JPH07109576A - Formation of film by plasma cvd - Google Patents

Formation of film by plasma cvd

Info

Publication number
JPH07109576A
JPH07109576A JP5277897A JP27789793A JPH07109576A JP H07109576 A JPH07109576 A JP H07109576A JP 5277897 A JP5277897 A JP 5277897A JP 27789793 A JP27789793 A JP 27789793A JP H07109576 A JPH07109576 A JP H07109576A
Authority
JP
Japan
Prior art keywords
gas
film
raw material
substrate
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5277897A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
伸一 小林
Original Assignee
Shinko Seiki Co Ltd
神港精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd, 神港精機株式会社 filed Critical Shinko Seiki Co Ltd
Priority to JP5277897A priority Critical patent/JPH07109576A/en
Publication of JPH07109576A publication Critical patent/JPH07109576A/en
Application status is Granted legal-status Critical

Links

Abstract

PURPOSE:To form a thin film having a low content of undecomposed element on the surface of a substrate by plasma CVD. CONSTITUTION:A discharge gas and a raw material decomposing gas are continuously introduced into an evacuated reaction chamber 1, a film forming gas is intermittently introduced by the intermittent opening and closing of piezoelectric valves A and B to be opened and closed by a controller 33, a power is supplied between a substrate 2 and an electrode 3, and the raw material is decomposed. The process of depositing the raw material decomposition product to the surface of the substrate 2 and the process of removing the undecomposed element in the deposit are separately set by the intermittent opening and closing of the piezoelectric valves A and B.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は基板表面にプラズマC BACKGROUND OF THE to the present invention comprises a substrate surface plasma C
VD法にて未分解元素の含有率の低い薄膜を形成する方法に関するものである。 To a method of forming a low thin film content of undegraded elements at VD method.

【0002】 [0002]

【従来の技術】プラズマCVD法は、化学蒸着法の一種として被処理物表面への皮膜形成に広く採用されている。 BACKGROUND ART Plasma CVD method has been widely adopted in the film-forming of the object surface to be treated as a kind of chemical vapor deposition. このプラズマCVD法にて基板表面に薄膜を形成させる場合、これまでは原料ガス分解物を基板表面に堆積させると同時に堆積物中の未分解元素を除去するという方法で行っている。 Is carried out in a way that this it is determined by the plasma CVD method to form a thin film on the substrate surface, the past the material gas decomposition product to remove undegraded elements simultaneously sediments Depositing on the surface of the substrate. これは、まず反応室内に導入された複数の原料ガスを、供給された電力により夫々を構成する原子に分解させ、プラズマを発生させ、これら原料ガス分解物が基板に堆積すると同時に熱による表面反応、 This, first plurality of source gas introduced into the reaction chamber to decompose the atoms constituting the respective by the supplied power to generate plasma, at the same time the heat due to surface reactions When these raw material gas decomposition product is deposited on the substrate ,
ガスやプラズマに曝し、堆積物中の未分解元素を除去するというものである。 Exposed to gas or plasma, is that the removal of undegraded elements in sediments.

【0003】 [0003]

【発明が解決しようとする課題】しかしながら、上記のような方法の場合、原料ガスを反応室内に連続して導入しており、基板表面への原料ガス分解物の堆積が連続的に行われることにより、先に堆積した堆積物中に含まれている未分解元素が完全に除去されないうちに次々とその上に新たな堆積物が積層されていくので、先に堆積した堆積物中の未分解元素が含まれたまま成膜が行われることとなり、結果的に未分解元素の含有率の高い皮膜ができやすいという問題があった。 [SUMMARY OF THE INVENTION However, in the case of the method described above, the raw material gas is introduced continuously into the reaction chamber, the deposition of the raw material gas decomposition product of the substrate surface is continuously performed Accordingly, since the new deposits one after another and thereon while undecomposed elements contained in sediments deposited on the previously not completely removed will be stacked, undecomposed sediments previously deposited becomes the element while film included is performed, there is a problem that results in easy can be highly film having the content of undegraded elements.

【0004】この発明は、上記に鑑みて、未分解元素が除去できて、良質な薄膜を形成することができるプラズマCVDによる成膜方法を提供することを目的とするものである。 [0004] The present invention, in view of the above, it can undecomposed element removal, it is an object to provide a film deposition method of the plasma CVD that can form a high quality thin film.

