先閱讀背面之注意事項再填寫本頁)5. Description of the invention (>) Inductive flow (F S 2) ". As shown in Fig. 1, the gain term A is accompanied by the flow meter 1 1 0. This gain represents the relationship between the fluid passing through the flow path 103 and the indicated flow rate (ie, the flow signal FS2). Specifically, the gain term A indicates the ratio between the change in flow and the change in actual flow. As can be understood from the above description of the flow meter 110, this relationship (that is, the flow rate of the fluid relative to the marked curve) has become a linear relationship. Therefore, the ratio between the change in the marked flow rate and the change in the actual flow rate (that is, the derivative of the curve of the fluid flow rate with respect to the marked flow rate) is a constant function of the flow rate. Therefore, the gain term A is constant for a particular fluid species. Because the gain term A is constant, and because the indicated flow rate has been defined as a specific number at full flow rate, the gain of a specific fluid can be determined according to the full flow rate accompanying the fluid used by the mass flow controller in the production process. Term A ° In the example of a flowmeter indicating that the flow rate has been adjusted, the gain term a is the inverse of the full flow rate. It should be understood that full flow through the mass flow controller is related to fluid species. Therefore, although the gain term A is a constant function at the lowest flow rate, when the mass flow controller is operated with different fluid species, this constant will still be under-changed. However, the applicant of this case has learned how the gain (eg, gain term A) accompanying the flowmeter varies with the fluid species. As mentioned above, the gain of the flow meter can be obtained directly by calculating the full flow range. Therefore, by determining the full flow range of any fluid, the gain of the flowmeter can be directly determined. As will be explained in detail below, the applicant of this case has developed a paper according to any fluid _______30__ This paper size applies Chinese National Standard (CNS) A4 specifications (210 x 297 mm) (Please read the precautions on the back before filling (This page) Install ιδ] ·-line. 538327 A7 _______B7 ___ V. Description of the invention (&f; f) and the species information that accompanies the full flow of the test fluid to determine the total sparseness level of any fluid Therefore, by storing the full flow rate that accompanies a test fluid, the gain term associated with the flow meter can be determined for any fluid. Here, the term full flow rate is used to describe the total flow rate determined when operating a mass flow controller with any fluid. Fig. 4 illustrates details of an embodiment of the gain / guide / delay controller 150. Although the controller 150 is described herein as a gain / guide / delay controller, it should be understood that the present invention is not limited to such a controller. For example, the different forms of the present invention can be used with other feedback controllers, such as: proportional integral derivative (PI D) controller, integral (PI) controller, integral differential (ID) controller, and so on. It should be understood that: various controllers shown in FIG. 4 which are equivalent to the gain / guide / delay controller 15 5 may be used instead, because the present invention is not limited to the controller with a specific structure shown in the figure. The gain / guide / delay controller 150 receives three input signals: a flow signal F S 2 (also known as a labeled flow); a set point signal S I 2; and a reciprocal gain term G. As described above, the setpoint signal S I 2 can be first passed to a rise rate limiter or filter 130 to avoid transient changes in the setpoint signal when supplied to the gain / guide / delay controller. As mentioned above, the gain term G 1 40 is a reciprocal gain term, which is formed by taking the inverse of the product of the gain terms accompanying various elements on the control loop of the mass flow controller (that is, the inverse of the system gain term); This details the female mouth. The gain G can be applied anywhere along the control loop of the follower, and does not comply with the 31 China National Standard (CNS) A4 specification (210 X 297 mm) --- I ------ II ------- -II Order * 111 I 111 · * 5 ^ (Please read the notes on the back before filling out this page) 538327 B7 V. Description of the invention (and) It is limited to the input of the controller of the mass flow controller. However, the reciprocal gain term G can be conveniently applied to the input of the gain / guide / delay controller 150 as shown in Figs. According to an embodiment of the present invention, the gain term G may be determined by a microprocessor or a digital signal processor accompanying the mass flow controller. As explained below, this processor can be integrated into the mass flow controller or externally. As shown in Fig. 4, the flow signal F S 2 is supplied to a differential or D-term circuit 4 1 0. Since the circuit 4 10 is not equivalent to a differentiator, it is referred to herein as a "D-term" circuit. More precisely, in the D-term circuit 4 10, the flow signal F S 2 is differentiated and multiplied by a constant, and then added to the adjusted flow signal F S 2. It should be understood that the present invention is not limited to the specific embodiment of the D-term circuit 410 described herein, and another [] differentiator circuit may be used. Functionally, the D-term circuit 4 1 0 provides a modified flow signal FS 3, which is “accelerated” relative to the adjusted signal FS 2 and thus constitutes a gain / guide / delay controller within 150 "Guide". The D-term circuit 4 1 0 can also provide damping. Those skilled in the art will know that the D-term circuit 4 1 0 can provide a functionally changed flow signal F S 3, which indicates how the flow signal changes and how to change it quickly. The modified flow signal F S 3 and the setpoint signal can then be provided to a subtraction circuit 4 2 0. This circuit obtains the modified flow signal F S 3 and the setpoint signal S I 2 and generates an error signal E according to its rate. The error signal E is then multiplied by the gain term G (ie, the term "gain" in the gain / guide / delay controller), and is provided to the proportional gain term 4 _— _32__ This paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) --------------------- Order --------- line (Please read the notes on the back before filling in this (Page) 538327 Λ7 ___ ΚΙ _______ 5. Description of the invention (Μ) ---- I ------ II ------- (Please read the notes on the back before filling this page) 4 0 and integral gain term 4 5 0. The proportional gain term is multiplied by the signal E G by a fixed constant Kp, and then the output signal E GKP is provided to the addition circuit 4 7 0 after ifi. The proportional gain term 4 4 0 is used to functionally provide the component of the driving signal in order to move the control valve by a certain distance according to the signal E G, so that the control valve can stop quickly when the error signal E changes. The proportional gain term 4 4 0 also provides damping, which helps prevent damped oscillations in the drive signal DS and the fluid formed. For example, when the error signal E decreases and the output signal from the integrator 460 increases, the number of times the error signal E multiplied by Kp increases; since the constant Kp is preferably less than 1 unit, the amount of positive spikes occurring is reduced. The integral gain term 4 50 is multiplied by the signal E G by another fixed constant K i, and then the output signal E GKi is provided to the input of the integrator 4 6 0. The integrator 460 integrates the signal E G K i and provides the integrated output to the second input terminal of the adding circuit 470. Functionally, the output of the integrator 460 provides a signal that indicates the error signal E over time, and represents how the error signal has changed over time (ie, the term "delay" in the gain / guide / delay controller) . Given an error signal E, the integrator 4 60 starts at a specific slope; when the indicated flow (eg f S 2) increases (assuming a new and higher set point has been entered), the error signal will decrease 'making the integrator 460 stops integration (that is, slows down its rate of change), and the driving signal component output by the integrator 460 stops increasing. It should be understood that although FIG. 4 illustrates that the output of the integral gain term 4 50 is provided to the input of the integrator 4 6 0, these circuits can be configured in reverse so that the output of the integrator 4 6 0 is provided to Input for proportional gain term 4 50. Product ---_ 33 ___ ^^ This paper size is applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) 538327 Λ7 ............... ........—__ /, H is called: Duming (;) >,) κ (; κ!; ΊΜΑ and the proportional gain term in the addition circuit 4 7 〇: h 丨 \ 广Input UI 丨 丨 II, Ifn ▲, the output signal c > s is provided as the driving signal of disaster 1Γ h々㈣; '丨〉; 1㈠ϋ. As shown by _ ^, the output of the addition circuit is provided to the valve Actuator 1 Π (), which includes a valve drive electronics circuit 5 1 0 coupled to an electromechanical actuator 5 2 U. Any suitable valve drive electronics circuit 5 1 0 may be used to receive a drive signal d S, and convert the driving signal d S into a voltage, current or other signal that can move the valve 170 to a desired position to provide a desired flow rate. In addition, the valve driving electronic circuit 5 1 〇 may include any suitable and A conventional valve drive actuation circuit is used to drive a solenoid actuated control valve, a piezoelectric actuated control valve, etc. According to an embodiment of the present invention using a solenoid actuated control valve, the valve drives The moving electronic circuit 5 10 includes a circuit system that can reduce the effect of hysteresis in the solenoid-actuated control valve; it will be further explained below. Fig. 6 is a diagram illustrating a number of signals described in Fig. 4, where the horizontal axis is The X axis represents time, and the vertical axis represents the detected signal strength. As shown in FIG. 6A, at time TO, there is a step change in the set point within the signal SI 2 (change to intensity F.). At this time, because the error signal E is equal to the difference between the adjusted flow signal FS2 (which is still in the previous state) and the set point number 値 in the signal SI 2 whose number is F0 at this time, the error The signal E will rise to the intensity F. The error signal multiplied by the gain term G (ie the signal EG) therefore jumps to a higher number and then decreases over time. The process is shown in Figure 6B. Figure 6C As shown, the output of the proportional gain term 4 4 0 is the signal EG multiplied by the constant Kp (which is less than 1) _ 34____ This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love> ---- ---- ------------------ 1 Ordering -------- Line (Please read the notes on the back before filling (Write this page)