【0005】 [0005]

【課題を解決するための手段】即ち、この発明は、排気された反応室に複数の成膜用原料ガス、放電ガスおよび原料分解用ガスを導入し、上記反応室に間隔を隔てて設けた基板と電極との間に電力を供給して、上記原料ガスを分解させ、上記基板表面に皮膜を形成させるプラズマCVDによる成膜方法において、上記複数の成膜用原料ガスを間欠的に導入して、基板表面への上記原料ガス分解物の堆積過程と堆積物中の未分解元素の除去過程とを別個に設定するとともに、この両過程を周期5秒以下で繰り返し行うことを特徴とするプラズマCVDによる成膜方法である。 Means for Solving the Problems] That is, the present invention, the raw material gas for a plurality of film deposition in an evacuated reaction chamber, introducing a discharge gas and the raw material decomposition gas was provided at a distance above the reaction chamber supplying power between the substrate and the electrode, to decompose the raw material gas, the film deposition method of the plasma CVD for forming a film on the substrate surface, intermittently introducing a plurality of film-forming material gas Te, along with separately setting the removal process unresolved elements in the raw material gas decomposed deposits and sedimentary processes of product in the substrate surface, and performing repeatedly to both process cycle 5 seconds or less plasma it is a film forming method by CVD.

【0006】 [0006]

【作用】プラズマCVDによる成膜方法において、成膜用原料ガスとしては、化合物を用いる場合が多いが、この化合物の分解を反応室内で完全に行うことは非常に難しく、このため基板表面に成膜した薄膜中には未分解元素が残留しやすい。 In the film forming method according to the action plasma CVD, as the film-forming raw material gas, is often used a compound, it is very difficult to completely carry out the decomposition of this compound in the reaction chamber, formed in this order a substrate surface undecomposed element tends to remain during the thin film membrane. この発明では、複数の成膜用原料ガスを間欠的に供給し、これによって基板表面への原料ガス分解物の堆積過程と堆積物中の未分解元素の除去過程とを成膜工程の1周期内で個々に分けて設定するようにしたことで、未分解元素量の少ない薄膜が得られるのである。 In the present invention, one cycle of a plurality of film-forming raw material gas supplied intermittently, thereby depositing a process removing undegraded elements in sediments and sedimentary processes of the raw material gas decomposition product of the substrate surface step by the to set in separate individual at the inner, is the small thin film undecomposed element content is obtained.

【0007】次に、図1に示すこの発明で使用するプラズマCVD装置についてその概略を説明する。 [0007] Next, the plasma CVD apparatus used in the present invention will be described the outline shown in Figure 1. 図において、1は反応室であり、その内部には下方に基板(被処理物)2が配置され、この基板2に対向するように電極3が配置されている。 In FIG, 1 is a reaction chamber, that is inside the substrate downward (object to be processed) 2 are arranged, the electrodes 3 so as to face the substrate 2 is disposed. この電極3はマッチングボックス(整合器)5を経て電極4に接続されている。 The electrode 3 is connected to the electrode 4 via a matching box (matching box) 5. 基板2はその下方に基板加熱用ヒータ6を具えている。 Substrate 2 is comprises a substrate heater 6 thereunder. また、上記反応室1は排気系主弁7、ルーツポンプ9を介して油回転真空ポンプ8に接続されており、この油回転真空ポンプ8の作動によって反応室1内が排気されるようになっている。 Further, so the reaction chamber 1 is the exhaust system main valve 7, via a Roots pump 9 is connected to the oil-rotary vacuum pump 8, the reaction chamber 1 by the operation of the oil-rotary vacuum pump 8 is evacuated ing. なお、反応室1は、その外周に反応室加熱用ヒータ10が取り付けられていて加熱できるようになっている。 Incidentally, the reaction chamber 1 is adapted to be heated have a reaction chamber heater 10 mounted on the outer periphery thereof.

【0008】反応室1には、マスフローコントローラ(以下、これをMFCという)21、22によって流量を制御されたH 2ガス、Ar ガスがバルブ25、26を介して導入される。 [0008] The reaction chamber 1, a mass flow controller (hereinafter, this is called MFC) H 2 gas controlled the flow rate by 21, 22, Ar gas is introduced through a valve 25, 26. また、反応室1には成膜用原料ガスとして、例えばSiH 4ガスがMFC23で流量制御され、バルブ開閉制御機33で断続的に開閉されるようになっているピエゾバルブAを通って導入される。 Further, as the film-forming raw material gas into the reaction chamber 1, for example, SiH 4 gas is flow controlled by MFC23, is introduced through a piezo valve A which is adapted to be intermittently opened and closed by the valve opening and closing control unit 33 .