538327 B7 五、發明說明U)) ,因此訊號EGKP具有類似型態一雖然振幅稍有降低。如 圖6 D所示,在時間T ◦時,積分輸出訊號E G K i爲零, 但由於誤差訊號E之緣故而開始迅速向上爬升。加法電路 4 7 0之輸出一其代表輸出訊號EGKP與積分輸出訊號E G Ki之總和一被標示爲D S且圖示於圖6 E。依據被提供 妾α閥門驅動及閥門驅動電子裝置1 6 0的驅動訊號D S, 控制閥門1 7 0開啓增加量,且標示流量訊號(例如流量 訊號F S 2 )開始增加到S I 2中的新設定點等級。隨著 時間前進,誤差訊號Ε降低、比例增益項4 4 0之輸出訊 號降低,且積分輸出訊號E G ΚΡ亦降低,而流率則建立在 新的設定點程度上。 以理想情況而言,吾人希望在實際流體中得到階梯響 應,以回應應用於質量流控制器之設定點內的階層輸入。 雖然實際上不可能發生上述情況,但本發明之實施例可用 於提供一致的響應以回應設定點內的階層輸入,而不論階 層輸入係代表相對於全流量之2 %階層或1 0 0 %階層, 且與所使用的流體及入口或出口壓力等無關。爲獲得此一 致性’本發明之實施例提供一種具有固定迴路增益的質量 流:控制器。 由上述說明應可得知,雖然沿質量流控制器之控制迴 路上元件所伴隨的各個不同增益會隨著不同變數之函數而 改變’且與各式不同操作條件有關,但藉由提供具有固定 迴路增益的質量流控制器之控制迴路,仍能在一組操作條 件下獲得穩定且一致的質量流控制器運作。 - -—- _35_ 一 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) -I--— — — — — —------- (請先閱讀背面之注意事項再填寫本頁) )SJ_ -線· A7 538327 _B7_____ 五、發明說明(>v) 應瞭解的是:吾人可利用微處理器來實施質量流控制 器之各式控制樣態。舉例而言,增益/引導/延遲控制器 1 5 0可利用微處理器、數位訊號處理器等予以實施。同 樣地,微處理器可決定各種不同的參數,例如互逆增益項 (如增益項G )。吾人可利用習知技術而在軟體、韌體或 硬體中實施質量流控制器之各式控制樣態。 Β.Π量流控制器設定 應瞭解的足:在許多情況下,爲了使質量流控制器能 夠在穩定狀態中一致地運作,質量流控制器必須加以調整 及/或校準。手動調整及/或校準經常是一種耗費時間、 需要大量人力且昴貴的過程。此外,當某處理過程要求質 量流控制器必須被設定,以便與不同於生產過程中所使用 的流體物種及/或操作條件進行操作時,質量流控制器之 性能很少會呈現生產過程中所觀察到的相同特性,即使質 量流拯制器在若干製程流體上已經過調整及校準。換言之 ,當以不同於在調整及/或校準質量流控制器時所使用的 流體物種及/或操作條件進行操作時,質量流控制器可能 會有不同的響應。 根據本發明之一樣態,其提供一種設定質量流控制器 之方法,該方法允許以製程流體及/或處理操作條件所得 到的質量流響應,實質上等同於以測試流體及測試操作條 件來調整及/或校準質量流控制器所得到的響應。 在本發明之一實施例中,設定資料係從利用單一測試 _ 一 - _ 36____ 本紙張尺錢巾@ 0雜準(CNS)A4規格(210 X 297公f ) " " ----------------- (請先閱讀背面之注意事項再填寫本頁) · 線- 538327 A7 B7 ---- --- 五、發月說明(>?<) 流儀及一組操作條件來調整及/或校準質量流控制器的過 程中取得。此設定資料可用於設定質量流控制器,使其能 夠輿任一種製程流體及/或操作條件共同運作,並藉此緩 和因爲使用不同於生產過程中所使用的流體及/或操作條 件而造成的性能變差問題,同時免除在多種替代流體上爲 質量流控制器進行昂貴且耗時的調整及/或校準。 提供能夠與任何一種流體及操作條件共同運作並呈現 令Λ滿意之響應的質量流控制器經常包含若干步驟,其中 包括質量流控制器之啓始生產以及質量流控制器之後續設 定。圖7 a係根據本發明之實施例圖示生產及設定之步驟 〇 當生產一詞應用於質量流控制器時,在此係槪括描述 在準備質量流控制器以用於在特定流體物種及操作條件組 下運作的過程所涉及的各項工作。生產過程可包括:由各 霍不同元件建構質量流控制器;在測試操作條件下,在測 試流體上ί架作質量流控制器;以及調整及/或校準各種不 同元件及/或質量流控制器之控制參數,以使質量流控制 器在運用測試流體及測試操作條件時能夠呈現令人滿意的 待質及性能(即令人滿意的響應)。 質量流控制器之生產通常係以手動方式進行。在此所 f吏用的手=或手動方式係槪括指稱需要大量操作人員涉入 的處序及/或步驟,而且在許多場合中需要技術嫌 熟的=作人員,同時經常需要大量時間及人力。 田運用聆質量流控制器時,設定或進行設定一詞在此 + s S ^i^NS)A4 ϋΤ210 X 2973lt )-- --------------裝--- (請先閱讀背面之注意事項再填寫本頁) · --線- A7 538327 ___B7_____ 五、發明說明() 係槪括描述在任何一種操作條件下’使質量流控制器適於 以任何一種流體進行操作所涉及的各個步驟。特定而言, 設定係描述使質量流控制器適於以不同於在生產質量流控 芾α器過程中所用流體之流體(在此分別稱爲「製程流體」 及「測試流體」)進行操作所涉及的步驟’且所處條件可 以不同於在質量流控制器之生產過程中所用的操作條件( 在此分別稱爲「製程操作條件」及「測試操作條件」), 以使質量流控制器之響應實質上等同於生產過程中所觀察 致j的響應。應瞭解的是:質量流控制器之設定可在生產完 成之後的任彳可時間及地點執行’其中包括製造場所(例如 爲特定的已知應用設定質量流控制器)或工場(例如位於 直接使用者的操作場所)’但不以上述爲限。 一般而言,令人滿意的響應係指質量流控制器在特定 質量流控制處理或工作中之一組給定容限內的響應。特定 而言,吾人希望質量流控制器之動態及靜態響應均在預期 操作的容限範圍內。 在任何一組容限內,質量流控制器可在生產過程中加 以調整及/或校準,以獲得令人滿意的響應。因此,除非 另外註明,否則質量流控制器在測試流體及一組測試操作 條件下經過調整及/或校準之後,應該被視爲在該測試流 體及操作條件下具有令人滿意的響應。然而,當質量流控 帘υ器以不同的流體及/或操作條件予以運作時,質量流控 帝υ器之響應可能會發生實質上的改變,因而該響應不再令 人滿意。 ___________38__ 度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---I-----------------訂·----I — I _ (請先閱讀背面之注意事項再填寫本頁) A7 538327 _B7______ 五、發明說明u') 一般而言,質量流控制器當兩種響應均令人滿意時( 即兩種響應均在質量流控制器所預期要操作的容限範圍內 進行操作),質量流控制器將被視爲在測試流體及測試操 作條件下以及在製程流體及/或製程操作條件下具有相同 的響應。 如圖7 a所示,在生產7 1 0之過程中,質量流控制 器係在一組測試操作條件下以測試流體加以操作。質量流 控制器之操作特徵被取得並儲存爲設定資料7 1 2。設定 資料712可在生產710之各種調整及/或校準步驟當 中取得;以下將會參照圖7 b — 7 f進一步說明。 調整一詞係描述爲流量提供令人滿意的動態響應及性 質,以及在流量變化及/或所欲流體之變化(即設定點之 改變)提供令人滿意的動態響應及性質所涉及到的步驟。 校準一詞係槪括指稱爲質量流控制器提供令人滿意的穩定 態或靜態響應所涉及到的步驟。 設定資料一詞係槪括指稱在調整及/或校準質量流控 制器之過程中所取得的資料。特定而言,設定資料係描述 以測試流體及測試操作條件來操作質量流控制器的過程中 所取得的特徵及/或測量値。在質量流控制器之生產過程 中所取得的設定資料隨後可在製程流體及/或製程操作條 件下用於設定質量流控制器。 如以上已簡要說明者,測試流體及測試操作條件等用 語係用於描述在質量流控制器之生產過程中所使用到的流 體及操作條件。製程流體及製程操作條件等用語係描述在 _______39___ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----— II--I----· I — (請先閱讀背面之注意事項再填寫本頁) · 線· 538327 A7 ___B7____ 五、發-明說明(3¾) --------------裝—— (請先閱讀背面之注意事項再填寫本頁) 典型情況下’質量流控制器之特定應用的直接使用者所欲 採用的流體及操作條件。 --線- 應瞭解的是:相同類型的流體及操作條件均可用於測 試及製程兩種目的。然而,由於質量流控制器無法針對每 一種流體及/或在所有操作條件下加以調整,因此本發明 之某些樣態渉及一種質量流控制器;在生產過程中,該質 量流控制器係在一組特定操作條件下,在特定的測試流體 上進行調整及/或校準,以使質量流控制器被設定於往後 會皀與不同的流體及/或操作條件共同運作。因此,應瞭解 的是:「製程流體」一詞並非用於描述不同種類的流體, 其乃是說明該流體可以不同於在調整及/或校準質量流控 芾α器時所使用的流體。同樣地,「製程操作條件」係描述 一組可以不同於在調整及/或校準質量流控制器時所使用 的測試操作條件。一組製程操作條件之一、某些或所有均 可不同於測試操作條件。 在設定步驟7 2 0中,生產過程中所取得的設定資料 7 12可用於促進質量流控制器在製程流體及//或製程操 作條件之設定。根據一實施例,設定資料7 1 2在設定7 2 0當中被使用,以決定質量流控制器所伴隨的控制參數 ;該等控制參數讓質量流控制器能夠與製程流體及或製程 操作條件共同運作。特定而言,在生產步驟7 1 〇中所取 得的設定資料7 1 2係用於決定控制參數,而此等控制參 數有助於質量流控制器以製程流體及製程操作條件予以設 定’使得質量流控制器能構呈現令人滿意的響應(亦即, ---------40__ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 538327 A7 ____ _B7_ 五、發明說明(V/ ) 質量流控制器被設定成使用製程流體及/或製程操作條件 時具有實質上與使用測試流體及/或測試操作條件之生產 過程中所觀察到的相同響應)。 控制參數一詞在此係槪括指稱質量流控制器所伴隨的 參數’此等參數有助於質量流控制器之運作。控制參數可 包括:濾波器係數、增益項、控制器常數、線性化曲線等 ’伹不以上述爲限。特定而言,控制參數係指當質量流控 芾[J器爲能與任何一種製程流體及/或製程操作條件共同運 作而被設定時(亦即爲呈現令人滿意的響應而被設定)需 要改變、更動或增加的參數。 在此所用的「爲操作而被設定」詞組係特意描述一種 設定質量流控制器之方式;當質量流控制器被操作時,質 量流控制器會呈現令人滿意的響應(即若質量流控制器不 具有令人滿意的響應,則該質量流控制器一般不會被視爲 可運作者)。 應瞭解的是:一般而言,生產7丄〇只需以單獨一種 湏[J試流體及一組測試操作條件執行—次。然而,可在質量 流控制器之使用壽命期間重複執行任何次數的設定7 2 〇 。特定而言,每當想要以不同的製程流體及/或操作條件 來操作質量流控制器時,吾人均想要以新的製程流體及/ 或製程操作條件來重執行設定7 2 〇,以使質量流控制器 在使用新的製程流體及/或製程操作條件時,能夠展現令 人滿意的響應。 圖7 b係根據本發明之一實施例圖示在質量流控制器 ________:---- 41 _ 本紙張尺度·通用中國國家標準(CNS)A4規格(21^297公楚)" ' - --------訂--------- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _ B7____ 五、發明說明(/v〇) 之生產及設定(即圖7 a中的步驟7 1 〇和7 2 0 )過程 中戶斤執行的各個詳細步驟之方塊圖。生產7 1 0可包含一 感應器調整步驟1 0、一閥門設定步驟2 0、一反饋控制 器調整步驟3 0,以及一校正步驟4 0。應瞭解的是:生 產7 1 0可包含其它未圖示於生產7 1 〇中的步驟;例如 ,涉及到建構質量流控制器之習知步驟一如旁通管匹配步 驟等。 在感應器調整步驟1 0中,質量流控制器之流量計被 調整使其呈現令人滿意的動態響應。特定而言,流量計之 各種元件被調整,使感應器之輸出(如F S”)可令人滿 意地回應通過該流量計之流體變化。舉例而言,如以上關 於圖2所描述之內容,感應器調整步驟可包含提供歸一化 及響應補償濾波器係數、校正曲線及/或增益,使得流量 計以具有非常類似於流動路徑內的流量階梯變化的響應來 回應流體階梯。在調整步驟1 0中所取得的資訊一例如等 ,可被儲存爲設定資料7 1 2。 在閥門設定步驟2 0中,質量流控制器被設定使其以 一致且穩定的方式運作,以回應於各式不同操作條件及/ 或特徵之改變。根據一實施例,質量流控制器控制迴路之 系統增益項可被決定,且該系統增益項之倒數可被決定並 應用於控制迴路,以提供固定的迴路增益。此外,在決定 系統增益項過程中所得到的測量値可被儲存爲設定資料, 而後再於設定時使用;以下將參照圖7 c予以進一步說明 〇 __42_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) II--— — — — — — — — — - I I I I--—訂---— — — — — — (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ^______B7_ 五、务明說明Uv) 在迴路控制器調整步驟3 0中,迴路控制器所附帶的 控制及控制電子裝置可被調整,使得質量流控制器對設定 黑占之改變呈現令人滿意的響應。根據一實施例,以上參照 圖4所討論的P I D參數可加以設定,使得增益/引導/ 迤遲控制器能展現所欲得到的動態特徵一例如穩定時間、 最大正尖峰値及負尖峰値等。 在校正歩驟4 0中,質量流控制器經過校正,使其呈 現呤人滿意的穩定態響應。根據一實施例,質量流控制器 被調整以提供通過質量流控制器之實際流量與流量計所標 示:的流量(即訊號F S 2,亦稱爲標示流量)之間的線性 關係,其涵蓋質量流控制器所欲運作的流率範圍。 如圖7 b所示,質量流控制器之設定(如步驟7 2 0 )可包括系統增益分解步驟50以及系統設定步驟60。 在統增益分解步驟5 0中,系統增益項被取得,而後至少 咅[3分根據在質量流控制器之生產7 1 0過程中所獲得的設 定資料,將該系統增益項分解成其組成增益項。 在系統設定步驟6 0中,質量流控制器藉以被設定的 製程流體及/或操作條件之參數被決定,以使當質量流控 制J器與製程流體及/或操作條件共同運作時,其能展現令 人滿意的一致響應。在一實施例中,由系統增益項分解而 來的某些或所有單獨增益項,可根據製程流體物種資訊及 /或製程操作條件加以更改。互逆增益項可取自各個增益 項之乘積的倒數,並應用於質量流控制器之控制迴路’以 提供固定的迴路增益。 __—-_— 43_____— 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---— 1--— II---·!!ί1 訂--------- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _____B7__ 五、會明說明(4>0 現在將參照圖7 c〜7 f進一步說明生產步驟及設定 歩騾之範例。 圖7 c和7 d係圖示質量流控制器於生產時的調整及 X或校準過程中用於取得設定資料的程序範例。 圖7 e和7 f係圖τρ;另一用於設定質量流控制器之程 序箣例,質量流控制器係被設定在不同於該質量流控制器 被調整及/或校準所用製程流體及/或製程操作條件下加 以操作。 圖7 e和7 f所示生產及設定程序可應用於類似圖1 所1示之質量流控制器。然而,應瞭解的是:此等本發明之 樣態並非僅限定於此,其可應用於具備各式不同元件及操 作特性的質量流控制器。 在圖7 c - 7 f中,在標題「設定資料」下方圖示有 質量流控制器於生產過程中被儲存爲設定資料的資料範例 ,且位於圖號7 1 2的方塊內。應瞭解的是:圖中所示資 料並非限定於此種資料,且不應被視爲必要條件。質量流 控制益之各種貫施方式可具有不同的設定資料組,其有助 於設定質量流控制器,以便能與製程流體及/或製程操作 il条件共同運作。 圖7 c係根據本發明之一實施例進一步圖示感應器調 整步驟1 0及閥門設定步驟2 0之細節。在感應器調整步 驟1 〇中,質量流控制器之流量計被調整使其呈現令人滿 意的動態響應,例如回應於流體階梯。流體階梯係指一種 具有階梯函數型流量變化的流量,其中包括流量中的正向 _______— 44__________ 本紙張尺度喊用中國國家標準(CNS)A4規格(210 X 297公釐) ---I--I I I I---· I I I I I I I 訂----— — — — — *5^ (請先閱讀背面之注意事項再填寫本頁) 538327 A7 B7 一 五、發明說明) 階梯及負向階梯。 在步驟1 2中,流體階梯被供應到流量計。流量計包 含實施質量流控制器所用之任何各式元件’其可感應流量 並提供標示該流量的流量訊號。流量計隨後在步驟1 4中 力口以調整,使其於回應流體階梯時可提供階梯形流量訊號 。此種階梯形流量訊號之所欲特徵可包括上升時間、穩定 時間、最大正尖峰値及負尖峰値等。舉例而言,返回參照 圖1及圖2所示質量流控制器,調整流量計之步驟可包括 調整感應器及感應器電子裝置2 3 0、歸一化電路2 4 0 以及響應補償電路2 5 0。例如,響應補償電路2 5 0之 t慮波器係數可加以調整,使其重新塑造如圖3所示之訊號 。應瞭解的是··一般而言,質量流控制器之各種實施方式 可具有能加以調整的不同參數組。然而,感應器調整步驟 1 0之用意係確保流量計能呈現令人滿意的動態特性。如 圖7 c所示,在全流量時通過感應器導管而提供感應&輸 出1.0所伴隨的歸一化增益可被記錄爲設定資料° 在閥門設定步驟2 0中,在已知入口及出口壓力下’ 湏[J試流體在選自一組設定點之不同設定點下被供應到質量 流控制器。最後得到的驅動程度會在各個設定點上加以記 多彔。驅動程度一詞係描述提供到閥門致動器的驅動訊號之 數値。舉例而言,驅動程度可爲電流或電位勢之測量値。 馬區動程度亦可爲數位控制訊號之數値,而致動器可將其轉 換成電子訊號,並藉以控制閥門之位移。圖1中的訊號D S係驅動訊號之範例,該驅動訊號之數値即爲驅動程度。 _______45______ 本紙張尺度漣用中國國家標準(CNS)A4規格(210 x 297公釐) ---------------- (請先閱讀背面之注意事項再填寫本頁) · 538327 A7 ___B7______ 五、發明說明(Μ) 在一實施例中,未經調整但已知會收斂的增益/引導 /延遲控制器可在此步驟當中使用。因此,在選定設定點 集合內的各個設定點均會收斂於感應器之輸出。在某些實 施例中,在此步驟被儲存的感應器輸出及驅動程度資訊係 用於計算質量流控制器之合成增益項。舉例而言,在圖7 c所示閥門設定步驟2 0中,對應於閥門致動器1 6 0、 閥門1 7 0及流量計1 1 0所伴隨增益項之乘積的合成增 益項CD Α’係由取自調整閥門時所得資訊經計算而得。 在步驟21,一系列來自選定設定點集合的設定點被 提供到質量流控制器。選定設定點集合可以任何適當方式 加I以選擇。舉例而言,在一實施例中,選定設定點集合係 全流量之各個比率;在某種程度上,其涵蓋質量流控制器 戶斤欲操作的範圍。被選定的設定點不一定要在其所涵蓋的 婁女値範圍內平均間隔。此外,吾人可選擇任何個數的設定 黑占。一般而言,被選擇的設定點個數應足以代表質量流控 制J器所欲操作的範圍。 圖7 c — 7 f所示各個被選定的設定點集合不一定要 彼此相同。爲了圖示被選定設定點集合內之設定點不一定 要彼此相同,諸如v t、c b和c f等下檩已用於標示分 另[J爲閥門設定、校正及設定步驟所選定的設定點。然而, 應瞭解的是:此等組別可以部分或完全不相同。 在步驟2 1中,第一設定點vt s 〇係從選定設定點集 合{ " S 〇,v t S i,v t S 2,…}中被選擇。小誤差η被 選擇當作設定點之偏移量。然後,ν t S 〇 + η被用於控制 _ _ 46 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公f) ~ 一一·"' ' ---1----------------1 訂--------- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ____— B7___ 五、發明說明) 器且控制器被允許收斂。當控制器收斂時,感應器輸出將 會等於所用的設定點。在步驟2 2中,爲設定點S i記 錄最後得到的驅動程度。 在步驟2 3中,v t S。一 η被用於控制器且允許收斂 。最後產生的驅動程度如同步驟2 4再度被紀錄。在步驟 2 5中,合成增益項CDA’被決定。舉例而言,合成增 益項可由取得兩設定點之改變量(即2 η ),並將該改變 量除以步驟2 2及2 4中所記錄的改變量來決定。此比率 係代表設定點vt S。之合成增益項C D Α’ 。如上所述, 增益項C和D係分別伴隨於閥門致動器及閥門。增益項A ’係伴隨於流量計,並代表流量計在沒有來自線性化電路 2 6 0之貢獻時的增益(即感應器輸出所伴隨的增益)。 質量流控制器對各設定點S i所收斂到的感應器輸出値 ,以及在該設定點上所決定的合成增益項CDA’ ,可被 儲存爲設定資料。 步驟2 1 - 2 5會爲選定設定點集合內的各個設定點 v t S i重複執行,其結果爲一點數對集合{感應器輸出, C DA’ }。在一實施例中,數對集合{感應器輸出,C D A’ }係儲存質量流控制器之手動調整設定資料。此外 ,互逆增益項G=1/CDA’可爲在步驟20中所記錄 的各個CDA’而形成。此互逆增益項G可在後續的控制 器調整步驟中被提供到控制器,以提供控制器之穩定性。 以其它實施例而言,合成增益項CD A’可由近似線性化 曲線加以更改,使其與系統增益項C D A更爲近似。因此 _____— - _ 47____ 用中國國家標準(CNS)A4規格(210 X 297公釐) " -------------裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 _ B7 ..._ 五、發^明說明(八w ) ,由更改增益項c D A,之倒數所形成的增益項G可以更 近似於後續步驟當中的固定迴路增益。 在反饋控制器調整步驟3 0中,各種伴隨於質量流控 帘[J器之反饋控制器的參數被調整’以提供被供應到質量流 控制器的一系列流體階梯之令人滿意的動態響應。應瞭解 白勺是:質量流控制器之各種實施方式可以利用不同的控制 方法(例如:P I D、P D等)。現在參照圖4所描繪的 增益/引導入延遲控制器來說明用於調整質量流控制器之 反饋控制器的程序範例。 在步驟3 2中,由步驟2 0之測量値所形成的互逆增 益項G被應用於增益/引導/延遲控制器。在步驟3 4中 ,藉由躍升設定點而將流體階梯提供到質量流控制器。例 女口,圖1中的S I 2被設定點△ S i中的一組不同變化量更 改:。吾人可選擇不同的△ S i,而使控制器能對於大的階梯 變化(例如全流量之7 5 %的△S:)和小的階梯變化加以 調整(例如全流量之2 %的AS i)。對於各種實施方式而 言,各個不同△S i之數目及大小有所不同,而且會依照質 量流控制器之特定實施方式的不同操作需求而有所不同。 在步驟3 6中,增益/引導/延遲控制器之不同參數 被設定,以使增益/引導/延遲控制器能以令人滿意的方 式回應不同八S ,所定義的設定點內之不同變化。伊[]$卩,包 含有PID當數KP、K i等的參數可被調整,以提供對於 言受定點內變化之所欲響應。控制器內可加以調整的不同特 个生包括:上汁時間、最大正尖峰値/負尖峰値、穩定時間 ____48_______ 本紙張尺f適用中國國家標準(CNS)A4規格(210 X 297公釐) ---I I — — — — —---1111111 ^ — — — — — —-- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 B7 五、發明說明 等’但不以上述爲限。 在校正歩驟4 0中,質量流控制器執行將感應器及控 制器調整爲具有所欲動態響應以及取得不同設定點之合成 增溢CD A’等校正步驟,以確保質量流控制器具有令人 滿意的穩定態響應。質量流控制器被部分地校正以使實際 流量與標示流量之間爲線性關係。此外,可以取得有助於 在製程流體及/或製程操作條件進行設定質量流控制器所 需設定資料’即如圖7 b所示之校正步驟4 0。 在校正歩^驟4 0之步驟4 1中,其爲質量流控制器定 義全流量範匿1。根據一實施例,實際流量被測量,其對應 1 · 0之感應器輸出。近似線性化曲線被提供,使得在被定 義的全流量時,標示流量之數値等於或接近1 .0。近似線 性化曲線隨後應用於流量計1 1 0。應瞭解的是:以數値 1 ·0來表示饅大感應器輸出及標示流量僅爲範例,並可以 任何所欲數値替代。 在步驟4 3中,第一設定點vt S。係從選定設定點集 合{ “ S °,“ S “ S 2,…丨中被選擇並應用於質量 流控制器。然後測量源自設定點的流動路徑(如流動路徑 1 0 3)內旳實際流體。對應於各個設定點,感應器輸出 及實際流量被記錄。應瞭解的是:標示流量亦可加以記錄 。然而,口人可利用全流量而在任一點上由實際流量來計 算標示流量。步驟4 1和4 3而後爲選定設定點集合內的 各個設定點。b S i重複執行,最後產生點數對集合丨感應 器輸出,實際流量} 1,而此點數對集合可如步驟4 4和4 --------------— (請先閱讀背面之注意事項再填寫本頁) 訂: 線·538327 B7 V. Description of the invention U)), so the signal EGKP has a similar pattern-although the amplitude is slightly reduced. As shown in Figure 6D, at time T ◦, the integral output signal E G K i is zero, but due to the error signal E, it starts to climb up quickly. The output of the addition circuit 470, which represents the sum of the output signal EGKP and the integral output signal E G Ki, is labeled D S and is shown in FIG. 6E. Based on the drive signal DS provided by the 妾 α valve drive and the valve drive electronics 160, the opening of the valve 170 is controlled to increase, and the flow signal (eg, flow signal FS 2) is added to the new set point in SI 2 grade. As time progresses, the error signal E decreases, the output signal of the proportional gain term 4 40 decreases, and the integral output signal E G κ decreases, and the flow rate is established at the new setpoint level. Ideally, I would like to get a step response in the actual fluid in response to the hierarchical input applied to the setpoint of the mass flow controller. Although this is not practically possible, embodiments of the present invention can be used to provide a consistent response in response to hierarchical input within a setpoint, regardless of whether the hierarchical input represents a 2% hierarchy or 100% hierarchy relative to full traffic , And has nothing to do with the fluid used and the inlet or outlet pressure. To achieve this consistency, an embodiment of the present invention provides a mass flow: controller with a fixed loop gain. From the above description, it should be known that although the various gains associated with the components on the control loop of the mass flow controller will change as a function of different variables and are related to various different operating conditions, but by providing a fixed The control loop of the mass flow controller with loop gain can still obtain stable and consistent mass flow controller operation under a set of operating conditions. --—- _35_ A paper size is applicable to the Chinese National Standard (CNS) A4 specification (21〇χ 297 mm) -I ---- — — — — —------- (Please read the notes on the back first Please fill in this page again for the matters)) SJ_ -line · A7 538327 _B7_____ V. Description of the invention (> v) It should be understood that we can use the microprocessor to implement various control modes of the mass flow controller. For example, the gain / guide / delay controller 150 can be implemented using a microprocessor, a digital signal processor, and the like. Similarly, the microprocessor can determine various parameters, such as a reciprocal gain term (such as gain term G). We can use conventional techniques to implement various control modes of mass flow controllers in software, firmware or hardware. Β.Π Flow controller settings It should be understood: In many cases, in order for the mass flow controller to operate consistently in a steady state, the mass flow controller must be adjusted and / or calibrated. Manual adjustment and / or calibration is often a time-consuming, labor-intensive and expensive process. In addition, when a processing process requires that the mass flow controller must be set to operate with different fluid species and / or operating conditions than those used in the production process, the performance of the mass flow controller rarely shows the performance of the process. The same characteristics are observed, even if the mass flow saver has been adjusted and calibrated on several process fluids. In other words, the mass flow controller may respond differently when operating with different fluid species and / or operating conditions than those used when adjusting and / or calibrating the mass flow controller. According to the aspect of the present invention, it provides a method for setting a mass flow controller. This method allows a mass flow response obtained by a process fluid and / or a process operating condition to be substantially equivalent to adjusting with a test fluid and a test operating condition. And / or the response obtained by calibrating the mass flow controller. In one embodiment of the present invention, the setting data is from a single test _ one-_ 36____ This paper ruler money towel @ 0 杂 准 (CNS) A4 specification (210 X 297 male f) " " ---- ------------- (Please read the precautions on the back before filling out this page) · Line-538327 A7 B7 ---- --- 5. Instructions for issuing the month (>? ≪ ) Flow meter and a set of operating conditions to adjust and / or calibrate the mass flow controller. This setting data can be used to set the mass flow controller so that it can work with any kind of process fluid and / or operating conditions, and thereby mitigate the use of fluids and / or operating conditions different from those used in the production process. Performance degradation issues, while eliminating expensive and time-consuming adjustments and / or calibrations for mass flow controllers on multiple alternative fluids. Providing a mass flow controller that can work with any type of fluid and operating condition and present a satisfactory response to Λ often includes several steps, including the initial production of the mass flow controller and subsequent settings of the mass flow controller. Figure 7a illustrates the steps of production and set-up according to an embodiment of the present invention. When the term production is applied to a mass flow controller, the description here includes preparing a mass flow controller for use in a particular fluid species and Various tasks involved in the process of operating under the operating conditions group. The production process may include: constructing a mass flow controller from various components; under test operating conditions, as a mass flow controller on the test fluid; and adjusting and / or calibrating various components and / or mass flow controllers Control parameters so that the mass flow controller can exhibit satisfactory quality and performance (ie, satisfactory response) when using the test fluid and test operating conditions. Mass flow controllers are usually produced manually. The hand = or manual method used here refers to the procedures and / or steps that are required to involve a large number of operators, and in many cases requires technically skilled workers, and often requires a lot of time and Manpower. When Tian uses the mass flow controller, set or perform the setting here + s S ^ i ^ NS) A4 4Τ210 X 2973lt)--------------- install --- (Please read the precautions on the back before filling out this page) · --line-A7 538327 ___B7_____ V. Description of the invention () Includes a description of 'making the mass flow controller suitable for any kind of fluid under any operating conditions' The various steps involved in the operation. In particular, settings describe a facility that makes a mass flow controller suitable for operating with a fluid (herein referred to as a "process fluid" and a "test fluid") that is different from the fluid used in the production of the mass flow controller. The steps involved 'and the conditions can be different from the operating conditions used in the production process of the mass flow controller (herein referred to as "process operating conditions" and "test operating conditions"), so that the mass flow controller's The response is essentially equivalent to the response to j observed during production. It should be understood that the setting of the mass flow controller can be performed at any time and place after the production is completed. This includes manufacturing sites (such as setting a mass flow controller for a specific known application) or a factory (such as located in direct use (The operator's place of operation) 'but not limited to the above. In general, a satisfactory response is the response of a mass flow controller within a given set of tolerances in a particular mass flow control process or job. In particular, I would like the dynamic and static response of the mass flow controller to be within the tolerances of the expected operation. Within any set of tolerances, the mass flow controller can be adjusted and / or calibrated during production to obtain a satisfactory response. Therefore, unless otherwise noted, a mass flow controller adjusted and / or calibrated under a test fluid and a set of test operating conditions should be considered to have a satisfactory response under that test fluid and operating conditions. However, when the mass flow control curtain is operated with different fluids and / or operating conditions, the response of the mass flow control instrument may change substantially, so the response is no longer satisfactory. ___________38__ Degree Applicable to China National Standard (CNS) A4 (210 x 297 mm) --- I ----------------- Order · ---- I — I _ ( Please read the notes on the back before filling in this page) A7 538327 _B7______ V. Description of the invention u ') Generally speaking, when both responses are satisfactory (ie both responses are in the mass flow controller) Operating within the tolerances expected to operate), the mass flow controller will be considered to have the same response under the test fluid and test operating conditions and under the process fluid and / or process operating conditions. As shown in Figure 7a, during the production of 710, the mass flow controller is operated with a test fluid under a set of test operating conditions. The operating characteristics of the mass flow controller are acquired and stored as setting data 7 1 2. The setting data 712 can be obtained during various adjustments and / or calibration steps of the production 710; the following will be further described with reference to Figs. 7b-7f. The term adjustment describes the steps involved in providing a satisfactory dynamic response and properties to the flow, and providing a satisfactory dynamic response and properties in response to changes in flow and / or changes in the desired fluid (ie, changes in set points). . The term calibration refers to the steps involved in referring to a mass flow controller to provide a satisfactory steady state or static response. The term setup data refers to data obtained during the process of adjusting and / or calibrating the mass flow controller. In particular, the profile describes the characteristics and / or measurements obtained during the operation of the mass flow controller with the test fluid and test operating conditions. The setting data obtained during the production of the mass flow controller can then be used to set the mass flow controller under the process fluid and / or process operating conditions. As explained briefly above, the terms test fluid and test operating conditions are used to describe the fluids and operating conditions used in the production process of the mass flow controller. The terms such as process fluid and process operating conditions are described in _______39___ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ----— II--I ---- · I — (Please Read the precautions on the back first and then fill out this page) · Thread · 538327 A7 ___B7____ V. Instruction (3¾) -------------- Install-(Please read the notes on the back first Please fill out this page again.) Typically, the fluid and operating conditions desired by the direct user of the specific application of the mass flow controller. --Line- It should be understood that the same type of fluid and operating conditions can be used for both testing and process purposes. However, since the mass flow controller cannot be adjusted for each fluid and / or under all operating conditions, certain aspects of the present invention and a mass flow controller; during the production process, the mass flow controller is Under a specific set of operating conditions, adjustments and / or calibrations are performed on a specific test fluid so that the mass flow controller is set to work with different fluids and / or operating conditions in the future. Therefore, it should be understood that the term "process fluid" is not used to describe different types of fluids, but rather to indicate that the fluid can be different from the fluid used when adjusting and / or calibrating the mass flow control 芾 α. Similarly, "process operating conditions" describes a set of test operating conditions that may differ from those used when adjusting and / or calibrating the mass flow controller. One, some or all of a set of process operating conditions may differ from the test operating conditions. In the setting step 7 2 0, the setting data 7 12 obtained in the production process can be used to facilitate the setting of the mass flow controller in the process fluid and / or process operating conditions. According to an embodiment, the setting data 7 1 2 is used in setting 7 2 0 to determine the control parameters accompanying the mass flow controller; these control parameters allow the mass flow controller to work with process fluids and / or process operating conditions. Operation. In particular, the setting data 7 1 2 obtained in the production step 7 1 0 is used to determine the control parameters, and these control parameters help the mass flow controller to set the process fluid and process operating conditions to 'make quality The flow controller can produce a satisfactory response (that is, --------- 40__ This paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 538327 A7 ____ _B7_ V. DESCRIPTION OF THE INVENTION The (V /) mass flow controller is configured to have substantially the same response as observed during production using test fluids and / or test operating conditions when using process fluids and / or process operating conditions). The term control parameters is used herein to refer to the parameters that accompany the mass flow controller ' These parameters assist the operation of the mass flow controller. The control parameters may include: filter coefficients, gain terms, controller constants, linearization curves, etc. ′ 伹 is not limited to the above. In particular, the control parameters are required when the mass flow control [J device is set to work with any process fluid and / or process operating conditions (that is, set to present a satisfactory response). Change, change or increase parameters. The phrase "set for operation" used here specifically describes a way to set the mass flow controller; when the mass flow controller is operated, the mass flow controller will present a satisfactory response (that is, if the mass flow control Controller does not have a satisfactory response, the mass flow controller is generally not considered to be operational). It should be understood that, in general, production of 7 丄 〇 need only be performed with a single type of [J test fluid and a set of test operating conditions—times. However, the setting can be repeated any number of times during the life of the mass flow controller. In particular, whenever we want to operate the mass flow controller with different process fluids and / or operating conditions, we want to re-execute the setting 7 2 0 with a new process fluid and / or process operating conditions to Allows the mass flow controller to exhibit a satisfactory response when using new process fluids and / or process operating conditions. Fig. 7b is a diagram illustrating a mass flow controller according to an embodiment of the present invention ________: _ 41 _ This paper size · Common Chinese National Standard (CNS) A4 Specification (21 ^ 297 Gongchu) " ' --------- Order --------- (Please read the notes on the back before filling out this page) 538327 A7 _ B7____ V. Production and setting of invention description (/ v〇) ( That is, a block diagram of each detailed step performed by the householder during steps 7 1 0 and 7 2 0) in FIG. 7a. Production 7 1 0 may include a sensor adjustment step 10, a valve setting step 20, a feedback controller adjustment step 30, and a correction step 40. It should be understood that production 7 1 0 may include other steps not shown in production 7 1 0; for example, the conventional steps involved in constructing a mass flow controller are the same as the bypass matching step. In the sensor adjustment step 10, the flowmeter of the mass flow controller is adjusted so that it exhibits a satisfactory dynamic response. In particular, various elements of the flow meter are adjusted so that the output of the sensor (such as FS ") can satisfactorily respond to changes in the fluid passing through the flow meter. For example, as described above with respect to Figure 2, The sensor adjustment step may include providing normalized and response-compensated filter coefficients, calibration curves, and / or gains so that the flowmeter responds to the fluid step with a response very similar to a flow step change in the flow path. In adjustment step 1 The information obtained in 0, for example, can be stored as the setting data 7 1 2. In the valve setting step 20, the mass flow controller is set to operate in a consistent and stable manner in response to various differences Changes in operating conditions and / or characteristics. According to an embodiment, the system gain term of the mass flow controller control loop can be determined, and the inverse of the system gain term can be determined and applied to the control loop to provide a fixed loop gain In addition, the measurement data obtained in the process of determining the system gain term can be stored as setting data and then used in the setting; Further explanation according to Figure 7c. __42_ This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) II ------------III I --- order- -— — — — — — (Please read the precautions on the back before filling this page) 538327 A7 ^ ______ B7_ V. Be sure to explain Uv) In the loop controller adjustment step 30, the control and control attached to the loop controller The electronic device can be adjusted so that the mass flow controller responds satisfactorily to the change in setting the black occupation. According to an embodiment, the PID parameters discussed above with reference to FIG. 4 can be set so that the gain / guide / delay control The device can display the desired dynamic characteristics, such as the stabilization time, the maximum positive peak value, the negative peak value, etc. In the calibration step 40, the mass flow controller is calibrated so that it presents a stable steady state response. According to an embodiment, the mass flow controller is adjusted to provide a linear relationship between the actual flow through the mass flow controller and the flow indicated by the flow meter (ie, the signal FS 2, also known as the labeled flow). It covers the flow rate range that the mass flow controller wants to operate. As shown in FIG. 7b, the setting of the mass flow controller (such as step 7 2 0) may include a system gain decomposition step 50 and a system setting step 60. In the system gain In step 50, the system gain term is obtained, and then at least 咅 [3 points, according to the setting data obtained in the process of mass flow controller production 7 1 0, the system gain term is decomposed into its constituent gain terms. In the system setting step 60, the mass flow controller is determined by the parameters of the set process fluid and / or operating conditions so that when the mass flow control device and the process fluid and / or operating conditions work together, it can display Satisfactory and consistent response. In one embodiment, some or all of the individual gain terms decomposed from the system gain terms may be changed based on the process fluid species information and / or process operating conditions. The reciprocal gain term can be taken from the inverse of the product of each gain term and applied to the control loop of the mass flow controller 'to provide a fixed loop gain. __—-_— 43 _____— This paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) ----- 1 --- II --- · !! ί1 Order ------- -(Please read the precautions on the back before filling this page) 538327 A7 _____B7__ 5. Explanation of the meeting (4 > 0 Now we will refer to Figures 7c ~ 7f to further explain the production steps and setting examples. Figure 7c And 7 d are examples of procedures used to obtain setting data during mass flow controller adjustment and X or calibration during production. Figures 7 e and 7 f are diagrams τρ; another is used to set the mass flow controller. As an example of a procedure, a mass flow controller is set to operate under a process fluid and / or process operating conditions different from the mass flow controller being adjusted and / or calibrated. The production and setting procedures shown in Figures 7e and 7f It can be applied to mass flow controllers similar to those shown in Figure 1. However, it should be understood that the aspects of the present invention are not limited to this, but can be applied to mass flow with various components and operating characteristics. Controller In Figures 7c-7f, the mass flow control is shown under the heading "Setting Data" The controller is stored as an example of the setting data during the production process, and is located in the box of figure 7 12. It should be understood that the data shown in the figure is not limited to such data and should not be considered necessary Conditions. Various implementations of mass flow control benefits can have different sets of configuration data, which can help set the mass flow controller to work with process fluids and / or process operating conditions. Figure 7 c is based on this An embodiment of the invention further illustrates the details of the sensor adjustment step 10 and the valve setting step 20. In the sensor adjustment step 10, the flowmeter of the mass flow controller is adjusted so that it exhibits a satisfactory dynamic response. , Such as responding to the fluid ladder. The fluid ladder refers to a flow with a step function type flow change, which includes the positive _______— 44__________ in this flow. (%) --- I--III I --- · IIIIIII Order ----— — — — — * 5 ^ (Please read the notes on the back before filling in this page) 538327 A7 B7 V. Invention Description ) Ladder and Negative Ladder. In step 12 a fluid ladder is supplied to the flow meter. The flow meter contains any of the various components used to implement a mass flow controller, which can sense the flow and provide a flow signal that indicates the flow. The flowmeter is then adjusted in step 14 to provide a stepped flow signal in response to the fluid step. Desired characteristics of this step-shaped flow signal may include rise time, settling time, maximum positive spike 値 and negative spike 値. For example, referring back to the mass flow controller shown in FIG. 1 and FIG. 2, the steps of adjusting the flow meter may include adjusting the sensor and the sensor electronic device 2 3 0, the normalization circuit 2 4 0, and the response compensation circuit 2 5 0. For example, the t wave filter coefficient of the response compensation circuit 250 can be adjusted to reshape the signal as shown in FIG. 3. It should be understood that, in general, various embodiments of the mass flow controller may have different sets of parameters that can be adjusted. However, the purpose of the sensor adjustment step 10 is to ensure that the flowmeter exhibits satisfactory dynamic characteristics. As shown in Fig. 7c, the normalized gain accompanying the induction & output 1.0 through the sensor duct at full flow can be recorded as setting data. In the valve setting step 20, at the known inlet and outlet Under pressure '湏 [J test fluid is supplied to the mass flow controller at different set points selected from a set of set points. The resulting drive level is recorded at each set point. The term drive degree describes the number of drive signals provided to the valve actuator. For example, the degree of drive may be a measurement of current or potential. The horse movement degree can also be the number of digital control signals, and the actuator can convert them into electronic signals to control the displacement of the valve. The signal DS in FIG. 1 is an example of a driving signal, and the number of the driving signals is the driving degree. _______45______ This paper size uses Chinese National Standard (CNS) A4 (210 x 297 mm) ---------------- (Please read the precautions on the back before filling this page) · 538327 A7 ___B7______ 5. Description of the Invention (M) In one embodiment, an unadjusted but known gain / guide / delay controller can be used in this step. Therefore, each setpoint in the selected setpoint set will converge to the output of the sensor. In some embodiments, the sensor output and drive level information stored at this step is used to calculate the composite gain term of the mass flow controller. For example, in the valve setting step 20 shown in FIG. 7c, the composite gain term CD Α ′ corresponding to the product of the gain terms associated with the valve actuator 16 0, the valve 17 0, and the flow meter 1 1 0 It is calculated from the information obtained when adjusting the valve. At step 21, a series of set points from the selected set of set points are provided to the mass flow controller. The selected set of points can be selected by adding I in any suitable manner. For example, in one embodiment, the set of selected points is the ratio of the total flow; to a certain extent, it covers the range that the mass flow controller user wants to operate. The selected setpoints do not have to be evenly spaced within the range covered by the son-in-law. In addition, we can choose any number of settings. In general, the number of setpoints selected should be sufficient to represent the desired range of operation of the mass flow controller. The selected set of setpoints shown in Figures 7c-7f need not necessarily be the same as each other. In order to illustrate that the set points in the selected set point set do not have to be the same as each other, subordinates such as v t, c b, and c f have been used to indicate points. [J is the set point selected in the valve setting, calibration, and setting steps. However, it should be understood that these groups may be partly or completely different. In step 21, the first set point vt s 〇 is selected from the selected set point set {" S 〇, v t S i, v t S 2, ...}. The small error η is selected as the offset of the set point. Then, ν t S 〇 + η is used to control _ _ 46 This paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 male f) ~ one by one " '' --- 1 ---- ------------ 1 Order --------- (Please read the notes on the back before filling this page) 538327 A7 ____— B7___ V. Description of the invention) Allowed to converge. When the controller converges, the sensor output will be equal to the setpoint used. In step 22, the final driving degree is recorded for the set point S i. In step 2 3, v t S. A η is used for the controller and allows convergence. The resulting drive level is recorded again as in step 24. In step 25, the composite gain term CDA 'is determined. For example, the synthetic gain term can be determined by taking the amount of change at two set points (ie, 2 η) and dividing the amount of change by the amount of change recorded in steps 22 and 24. This ratio represents the set point vt S. The resultant gain term C D Α '. As described above, the gain terms C and D are associated with the valve actuator and the valve, respectively. The gain term A 'is accompanied by the flow meter, and represents the gain of the flow meter when there is no contribution from the linearization circuit 260 (that is, the gain accompanying the sensor output). The sensor output 收敛 to which the mass flow controller converges to each set point S i and the combined gain term CDA ′ determined at the set point can be stored as set data. Steps 2 1-2 5 are repeated for each set point v t S i in the selected set point set, and the result is a set of one-point pairs {sensor output, C DA ′}. In one embodiment, the pair of sets {sensor output, CDA ′} is used to store manual adjustment setting data of the mass flow controller. In addition, the reciprocal gain term G = 1 / CDA 'may be formed for each CDA' recorded in step 20. This reciprocal gain term G may be provided to the controller in a subsequent controller adjustment step to provide the stability of the controller. In other embodiments, the composite gain term CD A 'can be changed by an approximate linearization curve to make it more similar to the system gain term CD A. Therefore _____—-_ 47____ Use Chinese National Standard (CNS) A4 specification (210 X 297 mm) " ------------- install -------- order-- ------- line (please read the precautions on the back before filling this page) 538327 A7 _ B7 ..._ V. ^ Instructions (eight w) will be changed by changing the gain term c DA. The formed gain term G can be more similar to the fixed loop gain in subsequent steps. In the feedback controller adjustment step 30, various parameters accompanying the mass flow control curtain are adjusted 'to provide a satisfactory dynamic response of a series of fluid ladders supplied to the mass flow controller. . It should be understood that the various embodiments of the mass flow controller can utilize different control methods (eg, PI D, P D, etc.). A program example for adjusting the feedback controller of the mass flow controller will now be described with reference to the gain / lead-in delay controller depicted in FIG. In step 32, the reciprocal gain term G formed by the measurement 値 in step 20 is applied to the gain / guide / delay controller. In step 34, the fluid ladder is provided to the mass flow controller by jumping the set point. For example, S I 2 in Fig. 1 is changed by a set of different changes in the set point Δ S i:. We can choose different ΔS i, so that the controller can adjust for large step changes (such as △ S: 75% of full flow) and small step changes (such as ASi of 2% of full flow) . For various implementations, the number and size of each different ΔS i are different, and will be different according to the different operation requirements of the specific implementation of the mass flow controller. In step 36, different parameters of the gain / guide / delay controller are set so that the gain / guide / delay controller can respond in a satisfactory manner to different changes in the defined set points. The parameters including PID equivalent KP, K i and so on can be adjusted to provide the desired response to the change within the set point. The different special factors that can be adjusted in the controller include: time for juice, maximum positive spike 値 / negative spike 値, settling time ____48_______ This paper rule f applies Chinese National Standard (CNS) A4 (210 X 297 mm) --- II — — — — — --- 1111111 ^ — — — — — (Please read the notes on the back before filling out this page) 538327 A7 B7 V. Description of the invention, etc., but not limited to the above . In calibration step 40, the mass flow controller performs calibration steps such as adjusting the sensor and the controller to have a desired dynamic response and obtaining a synthetic overflow CD A 'of different set points to ensure that the mass flow controller has a command Satisfactory steady state response. The mass flow controller is partially corrected so that there is a linear relationship between the actual flow and the nominal flow. In addition, it is possible to obtain the setting data needed to facilitate the setting of the mass flow controller in the process fluid and / or process operating conditions, namely the calibration step 40 shown in Fig. 7b. In step 41 of the correction step 40, it defines a full flow range 1 for the mass flow controller. According to an embodiment, the actual flow is measured, which corresponds to a sensor output of 1 · 0. An approximate linearization curve is provided so that at the defined full flow, the number of marked flows 値 is equal to or close to 1.0. The approximate linearization curve is then applied to the flowmeter 1 1 0. It should be understood that the large sensor output and labeled flow rate represented by the number · 1 · 0 is only an example, and can be replaced by any number desired. In step 43, the first set point vt S. Is selected from the set of selected setpoints {"S °," S "S 2, ... 丨 and applied to the mass flow controller. Then the flow path originating from the setpoint (eg flow path 1 0 3) is measured Fluid. Corresponding to each set point, the sensor output and actual flow are recorded. It should be understood that the marked flow can also be recorded. However, the mouth can use the full flow to calculate the marked flow from the actual flow at any point. Steps 4 1 and 4 3, and then for each set point in the selected set point set. B S i is repeated, and finally generates a point pair set 丨 sensor output, the actual flow rate} 1, and this point pair set can be as in step 4 4 And 4 --------------— (Please read the notes on the back before filling this page) Order: Line ·

538327 A7 B7 --- 一 - —------- 五、發明說明(岭) 5所示被儲存爲設定資料。 點數對集合{感應器輸出,實際流量} i之間的關係 {系描述伴隨於感應器的非線性,以及描述通過感應器導管 之流量與在不同流率下通過質量流控制器之流量比例之間 的關係。因此,線性化曲線可由此等點數對決定,以確保 實際流量與標示流量之間爲線性關係。在一實施例中,其 決定一組修正伴隨於點數對{感應器輸出,實際流量} i;^ 線性的點集合。三次樣條係擬合於該點集合,以期提供 連續且通過點(0,0)(即流量=0且感應器輸出=〇 )的線性化曲線。在步驟46中,線性化曲線被應用於質 量流控制器。應瞭解的是:亦可利用其它曲線擬合方法, 其中包括片段線性近似法及多項式線性化等,但不以上述 爲限。 在步驟1 0 - 4 0當中,設定資料已從在測試流體及 湏rj試操作條件下運作的質量流控制器之不同生產步驟被記 綠。此設定資料包含有助於設定質量流控制器使其與製程 流體及/或製程操作條件能共同運作的資訊。應瞭解的是 :在手動調整質量流控制器時所記錄的設定資料集合可能 會有所不同,其取決於質量流控制器之特定實施方式而定 ,且可能不同於圖7c及圖7d所示者。因此’用於任何 質量流控制器之特定實施方式的設定資料僅係描述質量流 控制器之生產過程中所獲得的資料,而此資料有助於設定 質量流控制器,使其能與製程流體及/或製程操作條件共 同運作。 ___50_______ 本紙張尺度遵用中國國家標準(CNS)A4規格(210 x 297公爱) --------------裝--- f請先閱讀背面之注意事項再填寫本頁} 訂: 線· 538327 A7 _B7_ 五、t明說明() 舉例而言,在圖7 c及圖7 d所示實施例中,在步驟 1 0 -4 0中被記錄的設定資料包含有來自感應器調整步 驟的單一增益項、點數對集合{感應器輸出,C D A’ }: 、點數對集合{感應器輸出,實際流量}:、測試流體之全 流量,以及線性化曲線。 在閥門設定步驟2 0中,點數對{感應器輸出,C D A ’ }:被記錄。如上所討論者,合成增益項CDA’係爲 分別伴隨於閥門致動器、閥門及流量器之增益項的乘積。 然而,增益項C、D及A’對於合成增益項CDA’之個 別J貢獻爲未知。此外,値得注意的是:A’僅爲流量器所 伴隨的總增益項A之一部分。 在系統增益分解5 0中,貢獻於合成增益項CD A’ 白勺個別增益項係與合成增益項隔離,使其可決定在後續系 糸充設定步驟6 0中的製程流體及/或製程操作條件。 在步驟5 1中,增益項A被決定。在先前描述的實施 例J中,流量計已被調整及/或校準,使得全流量之2 5 % 產生0.2 5的標示流量;全流量之5 0 %產生0.5的標示 流量;全流量之7 5 %產生0.7 5的標示流量等。由於在 流動路徑內的流量與標示流量之間爲線性關係,因此流量 計所伴隨的增益項(如增益A)爲一常數。 由上可知,藉由將標示流量除以任一點上的流量即可 在步驟5 1中直接決定增益A,而最小者爲全流量,且線 1生化曲線保證伴隨的標示流量爲1。因此,在最大流量爲 1單位的實施例中,增益A等於全流量之倒數(即特定流 ___51_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) I----II---· I I I---- 訂.-------- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 --—____ B7_ 五、發明說明(0 ) 體物種通過質量流控制器之全流量數値)。一般而言,增 益項A係等於最大標示流量除以特定流體物種所伴隨的全 流量。 在步驟5 2中,其產生合成增益項C D A。增益項A 係伴隨於流量計在不具線性化曲線之貢獻時的增益,而 增益項A則爲伴隨於流量計在具有線性化曲線之貢獻時的 增益。因此’ A’與A之間的關係係由線性化曲線來定義 。有鑑於此’合成增益項CDA可直接由加入線性化曲線 之貢獻來決定一亦即將CDA,乘以線性化曲線所伴隨的 增益項(例如CD A,乘以線性化曲線之導數)。 在步驟5 3中,增益項A之貢獻被移除。由於合成增 益項CDA與單獨增益項a (全流量之倒數)兩者目前均 爲已知’因此增益項A之貢獻可從合成增益項中被除掉, 而留下伴隨於閥門致動器及閥門的合成增益項CD。 如上所述’增益C係爲閥門位移變化量除以驅動訊號 中所對應的變化量(例如增益/引導/延遲控制器所提供 的DS)。增益D係爲流量變化量除以對應的閥門位移變 化量。 在步驟5 4中,增益D之貢獻被移除。爲了進一步針 對合成增益項C D進行微分,吾人運用閥門之實體模型來 決定所需要的閥門位移量(即決定增益D),以便在特定 操作條件下能達到特定的流量。以下在標題爲「實體閥門 模型」的段落D中會圖示並說明可用於決定增益D的其中 一種實體閥門模型。應瞭解的是:不同的閥門及閥門類型 ______S9__ 本紙張尺度適用中國國家標準(CNS)A4規格(21〇x 297公爱) ---------------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ___B7_____ 五、發明說明(<| ) 會有不同的實體模型。再者,存在有一種以上的實體模型 會皀夠用來模擬任何特定閥門之特徵。因此,本發明不限定 於任何特定的閥門模型。 在一實施例中,增益D係由計算爲達到選定設定點集 合{ d S ϋ,d S 1,d S 2,…}所代表之各個流量所需要的 閥門位移來決定。因此,吾人可計算流量變化量除以由實 體模型計算得來的位移變化量(即增益項D)。 在步驟5 5中,增益項D從合成增益項C D中被除掉 而與增益項C分離。應瞭解的是:增益項c(閥門致動器 戶斤伴隨的增益)可有效地獨立於製程流體及/或製程操作 條件之外。因此,當設定質量流控制器使其能與特定製程 流體及/或製程操作條件共同運作時,增益項C可維持不 〇 在系統設定步驟6 0中,製程流體及/或製程操作條 件所用的控制參數被決定。當增益項D與增益項C分離後 ,同時注意到實體模型已考量流體物種、入口及出口壓力 、溫度等,此時即可藉由將流體物種資訊及製程操作條件 提供到實體模型,並計算爲達到不同流量値所需的位移量 ,吾人可計算製程氣體及/或製程操作條件所對應的增益 項D。接著,增益A可由決定製程流體之全流量加以計算 。因此,吾人可決定製程流體及/或製程操作條件所對應 的ί系統增益項C D A。 此合成增益項之倒數可被形成並應用於增益/引導/ 延遲控制器,以使質量流控制器之控制迴路具有固定的迴 ___53______ 本紙張尺度適用中國國家標準 (CNS)A4規格(210 x 297公釐) --------------裝--- (請先閱讀背面之注意事項再填寫本頁) 訂: -1線· 538327 A7 _B7_ 五、發明說明(P ) ----------------- (請先閱讀背面之注意事項再填寫本頁) 路增益。有鑑於此,質量流控制器已被設定爲運作於製程 流體及/或製程操作條件,以下將會詳細說明。 在步驟6 1中,質量流控制器賴以設定的製程流體所 伴隨的全流量範圍被決定。決定全流量範圍的其中一種方 法係計算轉換因子,此轉換因子係植基於製程流體之比熱 率以及測試流體乘上該測試流體所伴隨之全流量範圍。應 瞭解的是:存在其它方法亦適用於計算特定製程流體所伴 隨的全流量範圍。舉例而言,在適當情況下,特定流體所 伴隨的全流量範圍可直接予以測量。 在一實施例中,吾人獲得在生產過程中使用且被儲存 爲設定資料的測試流體所伴隨的全流量範圍,並將其連同 製程流體物種資訊代入方程式6,以決定製程流體所伴隨 的全流量範圍。 • ·線· 在步驟6 2中形成增益C。應瞭解的是:每當質量流 控制器被設定與新的製程流體及或製程操作條件共同運作 時,增益項C可由步驟5 0所討論的設定資料加以計算; 或者,若先前計算結果已被儲存,則從儲存所在取回,例 如從質量流控制器之記憶體取回。 在步驟6 3中,製程流體及/或製程操作條件所對應 的增益項D由閥門之實體模型而被決定,其係藉由將製程 流體物種資訊及/或製程操作條件應用於實體模型並計算 達到一組標示流量値所需要的位移量。 在步驟6 3中,選定流量値之集合{。f S。,。f S丄, c f S 2,…}係連同製程流體物種資訊及/或製程操作條 _:_ 54_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A7 _— _ B7_____ 五、發明說明(^ ) 件而被個別地提供到實體模型,且對應的閥門位移量被計 算。由此資訊可爲選定集合{。f S 〇,。f S if S 2,… }中的各個流量。算增益D,其係藉由將流量(例 女口 -。f S i-i)除以對應的閥門位移變化量而得。 在步驟6 4中,增益項D乘以增益項C而產生合成增 益項CD。由於增益項A即爲全流量之倒數,因此合成增 益項CD可除以在步驟61所決定的製程流體所伴隨之製 程全流量範圍,以形成如步驟6 5所示之合成增益項C D A 〇 在步驟6 6中,合成增益項C D A之倒數被計算以形 成互逆增益項G。在步驟6 7中,互逆增益項G被應用於 質量流控制器之控制迴路,以提供固定的迴路增益。 應瞭解的是:根據製程流體及/或製程操作條件所用 資訊來決定質量流控制器之系統增益,同時將系統增益之 互逆增益項應用於質量流控制器之控制迴路,質量流控制 器即已被設定與製程流體及/或製程操作條件共同運作。 換言之,當質量流控制器以製程流體及製程操作條件進行 操作時,質量流控制器將會呈現以測試流體及測試操作條 件進行生產之後所觀察到的相同響應;亦即,當質量流控 制器以製程流體及/或製程操作條件進行操作時,其將會 呈現令人滿意的響應。 應瞭解的是:透過電腦的使用,設定質量流控制器的 過程可予以自動化。舉例而言,步驟5 0和6 0可完全由 儲存於記億體內的程式加以控制,並在電腦一如個人電腦 _______—___55____ 本紙張尺度適射關家標準(CNS)A4規格(21Qx 297公楚) ~ -------------裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) A7 538327 __B7____ 五、發明說明(y人/) 一處理器上被執行。因此,質量流控制器可自動化地加以 設定而與任何製程流體及/或製程操作條件共同運作。 在此’自動化或自動化地等用語係槪括指稱主要藉由 電腦或在電腦控制之下執彳了的狀態。特定而言,自動彳匕工 作、步驟、製程及/或程序不需要大量操作人員涉入或監 督。因此,質量流控制器之自動化設定係表示設定質量流 控制器以用於製程流體及/或製程操作條件時不需要手動 介Λ °在電腦控制之下所進行的質量流控制器之設定係被 視爲一種自動化設定。 應瞭解的是:將質量流控制器連接到電腦或處理器、 啓動程式之執行等例行工作一般係以手動方式完成。然而 ,此類被視爲例行的工作可以是質量流控制器之自動化設 定的一部分。 圖14係圖示一種在任何製程流體及/或製程操作條 件上有助於質量流控制器之自動化設定的系統。此系統包 含一質量流控制器1 0 0 0及一電腦8 0 0。 質量流控制器1 0 0 0包含一記憶體1 〇 〇 2、一處 理器1004 ,以及圖1所參照並說明的質量流控制器1 0 06所屬各式不同的元件。處理器係耦合於記憶體,並 可連接到質量流控制器之至少某些元件。如上所述,質量 流控制器之運作可在電腦控制下進行,使得增益/引導/ 延遲控制器由處理器1 0 0 4加以操作。質量流控制器1 0 0另包含得自質量流控制器之生產過程且儲存於記憶體 1 ◦ 0 2內的設定資料1 〇 1 2。 _____56_____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ---------I----___ (請先閱讀背面之注意事項再填寫本頁) · -1線· 538327 A7 厂_____B7 __ 五、务明說明() 電腦8 0 0包含一記憶體8 0 2、一處理器8 0 4、 —輸入裝置,以及儲存於記憶體8 0 2內的程式8 1 0。 程式8 1 0包含指令,當於處理器8 0 4上執行時,其可 執行設定質量流控制器所涉及的各式不同步驟,以便與製 程流體及/或製程操作條件共同運作(例如:圖7 a中的 歩驟7 1 2以及圖7 b、7 e和7 f中的步驟7 0等)。 應瞭解的是:電腦8 0 0可爲任何一種習知的計算裝 置。舉例而言,電腦8 0 0可爲個人電腦、膝上型電腦、 羊持裝置,或任何能夠執行程式的計算裝置。此外,電腦 8 0〇可以任何一種習知方式連接到質量流控制器並與其 進行通訊。舉例而言,電腦8 0 0可利用任何一種標準通 訊方法經由電纜連接,其中包括標準平行埠通訊、序列埠 通訊、通用序列匯流排(U S B )等,但不以上述爲限。 在其它可供選擇的情況下,電腦8 0 0與質量流控制器之 間可建立無線通訊。因此,應瞭解的是:本發明不限定於 特定類型的計算裝置、輸入裝置、連接類型或通訊方法等 ’實則有多種計算裝置、連接類型及通訊方法等均適用。 根據本發明之一實施例,電腦8 0 0可連接到質量流 控制器,以利在製程流體及/或製程操作條件上設定質量 流控制器。隨後可在處理器8 0 4上執行程式8 1 0。設 定輸入可提供到輸入裝置8 0 8。設定輸入包括:製程流 體物種資訊、製程操作條件及/或其它與質量流控制器之 設定有關的資訊,但不以上述爲限。輸入裝置可爲任何一 種能夠接收資訊的裝置,例如:鍵盤或小型鍵盤、用於接 _____57_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公爱) ---I----I I---· I I I I---訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 __B7____ 五、發明說明(0 ) 收搰鼠輸入的介面軟體、指標裝置等,但不以上述爲限。 然後,程式8 1 0可取得儲存於質量流控制器之記憶 體1 0 0 2內的設定資料。程式8 1 0可由設定資料及設 定輸入來決定質量流控制器所用之控制參數,該等參數能 促進質量流控制器利用製程流體及/或製程操作條件之運 作。藉由更改既已存在的控制參數或將額外的控制參數加 人質量流控制器,程式8 1 0隨後可將上述參數應用到質 量流控制器。在此情況下,質量流控制器可自動化地被設 定利用製程流體及/或製程操作條件來運作。 在圖1 5所示另一實施例中,程式8 1 0可被儲存於 質量流控制器之記憶體1 0 0 2內,並可在處理器1 0 0 4上被執行;處理器1 0 0 4可用於操作增益/引導/延 遲控制器1 5 0。輸入裝置1 0 0 8可附加到質量流控制 器上,讓質量流控制器能夠接收設定輸入。因此,圖1 5 所示之質量流控制器1 0 0 0可被自動化設定。 C ·減少磁滯現象 經常發主的情況是:質量流控制器會經歷到伴隨於其 個別元件之運作的不穩定性。舉例而言,運用螺線管致動 閥門的質量流控制器容易受到螺線管磁性伴隨的磁滯現象 所引發的不淸確性之影響。 本發明之一實施例提供一種減少螺線管裝置之磁滯現 象的方法,其藉由將非操作性訊號應用於螺線管致動裝置 〇 ___58.__ _ 一 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) -------------裝—— (請先閱讀背面之注意事項再填寫本頁) - •線- 538327 A7 __B7____ 五、發明說明(fp ----------------- (請先閱讀背面之注意事項再填寫本頁) 當運用於螺線管致動裝置時,非操作性訊號係指應用 於無法致動某裝置的裝置之訊號。例如,在螺線管致動閥 門中,非操作性訊號可能係指其大小無法移動閥門(即活 塞)之受控部件的訊號。應瞭解的是:非操作性訊號可爲 裝置之控制或驅動訊號,惟其訊號強度較小而不足以啓動 該裝置。 圖8係圖示質量流控制器之螺線管致動控制閥門內的 磁滯現象,其中該閥門係處於正常關閉位置(即該閥門之 預設關閉位置在此稱爲正常關閉位置)。在圖8中,控制 閥門驅動電流係標繪於橫軸,通過該控制閥門的流量則標 f會於縱軸。雖然圖8係特別針對質量流控制器內的螺線管 致動控制閥門,但應瞭解的是:其僅代表一般的螺線管裝 置;橫軸通常對應於供應到螺線管致動裝置的能量,而縱 軸則通常對應於該螺線管致動裝置之位移量。 ί線- 如圖8所示,當閥門驅動電流增加時,通過控制閥門 的實際流量直到所提供的驅動電流量足以克服彈簧之彈力 ,並使控制閥門偏離其關閉位置之後才開始增加。在圖8 中,爲克服此彈力所需要的驅動電流量標示爲點Χι。在一 般操作情況下,通過控制閥門的實際流量係在點Χι之後的 某一點開始增加。如曲線(:i所示,當閥門電流增加超過點 X 2時,通過控制閥門的實際流量會呈正比增加一但爲非線 性地增加’其中曲線C 1標示爲R i的部分係代表質量流控 芾[J器之正常關閉控制閥門的典型操作範圍。 雖然圖8並未以完全符合比例的方式加以描繪,但質 ______ 59_____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公餐) 538327 κι Ξί----- 五、發明說明(θ ) 量流控制器之正常關閉控制閥門的操作範圍通常係代表控 芾[J閥門離開其關閉位置約數微米的位移量。點X 3以上的閥 門驅動電流係代表超出質量流控制器之操作範圍(例如質 量流控制器被設計及/或校準用於操作的質量流率範圍) 以外的運作;控制閥門之完全開啓位置(即點X5以上)係 代表質量流控制器之淸除模式,其中控制閥門之位移(離 其關閉位置)的數量級約爲2 5 0微米。應瞭解的是:雖 然控制閥門之完全開啓位置係質量流控制器被設計的運作 位置,但其並非可精確地控制及/或監測流過其間之質量 流率的位置。因此,當運用於質量流控制器時,操作範圍 一詞在此係定義爲通過控制閥門的流體之流率能夠被精確 控制及/或監測時的位移範圍。 如圖8所示,當控制閥門被牽引到其全開位置且隨後 閥門驅動電流降低時,通過控制閥門的流量對驅動電流的 曲線不再是曲線C i,而是傾向於不同的曲線C 2。因此, 當閥門電流從點X 5下降時,通過控制閥門的流量要到接近 點X 6時才會開始減少,而此時實際流量對閥門驅動電流會 隨曲線C 2而呈正比例下降。 依此方式操作控制閥門後(亦即,首先沿曲線C :來 操作控制閥門,然後沿曲線C 2回到其關閉位置),若吾人 想重新進行正常操作,則通過控制閥門的實際流量不再沿 著曲線Ci,而是沿著位於曲線Ci與曲線C2之間的另一 曲線C 3。事實上,當曲線<3 i代表先前未經磁化的螺線管 控制閥門的驅動電流對實際流量的圖形,且曲線〇 2代表磁 ___ _ _60____— 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 裝--- (請先閱讀背面之注意事項再填寫本頁) 0 --線- 538327 A7 ------- B7_______ 五、發明說明(^ ) 化程度較高的螺線管控制閥門的驅動電流對實際流量的圖 形畤(例如沿著C 2使控制閥門回到其關閉位置之後),曲 線C 3將會如圖所示更接近曲線c2。因此,實際流動不會 從點X 2開始,而是從點χ7附近開始。若控制閥門係沿著 曲茅泉C 3而在其正常運作範圍內加以操作並回到關閉位置, 則當閥門下一次被開啓時,通過控制閥門的實際流量對閥 門馬區動電流將會沿著另一不同的曲線(如曲線〇4) 一此曲 線爲曲線C 1與曲線C 2之間的曲線族其中之一。曲線C 4 究竟是接近曲線<3 i或曲線C 2,端視曲線C 3上的最高點 而定,而控制閥門即在此最高點於操作週期中運作。上述 關於控制閥門之運作稱爲磁滯現象,其中當時操作狀態係 取泱於其先前操作狀態。 圖9 - 1 3係圖示若干不同的波形,該等波形可當作 非操作性訊號,以減少螺線管致動裝置內的磁滯現象。各 非操作性訊號可以驅動訊號提供到螺線管致動裝置。舉例 而言,在圖1所示之質量流控制器中,此等非操作性訊號 可由增益/引導/延遲控制器1 5 0予以提供到閥門致動 器1 6 0,藉以減少磁滯現象。 參照圖9,隨時間變化的正弦訊號可提供到螺線管致 動閥門或其它裝置,藉以緩和磁滯效應。如圖9所示,在 一段時間T :內,吾人能提供縮小振幅的正弦波形。在螺線 管致動裝置係質量流控制器之控制閥門的情況下’正弦訊 號之振幅應小於開啓螺線管致動裝置所需要的電流量。舉 例而言,在運用正常關閉位置的螺線管致動閥門的質量流 _____61______ 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) ---I--— I — I — I— I I (請先閲讀背面之注意事項再填寫本頁) ^-r*»J· -1線· 538327 A7 ________ B7______ 五、發明4明(“ο ) --------------裝—— (請先閱讀背面之注意事項再填寫本頁) 控制器中,非操作性訊號之最大値應小於克服彈力並開啓 閥門所需要的最小電流量。因此,返回參照圖8 ’上述訊 號之最大値會小於Xi,以確保在提供該波形時不會有流體 通過該閥門。 如圖9所示,時變波形會在時間T i內縮小振幅。經 I僉結果顯不·在時間1秒內約1 0赫兹的頻率即足以將螺 線管致動閥門預先調整爲預定狀態,且不論其先前狀態爲 何*(即不論螺線管致動閥門是在其正常操作範圍加以操作 ,或在正常操作範圍外加以操作一如淸除模式)。在螺線 管致動控制閥門於正常時處於開啓位置的情況下,波形應 使該閥門在整個過程中位於關閉位置,以避免流體通過該 閥門。 儘管吾人認爲圖7所示波形最適合減少螺線管致動裝 置內的磁滯效應,但經驗結果已確定,其它多種波形亦可 ••線· 用於將螺線管致動裝置設定成預設狀態。槪括而言,各種 波形提供一時變訊號至螺線管致動裝置,而此訊號可隨時 間縮小振幅。然而,經驗結果亦顯示:吾人不一定要使用 時變波形來縮小振幅,因爲亦可使用振幅固定的時變訊號 〇 圖1 0係圖不另一種時變電流波形,此種波形可用於 減少或消除螺線管致動控制閥門或其它螺線管致動裝置內 磁性地引發的磁滯效應。如圖9所示,時變波形在時間T i 上縮減振幅,且其最大振幅小於允許流體通過閥門所需要 的控制訊號之強度。對於圖9所示時變波形而言,時間丁 1 —_______62______ 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) 538327 A7 ___ _ B7___ 五、發明說明(") 之^數量級約爲1秒,以避免干擾正常運作。然而,此時並 吳芦提供正弦波形,乃是提供方波形。基於經驗測試,吾人 I忍爲亦可提供其它時變波形,例如鋸齒形波形等。應瞭解 的是:圖9和1 0所示各種波形均能將正値和負値提供給 虫累線管致動裝置。一般而言,將螺線管致動裝置設定成預 定狀態時,以使用能提供正値與負値兩者的波形爲較佳, ®爲此種波夥能有效地釋放螺線管致動裝置之磁性核心於 ί 喿作過程中所引發的剩餘磁性。 圖11和12係圖示其它可用於減少或消除螺線管致 重力控制閥門內之磁滯效應的波形。圖1 1所示之波形同樣 在時間Ti上具有縮減的振幅。然而,對照於圖9和1 0所 示:波形,圖1 1中所描繪的時變波形僅包含正値。吾人可 會皀無法提供保證有正値與負値兩者的訊號’並取決於使用 螺線管控制閥門的電路而定。 圖1 2係圖示一種可用於減少或消除螺線管致動控制 閥門內之磁滯效應的時變波形。雖然圖中係顯示三角形波 开多,但應瞭解的是:亦可使用正弦波形、方波形或其它任 何I形狀的波形。 應瞭解的是:在圖9-12各圖中,時變波形之最大 振幅係使其無法啓動螺線管致動控制閥門的振幅’因爲該 最大振幅小於用以克服彈力並開啓閥門所需要的控制或驅 動訊號之強度。本案申請人已發現:圖1 2所示之時變電 流波形可輕易提供於當前使用於質量流控制器中的元件而 不需要額外的電路系統。此外,其它時變波形亦可被提供 ____63_---—- 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 B7 五、發明說明) ,例如:方波形或鋸齒形波形。應瞭解的是:方波形可提 供以少數或毋須額外的電路系統’因爲方波可由質量流控 制器之微處理器所使用的時脈訊號產生。本案申請人已以 經驗方式判斷約1〇赫茲的頻率較適用於約1秒的時間; 選取1秒的時間係爲避免干擾正常運作。應瞭解的是:亦 可提供不同的時間長度’因本發明不限定於任何特定時間 長度。 圖1 3係圖示另一種可用於在各個操作循環之後,將 ¢1線管致動裝置設定爲預定狀態的波形。如圖1 3所示, 負値化脈衝施用於螺線管致動裝置之核心。當搭配質量流 控制器使用時’該脈衝之符號通常應與能夠開啓螺線管致 動控制閥門的符號相反。例如’以正常關閉的螺線管致動 控制閥門而言,此符號應對應負向脈衝。應瞭解的是:所 施用的電流脈衝應爲其極性與淸除質量流控制器所需脈衝 相反的脈衝。在一'般的螺線管致動裝置中’上述脈衝之極 个生應使其無、法啓動螺線管致動裝置,且極性與正常驅動訊 號之極性相反較佳。 應瞭解的是:非操作性訊號可爲電流、電壓或其它。 因此,圖示於圖9 - 1 3並在此說明的波形係被視爲在任 {可一種實作1 青況下所運用之特定類型的時變波形(例如: 日寺變電流波形、時變電壓波形等)。 上述各種驅動需訊號波形能夠將螺線管致動裝置一例 女口控制閥門一設定成預定狀態。有鑑於此,返回參照圖8 ,吾人可知致動裝置將在哪一曲線C上運作。因此,裝置 ___________64__ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ----------------I I---訂-----I----線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ______Β7 —_____ 五、發明說明u;) 在曲線c i族之任一曲線上操作所造成的不精確性即可降低 或被消除。 應瞭解的是:雖然在各操作循環之後不一定要將螺線 管致動裝置設定成預定狀態,但如此做較佳。舉例而言, 若螺線管致動裝置通常在其正常操作範圍內運作,則該螺 糸泉管致動裝置唯有當其運作超出正常操作範圍時才需要被 設定成預定吠態。若螺線管致動裝置典型地在其正常操作 範圍內運作,則下一個循環運作一般將會在相同的曲線上 運作,或在實質上接近遵循先前操作狀態的曲線上運作( 例J如:圖8中的曲線C 4 )。然而,由於偵測螺線管致動裝 置何時在超出其操作範圍下運作需要額外的電路系統,因 Itb,以較佳情況而言,最好在每一操作循環後將螺線管致 動裝置設定成預定狀態,而不論先前狀態是在操作範圍之 內或之外。在此情況中,螺線管致動裝置將會被視爲在操 作中遵循特定曲線,而不論其先前操作狀態爲何。 應瞭解的是,非操作訊號可以多種方式提供,且本發 明不限定於任何特定的實施方式。舉例而言,各種不同的 波形(例如圖9 - 1 3所示之波形)可由質量流控制器之 控制及控制電子裝置(例如增益/引導/延遲控制器1 5 0 )予以產生,並由閥門致動器加以轉換成爲非操作性訊 號,而後提供到該閥門以降低磁滯效應。在另一種可供選 擇的情況下,一功能產生器可耦合至該閥門或閥門致動器 ,以提供非操作性訊號來降低磁滯效應。由任何一種裝置 所產生的波形可爲數位或類比形式,並可根據特定實施之 _ —_ 65 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐)' ^ (請先閱讀背面之注意事項再填寫本頁) 裝 · i線. 538327 A7 B7 五、發明說明(Μ) 需求而適當地予以轉換。習知技術中確貫有許多技術可用 於產生適用的訊號,且不脫離本發明所考量之範圍。 D .實體閥門模型 根據本發明之另一樣態,已在不同的入口及出口壓力 使流體之流動情況實體模型化,其中主要包含兩種元件: 黏滯壓力降以及非黏滯(動態)壓力降。藉由計算此等各 元件之貢獻的總和一其中各元件之閥門有效位移量均相等 ,該閥門之有效位移量即可利用以下方法以經驗方式決定 。如上所述,決定特定流體在特定流率下之有效位移量即 會g夠決定該閥門所伴隨的增益項(如增益項D),進而決 定出閥門致動器所伴隨的增益項(如增益項C)。 參照圖1 6,設P 1代表上游或入口壓力,P 2代表下 游或出口壓力,則在質量流率爲Q時,閥門上升爲Η,且 黏滯效應本身使壓力從卩i下降至某一中間値Ρ χ。非黏滯 可壓縮流體進一步使壓力從Ρ X下降至Ρ 2。根據兩平行板 間(如閥門座與噴口面之間)的黏滯流體之實體模型來模 凝通過閥門1 7 0的黏滯壓力降,兩平行板之間的距離Η 可由下列方程式提供: 方程式1 66 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — — — — — — — — — — — — — · I I ί 1 I I 訂 — — — — — — —-- (請先閱讀背面之注意事項再填寫本頁) 538327 A7 B7 五、發明說明(W< ) 其中: p i,p X :黏滯面之上游及下游的壓力(P s i Q L Η w 質量流率(標準立方公分/分鐘,s c cm); 流動路徑之長度(f t ); 兩平行板之間的距離(f t ); 流動路徑之寬度,W等於ττ · 0,其中爲平頂 6 5 0之平均直徑,根據測試用閥門,0等於0.0 4 0 :氣體之動態黏滯性(c e η538327 A7 B7 --- 1---------- 5. Description of the invention (ridge) 5 is stored as setting data. The set of point pairs {sensor output, actual flow} i The relationship between {describes the non-linearity accompanying the sensor, and describes the ratio of the flow through the sensor duct to the flow through the mass flow controller at different flow rates The relationship between. Therefore, the linearization curve can be determined by these pairs of points to ensure a linear relationship between the actual flow rate and the marked flow rate. In one embodiment, it determines a set of corrections that accompany the number of pairs {sensor output, actual flow} i; ^ a linear set of points. The cubic spline is fitted to this set of points in order to provide a continuous and linearized curve passing through the point (0,0) (that is, flow = 0 and sensor output = 0). In step 46, the linearization curve is applied to the mass flow controller. It should be understood that other curve fitting methods can also be used, including fragment linear approximation and polynomial linearization, but not limited to the above. In steps 10-40, the setting data has been recorded in green from the different production steps of the mass flow controller operating under the test fluid and the 操作 rj trial operating conditions. This setup data contains information that helps set up the mass flow controller to work with process fluids and / or process operating conditions. It should be understood that the set of set data recorded when manually adjusting the mass flow controller may be different, depending on the specific implementation of the mass flow controller, and may be different from that shown in FIGS. 7c and 7d By. Therefore, the setting data for a specific embodiment of any mass flow controller is only describing the data obtained during the production process of the mass flow controller, and this information helps to set the mass flow controller so that it can interact with the process fluid. And / or process operating conditions work together. ___50_______ This paper size complies with China National Standard (CNS) A4 specification (210 x 297 public love) -------------- install --- f Please read the precautions on the back before filling in this Page} Order: Line · 538327 A7 _B7_ Five, t clearly explain () For example, in the embodiment shown in Figure 7c and Figure 7d, the setting data recorded in steps 1 0-4 0 contains from A single gain term for the sensor adjustment step, a set of point pairs {sensor output, CD A '}:, a set of point pairs {sensor output, actual flow rate}: the full flow of the test fluid, and a linearization curve. In the valve setting step 20, the number of points to {Sensor output, C D A ′}: is recorded. As discussed above, the composite gain term CDA 'is the product of the gain terms that accompany the valve actuator, valve, and flow meter, respectively. However, the contribution of gain terms C, D, and A 'to the individual J of the synthesized gain term CDA' is unknown. In addition, it should be noted that A 'is only a part of the total gain term A accompanying the flow meter. In the system gain decomposition 50, the individual gain terms that contribute to the synthetic gain term CD A 'are isolated from the synthetic gain term, making it possible to determine the process fluid and / or process operation in the subsequent system charge setting step 60. condition. In step 51, a gain term A is determined. In the previously described embodiment J, the flow meter has been adjusted and / or calibrated such that 25% of the full flow yields a 0.25 labeled flow; 50% of the full flow yields a 0.5 labeled flow; 7 5 of the full flow % Produces 0.7 5 marked flow rate, etc. Because there is a linear relationship between the flow in the flow path and the marked flow, the gain term (such as gain A) accompanying the flow meter is a constant. It can be known from the above that the gain A can be directly determined in step 51 by dividing the marked flow by the flow at any point, and the minimum is the full flow, and the line 1 biochemical curve guarantees that the accompanying marked flow is 1. Therefore, in the embodiment where the maximum flow rate is 1 unit, the gain A is equal to the reciprocal of the full flow rate (that is, the specific flow ___51_ This paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) I ---- II --- · II I ---- Order .-------- (Please read the notes on the back before filling this page) 538327 A7 ---____ B7_ V. Description of the invention (0) The total flow rate through the mass flow controller ()). In general, the gain term A is equal to the maximum labeled flow divided by the total flow associated with a particular fluid species. In step 52, it generates a composite gain term CDA. The gain term A is the gain that accompanies the flow meter without the contribution of the linearization curve, and the gain term A is the gain that accompanies the flow meter when it has the contribution of the linearization curve. Therefore, the relationship between 'A' and A is defined by the linearization curve. In view of this, the synthetic gain term CDA can be directly determined by adding the contribution of the linearization curve, that is, the CDA is multiplied by the gain term accompanying the linearization curve (for example, CD A, multiplied by the derivative of the linearization curve). In step 53, the contribution of the gain term A is removed. Because both the combined gain term CDA and the individual gain term a (the inverse of full flow) are currently known, the contribution of gain term A can be removed from the combined gain term, leaving the valve actuator and Valve's synthetic gain term CD. As mentioned above, the gain C is the change in valve displacement divided by the corresponding change in the drive signal (such as the DS provided by the gain / guide / delay controller). The gain D is the change in flow rate divided by the corresponding change in valve displacement. In step 54, the contribution of the gain D is removed. In order to further differentiate the synthetic gain term CD, we use the physical model of the valve to determine the required valve displacement (that is, determine the gain D) in order to achieve a specific flow rate under specific operating conditions. One of the physical valve models that can be used to determine the gain D is illustrated and described in paragraph D, titled "Solid Valve Model" below. It should be understood that: different valves and valve types ______S9__ This paper size applies to China National Standard (CNS) A4 specification (21〇x 297 public love) ----------------- ---- Order --------- line (please read the notes on the back before filling this page) 538327 A7 ___B7_____ V. Description of the invention ( < |) will have different entity models. Furthermore, the existence of more than one solid model will not be sufficient to simulate the characteristics of any particular valve. Therefore, the invention is not limited to any particular valve model. In one embodiment, the gain D is determined by calculating the valve displacement required to reach each flow represented by the selected set point set {d S ϋ, d S 1, d S 2, ...}. Therefore, we can calculate the amount of change in flow divided by the amount of change in displacement calculated from the physical model (ie, the gain term D). In step 55, the gain term D is removed from the synthesized gain term CD and separated from the gain term C. It should be understood that the gain term c (the gain associated with the valve actuator) can be effectively independent of the process fluid and / or process operating conditions. Therefore, when the mass flow controller is set to work with a specific process fluid and / or process operating conditions, the gain term C can be maintained. In the system setting step 60, the process fluid and / or process operating conditions are used for the same. The control parameters are determined. When the gain term D is separated from the gain term C, it is also noted that the solid model has taken into account the fluid species, inlet and outlet pressure, temperature, etc. At this time, the fluid species information and process operating conditions can be provided to the solid model and calculated. In order to achieve the required displacement at different flow rates, we can calculate the gain term D corresponding to the process gas and / or process operating conditions. Then, the gain A can be calculated by determining the full flow rate of the process fluid. Therefore, we can determine the system gain term C D A corresponding to the process fluid and / or process operating conditions. The reciprocal of this synthetic gain term can be formed and applied to the gain / guide / delay controller, so that the control loop of the mass flow controller has a fixed return ___53______ This paper size applies to China National Standard (CNS) A4 specification (210 x 297 mm) -------------- install --- (Please read the precautions on the back before filling this page) Order: -1 line · 538327 A7 _B7_ V. Description of the invention (P ) ----------------- (Please read the notes on the back before filling this page). In view of this, the mass flow controller has been set to operate on the process fluid and / or process operating conditions, as described in detail below. In step 61, the full flow range accompanying the process fluid on which the mass flow controller relies is set is determined. One method to determine the full flow range is to calculate a conversion factor based on the specific heat of the process fluid and the test fluid multiplied by the full flow range that the test fluid is accompanied by. It should be understood that there are other methods that can be used to calculate the full flow range that accompanies a particular process fluid. For example, where appropriate, the full flow range that accompanies a particular fluid can be measured directly. In one embodiment, we obtain the full flow range accompanying the test fluid used in the production process and stored as the setting data, and substitute it with Equation 6 with the process fluid species information to determine the full flow accompanying the process fluid. range. • Line • Gain C is formed in step 62. It should be understood that each time the mass flow controller is set to work with the new process fluid and / or process operating conditions, the gain term C can be calculated from the setting data discussed in step 50; or, if the previous calculation result has been For storage, it is retrieved from the storage location, for example, from the memory of the mass flow controller. In step 63, the gain term D corresponding to the process fluid and / or process operating conditions is determined by the physical model of the valve, which is performed by applying process fluid species information and / or process operating conditions to the physical model and calculating The amount of displacement required to reach a set of indicated flow rates. In step 63, the set {of the flow rate {is selected. f S. . f S 丄, cf S 2,…} together with process fluid species information and / or process operation bar _: _ 54_ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 538327 A7 _ — _ B7_____ 5. The invention description (^) is provided separately to the solid model, and the corresponding valve displacement is calculated. This information can be the selected collection {. f S 〇 ,. f S if S 2, ...}. Calculate the gain D, which is obtained by dividing the flow rate (eg female mouth-. F S i-i) by the corresponding valve displacement change. In step 64, the gain term D is multiplied by the gain term C to produce a composite gain term CD. Since the gain term A is the reciprocal of the full flow rate, the composite gain term CD can be divided by the process full flow range accompanying the process fluid determined in step 61 to form the composite gain term CDA shown in steps 65. 