【0009】さらに、成膜用原料ガスとして、例えばT Furthermore, as film-forming raw material gas, for example, T
iCl 4のような常温で液体のものを用いる場合は、容器31内にTiCl 4を入れ、加熱して気化させておき、この気化させた反応ガスを反応室1へ導入する反応ガス導入管34にバルブ29、30を操作して導き、この反応ガス導入管34にキャリアガスとして用いるMF If used as a liquid at ordinary temperature, such as LiCl 4, the TiCl 4 was placed in a vessel 31, allowed to heat vaporizing the reaction gas inlet tube 34 for introducing a reaction gas obtained by the vaporization to the reaction chamber 1 the guidance by operating the valves 29, 30, MF used as a carrier gas to the reaction gas introduction pipe 34
C24で流量制御されたH 2ガスをバルブ27、29、 H 2 gas valves 27, 29 whose flow rate is controlled by C24,
30を開閉して供給し、このキャリアH 2ガスとともに反応ガスをバルブ開閉制御機33で断続的に開閉されるピエゾバルブBを経て反応室1内に導入される。 Supplied by opening and closing the 30, it is introduced to the reaction gas together with the carrier H 2 gas to intermittently through the opening by the piezo valve B reaction chamber 1 in the valve opening and closing control unit 33. この反応ガスを反応室1内に導入するに当たっては、該ガスがその供給途中の反応ガス導入管34内で凝縮するのを防止するために反応ガス導入管34はその周囲に取り付けられた反応ガス導入管加熱用ヒータ35により加熱されることが好ましい。 When applying introduced into the reaction gas and the reaction chamber 1, the reaction gas the gas is a reactive gas introducing pipe 34 in order to prevent condensation in the reaction gas inlet tube 34 for the supply halfway attached to the periphery thereof it is preferably heated by introduction tube heater 35.

【0010】 [0010]

【実施例】次に、上記で説明した図1の装置を用いて、 EXAMPLES Next, using the apparatus of FIG. 1 described above,
この発明の実施例を詳細に説明する。 The embodiment of the present invention will be described in detail. 実施例1(珪化チタン膜の作製) まず、反応室1に接続している排気系主弁7を開き、油回転真空ポンプ8、ルーツポンプ9を作動して反応室1 Example 1 (silicide Preparation of a titanium film) First, open the exhaust system main valve 7 that are connected to the reaction chamber 1, the oil-rotary vacuum pump 8, the reaction chamber 1 by operating the Roots pump 9
内を真空排気したのち、反応室加熱用ヒータ10にて反応室1内を加熱した。 Was evacuated inner and heating the reaction chamber 1 at a reaction chamber heater 10. 一方、容器31内に収容されている常温で液体のTiCl 4 32を加熱して気化させる。 On the other hand, heating and vaporizing the TiCl 4 32 liquid at room temperature which is contained in the container 31.
同時に気化させたTiCl 4ガスを反応室1内に送る反応ガス導入管34もその周囲に取り付けた加熱用ヒータ35により加熱しておく。 Previously heated by the heater 35 attached to the periphery thereof also the reaction gas introduction pipe 34 for sending the TiCl 4 gas vaporized simultaneously into the reaction chamber 1. 次に、反応室1内の基板2を基板加熱用ヒータ6にて400℃に加熱した。 Next, the substrate 2 in the reaction chamber 1 was heated to 400 ° C. at a substrate heating heater 6.

【0011】次いで、加熱され、15〜25Pa圧に調整された反応室1内に夫々MFC21、22、23、2 [0011] then heated, respectively in the adjusted reaction chamber 1 to 15~25Pa pressure people MFC21,22,23,2
4にて流量制御されたH 2ガス、Arガス、SiH 4ガスと同じく流量制御されたキャリアH 2ガスとともに気化したTiCl 4ガスを供給する。 Flow controlled H 2 gas at 4 supplies the Ar gas, TiCl 4 gas vaporized with same flow-controlled carrier H 2 gas and SiH 4 gas. この時、H 2ガス、 In this case, H 2 gas,
Arガスはバルブ25、26を開いて連続に供給する。 Ar gas supplied continuously by opening the valve 25, 26.
そして、成膜用原料ガスであるSiH 4ガスと気化したTiCl 4ガスの供給は、バルブ開閉制御機33によって時間的に変化させ、図2に示すように1周期500m Then, the supply of the TiCl 4 gas vaporized SiH 4 gas as a film-forming raw material gas, it is temporally changed by the valve opening and closing controller 33, one period as shown in FIG. 2 500 meters
sの間でTiCl 4ガスはバルブ27、29、30を開としてキャリアH 2ガスとともに10msピエゾパルブBを開いて、またSiH 4ガスは250msピエゾパルブAを開いて供給する。 TiCl 4 gas between the s is open 10ms Piezoparubu B together with a carrier H 2 gas valves 27, 29, 30 is opened, also the SiH 4 gas supply open 250ms Piezoparubu A.

【0012】そして、周波数13.56MHz、1KW [0012] The frequency 13.56MHz, 1KW
の容量をもつRF電源4から600Wの電力を反応室1 The reaction chamber 1 power 600W from RF power source 4 with a capacity of
内に投入する。 To introduce within. ここで放電が起こり、電極3と基板2との間にプラズマが発生する。 Here discharge occurs, the plasma is generated between the electrode 3 and the substrate 2. このプラズマによって、図2のようにピエゾパルブAが開かれている250msの間は供給されたTiCl 4ガス、SiH 4ガスが分解され、基板2表面にTi、Siが堆積する。 This plasma, for 250ms to Piezoparubu A as shown in FIG. 2 is open TiCl 4 gas supplied, SiH 4 gas is decomposed, Ti, Si is deposited on the substrate 2 surface. その後、ピエゾパルブAが250ms閉じられると、その間は堆積が行われず、表面反応によって堆積物中の未分解元素Cl Thereafter, the Piezoparubu A is closed 250ms, not performed deposited therebetween, undecomposed elements Cl of sediments by surface reaction
を揮発性分子HClとして除去する。 It is removed as a volatile molecule HCl.

【0013】このような1周期500msによる操作を1サイクルとして何度も繰り返すことにより、基板2表面へのTi、Siの堆積と、堆積物中の未分解元素Cl [0013] By repeating several times the operation of such a one period 500ms as 1 cycle, Ti to the substrate second surface, and the deposition of Si, undecomposed element Cl in sediments
の除去とが図2のように別々の過程で行われることになり、基板2表面に未分解元素Clの含有量の少ない珪化チタン薄膜が得られる。 And removal will be carried out in separate processes as in FIG. 2, a small titanium silicide thin film content of undegraded element Cl is obtained in the substrate 2 surface.

【0014】かくして得られた珪化チタン薄膜と、原料ガスを連続的に供給して基板表面への成膜と未分解元素の除去を同時に行う従来のプラズマCVD法(以下、従来法という)にて得た珪化チタン薄膜とについて、X線光電子分光分析装置(日本電子社製、JESCA−4) [0014] Thus the titanium silicide thin films obtained, the raw material gas was continuously fed simultaneously conventional plasma CVD method to remove the film formation and the undecomposed element to the substrate surface (hereinafter, referred to as conventional method) at for the titanium silicide films obtained, X-rays photoelectron spectrometer (manufactured by JEOL Ltd., JESCA-4)
にて膜の組成を分析したところ、この実施例で得た珪化チタン薄膜中のCl濃度は5%以下であったのに対し、 Analysis of the composition of the film at, Cl concentration titanium silicide thin film obtained in this embodiment whereas was 5% or less,
従来法によるものは10%以上のClが含まれていることが認められた。 Those by the conventional method was found to contain more than 10% Cl. そして、これらの珪化チタン薄膜を大気中に1時間放置したところ、本実施例の珪化チタン薄膜は何ら異常はなかったが、従来法のものは腐食が起こっていた。 Then, when these titanium silicide film was left for 1 hour in the atmosphere, titanium silicide thin film of this example was not any abnormality, those conventional methods had occurred corrosion.

【0015】実施例2(窒化珪素膜の作製) 図1の装置を用い、Arガスに代えてN 2ガスを用い、 [0015] Using the apparatus of Example 2 (Preparation of a silicon nitride film) 1, using N 2 gas in place of Ar gas,
成膜用原料ガスをSiH 4ガスとN 2ガスとした。 The film-forming raw material gas was SiH 4 gas and N 2 gas. 実施例1と同様に反応室1内を排気、加熱した後、基板加熱用ヒータ6にて基板2を225℃に加熱した。 After the evacuation, the heating reaction chamber 1 in the same manner as in Example 1 was heated at a substrate heating heater 6 of the substrate 2 to 225 ° C.. 次いで、 Then,
加熱され、15〜25Pa圧に調整された反応室1内に夫々MFC21、22、23にて流量制御されたH 2ガス、N 2ガス、SiH 4ガスを供給する。 Supplying heated, flow controlled H 2 gas at respective MFC21,22,23 the adjusted reaction chamber 1 to 15~25Pa pressure, N 2 gas, the SiH 4 gas. この時、H 2 At this time, H 2
ガスはバルブ25を開いて連続に供給する。 Gas supplies continuously by opening the valve 25. また、成膜用原料ガスの1つであるN 2ガスも放電用ガスでもあるので、連続的に供給した。 Further, since the N 2 gas which is one of the film forming raw material gases is also a discharge gas was continuously supplied. そして、もう一方の成膜用原料ガスであるSiH 4ガスはバルブ開閉制御機33によって時間的に変化させ、図3に示すように1周期250 Then, SiH 4 gas as a source gas for the other film is temporally varied by the valve opening and closing control unit 33, one cycle 250 as shown in FIG. 3
msの間で10msピエゾパルブAを開いて供給する。 Supplies open the 10ms Piezoparubu A between ms.