〇 In step 66, the inverse of the composite gain term CDA is calculated to form a reciprocal gain term G. In step 67, the reciprocal gain term G is applied to the control loop of the mass flow controller to provide a fixed loop gain. It should be understood that: the system gain of the mass flow controller is determined according to the information used in the process fluid and / or process operating conditions, and the reciprocal gain term of the system gain is applied to the control loop of the mass flow controller. The mass flow controller is It has been set to work with process fluids and / or process operating conditions. In other words, when the mass flow controller operates with process fluids and process operating conditions, the mass flow controller will present the same response observed after production with test fluids and test operating conditions; that is, when the mass flow controller When operating under process fluids and / or process operating conditions, it will exhibit a satisfactory response. It should be understood that through the use of a computer, the process of setting up a mass flow controller can be automated. For example, steps 50 and 60 can be completely controlled by the programs stored in the memory, and on the computer as a personal computer _______—___ 55____ This paper size conforms to the CNS A4 specification (21Qx 297 Gongchu) ~ ------------- install -------- order --------- line (please read the precautions on the back before filling this page) A7 538327 __B7____ 5. Description of the Invention (y //) A processor is executed. As a result, mass flow controllers can be set up automatically to work with any process fluid and / or process operating conditions. The term "automated or automated" here refers to a state where a computer is controlled mainly by or under computer control. In particular, automated dagger operations, steps, processes, and / or procedures do not require the involvement or supervision of a large number of operators. Therefore, the automatic setting of the mass flow controller means that the setting of the mass flow controller for the process fluid and / or process operating conditions does not require manual intervention. The setting of the mass flow controller under computer control is performed by Think of it as an automated setup. It should be understood that routine tasks such as connecting the mass flow controller to a computer or processor and launching a program are generally done manually. However, this type of work that is considered routine can be part of the automation setup of a mass flow controller. Figure 14 illustrates a system that facilitates the automated setting of a mass flow controller on any process fluid and / or process operating conditions. This system includes a mass flow controller 1000 and a computer 800. The mass flow controller 100 includes a memory 100, a processor 1004, and various different components of the mass flow controller 10006 referred to and described with reference to FIG. The processor is coupled to the memory and can be connected to at least some elements of the mass flow controller. As mentioned above, the operation of the mass flow controller can be performed under computer control, so that the gain / guide / delay controller is operated by the processor 104. The mass flow controller 1 0 0 also contains the production data obtained from the mass flow controller and stored in the memory 1 ◦ 0 2 1 2 0. _____56_____ This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) --------- I ----___ (Please read the precautions on the back before filling this page) ·- 1-line · 538327 A7 factory _____B7 __ V. Instructions () Computer 8 0 0 contains a memory 8 0 2, a processor 8 0 4, —input device, and programs stored in memory 8 02 8 1 0. Program 8 10 contains instructions that, when executed on processor 804, can perform various steps involved in setting a mass flow controller in order to work with process fluids and / or process operating conditions (for example: Step 7 1 2 in 7 a and step 70 in Figs. 7 b, 7 e, and 7 f, etc.). It should be understood that the computer 800 can be any conventional computing device. For example, the computer 800 may be a personal computer, a laptop computer, a sheep holding device, or any computing device capable of executing a program. In addition, the computer 800 can be connected to and communicates with the mass flow controller in any conventional manner. For example, the computer 800 can be connected by cables using any standard communication method, including standard parallel port communication, serial port communication, universal serial bus (U S B), etc., but not limited to the above. In other alternatives, wireless communication can be established between the computer 800 and the mass flow controller. Therefore, it should be understood that the present invention is not limited to a specific type of computing device, input device, connection type, or communication method, and so on. In fact, a variety of computing devices, connection types, and communication methods are applicable. According to an embodiment of the present invention, the computer 800 may be connected to the mass flow controller to facilitate setting the mass flow controller on the process fluid and / or process operating conditions. Program 8 1 0 can then be executed on processor 8 0 4. The set input can be provided to the input device 8 0 8. Setting inputs include: process fluid species information, process operating conditions, and / or other information related to the mass flow controller settings, but not limited to the above. The input device can be any type of device capable of receiving information, such as a keyboard or a small keyboard, which is used to connect _____57_ This paper size applies to China National Standard (CNS) A4 (210 x 297 public love) --- I --- -I I --- · III I --- order --------- line (please read the precautions on the back before filling this page) 538327 A7 __B7____ V. Description of the invention (0) Accept the mole input Interface software, pointing devices, etc., but not limited to the above. Then, the program 8 10 can obtain the setting data stored in the memory 100 2 of the mass flow controller. The program 8 10 can determine the control parameters used by the mass flow controller by setting data and setting inputs. These parameters can promote the operation of the mass flow controller using process fluid and / or process operating conditions. By changing existing control parameters or adding additional control parameters to the mass flow controller, the program 8 10 can then apply the above parameters to the mass flow controller. In this case, the mass flow controller can be automatically set to operate using the process fluid and / or process operating conditions. In another embodiment shown in FIG. 15, the program 8 10 may be stored in the memory 1 0 2 of the mass flow controller and may be executed on the processor 10 0 4; the processor 1 0 0 4 can be used to operate the gain / guide / delay controller 1 50. The input device 1 0 0 8 can be attached to the mass flow controller, allowing the mass flow controller to receive setting inputs. Therefore, the mass flow controller 100 shown in FIG. 15 can be set automatically. C. Reduction of hysteresis It is often the case that the mass flow controller will experience instability associated with the operation of its individual components. For example, a mass flow controller using a solenoid-actuated valve is susceptible to the uncertainty caused by the hysteresis accompanying the solenoid's magnetism. One embodiment of the present invention provides a method for reducing the hysteresis of a solenoid device, by applying a non-operational signal to the solenoid actuating device. ___ 58 .__ _ A paper size is applicable to Chinese national standards (CNS) A4 specifications (210 x 297 mm) ------------- installation-(Please read the precautions on the back before filling out this page)-• Line-538327 A7 __B7____ V. Description of the invention (fp ----------------- (Please read the precautions on the back before filling out this page) When applied to a solenoid actuating device, the non-operational signal is Refers to a signal applied to a device that cannot actuate a device. For example, in a solenoid-actuated valve, a non-operational signal may refer to a signal whose size cannot control a controlled component of a valve (ie, a piston). It should be understood Yes: The non-operational signal can be the control or drive signal of the device, but its signal strength is not enough to start the device. Figure 8 shows the hysteresis in the solenoid-actuated control valve of the mass flow controller. The valve is in the normally closed position (that is, the preset closed position of the valve is referred to herein as Normally closed position). In Figure 8, the drive current of the control valve is plotted on the horizontal axis, and the flow through the control valve is marked on the vertical axis. Although Figure 8 is specifically for the solenoid in the mass flow controller The control valve is actuated, but it should be understood that it only represents a general solenoid device; the horizontal axis usually corresponds to the energy supplied to the solenoid actuation device, and the vertical axis usually corresponds to the solenoid actuation The displacement of the device. As shown in Figure 8, when the valve driving current increases, the actual flow of the valve is controlled until the amount of driving current provided is sufficient to overcome the spring force of the spring and the control valve deviates from its closed position. Beginning to increase. In Figure 8, the amount of driving current required to overcome this spring force is marked as point Xι. Under normal operating conditions, the actual flow rate through the control valve starts to increase at a point after point Xι. Such as the curve (: As shown in i, when the valve current increases beyond the point X 2, the actual flow through the control valve will increase proportionally-but it increases non-linearly. Where the curve C 1 is marked as R i量 流 控 芾 [J device's normal closing control valve's typical operating range. Although Figure 8 is not depicted in a fully proportional way, but the quality ______ 59_____ This paper size applies Chinese National Standard (CNS) A4 specifications (210 x 297 公 餐) 538327 κι Ξί ----- 5. Description of the invention (θ) The normal operating range of the flow controller is the control valve's operating range, which usually represents the displacement of the control valve [J valve from its closed position by a few microns. The valve drive current above point X 3 represents operation beyond the operating range of the mass flow controller (eg, the mass flow rate range where the mass flow controller is designed and / or calibrated for operation); the fully open position of the control valve ( The point above X5) represents the eradication mode of the mass flow controller, in which the displacement of the control valve (from its closed position) is on the order of about 250 microns. It should be understood that although the fully open position of the control valve is the operating position where the mass flow controller is designed, it is not a position that can accurately control and / or monitor the mass flow rate flowing therethrough. Therefore, when applied to a mass flow controller, the term operating range is defined herein as the range of displacement at which the flow rate of a fluid through a control valve can be accurately controlled and / or monitored. As shown in Fig. 8, when the control valve is pulled to its fully open position and the valve drive current is subsequently reduced, the curve of the flow through the control valve versus the drive current is no longer the curve C i but tends to a different curve C 2. Therefore, when the valve current drops from point X5, the flow through the control valve will not decrease until it approaches point X6. At this time, the actual flow will decrease proportionally to the valve drive current with curve C2. After operating the control valve in this way (that is, first operating the control valve along curve C: and then returning to its closed position along curve C2), if we want to resume normal operation, the actual flow through the control valve is no longer Along the curve Ci, but another curve C 3 located between the curve Ci and the curve C2. In fact, when the curve < 3 i represents the graph of the driving current versus actual flow of the previously unmagnetized solenoid-controlled valve, and the curve 〇2 represents the magnetic ___ _ _60____ — this paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) installed --- (please read the precautions on the back before filling out this page) 0 --- line-538327 A7 ------- B7_______ V. Description of the invention (^) The graph of the drive current versus actual flow of the control valve (for example, after returning the control valve to its closed position along C2), curve C3 will be closer to curve c2 as shown. Therefore, the actual flow does not start at point X2, but starts near point χ7. If the control valve is operated along Qu Maoquan C 3 within its normal operating range and returned to the closed position, the next time the valve is opened, the actual flow of the valve through the control valve's actual flow will follow A different curve (such as curve 04) is one of a family of curves between the curve C1 and the curve C2. Is curve C 4 close to the curve? < 3 i or curve C 2, depending on the highest point on curve C 3, and the control valve operates at this highest point in the operating cycle. The above-mentioned operation of the control valve is called hysteresis, in which the current operating state depends on its previous operating state. Figure 9-13 shows several different waveforms. These waveforms can be used as non-operational signals to reduce the hysteresis in the solenoid actuating device. Each non-operational signal can drive the signal to the solenoid actuating device. For example, in the mass flow controller shown in FIG. 1, these non-operational signals can be provided to the valve actuator 16 by the gain / guide / delay controller 150 to reduce the hysteresis phenomenon. Referring to FIG. 9, a time-varying sinusoidal signal may be provided to a solenoid-actuated valve or other device, thereby mitigating a hysteresis effect. As shown in Figure 9, within a period of time T :, we can provide a sine waveform with reduced amplitude. In the case where the solenoid actuating device is a control valve of a mass flow controller, the amplitude of the sine signal should be smaller than the amount of current required to open the solenoid actuating device. For example, the mass flow of a solenoid-actuated valve in a normally closed position _____61______ This paper size applies the Chinese National Standard (CNS) A4 specification (21 × x297 mm) --- I --- I- I — I— II (Please read the precautions on the back before filling this page) ^ -r * »J · -1 line · 538327 A7 ________ B7______ 5. Invention 4 (" ο) -------- ------ Installation—— (Please read the precautions on the back before filling this page) In the controller, the maximum non-operational signal should be less than the minimum current required to overcome the spring force and open the valve. Therefore, return Referring to FIG. 8 'the maximum value of the above signal will be less than Xi to ensure that no fluid will pass through the valve when the waveform is provided. As shown in Figure 9, the time-varying waveform will reduce the amplitude within time T i. The result of I 佥Obviously, a frequency of about 10 Hz in 1 second is sufficient to pre-adjust the solenoid-actuated valve to a predetermined state, regardless of its previous state * (that is, regardless of whether the solenoid-actuated valve is in its normal operation Range operation, or operation outside the normal operating range, as in the erasure mode) In the case that the solenoid-actuated control valve is in the open position during normal times, the waveform should be such that the valve is in the closed position throughout the process to prevent fluid from passing through the valve. Although I think the waveform shown in Figure 7 is the most suitable for reducing The hysteresis effect in the solenoid actuating device, but empirical results have been determined, and various other waveforms can also be used to set the solenoid actuating device to a preset state. In a nutshell, various waveforms provide A time-varying signal to a solenoid-actuated device, and this signal can reduce the amplitude over time. However, empirical results also show that we do not have to use a time-varying waveform to reduce the amplitude, because a time-varying signal with a fixed amplitude can also be used. Figure 10 is another time-varying current waveform. This waveform can be used to reduce or eliminate the magnetically induced hysteresis effect in a solenoid-actuated control valve or other solenoid-actuated device. See Figure 9 The time-varying waveform reduces its amplitude at time T i and its maximum amplitude is less than the strength of the control signal required to allow fluid to pass through the valve. For the time-varying waveform shown in Figure 9, time Ding 1 —_______ 62______ This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210x 297 mm) 538327 A7 ___ _ B7___ V. The description of the invention (") is about 1 second to avoid interference with normal operation. However At this time, Wu Lu provides sinusoidal waveforms, but provides square waveforms. Based on empirical tests, we can also provide other time-varying waveforms, such as sawtooth waveforms. It should be understood that Figures 9 and 10 show Various waveforms can provide positive 値 and negative 値 to the worm accumulator actuating device. Generally, when the solenoid actuating device is set to a predetermined state, a waveform that can provide both positive and negative 値 is used. For the better, ® this kind of wave can effectively release the residual magnetism caused by the magnetic core of the solenoid actuating device during the operation. Figures 11 and 12 illustrate other waveforms that can be used to reduce or eliminate the effects of hysteresis in a solenoid-controlled gravity control valve. The waveform shown in Fig. 11 also has a reduced amplitude in time Ti. However, in contrast to the waveforms shown in Figures 9 and 10, the time-varying waveform depicted in Figure 11 contains only positive chirp. We may not be able to provide a signal that guarantees both positive and negative signals, and it depends on the circuit that uses the solenoid to control the valve. Figure 12 illustrates a time-varying waveform that can be used to reduce or eliminate the effects of hysteresis in a solenoid-actuated control valve. Although the triangle wave pattern is shown in the figure, it should be understood that a sine waveform, a square waveform, or any other I-shaped waveform can also be used. It should be understood that in each of Figures 9-12, the maximum amplitude of the time-varying waveform is the amplitude that prevents it from activating the solenoid-actuated control valve because the maximum amplitude is less than that required to overcome spring force and open the valve Control or drive signal strength. The applicant of this case has found that the time-varying current waveform shown in Figure 12 can be easily provided to the components currently used in the mass flow controller without the need for an additional circuit system. In addition, other time-varying waveforms can also be provided ____ 63 _------ This paper size applies to China National Standard (CNS) A4 (210 x 297 mm). ----- line (please read the notes on the back before filling this page) 538327 B7 V. Description of the invention), for example: square waveform or zigzag waveform. It should be understood that the square waveform can be provided with few or no additional circuitry because the square wave can be generated by the clock signal used by the microprocessor of the mass flow controller. The applicant of this case has empirically judged that a frequency of about 10 Hz is more suitable for a time of about 1 second; a time of 1 second is selected to avoid interference with normal operation. It should be understood that different lengths of time 'may also be provided as the invention is not limited to any particular length of time. Figure 13 shows another waveform that can be used to set the ¢ 1 spool actuator to a predetermined state after each operation cycle. As shown in Figure 13, a negative tritium pulse is applied to the core of the solenoid actuating device. When used with a mass flow controller, the sign of this pulse should generally be the opposite of the sign capable of opening a solenoid-actuated control valve. For example 'for actuating a control valve with a normally closed solenoid, this symbol should correspond to a negative pulse. It should be understood that the current pulse applied should be a pulse of the opposite polarity to that required by the mass flow controller. In a general solenoid actuating device, the above-mentioned pulses should be generated so that the solenoid actuating device cannot be started, and the polarity is opposite to that of the normal driving signal. It should be understood that the non-operational signals may be current, voltage or other. Therefore, the waveforms shown in Figure 9-13 and described here are considered to be specific types of time-varying waveforms that can be used in any implementation (such as: Risi current waveform, time-varying Voltage waveform, etc.). The above-mentioned various drive-requiring signal waveforms can set a solenoid-actuated device, such as a female port control valve, to a predetermined state. In view of this, referring back to FIG. 8, we can know on which curve C the actuation device will operate. Therefore, the device ___________64__ This paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) ---------------- I I --- Order ---- -I ---- line (please read the notes on the back before filling this page) 538327 A7 ______ Β7 —_____ V. Description of the invention u;) The inaccuracy caused by operation on any of the curves of the ci family can be Reduced or eliminated. It should be understood that although it is not necessary to set the solenoid actuating device to a predetermined state after each operation cycle, it is better to do so. For example, if the solenoid actuating device normally operates within its normal operating range, the solenoid spring actuating device only needs to be set to a predetermined bark state when it operates outside its normal operating range. If the solenoid actuating device typically operates within its normal operating range, the next cycle operation will generally operate on the same curve, or on a curve that is substantially close to following the previous operating state (for example J: Curve C 4 in FIG. 8). However, since detecting when the solenoid-actuated device operates outside its operating range requires additional circuitry, itb, it is better to have the solenoid-actuated device better after each operating cycle Set to a predetermined state regardless of whether the previous state is within or outside the operating range. In this case, the solenoid actuating device will be considered to follow a certain curve in operation, regardless of its previous operating state. It should be understood that non-operational signals may be provided in a variety of ways, and the present invention is not limited to any particular implementation. For example, various waveforms (such as the waveforms shown in Figure 9-13) can be generated by the control and control electronics of the mass flow controller (such as the gain / guidance / delay controller 1 50) and generated by the valve The actuator is converted into a non-operational signal and then supplied to the valve to reduce the hysteresis effect. In the alternative, a function generator can be coupled to the valve or valve actuator to provide a non-operational signal to reduce the hysteresis effect. The waveforms generated by any kind of device can be in digital or analog form, and can be implemented according to specific implementation. _ —_ 65 This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) '^ (Please read first Note on the back, please fill in this page again.) Installation · i-line. 538327 A7 B7 V. Description of invention (M) needs to be appropriately converted. Many techniques are known in the art for generating suitable signals without departing from the scope of the present invention. D. Solid valve model According to another aspect of the present invention, the fluid flow situation has been physically modeled at different inlet and outlet pressures, which mainly includes two components: viscous pressure drop and non-viscous (dynamic) pressure drop . By calculating the sum of the contributions of these components-the effective displacement of the valve of each component is equal, the effective displacement of the valve can be determined empirically using the following method. As mentioned above, determining the effective displacement of a specific fluid at a specific flow rate will be sufficient to determine the gain term (such as gain term D) accompanying the valve, and then determine the gain term (such as gain) accompanying the valve actuator. Item C). Referring to Figure 16, let P 1 be the upstream or inlet pressure, and P 2 be the downstream or outlet pressure. When the mass flow rate is Q, the valve rises to Η, and the viscosity effect itself makes the pressure drop from 卩 i to a certain value. Intermediate QP χ. The non-viscous compressible fluid further reduces the pressure from P X to P 2. According to the solid model of the viscous fluid between two parallel plates (such as between the valve seat and the nozzle surface) to mold the viscous pressure drop through the valve 170, the distance between the two parallel plates Η can be provided by the following equation: Equation 1 66 This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) — — — — — — — — — — — — II ί 1 II Order — — — — — — — — (( (Please read the notes on the back before filling this page) 538327 A7 B7 V. Description of the invention (W <) where: pi, p X: pressure upstream and downstream of the viscous surface (P si QL Η w mass flow rate (standard cubic centimeter / minute, sc cm); length of flow path (ft); two parallel plates Distance (ft); the width of the flow path, W is equal to ττ · 0, where is the average diameter of the flat top 6 50 0, according to the test valve, 0 equals 0.0 4 0: the dynamic viscosity of the gas (ce η