【0016】そして、1KWの容量をもつRF電源4から600Wの電力を反応室1内に投入する。 [0016] Then, turning the RF power source 4 having a capacity of 1KW power 600W into the reaction chamber 1. ここで放電が起こり、電極3と基板2との間にプラズマが発生する。 Here discharge occurs, the plasma is generated between the electrode 3 and the substrate 2. このプラズマによって、図3のようにピエゾパルブAが開かれている10msから若干の間は供給されたS This plasma, between slightly from 10ms to Piezoparubu A is opened as shown in FIG. 3 were supplied S
iH 4ガス、N 2ガスが分解され、基板2表面にSi、 iH 4 gas, N 2 gas is decomposed, Si on the substrate 2 surface,
2が堆積する。 N 2 is deposited. その後、ピエゾパルブAが閉じられると、その間は堆積が行われず、表面反応によって堆積物中の未分解元素である水素が除去される。 Thereafter, the Piezoparubu A is closed, not performed during the deposition, hydrogen is undegraded elements in sediments by surface reaction is removed.

【0017】このような1周期250msによる操作を1サイクルとして何度も繰り返すことにより、基板2表面への原料ガス分解物の堆積と、堆積物中の未分解元素である水素の除去とが別々の過程で行われることになり、基板2表面に水素の含有量の少ない窒化珪素の薄膜が得られる。 [0017] By repeating several times the operation of such a one period 250ms as 1 cycle, and the deposition of the raw material gas decomposition product of the substrate 2 surface, removal of hydrogen and an undegraded elements in sediments separate will be in performed in the course, a thin film of less silicon nitride having the content of hydrogen in the substrate 2 surface.

【0018】かくして得られた窒化珪素薄膜と、従来法にて得た窒化珪素薄膜とについて、フーリエ変換赤外分光装置(日本電子社製、JIR−6500)にて膜中の水素原子密度を測定したところ、下記表1の結果を得た。 [0018] Thus the silicon nitride films obtained, for the silicon nitride films obtained by the conventional method, a Fourier transform infrared spectrometer (manufactured by JEOL Ltd., JIR-6500) measure the hydrogen atom density in the film at where was, with the results shown in table 1 below. また、本実施例および従来法において、夫々基板温度を変えて作製した膜についても測定を行った。 Further, in the present embodiment and the conventional method, the measurement also for films prepared by changing the respective substrate temperature was carried out. その結果、本実施例の膜は従来法にて得た膜より水素原子密度がかなり低いことがわかった。 As a result, the film of this example was found to be much lower hydrogen density than films obtained by the conventional method.

【0019】 [0019]

【表1】 [Table 1]

【0020】実施例3(窒化チタン膜の作製) 図1の装置を用い、SiH 4ガスに代えてN 2ガスを用い、成膜用原料ガスをTiCl 4ガスとN 2ガスとした。 [0020] Using the apparatus of Example 3 (Preparation of a titanium nitride film) 1, using N 2 gas in place of the SiH 4 gas, a film-forming raw material gas was TiCl 4 gas and N 2 gas. 実施例1と同様に反応室1内を排気、加熱した後、 Evacuating the reaction chamber 1 in the same manner as in Example 1, after heating,
基板加熱用ヒータ6にて基板2を400℃に加熱した。 The substrate 2 at a substrate heating heater 6 was heated to 400 ° C..
一方容器31内に収容されている常温で液体のTiCl TiCl liquid at room temperature whereas that contained in the container 31
4 32を加熱して気化させる。 4 32 heated to vaporize. 同時に気化させたTiC TiC obtained by vaporizing at the same time
4ガスを反応室1内に送る反応ガス導入管34も加熱用ヒータ35により加熱しておく。 The reaction gas inlet tube 34 to send the l 4 gas into the reaction chamber 1 is also kept heated by the heater 35.