Poise T :絕對溫度(度R a n k i n e ); R :理想氣體常數,1545.33 (ft — lbf 1 b-mol e-deg. R ); R :氣體常數(f t — 1 b fPoise T: absolute temperature (degrees Ra n k i n e); R: ideal gas constant, 1545.33 (ft — lbf 1 b-mol e-deg. R); R: gas constant (f t — 1 b f

b m — d e g . R 以通過一孔或噴口之流體的非黏滯性流實體模型爲基 礎來模擬非黏滯性壓力降,可爲阻塞流提供下列方程式: =1·2686χ106 尸。 jc,0 2 Ϊ ---I---— II---- I I I I--—訂---------*5^ (請先閱讀背面之注意事項再填寫本頁) γ + \ 67 方程式2 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 538327 A7 B7 五、發明說明(处) 對於非阻塞性流則爲: _ _ (宁) ^=1.2686xl06Po P, 2γ A 1 2/b m — de e. R Based on a non-viscous flow model of a fluid passing through a hole or nozzle to simulate a non-viscous pressure drop, the following equations can be provided for obstructed flows: = 1 · 2686 × 106 corpse. jc, 0 2 Ϊ --- I ---- II ---- III I --- order --------- * 5 ^ (Please read the notes on the back before filling this page) γ + \ 67 Equation 2 This paper size applies to Chinese National Standard (CNS) A4 (210 x 297 mm) 538327 A7 B7 V. Description of the invention (where) For non-blocking flow: _ _ (宁) ^ = 1.2686 xl06Po P, 2γ A 1 2 /

-ι)μγ( r -P 一 v-l ^ (—) r < jc,0 —1 > V Η J 方程式3 其中,若下式成立,則該流爲阻塞流;否則爲阻塞流 Α. Ρχ,〇 < 2 γ + \ 方程式4 其中: Q=通過閥門的流率(s c c m); A二7Γ · (/) · H =閥門有效面積(平方英吋) 0二孔口 1 6 4 0之直徑; Mw =氣體分子量(克/莫耳); Ρχ,。=上游總壓力(t 〇 r r ); P2 =下游靜壓力(t ◦ r r ); 1^,〇 =氣體溫度(K ); r二比熱率。 68 --------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度用中國國家標準(CNS)A4規格(210 x 297公釐) 538327 A7 ^-----------B7___ 1 X $明說明(叭) 由上述黏滯性與非黏滯性方程式可知,閥門1 7 0之 有^效位移量(即Η )可輕易被決定。雖然上述非黏滯性方 程式中所使用的單位有某些不同於黏滯性方程式中所使用 白勺單位’但該等方程式之間沒有類別上的差異,且單位轉 換因子已建置於各方程式之數値常數內。 爲決定閥門之有效位移量,假設測量到的流率爲Q, 而r測量到的上游及下游壓力分別爲ρ 1及卩2,同時忽略速 度對於總壓力的貢獻,吾人即可進行一種計算閥門1 7 0 之位移量的方法。一種計算有效位移量之方法係利用嘗試 錯誤法來估計中間壓力P X,其中吾人係依照黏滯流理論( H v,方程式1 )及非黏滯流理論(H i,方程式2或3 )來計算Η値,選擇何種理論取決於流體是否爲阻塞流而 定。因此,若約兩個大氣壓的中間壓力大於出口壓力,則 可假設爲阻塞流,此時即可利用方程式2來計算非黏滯性 分量;然而,若入口壓力小於約兩個大氣壓且大於出口壓 力,則利用方程式3計算非黏滯性分量。給定Q、P dDP 2,當Η ν和H i彼此相等時,即可得到正確的Ρ χ。因此 ,計算方案渉及到連續遞迴計算以獲得Ρχ。然後計算黏滯 性閥門上升(Η ν )和非黏滯性上升(H i )。若判斷出 Hv大於Hi ,則此意謂沒有足夠的壓力差,使黏滯性流 丰目較於非黏滯性流能傳遞所需要的流體,而在下一個遞迴 汁算中將會選擇較低的壓力Ρχ’ 一其介於下游壓力P2與 先前的壓力Ρ X之間。遞迴計算會持續進行,直到Ην與Η i彼此相差〇 ·1 %內爲止。根據本發明之另一樣態,此遞 ^_ 69 ___ 中國國家標準(CNS)A4規格(210 X 297公釐) -----I--I--------I---訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 A7 ___B7___ 五、發明說明(>?>) 迴過程可在軟體中實施。執行此遞迴計算的軟體可輕易地 由熟習此項技藝之人士進行操作,並在電腦上執行。有鑑 於此,依照上述方法,可決定在各種不同流率時的閥門1 7 0有效位移量。 如先前所討論者,依照各種不同液體或氣體所進行的 糸莖驗測試,本案申請人已得知質量流量計之增益項A的貢 獻比例如何隨氣體之不同而改變,因爲其主要係由所使用 的液體或氣體之比熱來決定。有鑑於此,一旦質量流控制 器1 0 0由已知液體或氣體加以校準之後,此增益項如何 隨著其它類型的氣體而改變即爲已知。此外,對質量流控 芾[J器1 0 0而言,增益/引導/延遲控制器1 5 〇之貢獻 I:匕例爲已知,因爲各種決定此增益項的常數可儲存於質量 流控制器1 0 0之記憶體內,且閥門致動器1 6 0之增益 項C的貢獻比例實際上爲常數或已知。有鑑於此,剩餘的 1C作係如何決定閥門1 7 0之增益項貢獻比例,以及決定 在不同氣體及不同操作條件下,氣體路徑如何改變,以及 女口何補償質量流控制器1 〇 〇在不同於起初被校準時所使 用的液體或氣體之範圍的改變量。 根據本發明之另一樣態,其提供一種校正質量流控制 器之方法’該質量流控制器係在已知條件下以已知液體或 氣體加以調整;該方法可用於校準質量流控制器,使其在 不同液體或氣體上’或以不同於調整時所用的操作範圍具 有幾近相同的響應。如以上所討論者,質量流控制器1 〇 0起初係在已知氣體(如氮氣)上以已知的入口壓力及出 ----—?〇_ 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) ----------------I----訂---------線 (請先閱讀背面之注意事項再填寫本頁) 538327 B7 五、發明說明()^ ) 口壓力加以調整。爲簡明起見’本發明之一實施例選擇大 於兩個大氣壓的入口壓力’以及周圍環境下的出口壓力。 有兩項原因使選擇上述入口壓力和出口壓力較爲有利。第 一,使用關於阻塞流之入口及出口壓力有助於閥門及閥門 氣體路徑之實體模型化’因爲只有阻塞流條件可用於非黏 、帶性壓力降方程式。第二’此種操作(即壓力降約爲兩個 大氣壓)係直接使用者所使用的典型操作。在此等條件下 ,氣體路徑之增益可定義如下: (change of gas flow) /{full scale flow range) gain=--- {change of valve drive)/ (Max valve drive) 方程式5 爲了以新的全流量在氣體” 上操作同一個質量流 控制器,質量流控制器1 0 0之閉合迴路增益將預期如下 式己夂變: --------------裝--- (請先閱讀背面之注意事項再填寫本頁) --線_ new gain on gas x 1 _ 0.4 Mw 丄 N2 0.2 old N2 range old gain on N2 [Cfc] Mw L ^」 new N2 range 適 度 尺 張 紙 本 準 標-ι) μγ (r -P-vl ^ (—) r < jc, 0 —1 > V Η J Equation 3 where, if the following formula holds, the flow is a blocking flow; otherwise it is a blocking flow A. ρχ , 〇 < 2 γ + \ Equation 4 where: Q = flow rate through the valve (sccm); A 2 7Γ · (/) · H = effective area of the valve (square inches) 0 2 orifice 1 6 4 0 of Diameter; Mw = molecular weight of the gas (g / mole); χ,. = Total upstream pressure (t 〇rr); P2 = downstream static pressure (t ◦ rr); 1 ^, 0 = gas temperature (K); r Specific heat rate. 68 -------- Order --------- line (Please read the precautions on the back before filling this page) This paper uses China National Standard (CNS) A4 specifications (210 x 297 mm) 538327 A7 ^ ----------- B7___ 1 X $ Explanation (Bat) From the above equations of viscosity and non-viscosity, we can know that the effective displacement of valve 1 7 0 The quantity (ie, Η) can be easily determined. Although the units used in the above non-viscous equations are different from the units used in the viscosity equations', there is no category difference between these equations, And the unit conversion factor has been established Within the constants of each equation. To determine the effective displacement of the valve, it is assumed that the measured flow rate is Q, and the upstream and downstream pressures measured by r are ρ 1 and 卩 2 respectively, while ignoring the velocity versus total pressure. Contribution, we can carry out a method of calculating the displacement of the valve 170. One method of calculating the effective displacement is to use trial and error to estimate the intermediate pressure PX, in which we are based on the viscous flow theory (H v, Equation 1 ) And non-viscous flow theory (Hi, Equation 2 or 3) to calculate Η 値, which theory to choose depends on whether the fluid is an obstructed flow. Therefore, if the intermediate pressure of about two atmospheres is greater than the outlet pressure, then It can be assumed to be an obstructed flow, and Equation 2 can be used to calculate the non-viscous component; however, if the inlet pressure is less than about two atmospheres and greater than the outlet pressure, use Equation 3 to calculate the non-viscous component. Given Q , P dDP 2, when Η ν and H i are equal to each other, you can get the correct P χ. Therefore, the calculation scheme 渉 and the continuous recursive calculation to obtain P χ. Then calculate the viscosity valve rise Η ν) and non-viscous rise (H i). If it is determined that Hv is greater than Hi, this means that there is not enough pressure difference to make the viscous flow richer than that required for non-viscous flow transfer. Fluid, and in the next recursive calculation, a lower pressure Pχ 'will be selected, which is between the downstream pressure P2 and the previous pressure PX. The recursive calculation will continue until Ην and Ηi differ from each other. · Up to 1%. According to another aspect of the present invention, this ^ _ 69 ___ Chinese National Standard (CNS) A4 specification (210 X 297 mm) ----- I--I -------- I --- Order --------- line (please read the precautions on the back before filling this page) 538327 A7 ___B7___ V. Description of the invention (>? ≫) The return process can be implemented in software. The software that performs this recursive calculation can be easily operated by a person skilled in the art and executed on a computer. In view of this, according to the above method, the effective displacement of the valve 170 at various flow rates can be determined. As previously discussed, according to the stolon test performed on various liquids or gases, the applicant of this case has learned how the contribution ratio of the gain term A of the mass flow meter varies with the gas, because it is mainly caused by The specific heat of the liquid or gas used is determined. For this reason, once the mass flow controller 100 is calibrated with a known liquid or gas, it is known how this gain term changes with other types of gases. In addition, for the mass flow control 芾 [J device 100, the contribution of the gain / guide / delay controller 1 5 〇 I: The example is known, because various constants that determine this gain term can be stored in the mass flow control The memory 100 of the controller 100 and the contribution ratio of the gain term C of the valve actuator 160 are actually constant or known. In view of this, how the remaining 1C operation determines the proportion of the gain term of the valve 170, and how the gas path changes under different gases and different operating conditions, and how the female mouth compensates the mass flow controller 1 〇〇 The amount of change from the range of liquid or gas used when initially calibrated. According to another aspect of the present invention, a method for calibrating a mass flow controller is provided. The mass flow controller is adjusted with a known liquid or gas under known conditions; the method can be used to calibrate the mass flow controller so that It has nearly the same response on different liquids or gases, or with a different operating range than when used for adjustment. As discussed above, the mass flow controller 1000 was initially based on a known gas (such as nitrogen) at a known inlet pressure and outlet ----—? 〇_ This paper size applies to the Chinese National Standard (CNS) A4 specification (21〇X 297mm) ---------------- I ---- Order --------- Line (Please read the precautions on the back first Fill out this page again) 538327 B7 V. Description of the invention () ^) The mouth pressure is adjusted. For the sake of simplicity, 'an embodiment of the present invention selects an inlet pressure greater than two atmospheres' and an outlet pressure in the surrounding environment. There are two reasons for choosing the above inlet pressure and outlet pressure. First, using the inlet and outlet pressures of the obstructed flow helps the physical modeling of the valve and the valve's gas path 'because only the obstructed flow condition can be used for the non-viscous, band pressure drop equation. The second 'operation (i.e., a pressure drop of about two atmospheres) is a typical operation used by the direct user. Under these conditions, the gain of the gas path can be defined as follows: (change of gas flow) / {full scale flow range) gain = --- {change of valve drive) / (Max valve drive) Equation 5 In order to use the new Full flow on gas "operates the same mass flow controller. The closed loop gain of the mass flow controller 100 is expected to change as follows: -------------- install- -(Please read the precautions on the back before filling this page) --Line _ new gain on gas x 1 _ 0.4 Mw 丄 N2 0.2 old N2 range old gain on N2 [Cfc] Mw L ^ '' new N2 range moderate size Standard on paper

格 規 4 )A 方程式6 71_ 公 538327 A7 ____B7 ___ 五、發^明說明(1。) 其中C f Cx =氣體X之轉換因子” C” ; 氣 體之分子量。 上述方方程式僅爲近似値,因爲另有一項係爲入口壓 力、溫度及比熱率的函數。然而,此額外項之效應冪次爲 Ο ·4,一般可以忽略。舉例而言,假設起初係以氮當作已 矢口液體或氣體來校準質量流控制器1 〇 〇,則此額外項之 數;偃軔圍從氮氣及其它雙原子氣體的0.6 8 4上升到單原 子氣體的0.7 2 6,並下降到多原子氣體的0.6 2 8,而 後再上升到幕次爲0 · 4。因此’氮氣的差値至多約3.5 % ,通常可予以忽略。爲了補償利用不同於校準時所使用的 氣體及/或不同操作條件所造成的增益變化,增益項G可 由上述比率之倒數而予以改變,以便爲質量流控制器提供 固定的閉合迴路增益,且與設定點、操作條件及所使用的 液體或氣體無關。換言之,若質量流控制器之閉合迴路增 益爲A*B*C*D,則將增益項G設定爲一常數乘上1 ^(A*C*D),以提供與校準時所使用相同的固定閉 合^迴路增益。 在此已詳細說明本發明之若干實施例,熟習此項技藝 之:人士當可輕易得知各式不同的變更及改良。此等變更及 改:良均不脫離本發明之範圍。因此上述說明僅爲範例,不 )¾視爲限制條件。本發明僅由申請專利範圍及與其均等物 方口以界定。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I-----------^---------^ (請先閱讀背面之注意事項再填寫本頁)Specification 4) A equation 6 71_ public 538327 A7 ____B7 ___ V. clarification (1.) where C f Cx = conversion factor “C” of gas X; molecular weight of gas. The above equation is only approximate 値, because another term is a function of inlet pressure, temperature, and specific heat rate. However, the power of this extra term is 0 · 4, which can generally be ignored. For example, suppose that the mass flow controller 100 was initially calibrated with nitrogen as a liquid or gas, and the number of this additional term will increase from 0.6 8 4 of nitrogen and other diatomic gases to single. 0.7 2 6 of the atomic gas, and decreased to 0.6 2 8 of the polyatomic gas, and then rose to 0 · 4. Therefore, the difference in nitrogen is at most about 3.5%, which can usually be ignored. In order to compensate for changes in gain caused by the use of different gases and / or different operating conditions during calibration, the gain term G can be changed by the inverse of the above ratio to provide a fixed closed loop gain for the mass flow controller, and The set point, operating conditions and the liquid or gas used are independent. In other words, if the closed loop gain of the mass flow controller is A * B * C * D, the gain term G is set to a constant multiplied by 1 ^ (A * C * D) to provide the same Fixed closed ^ loop gain. Several embodiments of the present invention have been described in detail here. Those skilled in the art can easily understand various changes and improvements. These changes and modifications do not depart from the scope of the present invention. Therefore, the above description is only an example and is not considered as a limiting condition. The present invention is defined only by the scope of patent application and its equivalent. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) I ----------- ^ --------- ^ (Please read the notes on the back first (Fill in this page again)

Claims (1)