【0021】次いで、加熱され、15〜25Pa圧に調整された反応室1内に夫々MFC21、22、23,2 [0021] then heated, respectively in the adjusted reaction chamber 1 to 15~25Pa pressure people MFC21,22,23,2
4にて流量制御されたH 2ガス、Arガス、N 2ガスおよび気化したTiCl 4ガスを供給する。 Flow controlled H 2 gas at 4 supplies the Ar gas, N 2 gas and vaporized TiCl 4 gas. 即ち、H 2ガスおよびArガスはバルブ25、26を開いて連続的に供給する。 That, H 2 gas and Ar gas is continuously supplied by opening the valve 25, 26. そして成膜用原料ガスである気化したTiC Vaporized TiC and a film-forming raw material gas
4ガスとN 2ガスは、夫々のピエゾバルブB、Aの開閉をバルブ開閉制御機33によって時間的に変化させて断続的に供給する。 l 4 gas and N 2 gas, piezo valve B each, intermittently supplying the opening and closing of the A temporally varied by the valve opening and closing control unit 33. 図4に示すように、1周期500m As shown in FIG. 4, one period 500m
sの間でまずピエゾバルブBを10ms開き、バルブ2 s first open the piezo-valve B 10ms between, valve 2
7、29、30を開として導入したキャリアH 2ガスとともにTiCl 4ガスを反応室1内に供給する。 Supplying TiCl 4 gas into the reaction chamber 1 together with a carrier H 2 gas was introduced 7,29,30 is opened.

【0022】そして、1KWの容量をもつRF電源4から600Wの電力を反応室1内に投入する。 [0022] Then, turning the RF power source 4 having a capacity of 1KW power 600W into the reaction chamber 1. ここで放電が起こり、プラズマが発生する。 Here discharge occurs, the plasma is generated. これによって、図4のようにTiCl 4ガスが分解し、ClがHClとして除去される。 Thus, TiCl 4 gas is decomposed as shown in Figure 4, Cl is removed as HCl. 次いで、バルブ開閉制御機33によりピエゾバルブAを75ms開いて成膜用かつ分解用ガスであるN 2ガスを反応室1内に供給する。 Then, supplies N 2 gas is film forming and cracking gas open 75ms the piezo valve A by the valve opening and closing control unit 33 into the reaction chamber 1. この75msの間のN 2ガス供給によって反応室1内にTiCl 4ガスとN TiCl into the reaction chamber 1 by the N 2 gas supply during this 75 ms 4 gas and N
2ガスが存在する時、これらの原料ガスが分解して基板2の表面にTiNの堆積が行われる。 When two gases are present, these raw material gas TiN deposition is performed to degradation to the surface of the substrate 2. その後ピエゾバルブAを250ms閉じる(ピエゾバルブBは既に閉じている)ことにより、堆積は行われず、表面反応によって堆積物中の未分解元素Clが除去される。 Subsequent to the piezoelectric valve A 250ms Close (piezo valve B is already closed) that the deposition is not performed, undegraded elements Cl of sediments by surface reaction is removed.

【0023】このような1周期500msによる操作を1サイクルとして数回繰り返すことにより、TiNの堆積と堆積物中の未分解元素Clの除去とが別々に行われ、基板2表面に未分解元素の含有量の少ないTiN膜が得られた。 [0023] By repeating several times the operation by such one period 500ms as 1 cycle, and the removal of undecomposed elements Cl of sediments and TiN deposition is carried out separately, the undecomposed element substrate 2 surface less TiN film with content was obtained.

【0024】かくして得られたTiN膜について、従来法で得たTiN膜とともに実施例1と同じ方法で膜の組成を分析したところ、本実施例のTiN膜中のCl濃度は5%以下であったが、従来法によるもののCl濃度は10%以上であった。 [0024] Thus the obtained TiN film, analysis of the composition of the same method in film as in Example 1 with TiN film obtained by the conventional method, Cl concentration of the TiN film of the present embodiment is a less than 5% and although, Cl concentration was 10% or more but by the conventional method. また、これらの膜の大気中1時間放置で従来法の膜は腐食が見られたが、本実施例の膜は何らの異常も認められなかった。 Further, in the film of the prior art 1 hour in the air left in these films were observed corrosion film of this example was also not observed any abnormalities.