538327 A8 8s8 D8 六、中請專利範圍 1 · 一種用於設定質量流控制器之方法,使該質量流 制器與製程ί栄作條件共同運作,該等製程操作條件至少 有^ 一部分不同於該質量流控制器於生產過程中所使用的測 言式操作條件,該方法包含: 以該等測試操作條件來建立該質量流控制器之一響應 ;以及 根據該等製程操作條件來更改該質量流控制器之至少 ——控制參數,使得以該等製程操作條件進行操作的質量流 控制器之響應不會產生實質變化。 2 ·如申請專利範圍第1項之方法,其中該等製程操 f乍條件包含一製程流體,該製程流體不同於該測試流體, 且其中更改該質量流控制器之至少一控制參數之動作包含 丰艮據至少部分製程流體物種資訊來更改至少一控制參數之 動作。 3 ·如申請專利範圍第1項之方法,其中該更改動作 包含根據該等製程操作條件來決定至少一伴隨該質量流控 芾!1器之複數個單獨元件其中至少之一之增益項的動作。 4 ·如申請專利範圍第3項之方法,其中該決定該至 少一增益項之動作包含決定一互逆增益項之動作,該增益 項係藉由取得該至少一增益項之乘積的倒數而形成。 5 ·如申請專利範圍第4項之方法,其中該等複數個 單獨元件包含一閥門,且其中該決定該至少一增益項之動 作包含由該閥門之實體模型來決定至少一增益項之動作。 6 ·如申請專利範圍第4項之方法,其中該更改該至 本紙張只^度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------------------裝---------------訂----------------線 (請先閲讀背面之注意事項再塡寫本頁) 538327 A8 B8 C8 D8 六、申請專利範圍 少'一控制參數之動作包含更改至少一控制參數使其等於該 吞:逆增益項。 7 ·如申請專利範圍第1項之方法,其中該更改該至 少一控制參數之動作包含根據該等製程操作條件來決定複 數個伴隨於該質量流控制器之複數個元件的製程增益項之 重力作,該等複數個元件構成該質量流控制器之一控制迴路。 8 ·如申請專利範圍第7項之方法,其中該決定該等 複數個製程增益項之動作包含決定一製程互逆增益項之動 f乍,該製程互逆增益項係藉由取得該等複數個製程增益項 之乘積的倒數而形成,該製程互逆增益項係爲至少一可變 操作條件之一函數。 9 ·如申請專利範圍第8項之方法,其中該更改該至 少一控制參數之動作包含更改至少一控制參數使其等於該 製程互逆增益項之動作,使得該控制迴路相對於至少該至 少一可變操作條件具有一固定迴路增益。 1 0 ·如申請專利範圍第7項之方法,其中該等複數 f固元件中至少之一包含一閥門,且其中決定該等複數個製 程增益項之動作包含由該閥門之一實體模型來決定該等複 擻個增益項至少之一增益項之動作。 1 1 ·如申請專利範圍第7項之方法’其中決定該等 複數個製程增益項之動作包含由該等製程操作條件之一製 程流體所伴隨之一製程全流量範圍來決定該等複數個增益 項至少之一增益項之動作,且該製程流體不同於該測試流 JH* 體。 __—-2__----— 本紙張八度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) ••裝 、\έ 線 538327 A8 B8 C8 D8 、命請專利範圍 1 2 ·如申請專利範圍第1項之方法,進一步包含在 _立該響應之過程中取得設定資料之動作。 1 3 ·如申請專利範圍第1 2項之方法,其中該建立 言亥響應之動作包含在該等測試操作條件下以該測試流體建 ΪΖ:該質量流控制器之一動態響應之動作。 1 4 ·如申請專利範圍第1 3項之方法,其中該建立 言亥響應之動作進一步包含在該等測試操作條件下以該測試 済?;體建立該質量流控制器之一穩定態響應之動作。 1 5 ·如申請專利範圍第1 4項之方法,其中該質量 済!;控制器包含一流量計、一閥門及一閥門致動器,該方法 _ 一步包含在建立該質量流控制器之動態和穩定態響應之 過程中取得設定資料之動作;且 其中該取得設定資料之動作包含取得關於該流量計之 ——動態響應之至少一感應器調整資料、關於該閥門及閥門 S:動器之響應的閥門特徵資料,以及關於該質量流控制器 在第一組操作條件下以該測試流體所得穩定態響應的校正 資料之動作。 1 6 ·如申請專利範圍第1 2項之方法,其中該取得 言:受定資料之動作包含決定至少一測試增益項之動作,該測 言式增益項係伴隨在該等測試操作條件下以該測試流體操作 白勺質量流控制器之複數個元件至少其一。 1 7 ·如申請專利範圍第1 6項之方法,其中該取得 言受定資料之動作包含決定一測試互逆增益項之動作’該沏1 言式互逆增益項係藉由取得該至少一測試增益項之乘積的倒 ί請先閲讀背面之注意事項再塡寫本頁} 裝 線 本紙張&度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A8 B8 C8 D8 六、申請專利範圍 數:而形成。 1 8 ·$口申請專利範圍第1 7項之方法,其中該更改 言亥至少一控制J參數之動作包含決定至少一製程增益項之動 f乍,該製程增益項係伴隨根據該等製程操作條件的質量流 控制器之複數個元件。 1 9 ·如申請專利範圍第1 8項之方法,其中該決定 至少一製程增益項之動作包含決定〜製程互逆增益項之動 f乍,該製程互逆增益項係藉由取得該至少一製程增益項之 乘積的倒數而形成。 2 0 ·如申請專利範圍第1 9項之方法,其中該更改 震亥至少一控制參數之動作包含更改該測試互逆增益項使其 等於該製程互逆增益項之動作。 21·如申請專利範圍第19項之方法,其中該等複 數個元件包含一流量計、一閥門及一閥門致動器,且其中 名夬定該至少一製程增益項之動作包含決定複數個製程增益 項之動作,該等製程增益項係伴隨根據該等製程操作條件 質量流控制器之流量計、閥門及閥門致動器。 2 2 ·如申請專利範圍第2 1項之方法,其中該取得 該設定資料之動作包含決定一製程全流量範圍之動作,該 製程全流量範圍係伴隨該等製程操作條件之一製程流體, 且該製程流體不同於該測試流體。 2 3 ·如申請專利範圍第2 2項之方法,其中該決定 該等複數個製程增益項之動作包含決定至少一製程閥門增 益項之動作,該製程閥門增益項係伴隨來自該閥門之實體 本紙張人度適用家標準(CNS)A4規格(21〇 x 2971公I) ' --- -------------------------裝·--------------訂................線 (請先閲讀背面之注意事項再填寫本頁) 538327 A8 B8 C8 D8 六、申請專利範圍 模型的閥門,且該閥門之實體模型適於選取該等製程操作 f条件做爲參數。 2 4 ·$口申請專利範圍第2 3項之方法,其中該決定 言亥製程閥門增益之動作包含決定一製程閥門致動器增益, 該製程閥門致動器增益係伴隨來自該閥門之實體模型的閥 致動器。 2 5 ·如申請專利範圍第2 2項之方法,其中該決定 言亥等複數個製程增益項之動作包含根據該等製程全流量範 圍決定一製程流量計增益之動作。 2 6· —種電腦可讀媒體,該媒體經過在一處理器上 執行的一程式加以編碼,當該程式於該處理器上執行時, 言亥程式會執行設定質量流控制器之方法,使該質量流控制 器與一組製程操作條件共同運作,該等製程操作條件至少 有一部分不同於於生產過程中用於建立該質量流控制器一 響應的測試操作條件,該方法包含下列動作: 接收至少一製程流體物種資訊及製程操作條件以做爲 —^輸入;以及 根據該輸入更改該質量流控制器之至少一控制參數’ ί吏得以該等製程操作條件進行操作的質量流控制器之響應 不會產生實質變化。 2 7 ·如申請專利範圍第2 6項之電腦可讀媒體,其 中該等製程操作條件包含一製程流體’該製程流體不同於 一測試流體,該測試流體係用於建立該響應,且其中更改 該至少一控制參數之動作包含根據至少部分製程流體物種 __________5 ----------- 本紙張適用中國國家標準(CNS)A4規格(210x 297公釐) (請先閲讀背面之注意事項再塡寫本頁) :裝 線' 538327 A8 B8 C8 D8 '申請專利範圍 資訊來更改至少一控制參數之動作。 裝------ (請先閲讀背面之注意事項再塡寫本頁) 2 8 ·女口申請專利範圍第2 6項之電腦可讀媒體,其 中該更改動作包含根據該輸入來決定至少一伴隨該質量流 _制器之複數個單獨元件至少其中之一之增益項的動作。 2 9 ·$□申請專利範圍第2 8項之電腦可讀媒體,其 屯該決定該至少一增益項之動作包含決定一互逆增益項之 重力作,該增益項係藉由取得該至少一增益項之乘積的倒數 而形成。 3 〇 ·$口申請專利範圍第2 9項之電腦可讀媒體’其 中該質量流控制器包含一閥門,且其中該決定該至少一增 翁項之動作包含由該閥門之實體模型來決定至少一增益項 之動作。 線 3 1 . $〇申請專利範圍第2 9項之電腦可讀媒體’其 中該更改該至少一控制參數之動作包含更改至少一控制參 數使其等於該互逆增益項。 3 2 ·如申請專利範圍第2 6項之電腦可讀媒體’其 中該更改該至少一控制參數之動作包含決定複數個伴隨& 操作於該製程操作條件之該質量流控制器之複數個元件白勺 製程增益項之動作,該等複數個元件構成該質量流控制 之一控制迴路。 3 3 ·如申請專利範圍第3 2項之電腦可讀媒體’其 中該決定該等複數個製程增益項之動作包含決定一製胃S 逆增益項之動作,該製程互逆增益項係藉由取得該等 十固增益項之乘積的倒數而形成,該製程互逆增益項係爲至 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A8 B8 C8 D8 申請專利範圍 少一可變操作條件之一函數。 3 4 · δα申請專利範圍第3 3項之電腦可讀媒體,其 中該更改該至少一控制參數之動作包含更改至少一控制參 數使其等於該製程互逆增益項之動作,使得該控制迴路相 對於至少該至少一可變操作條件具有一固定迴路增益。 3 5 · $口申請專利範圍第3 2項之電腦可讀媒體,其 中該等複數個元件包含一閥門,且其中決定該等複數個製 甲呈增益項之重ϋ作包含由該閥門之實體模型來決定至少之一 製程增益項之動作。 3 6 ·如申請專利範圍第2 6項之電腦可讀媒體,進 一步包含從該質量流控制器取得設定資料之動作,當該質 量流控制器之響應以該等測試操作條件被建立時,該設定 資料即被取得。 3 7 ·如申請專利範圍第3 6項之電腦可讀媒體,其 中該取得設定資料之動作包含取得感應器調整資料、閥門 特徵資料及校正資料至少其中之一之動作。 3 8 ·如申請專利範圍第3 6項之電腦可讀媒體,其 中該取得設定資料之動作包含決定至少一測試增益項之動 作,該測試增益項係伴隨在該等測試操作條件下以該測試 流體操作的質量流控制器之複數個元件至少其一。 ·如申請專利範圍第3 8項之電腦可讀媒體,其 中該取得設定資料之動作包含決定一測試互逆增益項之動 作,該測試互逆增益項係藉由取得該至少一測試增益項之 乘積的倒數而形成。 (請先閲讀背面之注意事項再塡寫本頁) 裝 、\έ 線538327 A8 8s8 D8 6. The scope of patent application 1 · A method for setting the mass flow controller so that the mass flow controller and the process conditions work together. At least some of the operating conditions of these processes are different from the quality Predictive operating conditions used by the flow controller in the production process, the method includes: establishing a response of the mass flow controller with the test operating conditions; and changing the mass flow control according to the process operating conditions At least-control parameters, so that the response of the mass flow controller operating under these process operating conditions will not cause substantial changes. 2. The method according to item 1 of the scope of patent application, wherein the process conditions include a process fluid, the process fluid is different from the test fluid, and the action of changing at least one control parameter of the mass flow controller includes Feng Gen acts to change at least one control parameter according to at least part of the process fluid species information. 3. The method according to item 1 of the scope of patent application, wherein the change action includes an action of determining at least one gain term accompanying at least one of the plurality of separate elements of the mass flow control device according to the process operating conditions. . 4. The method of claim 3 in the scope of patent application, wherein the action of determining the at least one gain term includes an action of determining a reciprocal gain term, and the gain term is formed by obtaining the inverse of the product of the at least one gain term . 5. The method of claim 4 in the scope of patent application, wherein the plurality of individual components include a valve, and wherein the action of determining the at least one gain term includes determining the action of the at least one gain term by a physical model of the valve. 6 · If you apply for the method in item 4 of the patent scope, where the change to this paper is only applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ------------ ------------ Install --------------- Order ---------------- Line (Please read first (Notes on the reverse side are reproduced on this page) 538327 A8 B8 C8 D8 VI. The scope of patent application is less. The action of a control parameter includes changing at least one control parameter to make it equal to the swallow: inverse gain term. 7. The method according to item 1 of the scope of patent application, wherein the action of changing the at least one control parameter includes determining the gravity of the process gain terms of the plurality of elements accompanying the mass flow controller according to the process operating conditions. The plurality of components constitute a control loop of the mass flow controller. 8. If the method of claim 7 of the scope of patent application, wherein the action of determining the plurality of process gain terms includes determining a process reciprocal gain term, the process reciprocal gain term is obtained by obtaining the complex numbers The inverse of the product of the process gain terms is formed as a function of at least one variable operating condition. 9 · The method according to item 8 of the scope of patent application, wherein the action of changing the at least one control parameter includes an action of changing at least one control parameter to be equal to the process reciprocal gain term, so that the control loop is relative to at least the at least one Variable operating conditions have a fixed loop gain. 1 0. The method according to item 7 of the scope of patent application, wherein at least one of the plurality of solid-state components includes a valve, and wherein the action for determining the plurality of process gain terms includes being determined by a physical model of the valve The actions of at least one of the plurality of gain terms. 1 1 · If the method of the 7th scope of the patent application ', wherein the action of determining the plurality of process gain terms includes determining the plurality of gains by a process full flow range accompanied by a process fluid of one of the process operating conditions And at least one of the gain terms, and the process fluid is different from the test flow JH * volume. __—- 2 __----— This paper is octave compatible with Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before writing this page) 538327 A8 B8 C8 D8, request patent scope 1 2 · If the method of applying for patent scope item 1 further includes the action of obtaining setting data in the process of establishing the response. 13 · The method of item 12 in the scope of patent application, wherein the action of establishing a response includes establishing a dynamic response with the test fluid under the test operating conditions: one of the mass flow controllers. 14 · The method of item 13 in the scope of patent application, wherein the action of establishing a response is further included under the test operation conditions to establish a steady state response of one of the mass flow controllers. action. 1 5 · The method according to item 14 of the scope of patent application, where the quality is 済! The controller includes a flow meter, a valve, and a valve actuator, the method _ one step includes the action of obtaining setting data in the process of establishing the dynamic and steady state response of the mass flow controller; and wherein the obtaining of setting data The actions include obtaining at least one sensor adjustment data about the flow meter's dynamic response, valve characteristics data about the response of the valve and valve S: actuator, and about the mass flow controller's operating conditions in the first group The following operation is based on the correction data of the steady state response obtained by the test fluid. 16 · If the method according to item 12 of the patent application scope, wherein the action of obtaining the specified data includes the action of determining at least one test gain term, the predictive gain term is accompanied by the test operation conditions. The test fluid operates at least one of a plurality of elements of the mass flow controller. 17 · If the method according to item 16 of the scope of patent application, wherein the action of obtaining the specified data includes the action of determining a test reciprocal gain term 'The 1-verb reciprocal gain term is obtained by obtaining the at least one The product of the test gain term is reversed. Please read the notes on the back before writing this page.} The binding paper & degree applies to China National Standard (CNS) A4 (210 X 297 mm) 538327 A8 B8 C8 D8 Six 2. Number of patent applications: formed. 18. The method of claim 17 in the scope of patent application, wherein the action of changing at least one parameter of controlling J includes the action of determining at least one process gain term. The process gain term is accompanied by operation according to these processes. Multiple components of a conditional mass flow controller. 19 · If the method according to item 18 of the scope of patent application, wherein the action of determining at least one process gain term includes the action of determining ~ process reciprocal gain term, the process reciprocal gain term is obtained by obtaining the at least one It is formed by the inverse of the product of the process gain terms. 20 · The method according to item 19 of the scope of patent application, wherein the action of changing at least one control parameter of Zhenhai includes changing the test reciprocal gain term to be equal to the process reciprocal gain term. 21. The method of claim 19 in the scope of patent application, wherein the plurality of components include a flow meter, a valve, and a valve actuator, and the action of determining the at least one process gain term includes determining a plurality of processes The action of the gain terms, these process gain terms are accompanied by flowmeters, valves and valve actuators of the mass flow controller according to the operating conditions of these processes. 2 2 · If the method according to item 21 of the scope of patent application, wherein the action of obtaining the setting data includes an action of determining a full flow range of a process, the full flow range of the process is a process fluid accompanying one of the process operating conditions, and The process fluid is different from the test fluid. 2 3 · If the method according to item 22 of the scope of patent application, wherein the action of determining the plurality of process gain terms includes the action of determining at least one process valve gain term, the process valve gain term is accompanied by the physical cost of the valve. Paper manpower applies CNS A4 specification (21 × 2971 male I) '--- ------------------------- -------------- Order ...... line (Please read the precautions on the back before filling this page) 538327 A8 B8 C8 D8 6. The valve of the patent application range model, and the physical model of the valve is suitable for selecting the process operation f conditions as parameters. 24. The method of claim 23 in the patent application scope, wherein the action of determining the gain of the valve of the Haihe process includes determining the gain of a process valve actuator, which is accompanied by a physical model from the valve. Valve actuator. 25. If the method according to item 22 of the scope of patent application, the action of determining a plurality of process gain items, such as Yan Hai, includes the action of determining the gain of a process flow meter according to the full flow range of these processes. 2 6 · —A kind of computer-readable medium, which is encoded by a program executed on a processor. When the program is executed on the processor, the Yanhai program will execute the method of setting the mass flow controller so that The mass flow controller operates in conjunction with a set of process operating conditions. At least some of the process operating conditions are different from the test operating conditions used to establish a response to the mass flow controller during production. The method includes the following actions: receiving At least one process fluid species information and process operating conditions are used as input; and at least one control parameter of the mass flow controller is changed according to the input; a response of the mass flow controller that can be operated by the process operating conditions No substantial change will occur. 2 7 · If the computer-readable medium of item 26 of the patent application scope, wherein the process operating conditions include a process fluid 'the process fluid is different from a test fluid, the test flow system is used to establish the response, and changes therein The action of the at least one control parameter includes at least part of the process fluid species __________5 ----------- This paper applies the Chinese National Standard (CNS) A4 specification (210x 297 mm) (Please read the (Notes are reproduced on this page): Installation line '538327 A8 B8 C8 D8' Patent application scope information to change at least one control parameter. Equipment ------ (Please read the precautions on the back before copying this page) 2 8 · Female-readable computer-readable media for item 26 of the patent scope, where the change action includes determining at least according to the input An action that accompanies the gain term of at least one of the plurality of individual components of the mass flow controller. The computer-readable medium of item 29 of the scope of patent application for 29, $ □, the action of determining the at least one gain term includes determining the gravity action of a reciprocal gain term, which is obtained by obtaining the at least one The inverse of the product of the gain terms. 3. The computer-readable medium of item 29 of the scope of patent application, wherein the mass flow controller includes a valve, and wherein the action determining the at least one booster item includes determining at least the physical model of the valve. A gain term action. Line 31. The computer-readable medium of item 29 of the scope of patent application 'wherein the action of changing the at least one control parameter includes changing at least one control parameter to be equal to the reciprocal gain term. 3 2 · If the computer-readable medium of item 26 of the patent application 'wherein the action of changing the at least one control parameter includes determining a plurality of elements of the mass flow controller accompanying & operating under the operating conditions of the process The action of the process gain term, the plurality of elements constitute a control loop of the mass flow control. 3 3 · If the computer-readable medium of item 32 of the scope of patent application 'wherein the action of determining the plurality of process gain terms includes the action of determining a stomach S inverse gain term, the process reciprocal gain term is determined by Formed by obtaining the reciprocal of the product of these ten solid gain terms, the process reciprocal gain term is up to the paper standard applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) 538327 A8 B8 C8 D8 Patent Application Scope A function with at least one variable operating condition. 3 4 · δα The computer-readable medium of item 33 of the patent application scope, wherein the action of changing the at least one control parameter includes an action of changing at least one control parameter to be equal to the process reciprocal gain term, so that the control loop is relatively Has a fixed loop gain under at least the at least one variable operating condition. 3 5 · The computer-readable medium of item 32 of the scope of patent application, in which the plurality of components include a valve, and in which the weight of the plurality of armor-making gain items is determined to include the entity consisting of the valve The model determines the action of at least one process gain term. 36. If the computer-readable medium of item 26 of the patent application scope further includes an action of obtaining setting data from the mass flow controller, when the response of the mass flow controller is established with the test operating conditions, the The setting data is obtained. 37. If the computer-readable medium of item 36 of the scope of patent application, the action of obtaining setting data includes the action of obtaining at least one of sensor adjustment data, valve characteristic data, and correction data. 38. If the computer-readable medium of item 36 of the scope of patent application, wherein the action of obtaining setting data includes an action of determining at least one test gain term, the test gain term is accompanied by the test under the test operating conditions. At least one of a plurality of elements of a fluid-operated mass flow controller. If the computer-readable medium of item 38 of the scope of patent application, the action of obtaining setting data includes an action of determining a test reciprocal gain term, the test reciprocal gain term is obtained by obtaining the Is formed by the inverse of the product. (Please read the notes on the back before transcribing this page) 538327 A8 B8 C8 D8六、申請專利範圍 4 0 ·$□申請專利範圍第3 9項之電腦可讀媒體,其 中1該更改該至少一控制參數之動作包含決定至少一製程增 益項之動作,該製程增益項係伴隨根據該等製程操作條件 白勺質量流控芾ίΐ器之複數個元件。 4 1 ·$□申請專利範圍第4 〇項之電腦可讀媒體,其 中該決定至少一製程增益項之動作包含決定一製程互逆增 益項之動作,該製程互逆增益項係藉由取得該至少一製程 ®益項之乘積的倒數而形成。 4 2 ·$□申請專利範圍第4 1項之電腦可讀媒體,其 中該更改該至少一控制參數之動作包含更改該測試互逆增 益項使其等於該製程互逆增益項之動作。 4 3 ·如申請專利範圍第4 1項之電腦可讀媒體,其 中該決定該至少一製程增益項之動作包含決定複數個製程 $曾益項之動作,該等製程增益項係分別伴隨根據該等製程 ί澡作條件的質量流控制器之流量計、閥門及閥門致動器。 4 4 ·如申請專利範圍第4 3項之電腦可讀媒體,其 中該決定該設定資料之動作包含決定一製程全流量範圍之 圍J作,該製程全流量範圍係伴隨該等製程操作條件之〜製 程流體,且該製程流體不同於該測試流體。 4 5 ·如申請專利範圍第4 4項之電腦可讀媒體,其 中該決定該等複數個製程增益項之動作包含決定至少〜製 程閥門增益項之動作,該製程閥門增益項係伴隨來自該閥 門之實體模型的閥門,且該閥門之實體模型適於選取該等 製程操作條件做爲參數。 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公愛) (請先閲讀背面之注意事項再填寫本頁} 裝 、-口 線 538327 A8 B8 C8 D8 六、中請專利範圍 4 6 ·如申請專利範圍第4 5項之電腦可讀媒體,其 中該決定該製程閥門增益之動作包含決定一製程閥門致動 器增益,該製程閥門致動器增益係伴隨來自該閥門之實體 模型的閥門致動器。 4 7 ·如申請專利範圍第4 4項之電腦可讀媒體,其 中該決定該等複數個製程增益項之動作包含根據該等製程 全流量範圍決定一製程流量計增益之動作。 4 8 ·如申請專利範圍第2 6項之電腦可讀媒體,其 與該質量流控制器結合,其中該處理器係包含於該質量流 控制器內,其中該程式被儲存於該質量流控制器之一記憶 體,該記憶體係耦合於該處理器,其中該輸入爲該質量流 控制器之一輸入,該輸入係耦合於該處理器,且其中當該 程式在該處理器上被執行時,該質量流控制器被設定與在 該輸入端接收到的製程操作條件共同運作。 4 9 ·如申請專利範圍第3 6項之電腦可讀媒體,其 與該質量流控制器結合,其中該處理器係包含於該質量流 控制器內,其中該程式被儲存於該質量流控制器之一記憶 體,該記憶體係耦合於該處理器,其中該輸入爲該質量流 控制器之一輸入,該輸入係耦合於該處理器,其中當該程 式在該處理器上被執行時,該質量流控制器被設定與在該 輸入端接收到的製程操作條件共同運作,且其中該設定資 料係儲存於該質量流控制器之記憶體內。 5 〇 ·如申請專利範圍第3 6項之電腦可讀媒體,其 輿一電腦結合,該電腦包含該處理器,且該程式在該處理 (請先閲讀背面之注意事項再塡寫本頁) 裝 、一 線 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 C8 D8 六、申請專利範圍 器上被執行,該電腦包含一記憶體,取自該質重流控制益 的設定資料係儲存於該記憶體內。 5 1 · —種設定一質量流控制器之方法,當以第一組 操作條件予以運用時,該質量流控制器具有一第一響應, 而當以第二,組操作條件於設定之前予以運用時’該質量流 控制器具有一第二響應,該方法包含下列動作: 以該第一組操作條件來操作該質量流控制器; 在該操作過程中,取得來自於該質量流控制器之設定 資料; 根據該設定資料設定該質量流控制器之至少一控制參 婁女,以提供運用該第一組操作條件所得之第一響應;以及 根據至少部分的設定資料,更改該至少一控制參數’ 以提供運用該第二組操作條件所得之第二響應。 5 2 ·$口申請專利範圍第5 1項之方法’進一步包含 決定複數個增益項之動作,該等增益項係伴隨以該第一組 操作條件進行操作的質量流控制器之諸元件。 5 3 ·$口申請專利範圍第5 2項之方法’其中該決定 該等複數增益項之動作包含決定伴隨一流量§十的流®3十^ 益項、伴隨一閥門致動器的閥門致動器增益項’以及伴隨 一閥門的閥門增益項之至少其一之動作。 5 4 ·$□申請專利範圍第5 2項之方法’其中該決定 言亥等增益項之動作包含決定一互逆增益項之動作’該5逆 增益項係藉由取得該等複數個增益項之乘積的倒數而形成 ,該互逆增益項係爲至少一可變操作條件之一函數。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) 裝 線 538327 A8 B8 C8 D8 六、中請專利範圍 5 5 ·如申請專利範圍第5 4項之方法,其中該設定 言亥至少一控制參數之動作包含設定至少一控制參數使其等 方令該互逆增益項。 5 6 ·如申請專利範圍第5 1項之方法,其中該取得 設:定資料之動作包含取得第一合成增益項之動作’該第一 合成增益項係伴隨至少一流量計、一閥門及一閥門致動器 ,該流量計、閥門及閥門致動器形成該質量流控制器之至 少部分控制迴路,且該質量流控制器係以該第一組操作條 f牛運作。 5 7 ·如申請專利範圍第5 6項之方法,其中該取得 言亥設定資料之動作包含決定一測試全流量範圍之動作,該 湏[J試全流量範圍係伴隨該第一組製程操作條件。 5 8 ·如申請專利範圍第5 7項之方法,其中該設定 該至少一控制參數之動作包含設定一控制迴路控制參數使 其等於該第一合成增益項之倒數,該控制迴路控制參數係 爲至少一可變操作條件之一函數,使得該控制迴路之一控 帘丨J迴路增益不會隨者至少旨亥至少一可變操作條件之函數而 變。 5 9 ·如申請專利範圍第5 8項之方法,其中該更改 該至少一控制參數之動作包含決定第二合成增益項之動作 ,該第二合成增益項係伴隨至少該質量流控制器之流量計 、閥門及閥門致動器,及以具有操作條件之參數之該閥門 之至少一實體模型爲基礎的第二組操作條件,以及一伴隨 於該第二組操作條件的製程全流量範圍。 ___—--u______ 本紙張又度適用中國國家標準(CNS)A4規格(210 X 297公^ -- 裝---------------訂.............-I-線 (請先閲讀背面之注意事項再塡寫本頁)538327 A8 B8 C8 D8 VI. Patent application scope 4 0 · $ □ Computer-readable media for item 39 of the patent scope, where 1 the action of changing the at least one control parameter includes the action of determining at least one process gain term, the The process gain term is accompanied by a plurality of components of the mass flow control device according to the process operating conditions. 4 1 · $ □ The computer-readable medium for which the scope of patent application is No. 40, wherein the action of determining at least one process gain term includes an action of determining a process reciprocal gain term. The process reciprocal gain term is obtained by obtaining the The inverse of the product of at least one Process® benefit. 4 2 The computer-readable medium of item 41 in the scope of patent application, wherein the action of changing the at least one control parameter includes an action of changing the test reciprocal gain term to be equal to the process reciprocal gain term. 4 3 If the computer-readable medium of item 41 of the scope of patent application, wherein the action to determine the at least one process gain term includes an action to determine a plurality of process $ Zeng Yi terms, these process gain terms are accompanied by Flowmeters, valves and valve actuators for mass flow controllers under conditions such as manufacturing processes. 4 4 · If the computer-readable medium of item 43 of the scope of patent application, the action of determining the setting data includes determining the range of the full flow range of a process, which is accompanied by the operating conditions of these processes. ~ Process fluid, and the process fluid is different from the test fluid. 4 5 · If the computer-readable medium of item 44 of the scope of patent application, wherein the action of determining the plurality of process gain terms includes the action of determining at least ~ process valve gain term, the process valve gain term is accompanied by the valve And the physical model of the valve is suitable for selecting these process operating conditions as parameters. This paper size is applicable to China National Standard (CNS) A4 specifications (210x 297 public love) (Please read the precautions on the back before filling out this page) Installation,-mouth line 538327 A8 B8 C8 D8 VI, Chinese patent scope 4 6 · For example, the computer-readable medium of item 45 of the scope of patent application, wherein the action of determining the gain of the process valve includes determining the gain of a process valve actuator. The gain of the process valve actuator is accompanied by a valve from a physical model of the valve Actuator. 47. If the computer-readable medium of item 44 of the scope of patent application, the action of determining the plurality of process gain items includes the action of determining the gain of a process flow meter according to the full flow range of the processes. 4 8 · If the computer-readable medium of item 26 of the patent application is combined with the mass flow controller, the processor is included in the mass flow controller, and the program is stored in the mass flow control. A memory of the processor, the memory system is coupled to the processor, wherein the input is an input of the mass flow controller, the input is coupled to the processor, and when the When the program is executed on the processor, the mass flow controller is set to work in conjunction with the process operating conditions received at the input. 4 9 · If the computer-readable medium of item 36 of the scope of patent application, its and The mass flow controller is combined, wherein the processor is included in the mass flow controller, wherein the program is stored in a memory of the mass flow controller, the memory system is coupled to the processor, and the input is An input of the mass flow controller, the input being coupled to the processor, wherein when the program is executed on the processor, the mass flow controller is set in common with process operating conditions received at the input Operation, and wherein the setting data is stored in the memory of the mass flow controller. 5. · If the computer-readable medium of item 36 of the patent application scope is integrated with a computer, the computer includes the processor, and The program should be handled in this way (please read the precautions on the back before copying this page). The paper size of the first-line paper applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 538327 C8 D8 6. The patent application scope is executed. The computer contains a memory, and the setting data obtained from the mass flow control benefits are stored in the memory. 5 1 · —A kind of setting a mass flow controller Method, when applied with a first set of operating conditions, the mass flow controller has a first response, and when applied with a second, set of operating conditions before being set, the mass flow controller has a second response, the The method includes the following actions: operating the mass flow controller under the first set of operating conditions; during the operation, obtaining setting data from the mass flow controller; setting at least the mass flow controller according to the setting data A control woman is provided to provide a first response obtained by using the first set of operating conditions; and the at least one control parameter is changed according to at least part of the setting data to provide a second response obtained by using the second set of operating conditions. . 5 2 The method of item 51 of the patent application scope further includes an action of determining a plurality of gain terms, which are the elements of the mass flow controller accompanying the operation under the first set of operating conditions. 5 3 · The method of applying for item 52 of the patent scope 'where the action of determining the plural gain terms includes determining the flow associated with a flow § ten ® 3 ten ^ benefit term, the valve caused by a valve actuator Actuation of at least one of an actuator gain term and a valve gain term accompanying a valve. 5 4 · $ □ Method of applying for the scope of the patent No. 5 2 'where the action of determining gain terms such as language includes the action of determining a reciprocal gain term' The 5 inverse gain term is obtained by obtaining the plurality of gain terms The reciprocal gain term is formed as a function of at least one variable operating condition. This paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before writing this page) Loading line 538327 A8 B8 C8 D8 VI. Patent scope 5 5 The method of claim 54 in the scope of patent application, wherein the action of setting at least one control parameter includes setting at least one control parameter such that the other party makes the reciprocal gain term. 5 6 · If the method according to item 51 of the scope of patent application, wherein the action of obtaining the set data includes the action of obtaining the first synthetic gain term, the first synthetic gain term is accompanied by at least a flow meter, a valve and a The valve actuator, the flow meter, the valve, and the valve actuator form at least part of a control loop of the mass flow controller, and the mass flow controller operates with the first set of operation bars. 5 7 · If the method of item 56 of the scope of patent application, wherein the action of obtaining the setting data of the language includes the action of determining a test full flow range, the [J test full flow range is accompanied by the first set of process operating conditions . 5 8 · The method according to item 57 of the scope of patent application, wherein the action of setting the at least one control parameter includes setting a control loop control parameter to be equal to the inverse of the first synthetic gain term. The control loop control parameter is A function of at least one variable operating condition, so that a control loop of the control loop, the J loop gain, does not change with at least one function of at least one variable operating condition. 5 9 · The method according to item 58 of the scope of patent application, wherein the action of changing the at least one control parameter includes an action of determining a second synthetic gain term, the second synthetic gain term accompanying the flow of at least the mass flow controller Gauges, valves and valve actuators, and a second set of operating conditions based on at least one physical model of the valve with parameters of the operating conditions, and a full flow range of processes accompanying the second set of operating conditions. ___--- u______ This paper is again applicable to the Chinese National Standard (CNS) A4 specification (210 X 297) ^-binding ... ......- I-line (Please read the precautions on the back before writing this page) $ '中請專利範圍 6 ◦·$□申請專利範圍第5 9項之方法,其中該更改 至少一控制參數之動作包含更改該控制迴路控制參數使 &等於該第二合成增益項之倒數的動作,使得當在該第二 操作條件下操作時,該控制迴路增益至少對於該至少一 θτ變操作條件維持不變。 6 1 · —種具有一控制迴路之質量流控制器,其包含 一流量計,其監測由該質量流控制器所提供之實際流 %,並提供一調整輸出訊號,該流量計具第一增益項; 一控制音卩件,其接收指示由該質量流控制器所提供所 %流量的第二輸入訊號,並提供一控制訊號,該控制部件 ~第二增益項,該第二增益項係爲至少一可變操作條件之 函數; 一閥門,其根據該閥門之一或數個元件之位移而允許 辦!體通過,該閥門具第三增益項;以及 一閥門致動器,其接收該控制訊號並調整該閥門之一 _數個元件之位移,該閥門致動器具第四增益項;一設定 _表質量流控制器之方法,使該質量流控制器具有實質上不 _的控制迴路增益,該方法包含下列動作: 利用第一組操作條件以第一流體來決定該第一、第三 及第四增益項; 利用第二流體及第二組操作條件至少其一來預測該第 一、第三及第四增益項將如何改變;以及 將該第二增益項改變成一常數乘上該第一、第三及第 (請先閲讀背面之注意事項再填寫本頁) :裝 、\έ 線 本紙張只^度適用中國國家標準(CNS)A4規格(210 X 297公變)$ 'Please request a patent range of 6 ◦ · $ □ The method of applying for patent scope item 5 9, wherein the action of changing at least one control parameter includes changing the control loop control parameter so that & equals the inverse of the second synthetic gain term The action is such that when operating under the second operating condition, the control loop gain remains unchanged at least for the at least one θτ variable operating condition. 6 1 · A mass flow controller with a control loop, which includes a flow meter that monitors the actual flow% provided by the mass flow controller and provides an adjusted output signal. The flow meter has a first gain. A control audio file that receives a second input signal indicating the% flow provided by the mass flow controller, and provides a control signal, the control component ~ a second gain term, the second gain term is A function of at least one variable operating condition; a valve that permits the passage of the body in accordance with the displacement of one or more elements of the valve, the valve having a third gain term; and a valve actuator that receives the control Signal and adjust the displacement of one of the valve's several components, the valve actuates the fourth gain term of the appliance; a method of setting the mass flow controller, which enables the mass flow controller to have substantially no control loop gain The method includes the following actions: using the first set of operating conditions to determine the first, third, and fourth gain terms with the first fluid; using at least one of the second fluid and the second set of operating conditions to predict How the first, third, and fourth gain terms will change; and change the second gain term to a constant multiplied by the first, third, and first (please read the precautions on the back before filling this page): The paper is only suitable for the Chinese National Standard (CNS) A4 (210 X 297) 4、中請專利範圍 四I增益項之乘積的倒數,以提供實質上至少相對於至少該 老少一可變操作條件爲固定的控制迴路增益。 6 2 ·—種用於控制質量流控制器之方法,該質量流 竣制器具有複數個界定該質量流控制器之控制迴路的元件 ,該方法包含下列動作: 形成至少一控制迴路控制參數,該控制迴路控制參數 寫至少一可變操作條件之一函數;以及 藉由將該至少一控制迴路控制參數應用於該質量流控 衔α器之控制迴路,以使關於該至少一可變操作條件的控制 迴路之迴路增益保持固定。 6 3 ·如申請專利範圍第6 2項之方法,其中該形成 言突至少一控制迴路控制參數之動作包含藉由取得該控制迴 足各之至少一增益項乘積之倒數而形成該控制迴路控制參數 之:動作,該增益項係伴隨該質量流控制器之至少一元件。 6 4 ·如申請專利範圍第6 3項之方法,其中該至少 ^可變操作條件包含設定點。 6 5 ·如申請專利範圍第6 3項之方法,其中該至少 —可變操作條件包含閥門入口壓力。 6 6 ·如申請專利範圍第6 3項之方法,其中該使該 _制迴路增益保持固定之動作係藉由使該至少一增益項與 1¾控制迴路內之控制迴路控制參數相乘而達成。 6 7 ·如申請專利範圍第6 2項之方法,其中該形成 言亥至少一控制迴路控制參數之動作包含形成一互逆增益項 之動作,該互逆增益項係由一合成增益項之倒數所形成, (請先閲讀背面之注意事項再塡寫本頁) 裝 、1T: 線 本紙張又度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A8 B8 C8 D8 六、申請專利範圍 (請先閲讀背面之注意事項再填寫本頁) 言亥合成增益項係伴隨該質量流控制器之至少一流量計、一 閥門致動器及一閥門。 6 8 ·$口申請專利範圍第6 7項之方法,其中該使該 控制迴路增益保持固定之動作包含將該互逆增益項應用於 言亥質量流控制J器之控制迴路的動作。 6 9 · —種具有一控制迴路之質量流控制器,該質量 流控制器包含·’ 一流量計,其用於感測一液體流動路徑內的液體流量 ,並提供指示:該流動路徑內的質量流率之流量訊號; 一控制器,其耦合該流量計,並用以至少部分根據該 流:量訊號而提供一驅動訊號; 一閥門致動器,其用於接收來自該控制器的驅動訊號 9 一閥門,其由該閥門致動器予以控制並耦合於該流動 路徑; 其中,該質量流控制器之控制迴路包含該流量計、該 控制器、該閥門致動器,以及該閥門;且 其中該控制迴路用於具有相對於操作期間之至少一可 變操作條件實質上爲固定的控制迴路增益項。 7〇·如申請專利範圍第6 9項之質量流控制器,其 中該實質上爲固定的控制迴路增益項包含至少一增益項, 言亥增益項係伴隨該流量計、該閥門致動器及該閥門至少其 中之一。 7 1 ·$卩申請專利範圍第7 0項之質量流控制器,其 _u- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 5地27 A8 B8 C8 __ϋ__— 4 '中請專利範圍 中1該實質上爲固定的控制迴路增益項包含至少一互逆增益 1真,該互逆增益項係藉由取得該至少一增益項之乘積的倒 而形成。 7 2 ·如申請專利範圍第7 1項之質量流控制器’其 $該互逆增益項係爲至少設定點之一函數。 7 3 ·如申請專利範圍第7 1項之質量流控制器’其 中1該互逆增益項係爲至少閥門入口壓力之一函數。 7 4 ·如申請專利範圍第6 9項之質量流控制器’其 书該實質上爲固定的控制迴路增益項包含至少一合成增益 1真,該合成增益項係至少伴隨該流量計、該閥門致動器及 _閥門。 7 5 ·如申請專利範圍第7 4項之質量流控制器’其 中該實質上爲固定的控制迴路增益項包含至少一互逆增益 r貝,該互逆增益項係爲該合成增益項之乘積的倒數’且該 爸:逆增益項爲至少一可變操作條件之一函數。 7 6 ·如申請專利範圍第7 5項之質量流控制器’其 中該互逆增益項與該合成增益項之乘積提供該實質上爲固 定的控制迴路增益項。 7 7 ·如申請專利範圍第6 9項之質量流控制器,其 中該流量計包含一歸一化電路、一響應補償電路及一線性 化曲線至少其中之一。 7 8 ·如申請專利範圍第7 7項之質量流控制器,其 中該流量計包含一線性化曲線。 7 9 ·如申請專利範圍第7 8項之質量流控制器,其 -----15______ 本紙張又及適用中國國家標準(CNS)A4規格(210 x 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝 、1T" 線 538327 as C8 D8 六、中請專利範圍 中該線性化曲線爲一配合至一組控制點之二次樣條。 8 0 ·如申請專利範圍第7 9項之質量流控制器’其 中該組控制點係設定資料之一部分,該設定資料係取自該 暫量流控制器在一測試流體及測試操作條件之特徵化過程 中〇 8 1 ·女口申請專利範圍第8 〇項之質量流控制器’其 中該等控制點係指示一組選定設定點之感應器輸出及實際 流量之點對。 8 2 ·$口申請專利範圍第7 5項之質量流控制器’其 中該控制器係一增益/引導/延遲(G L L )控制器。 8 3 ·$口申請專利範圍第8 2項之質量流控制器’其 中該互逆增益項被提供至該增益/引導/延遲控制器之第 —^輸入端。. 8 4 ·$口申請專利範圍第8 3項之質量流控制器,其 中來自該流量計之一流量訊號和一設定點分別被提供至該 丈曽"益/引導延遲控制播之弟一^及弟二輸入朗。 8 5 ·$口申請專利範圍第8 4項之質量流控制器’其 中該增益/引導/延遲控制器係根據該訊號與該設定點訊 號之間的差値提供一誤差訊號。 8 6 ·$口申請專利範圍第8 5項之質量流控制器’其 中該增益/引導/延遲控制器使該互逆增益項乘以該誤差 訊號。 8 7 · —種質量流控制器,其包含: 一流量計,其具第一增益項,用以感測該質量流控制 --------- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) --------------------------裝----------------1T……...........$ (請先閲讀背面之注意事項再填寫本頁) 538327 A8 B8 C8 D8 六、中請專利範圍 (請先閲讀背面之注意事項再塡寫本頁) 吾§之一流動路徑內的質量流率,並提供指示該流動路徑內 的質量流率之流量訊號; 一閥門,其具第二增益項,用以接收一控制訊號,該 @制訊號係控制該流動路徑內的質量流率; 一閥門致動器,其具第三增益項,用以接收一驅動訊 号虎,並將該控制訊號提供至該閥門;以及 一控制器,其具第一輸入端用以接收該流量訊號、第 二二輸入端用以接收一指示所欲質量流率之設定點訊號,以 及一輸出端,該輸出端將該驅動訊號提供至該閥門致動器 y 其中該控制器係用於提供一互逆增益項,該互逆增益 ί頁係藉由取得該第一增益項、第二增益項及第三增益項至 少其一乘積之倒數而形成。 8 8 ·$□申請專利範圍第8 7項之質量流控制器,其 中該互逆增益項係藉由取得該第一增益項、第二增益項及 第三增益項至少其二乘積之倒數而形成。 8 9 ·如申請專利範圍第8 7項之質量流控制器,其 中該互逆增益項係藉由取得該第一增益項、第二增益項及 第三增益項之乘積的倒數而形成。 9 〇 · $口申請專利範圍第8 7項之質量流控制器,其 中該互逆增益項係藉由取得該質量流控制器之系統增益項 白勺倒數而形成。 9 1 · 申請專利範圍第8 9項之質量流控制器,其 中該互逆增益項係至少一可變操作條件之一函數。 本紙張適用中國國家標準(CNS)A4規格(210 X 297公釐)4. Patent claim range The reciprocal of the product of the four I gain terms to provide a control loop gain that is substantially fixed relative to at least a variable operating condition of the old and young. 6 2-A method for controlling a mass flow controller, the mass flow completion device having a plurality of elements defining a control loop of the mass flow controller, the method including the following actions: forming at least one control loop control parameter, The control loop control parameter writes a function of at least one variable operating condition; and by applying the at least one control loop control parameter to a control loop of the mass flow control alpha device, so that the at least one variable operating condition is related The loop gain of the control loop remains fixed. 6 3 · The method according to item 62 of the scope of patent application, wherein the action of forming at least one control loop control parameter includes forming the control loop control by obtaining the inverse of the product of at least one gain term of each of the control loops. Parameter: action, the gain term is accompanied by at least one element of the mass flow controller. 64. The method of claim 63, wherein the at least ^ variable operating conditions include a set point. 65. The method of claim 63, wherein the at least -variable operating conditions include valve inlet pressure. 6 6 · The method according to item 63 of the scope of patent application, wherein the action of keeping the gain of the control loop fixed is achieved by multiplying the at least one gain term with the control loop control parameters in the control loop. 67. The method according to item 62 of the scope of patent application, wherein the action of forming at least one control loop control parameter includes the action of forming a reciprocal gain term, which is the inverse of a composite gain term Formed, (Please read the precautions on the back before copying this page). Packing, 1T: The thread paper is also applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 538327 A8 B8 C8 D8 VI. Application Scope of patent (please read the notes on the back before filling this page) Yanhai Synthetic Gain item is accompanied by at least one flow meter, a valve actuator, and a valve of the mass flow controller. The method of item 67 in the scope of patent application of 688, wherein the action of keeping the gain of the control loop fixed includes the action of applying the reciprocal gain term to the control loop of the Yan Hai mass flow control device. 6 9-A mass flow controller with a control loop, the mass flow controller includes a flow meter that senses the liquid flow in a liquid flow path and provides an indication of: A mass flow rate flow signal; a controller coupled to the flow meter to provide a drive signal based at least in part on the flow: volume signal; a valve actuator to receive a drive signal from the controller 9 a valve controlled by the valve actuator and coupled to the flow path; wherein the control loop of the mass flow controller includes the flow meter, the controller, the valve actuator, and the valve; and The control loop is used to have a control loop gain term that is substantially fixed with respect to at least one variable operating condition during operation. 70. The mass flow controller according to item 69 of the patent application scope, wherein the substantially fixed control loop gain term includes at least one gain term, and the gain term is accompanied by the flow meter, the valve actuator, and The valve is at least one of them. 7 1 · $ 卩 The mass flow controller of the 70th in the scope of patent application, its _u- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 5 places 27 A8 B8 C8 __ϋ __— 4 The patent claim 1 in the scope of the patent is a substantially fixed control loop gain term including at least one reciprocal gain 1 true, the reciprocal gain term is formed by reversing the product of the at least one gain term. 7 2 · If the mass flow controller of item 71 in the scope of patent application ', the reciprocal gain term is a function of at least one of the set points. 7 3 · If the mass flow controller of item 71 of the scope of patent application ', wherein 1 the reciprocal gain term is a function of at least the valve inlet pressure. 7 4 · If the mass flow controller of item No. 6 and 9 of the scope of application for patent, its book, the substantially fixed control loop gain term includes at least one synthetic gain 1 true, the synthetic gain term is accompanied by at least the flow meter, the valve Actuators and valves. 7 5 · The mass flow controller according to item 74 of the scope of the patent application, wherein the substantially fixed control loop gain term includes at least a reciprocal gain r, the reciprocal gain term is a product of the synthetic gain term And the dad: inverse gain term is a function of at least one variable operating condition. 7 6 · The mass flow controller of item 75 of the scope of patent application, wherein the product of the reciprocal gain term and the composite gain term provides the substantially fixed control loop gain term. 7 7 · The mass flow controller according to item 69 of the patent application scope, wherein the flow meter includes at least one of a normalization circuit, a response compensation circuit, and a linearization curve. 7 8 · The mass flow controller according to item 7 of the patent application scope, wherein the flow meter includes a linearization curve. 7 9 · If you apply for mass flow controller in the scope of patent application No. 78, which ----- 15______ this paper and applicable Chinese National Standard (CNS) A4 specification (210 x 297 mm) (Please read the back Note: Please fill in this page again.) Installation, 1T " line 538327 as C8 D8 6. The linearization curve in the patent application range is a quadratic spline fitted to a set of control points. 8 0 · If the mass flow controller in item 7 of the scope of the patent application 'wherein the set of control points is a part of the setting data, the setting data is taken from the characteristics of the temporary flow controller in a test fluid and test operating conditions During the transformation process, the mass flow controller of the female patent application scope No. 80 is used. The control points are a point pair indicating the sensor output and actual flow of a selected set point. 8 2 · The mass flow controller of item 75 of the scope of patent application ', wherein the controller is a gain / guide / delay (G L L) controller. 83. The mass flow controller of item 82 in the scope of patent application ', wherein the reciprocal gain term is provided to the-^ input terminal of the gain / guide / delay controller. 8 4 · The mass flow controller in the scope of patent application No. 83, in which a flow signal and a set point from the flow meter are provided to the measurement and control; ^ And brother II enter Lang. 8 5 · The mass flow controller of item 84 of the patent application scope ', wherein the gain / guide / delay controller provides an error signal according to the difference between the signal and the setpoint signal. 86. The mass flow controller of item 85 of the scope of patent application ', wherein the gain / guide / delay controller multiplies the reciprocal gain term by the error signal. 8 7 · —A mass flow controller comprising: a flow meter with a first gain term for sensing the mass flow control --------- This paper size is applicable to the Chinese National Standard (CNS ) A4 size (210 X 297 mm) -------------------------- install ------------- --- 1T …… ........... $ (Please read the precautions on the back before filling this page) 538327 A8 B8 C8 D8 VI. The scope of patents (please read the precautions on the back first) Rewrite this page) Mass flow rate in one of the flow paths and provide a flow signal indicating the mass flow rate in the flow path; a valve having a second gain term for receiving a control signal, The @ 制 signal controls the mass flow rate in the flow path; a valve actuator having a third gain term for receiving a driving signal tiger and providing the control signal to the valve; and a control A device having a first input terminal for receiving the traffic signal, a second input terminal for receiving a setpoint signal indicating a desired mass flow rate, and an output terminal that provides the driving signal to the The gate actuator y wherein the controller is used to provide a reciprocal gain term, and the reciprocal gain page is obtained by obtaining the inverse of at least one of the first gain term, the second gain term, and the third gain term. And formed. 8 8 · $ □ The mass flow controller of item 87 in the patent application range, wherein the reciprocal gain term is obtained by obtaining the inverse of at least two of the first gain term, the second gain term, and the third gain term. form. 89. The mass flow controller of item 87 in the scope of patent application, wherein the reciprocal gain term is formed by obtaining the inverse of the product of the first gain term, the second gain term, and the third gain term. The mass flow controller of item 97 in the scope of patent application, wherein the reciprocal gain term is formed by obtaining the reciprocal of the system gain term of the mass flow controller. 9 1 · The mass flow controller of item 8 of the scope of patent application, wherein the reciprocal gain term is a function of at least one variable operating condition. This paper conforms to Chinese National Standard (CNS) A4 (210 X 297 mm) A '申請專利範圍 9 2 ·如申請專利範圍第9 1項之質量流控制器,其 中1該質量流控制器之控制迴路包含該流量計、該閥門致動 德、該閥門及該控制器,且其中該互逆增益項至少相對於 言寒至少一可變操作條件保持該控制迴路之一固定迴路增益 〇 9 3 · —種決定閥門位移之方法,該閥門具有一閥門 >^口及一閥門出口,該閥門入口係用以接收在一入口壓力 的流體,而該閥門出口係在一出口壓力下提供該流體, 咳方法包含下列動作: (Α)選擇介於該入口壓力與該出口壓力之間的中間 im力; (B)根據從該入口壓力下降到該中間壓力的黏滯壓 丈7來決定該閥門之第一位移; (C )根據從該中間壓力下降到該出口壓力的非黏滯 廳力來決定該閥門之第二位移; (D)判斷該第一位移是否約等於該第二位移, ·以及 (E )當該第一位移約等於該第二位移時,選擇該第 一^位移及該第二位移其中之一做爲該閥門之位移。 9 4 ·如申請專利範圍第9 3項之方法,進一步包含 下動作: 當在動作(D )中判斷出該第一位移非大約等於該第 二位移時,選擇一新的中間壓力。 9 5 ·如申請專利範圍第9 4項之方法,進一步包含 U下動作: -----------L8_____ 本紙張又度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) (請先閱讀背面之注意事項再塡寫本頁) 裝 、\έ 線 538327 A8 B8 C8 D8 六、中請專利範圍 重複動作(B ) -( D ),直到在動作(D )中判斷 出r該第一位移約等於該第二位移爲止。 9 6 ·女口申請專利範圍第9 3項之方法,其中該動作 C C)包含下列動作: 當該中間壓力約等於大於該出口壓力兩大氣壓時,根 手康在阻塞流條件下從該中間壓力至該出口壓力的非黏滯性 壓力降,利用第一計算來決定該第二位移;以及 當該中間壓力小於約大於該出口壓力兩大氣壓時,根 ί靡在非阻塞流條件下從該中間壓力至該出口壓力的非黏滯 十生壓力降,利用第二計算來決定該第二位移。 9 7 ·如申請專利範圍第9 6項之方法,其中該第一 及第二計算係根據通過一孔口之非黏滯性流實體模型。 9 8 ·.如申請專利範圍第9 3項之方法,其中該動作 C C )包含以下動作·· 利用第一計算來決定該第二位移,該第一計算係根據 通過一孔口之非黏滯性流實體模型。 9 9 ·如申請專利範圍第9 3項之方法,其中該動作 (Β )包含以下動作·· 利用第一計算來決定該閥門之第一位移,該第一計算 . <系根據通過兩平行板之間的黏滯性流實體模型。 100 ·—種降低螺線管致動裝置內磁滯效應之方法 ,該方法包含以下動作: 將一預定的非操作性訊號施加於該螺線管致動裝置, 其9使該裝置處於一預定的狀態。 本紙張心>1適用中國國家標準(CNS)A4規格(210 X 297公釐) ---------------------------裝...............訂..............—線 (請先閲讀背面之注意事項再塡寫本頁) 538327 A8 B8 C8 __ D8 六、申請專利範圍 1 0 1 ·如申請專利範圍第1 〇 〇項之方法,其中該 方拒加該非操作性訊號之動作係發生於該螺線管致動裝置之 各^栄作循環之後。 1 0 2 .如申請專利範圍第1 〇 〇項之方法,其中該 方拒加該非操作性訊號之動作僅發生於該裝置之操作已超出 一預定操作範圍之後。 1 0 3 ·如申請專利範圍第1 〇 〇項之方法,其中該 方拒加該非操作性訊號之動作包含施加一非操作性電流訊號 之動作。 1 0 4 ·如申請專利範圍第1 〇 〇項之方法,其中該 方拒加該非操作性訊號之動作包含施加一非操作性電壓訊號 /動作。 1 0 5 •如申請專利範圍第1 0 0項之方法,其中該 施加該非操作性訊號之動作包含施加一時變正弦波形之動 作。 1 0 6 ·如申請專利範圍第1 0 5項之方法,其中該 施加該時變正弦波形之動作包含施加隨時間降低振幅的正 弓玄波形之動作。 1 0 7 ·如申請專利範圍第1 0 6項之方法,其中該 方担加該時變正弦波形之動作包含以一振幅偏移量施加該正 弓玄波形之動作,以使該波形僅具非負數値。 1 0 8 ·如申請專利範圍第1 0 0項之方法,其中該 施加該非操作性訊號之動作包含施加一時變方波形之動作 〇 _____20____ 本紙張又度適用中國國家標準(CNS)A4規格(210 χ 297公爱) " (請先閱讀背面之注意事項再塡寫本頁) 裝 訂ί 線 538327 A8 B8 C8 D8 六、申請專利範圍 (請先閲讀背面之注意事項再塡寫本頁) 1 0 9 ·如申請專利範圍第1 0 8項之方法,其中該 方担加該時變方波形之動作包含施加隨時間降低振幅的方波 形之動作。 1 1 0 ·如申請專利範圍第1 0 8項之方法,其中該 方拒加該時變方波形之動作包含以一振幅偏移量施加該方波 形之動作,以使該波形僅具非負數値。 1 1 1 ·如申請專利範圍第1 0 0項之方法,其中該 方拒加該非操作性訊號之動作包含施加一時變三角波形之動 作。 1 1 2 ·如申請專利範圍第1 1 1項之方法,其中該 方但加該時變三角波形之動作包含施加隨時間降低振幅的三 角波形之動作。 1 1 3. ·如申請專利範圍第1 1 2項之方法,其中該 方但加該時變三角波形之動作包含以一振幅偏移量施加該三 角波形之動作,以使該波形僅具非負數値。 1 1 4 ·如申請專利範圍第1 0 0項之方法,其中該 方但加該非操作性訊號之動作包含施加一脈衝形訊號之動作 〇 1 1 5 ·如申請專利範圍第1 1 4項之方法,其中該 方担加該脈衝形訊號之動作包含施加符號相反於施加在該螺 糸泉管致動裝置操作訊號之符號的脈衝形訊號之動作。 1 1 6 · —種操作螺線管致動裝置之方法,其包含下 歹Li動作: (a )將第一數量的能量提供到該螺線管致動裝置, ___24- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)A 'Applicable patent scope 9 2 · If the mass flow controller of item 91 of the patent application scope, wherein 1 the control circuit of the mass flow controller includes the flow meter, the valve actuation, the valve and the controller, And the reciprocal gain term maintains at least a fixed loop gain of the control loop relative to at least one variable operating condition. 9 3-A method for determining valve displacement, the valve has a valve > ^ 口 and a Valve outlet, the valve inlet is used to receive a fluid at an inlet pressure, and the valve outlet is to provide the fluid at an outlet pressure, the method includes the following actions: (Α) select between the inlet pressure and the outlet pressure The intermediate im force between (B) the first displacement of the valve is determined according to the viscous pressure gauge 7 that drops from the inlet pressure to the intermediate pressure; (C) the non-positive pressure that decreases from the intermediate pressure to the outlet pressure Viscous hall force to determine the second displacement of the valve; (D) determine whether the first displacement is approximately equal to the second displacement, and (E) when the first displacement is approximately equal to the second displacement, select the first displacement ^ One of the displacement and the second displacement as the displacement of the valve wherein the. 9 4 · The method according to item 93 of the scope of patent application, further comprising the following actions: When it is determined in the action (D) that the first displacement is not approximately equal to the second displacement, a new intermediate pressure is selected. 9 5 · If the method of item 94 of the scope of patent application, further includes the following actions: ----------- L8_____ This paper is again applicable to the Chinese National Standard (CNS) A4 specification (21〇x 297) (Mm) (Please read the precautions on the reverse side before writing this page) Loading, \ Line 538327 A8 B8 C8 D8 6. Repeat the action (B)-(D) in the patent range until the action (D) It is determined that the first displacement is approximately equal to the second displacement. 9 6 · The method of female patent application scope No. 93, wherein the action CC) includes the following actions: When the intermediate pressure is approximately equal to two atmospheres greater than the outlet pressure, Gen Shou Kang will remove the intermediate pressure from the intermediate pressure under the condition of blocked flow. The non-viscous pressure drop to the outlet pressure is determined using the first calculation to determine the second displacement; and when the intermediate pressure is less than about two atmospheres greater than the outlet pressure, the pressure is removed from the intermediate under non-blocking flow conditions The non-viscous ten-day pressure drop from the pressure to the outlet pressure is determined using a second calculation to determine the second displacement. 97. The method of item 96 in the scope of patent application, wherein the first and second calculations are based on a non-viscous flow entity model that passes through an orifice. 9 8 .. The method according to item 93 of the scope of patent application, wherein the action CC) includes the following actions: The first calculation is used to determine the second displacement, and the first calculation is based on the non-viscous passing through an orifice Sexual flow entity model. 9 9 · The method according to item 93 of the scope of patent application, wherein the action (B) includes the following actions: · The first calculation is used to determine the first displacement of the valve, the first calculation. ≪ Solid model of viscous flow between plates. 100 · A method for reducing the hysteresis effect in a solenoid-actuated device, the method comprising the following actions: A predetermined non-operational signal is applied to the solenoid-actuated device, and 9 places the device at a predetermined status. This paper heart> 1 Applies to China National Standard (CNS) A4 specification (210 X 297 mm) --------------------------- ............... Order ..............-- line (please read the precautions on the back before writing this page) 538327 A8 B8 C8 __ D8 VI. Application scope of patent 101. For the method of applying patent scope No. 100, in which the party's refusal to add the non-operational signal occurs after each cycle of the solenoid actuating device. . 102. The method according to item 100 of the patent application range, wherein the party's refusal to add the non-operational signal occurs only after the operation of the device has exceeded a predetermined operation range. 1 0 · The method according to item 100 of the patent application range, wherein the action of the party refusing to add the non-operational signal includes the action of applying a non-operational current signal. 104. The method of claim 100, wherein the party's action of refusing the non-operational signal includes applying a non-operational voltage signal / action. 1 0 5 • The method according to item 100 of the patent application scope, wherein the action of applying the non-operational signal includes an action of applying a time-varying sinusoidal waveform. 1 06. The method according to item 105 of the scope of patent application, wherein the action of applying the time-varying sinusoidal waveform includes the action of applying a positive bow-shaped waveform that decreases in amplitude over time. 1 0 7 · The method according to item 106 of the patent application range, wherein the action of the party applying the time-varying sinusoidal waveform includes the action of applying the sinusoidal waveform with an amplitude offset so that the waveform has only Non-negative number 値. 1 0 8 · If the method of claim 100 of the scope of patent application, wherein the action of applying the non-operational signal includes the action of applying a time-varying square waveform. _____20____ This paper is again applicable to China National Standard (CNS) A4 specifications ( 210 χ 297 public love) " (Please read the notes on the back before writing this page) Binding Thread 538327 A8 B8 C8 D8 VI. Patent application scope (please read the notes on the back before writing this page) 1 0 9 · The method according to item 108 of the scope of patent application, wherein the action of the party carrying the time-varying square waveform includes the action of applying a square waveform that reduces amplitude over time. 1 1 0 · The method of item 108 of the scope of patent application, wherein the action of the party refusing to add the time-varying square waveform includes the action of applying the square waveform with an amplitude offset so that the waveform has only a non-negative number value. 1 1 1 · The method according to item 100 of the patent application range, wherein the party's action of refusing to add the non-operational signal includes the action of applying a time-varying triangular waveform. 1 1 2 · The method according to item 11 of the scope of patent application, wherein the action of adding the time-varying triangle waveform to the party includes the action of applying a triangle waveform with decreasing amplitude over time. 1 1 3. · The method according to item 112 of the scope of patent application, wherein the action of the party but adding the time-varying triangle waveform includes the action of applying the triangle waveform with an amplitude offset so that the waveform has only a non- Negative numbers 値. 1 1 4 · If the method of applying for item 100 in the scope of patent application, wherein the party's action of adding the non-operational signal includes the action of applying a pulse-shaped signal. The method, wherein the action of the party carrying the pulse-shaped signal includes an action of applying a pulse in a sign opposite to a sign applied to the operation signal of the spiral spring actuating device. 1 1 6 · —A method for operating a solenoid actuating device, which includes the following Li action: (a) The first amount of energy is provided to the solenoid actuating device, ___ 24- This paper standard is applicable to the country of China Standard (CNS) A4 size (210 X 297 mm) 中請專利範圍 以使該螺線管致動裝置從第一位置移動到第二位置; (b)將第二數量的能量提供到該螺線管致動裝置, ^使該螺線管致動裝置回復到該第一位置;以及 (c )當該第一數量的能量超過一預定數量的能量時 ’在完成動作(b )之後,將該螺線管致動裝置設定爲一 _定狀態。 1 1 7 ·如申請專利範圍第1 1 6項之方法,其中該 %作(C )包含提供一時變訊號至該螺線管致動裝置之動 1 1 8 ·如申請專利範圍第1 1 7項之方法,其中該 _供一時變訊號之動作包含提供一具正弦波形、方波形、 $角波形及鋸齒波形至少其中之一之時變訊號之動作。 1 1 9 •如申請專利範圍第118項之方法,其中該 _供一時變訊號之動作包含以一偏移量提供該時變訊號之 胃力作,以使該波形僅具非負數値。 1 2 0 ·如申請專利範圍第1 1 8項之方法,其中該 _供一時變訊號之動作包含提供隨時間降低振幅的該時變 β號之動作。 1 2 1 ·如申請專利範圍第1 1 6項之方法,其中該 ^線管裝置係爲一具受控部分的控制閥,。 1 2 2 ·如申請專利範圍第1 2 1項之方法,其中該 _供該第一數量的能量之動作包含提供一驅動訊號以控制 8¾閥門之受控部分,該驅動訊號具第〜符號。 1 2 3 ·如申請專利範圍第1 2 2項之方法,其中該 _____;-22---- 本紙張尺適用中國國家標準(CNS)A4規格(210 χ 297公變) (請先閲讀背面之注意事項再填寫本頁) 、\二口 線 538327 A8 B8 C8 D8 六、中請專利範圍 勛作(C )包含提供一脈衝至該閥門之動作。 (請先閲讀背面之注意事項再塡寫本頁) 1 2 4 ·如申請專利範圍第1 2 3項之方法,其中該 提俾一脈衝之動作包含提供一其符號與該第一符號相反之 脈衝之動作。 1 2 5 ·如申請專利範圍第1 2 2項之方法,其中該 預定數量的能量超過爲開啓該閥門之受控部分所需要的驅 動訊號能量。 1 2 6 ·如申請專利範圍第1 1 6項之方法,其中該 螺線管致動裝置係爲一質量流控制器之螺線管致動控制閥 門。 1 2 7 ·如申請專利範圍第1 2 6項之方法,其中該 質量流控制器具一操作範圍,且其中該預定數量的能量係 將該螺線管致動控制閥門之位置移動至該質量流控制器之 正常操作範圍以外的位置所需要數量的能量。 1 2 8 · —種裝置,其包含: 一螺線管致動裝置;以及 一螺線管致動器,該螺線管致動器係耦合於該螺線管 致動裝置,該致動器係用於將一非操作性訊號提供到該螺 I泉管致動裝置,藉以將該裝置設定爲一預定狀態。 1 2 9 ·如申請專利範圍第1 2 8項之裝置,其中該 多芦操作性訊號係爲一電流訊號。 1 3 0 ·如申請專利範圍第1 2 8項之裝置,其中該 多芦操作性訊號係爲一電壓訊號。 1 3 1 ·如申請專利範圍第1 2 8項之裝置,其中該 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 538327 A8 B8 C8 D8 六、請專利範圍 致動器係用於在各操作循環之後,將該非操作性訊號提供 至該螺線管致動裝置。 1 3 2 ·如申請專利範圍第1 2 8項之裝置,其中該 致動器係用於僅在該螺線管致動裝置於超出一預定操作範 圍外操作之後提供該非操作性訊號。 1 3 3 ·如申請專利範圍第1 2 8項之裝置,其中該 操作性訊號係時變正弦波形、時變方波形、時變三角波 形及時變鋸齒波形其中之一。 1 3 4 ·如申請專利範圍第1 3 3項之裝置,其中該 多巨操作性訊號之振幅係隨時間降低。 1 3 5 ·如申請專利範圍第1 3 3項之裝置,其中該 多声操作性訊號具一偏移量,使得該波形僅具非負數値。 1 3 6. ·如申請專利範圍第1 3 3項之裝置,其中該 多巨操作性訊號係爲一脈衝。 1 3 7 ·如申請專利範圍第1 2 8項之裝置,其中該 螺線管致動裝置係爲一螺線管致動閥門。 1 3 8 ·如申請專利範圍第1 3 7項之裝置,其中當 該閥門從一內設位置移動超過一預定量的位移時,該致動 器係僅提供該非操作性訊號。 1 3 9 ·如申請專利範圍第1 3 7項之裝置,其中該 致動器於該閥門之每一操作循環完成之後,提供該非操作 性訊號至該闊門。 1 4 0 ·如申請專利範圍第1 3 7項之裝置,其中該 多P操作性訊號係時變正弦波形、時變方波形及時變鋸齒波 _2Δ----— 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再塡寫本頁) 訂: 線 秦 A8B8C8D8 538327 六、申請專利範圍 开多其中之一。 1 4 1 ·如申請專利範圍第1 3 9項之裝置,其與一 質量流控制器組合,該質量流控制器包含: 一流量計,其用於感測流動路徑內之流量,並提供一 宇旨示該流量之流量訊號; 一控制器,其用於接收該流量訊號,並根據該流量訊 號之至少一部分來提供一驅動訊號; 其中該致動器接收由該控制器所提供的驅動訊號,並 丰艮據該驅動訊號移動該閥門之受控部分。 1 4 2如申請專利範圍第1 4 1項之裝置,其中該控 帘『J器係進一步用於在各操作循環之後提供一非操作性訊號 至該致動器。 1 4 3 ·如申請專利範圍第1 4 1項之裝置,其中該 ί空制器係進一步用於唯有當該閥門之受控部分已被移動超 過一預定量之後乃提供一非操作性訊號。 1 4 4 ·如申請專利範圍第1 4 1項之裝置,其中該 多Μ桑作性訊號係正弦波形、方波形、三角波形及鋸齒波形 至少其中之一。 1 4 5 · —種設定質量流控制器之方法,使該質量流 控制器與一組製程操作條件共同運作,該等製程操作條件 至少有一部分不同於生產過程中用於建立該質量流控制器 之第一響應的一組測試操作條件,該方法包含下列動作: 以該第一組操作條件來特性化該質量流控制器; 在該特性化動作過程中取得設定資料;以及 25 本紙張尺度適用中國國家標準(CNS)A4規格(210 x297公釐) ..........................裝..............訂!...........-線 (請先閲讀背面之注意事項再塡寫本頁) 538327 A8 B8 C8 D8 六、申請專利範圍 根據該設定資料及該等製程操作條件來更改至少一控 芾[J參數,使得該質量流控制器之響應不會產生實質改變。 14 6 ·如申請專利範圍第1 4 5項之方法,其中特 性化該質量流控制器動作包含下列動作: 在該組測試操作條件上調整該質量流控制器;以及 在該組測試操作條件上校準該質量流控制器; 其中該組測試操作條件包括一單一測試流體。 1 4 7 ·如申請專利範圍第1 4 5項之方法,其中該 組測試操作條件包含一製程流體,該製程流體不同於在調 整及校準該質量流控制器過程中所使用的單一測試流體, 且其中該更改該至少一控制參數之動作包含至少部分根據 該製程流體之製程流體物種資訊來更改該至少一控制參數 之動作。 (請先閲讀背面之注意事項再填寫本頁) :裝 線 26—— 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐)The patent claims the scope to move the solenoid actuating device from the first position to the second position; (b) provides a second amount of energy to the solenoid actuating device, and ^ causes the solenoid to actuate The device returns to the first position; and (c) when the first amount of energy exceeds a predetermined amount of energy, 'after completing the action (b), set the solenoid actuating device to a steady state. 1 1 7 · The method of item 116 of the scope of patent application, wherein the% operation (C) includes the action of providing a time-varying signal to the solenoid actuating device 1 1 8 · The method of scope of patent application 1 1 7 Method, wherein the action of providing a time-varying signal includes the action of providing a time-varying signal with at least one of a sine waveform, a square waveform, a $ angle waveform, and a sawtooth waveform. 1 1 9 • The method according to item 118 of the scope of patent application, wherein the action of _ for a time-varying signal includes providing the stomach force of the time-varying signal with an offset so that the waveform has only a non-negative number. 1 2 0 · The method according to item 118 of the scope of patent application, wherein the action of _ for a time-varying signal includes the action of providing the time-varying β signal whose amplitude decreases with time. 1 2 1 · The method according to item 116 of the scope of patent application, wherein the line pipe device is a control valve with a controlled part. 1 2 2 · The method according to item 121 of the scope of patent application, wherein the action of supplying the first amount of energy includes providing a driving signal to control the controlled part of the 8¾ valve, and the driving signal has a ~ sign. 1 2 3 · If you apply for the method of item No. 1 2 in the scope of patent application, where _____;-22 ---- This paper rule applies to China National Standard (CNS) A4 specification (210 χ 297 public variable) (Please read first Note on the back, please fill out this page again), \ 二 口 线 538327 A8 B8 C8 D8 VI. The patent claim (C) contains the action of providing a pulse to the valve. (Please read the precautions on the back before writing this page) 1 2 4 · If the method of applying for the patent No. 1 2 3, the action of raising a pulse includes providing a sign whose sign is opposite to the first sign Pulse action. 1 2 5 · The method according to item 122 of the patent application range, wherein the predetermined amount of energy exceeds the driving signal energy required to open the controlled portion of the valve. 1 2 6 · The method according to item 116 of the scope of patent application, wherein the solenoid actuating device is a solenoid actuating control valve of a mass flow controller. 1 2 7 · The method according to item 126 of the patent application range, wherein the mass flow controller has an operating range, and wherein the predetermined amount of energy is moved from the position of the solenoid-actuated control valve to the mass flow The amount of energy required for a position outside the normal operating range of the controller. 1 2 8 · A device comprising: a solenoid actuating device; and a solenoid actuator, the solenoid actuator being coupled to the solenoid actuating device, the actuator It is used to provide a non-operational signal to the spiral spring actuating device to set the device to a predetermined state. 1 2 9 · The device according to item 128 of the scope of patent application, wherein the operational signal is a current signal. 1 3 0 · If the device of the scope of patent application No. 128 is applied, the operational signal of Dulu is a voltage signal. 1 3 1 · If the device in the scope of patent application No. 128 is applied, the size of this paper is applicable to China National Standard (CNS) A4 (210 X 297 mm) 538327 A8 B8 C8 D8 It is used to provide the non-operational signal to the solenoid actuating device after each operation cycle. 1 3 2 · The device according to item 128 of the patent application scope, wherein the actuator is used to provide the non-operational signal only after the solenoid actuating device is operated outside a predetermined operating range. 1 3 3 · The device according to item 128 of the scope of patent application, wherein the operational signal is one of a time-varying sine waveform, a time-varying square waveform, and a time-varying triangular waveform. 1 3 4 · If the device of the scope of patent application No. 133, the amplitude of the multi-operational signal decreases with time. 1 3 5 · The device according to item 133 of the patent application range, wherein the multi-operational signal has an offset so that the waveform has only a non-negative chirp. 1 3 6. · If the device of the scope of patent application No. 133, the multi-operation signal is a pulse. 1 3 7 · The device according to item 128 of the scope of patent application, wherein the solenoid actuating device is a solenoid actuating valve. 1 38 · The device according to item 137 of the scope of patent application, wherein when the valve moves from a built-in position by more than a predetermined amount of displacement, the actuator only provides the non-operational signal. 1 3 9 • The device according to item 137 of the patent application scope, wherein the actuator provides the non-operational signal to the wide door after each operation cycle of the valve is completed. 1 4 0 · If the device in the scope of patent application No. 137, the multi-P operational signal is a time-varying sine waveform, a time-varying square waveform and a time-varying sawtooth wave_2Δ ----— This paper scale applies to China Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before writing this page) Order: Line Qin A8B8C8D8 538327 Six, one of the scope of patent application. 1 4 1 · The device according to item 139 of the scope of patent application, which is combined with a mass flow controller. The mass flow controller includes: a flow meter for sensing the flow in the flow path and providing a Aiming to indicate the flow signal of the flow; a controller for receiving the flow signal and providing a driving signal according to at least a part of the flow signal; wherein the actuator receives the driving signal provided by the controller , And Feng Gen moves the controlled part of the valve according to the driving signal. 1 42 The device according to item 141 of the scope of patent application, wherein the curtain control device J is further used to provide a non-operational signal to the actuator after each operation cycle. 1 4 3 · If the device of the scope of patent application No. 141, the air controller is further used to provide a non-operational signal only when the controlled part of the valve has been moved more than a predetermined amount . 1 4 4 · The device according to item 141 of the scope of patent application, wherein the multi-Mussan signal is at least one of a sine waveform, a square waveform, a triangular waveform and a sawtooth waveform. 1 4 5 ·-A method of setting a mass flow controller to make the mass flow controller work with a set of process operating conditions, which are at least partially different from those used to create the mass flow controller in the production process A set of test operating conditions for a first response, the method includes the following actions: characterizing the mass flow controller with the first set of operating conditions; obtaining setting data during the characterizing action; and 25 paper sizes applicable China National Standard (CNS) A4 (210 x 297 mm) ............... ..... Order! ...........- line (please read the notes on the back before copying this page) 538327 A8 B8 C8 D8 VI. The scope of patent application should be changed according to the setting data and operating conditions of these processes. A control parameter [J parameter, so that the response of the mass flow controller does not change substantially. 14 6 · The method according to item 145 of the patent application scope, wherein characterizing the mass flow controller action includes the following actions: adjusting the mass flow controller on the set of test operating conditions; and on the set of test operating conditions The mass flow controller is calibrated; wherein the set of test operating conditions includes a single test fluid. 1 4 7 · The method according to item 145 of the scope of patent application, wherein the set of test operating conditions includes a process fluid that is different from a single test fluid used in adjusting and calibrating the mass flow controller, And the action of changing the at least one control parameter includes an action of changing the at least one control parameter based at least in part on the process fluid species information of the process fluid. (Please read the precautions on the back before filling out this page): Installation Line 26-This paper size is applicable to China National Standard (CNS) A4 (210 x 297 mm)
TW91108305A 2001-04-24 2002-04-23 System and method for a mass flow controller TW538327B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10285801A 2001-04-24 2001-04-24