【0025】実施例4 図1中のSiH 4ガスに代えてO 2ガスを、またキャリアH 2ガスに代えてSiH 4ガスを成膜用原料ガスとして用いた。 The O 2 gas in place of the SiH 4 gas in Example 4 FIG. 1, also using SiH 4 gas in place of the carrier H 2 gas as a film-forming raw material gas. 実施例1と同様に反応室1内を排気、加熱したのち、基板2を300℃に加熱した。 Evacuating the reaction chamber 1 in the same manner as in Example 1, after heated, the substrate was heated 2 to 300 ° C.. 次いで、15〜 Then, 15
25Pa圧にした反応室1内に夫々MFC21、22、 Each MFC21,22 the reaction chamber 1 was 25Pa pressure,
23、24で流量制御されたH 2ガス、Arガス、O 2 H 2 gas was flow controlled at 23, 24, Ar gas, O 2
ガス、SiH 4ガスを供給した。 Gas was supplied SiH 4 gas. このうち、H 2ガスとArガスは連続的に供給した。 Among, H 2 gas and Ar gas was continuously supplied. そして、成膜用原料ガスのSiH 4ガスとO 2ガスは1周期500msの間でピエゾバルブA、Bを図5のように時間的に変化させて開き、断続的に供給した。 Then, SiH 4 gas and O 2 gas film forming raw material gas open piezo valve A, temporally varied as in FIG. 5 B in one period 500 ms, was intermittently supplied.

【0026】まず、バルブ27、28を開としてバルブ開閉制御機33にてピエゾバルブBを10ms開いてS Firstly, a piezo valve B in the valve opening and closing control unit 33 the valve 27 is opened by opening 10 ms S
iH 4ガスを反応室1内に供給した。 The iH 4 gas was supplied into the reaction chamber 1. そして、1KWの容量をもつRF電源4から600Wの電力を反応室1内に投入する。 Then, turning the RF power source 4 having a capacity of 1KW power 600W into the reaction chamber 1. これによって放電が起こり、プラズマが発生し、SiH 4ガスの分解が起こり、まずSiH 4の分解物が基板上に堆積する。 This discharge occurs, the plasma is generated, occurs decomposition of SiH 4 gas, is first decomposed product of SiH 4 is deposited on the substrate. その後、堆積したSiH 4の分解物中に含まれている未分解元素のHが除去される。 Thereafter, H undecomposed elements contained in the decomposition product in the deposited SiH 4 is removed.
そして、250ms後にピエゾバルブBが閉のままバルブ開閉制御機33にてピエゾバルブAを10ms開いて原料ガスであり、かつ分解用ガスであるO 2ガスを供給する。 The piezo valve B after 250ms is 10ms open source gas piezo valve A at the closing of the left valve opening and closing controller 33, and supplies the O 2 gas is an exploded gas. これによって、その後ピエゾバルブA、Bが閉となっても表面反応によって堆積物とO 2等が反応してS Thus, after the piezoelectric valve A, B is reacted sediment and O 2 or the like by the surface reaction even in the closed S
iO 2膜が生成すると同時に堆積物中の未分解元素Hを除去することができる。 iO 2 film is generated when it is possible to remove the undecomposed element H of sediments at the same time.

【0027】このような図5に示す500ms周期による操作を1サイクルとして数回繰り返すことにより、基板表面に未分解元素の含有量の少ないSiO 2膜を形成することができた。 [0027] By repeating several times the operation by 500ms period indicated in such 5 as one cycle, it was possible to form a small SiO 2 film with the content of undegraded elements on the substrate surface.

【0028】これに対して、従来法でSiO 2膜を形成しようとすると、原料ガスが連続的に反応室に供給されるので、反応室内で効率よく原料ガスを分解することができず、このため表面に粉が付着したような膜しか得られなかった。 [0028] On the contrary, in order to form a SiO 2 film by the conventional method, the raw material gas is fed continuously to the reaction chamber, can not be decomposed efficiently material gas in the reaction chamber, the powder is not obtained only film as deposited on the surface for.

【0029】上記の実施例においては、プラズマを発生させる電力を何れも連続的に投入しているが、これは間欠的投入であってもよい。 [0029] In the above-mentioned embodiment, any power for generating plasma are continuously charged, which may be an intermittent on. その電源として周波数13. Frequency 13 as its power supply.
56MHz、容量1KWの電源を用いたが、容量は30 56 MHz, is used to power capacity 1 KW, capacity 30
0W〜15KWの範囲を用いることができ、また直流電源、低周波電源、マイクロ波電源などを用いることもでき、要するにプラズマ発生手段は限定されない。 Can be used range 0W~15KW, also the DC power source, the low-frequency power source, can also be used as microwave power, short plasma generating means is not limited.

【0030】この発明の成膜方法によれば、上記の実施例のほか、H 2ガス、Arガスに成膜用原料ガスとしてTiCl 4とSiCl 4を用いて珪化チタン膜を得る場合、また、H 2ガス、Arガスに成膜用原料ガスとしてSiCl 4とCH 4を用いて炭化珪素膜を得る場合、さらにはH 2ガス、Arガスに成膜用原料ガスとして塩化ホウ素(BCl 3 、B 2 Cl 4 )とN 2用いて窒化ホウ素膜を得る場合などにも未分解元素の除去が充分に行えて夫々良質な膜を得ることができる。 According to the film forming method of the present invention, in addition to the above example, H 2 gas, if obtaining a titanium silicide film by using TiCl 4 and SiCl 4 as a film-forming raw material gas to Ar gas, also, H 2 gas, the case of obtaining a silicon carbide film using SiCl 4 and CH 4 as a film-forming raw material gas to Ar gas, more H 2 gas, boron trichloride as a film-forming raw material gas to Ar gas (BCl 3, B 2 Cl 4) and also the removal of undegraded element in a case of obtaining the N 2 boron nitride film by using it it is possible to obtain a sufficiently performed by each high-quality film.

【0031】この発明の方法によれば、500℃以下の低い基板温度で、しかも膜の堆積過程と堆積物中の未分解元素の除去過程とを分けることによって未分解元素量の少ない皮膜を得ることができるので、切削工具や機械部品の耐摩耗性の向上のために、原料ガスの未分解元素の含有率が少ない硬質皮膜を600℃以下の基板温度でプラズマCVD法で得る場合や、LSIなどの電子部品製造過程で、原料ガスの未分解元素の含有率が少ない導電性膜、半導体膜、絶縁性膜、バリア膜を600℃以下の基板温度でプラズマCVD法にて得る場合などにこの発明の成膜方法が有効である。 [0031] According to the method of the present invention, at 500 ° C. or less of a low substrate temperature, yet obtain a small film of undegraded element content by separating the process removal of undecomposed element deposition process and sediments of the membrane it is possible, in order to improve the wear resistance of cutting tools and machine parts, and if obtained by plasma CVD hard coating content less undecomposed elements of the raw material gas at a substrate temperature of 600 ° C. or less, LSI in the electronic component manufacturing processes such as, conductive film content less undecomposed elements of the raw material gas, semiconductor film, an insulating film, a barrier film with the following substrate temperature 600 ° C. in a case of obtaining by a plasma CVD method this film forming method of the invention is effective.

【0032】 [0032]

【発明の効果】以上説明したように、この発明によれば、反応室内に成膜用原料ガス、放電用ガスおよび原料分解用ガスを導入し、RF電力を印加して反応室内の基板表面に薄膜を形成するに際して、成膜用原料ガスの導入を調整するピエゾバルブの開閉をバルブ開閉制御機によって時間的に変化させて断続的に行うこととしたので、原料ガス分解物の基板表面への堆積過程と、堆積物中の未分解元素の除去過程とを別個に設定することができ、従って未分解元素の含有量の少ない薄膜を得ることができる。 As described in the foregoing, according to the present invention, the film-forming raw material gas into the reaction chamber, a discharge gas and the raw material decomposition gas was introduced and the substrate surface in the reaction chamber by applying RF power in forming a thin film, since the intermittently performed that temporally varied by opening and closing the valve opening and closing control apparatus of piezo valve for adjusting the introduction of the film forming raw material gas, deposition on the substrate surface of the raw material gas decomposition product and process, it is possible to separately set a process of removing undegraded elements in sediments, thus yielding little thin film content of undegraded elements.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】この発明で使用するプラズマCVD装置の1例を示す概略図である。 1 is a schematic diagram showing one example of a plasma CVD apparatus used in this invention.

【図2】実施例1におけるピエゾバルブA、Bの開閉と成膜の時間変化を示す説明図である。 FIG. 2 is an explanatory view showing a piezo valve A, open and time variation of the formation of B in Example 1.

【図3】実施例2におけるピエゾバルブAの開閉と成膜の時間変化を示す説明図である。 3 is an explanatory view showing a time variation of the opening and closing and the deposition of the piezoelectric valve A in Example 2.

【図4】実施例3におけるピエゾバルブA、Bの開閉と成膜の時間変化を示す説明図である。 Piezo