Publications (1)

Publication Number Publication Date
TW538327B true TW538327B (en) 2003-06-21

Family

ID=29548179

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91108305A TW538327B (en) 2001-04-24 2002-04-23 System and method for a mass flow controller

Country Status (1)

Country Link
TW (1) TW538327B (en)

Cited By (312)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9898013B2 (en) 2013-03-01 2018-02-20 Hitachi Metals, Ltd. Mass flow controller for improved performance across fluid types
CN108699498A (en) * 2015-12-22 2018-10-23 通用电气医疗集团生物科学公司 In the instrument for handling cell and relative improvement
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US10541173B2 (en) 2016-07-08 2020-01-21 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US10566223B2 (en) 2012-08-28 2020-02-18 Asm Ip Holdings B.V. Systems and methods for dynamic semiconductor process scheduling
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
CN113721672A (en) * 2020-05-26 2021-11-30 阿自倍尔株式会社 Mass flow controller and fluctuation suppression method
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
TWI758449B (en) * 2017-03-30 2022-03-21 日商東京威力科創股份有限公司 The method of checking the flow controller and the method of processing the object
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
TWI821687B (en) * 2020-08-26 2023-11-11 大陸商中微半導體設備(上海)股份有限公司 Plasma processing device and gas supply method
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer

Cited By (396)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10566223B2 (en) 2012-08-28 2020-02-18 Asm Ip Holdings B.V. Systems and methods for dynamic semiconductor process scheduling
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US9898013B2 (en) 2013-03-01 2018-02-20 Hitachi Metals, Ltd. Mass flow controller for improved performance across fluid types
TWI615697B (en) * 2013-03-01 2018-02-21 日立金屬股份有限公司 Thermal mass flow controller and method for improved performance across fluid types
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
CN108699498A (en) * 2015-12-22 2018-10-23 通用电气医疗集团生物科学公司 In the instrument for handling cell and relative improvement
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10720322B2 (en) 2016-02-19 2020-07-21 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top surface
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10541173B2 (en) 2016-07-08 2020-01-21 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10644025B2 (en) 2016-11-07 2020-05-05 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
TWI758449B (en) * 2017-03-30 2022-03-21 日商東京威力科創股份有限公司 The method of checking the flow controller and the method of processing the object
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
CN113721672A (en) * 2020-05-26 2021-11-30 阿自倍尔株式会社 Mass flow controller and fluctuation suppression method
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TWI821687B (en) * 2020-08-26 2023-11-11 大陸商中微半導體設備(上海)股份有限公司 Plasma processing device and gas supply method
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Similar Documents

Publication Publication Date Title
TW538327B (en) System and method for a mass flow controller
US7231931B2 (en) System and method for a mass flow controller
JP4528617B2 (en) Method and apparatus for pressure compensation in a mass flow controller
US10394257B2 (en) Flow control system
JP5868796B2 (en) PRESSURE CONTROL DEVICE, FLOW CONTROL DEVICE, PRESSURE CONTROL DEVICE PROGRAM, FLOW CONTROL DEVICE PROGRAM
US6688532B2 (en) Controller, temperature controller and heat processor using same
JP2018173963A (en) System and method for using model for improving control of mass flow controller
US20120197446A1 (en) Advanced feed-forward valve-control for a mass flow controller
WO2019163676A1 (en) Flow rate control device and flow rate control method
JPH09217898A (en) Flow control method
US20180120864A1 (en) Nonlinear control of mass flow controller devices using sliding mode
JP2022083102A (en) Fluid control device, fluid control method, and program for fluid control device
JP6799862B2 (en) Flow rate signal correction method and flow control device using this
JPH07160338A (en) Flow rate control method
EP1457856B1 (en) Valve displacement determining method for a mass flow controller
JP6520945B2 (en) Method of controlling flow rate of fluid, mass flow control device for executing the method, and mass flow control system using the mass flow control device
WO2023013381A1 (en) Valve control device, valve control method, valve control program, and fluid control device
KR20170137640A (en) A closed-loop control device for controlling at least one control value of at least one tempering circle
JP2012168822A (en) Fluid control device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees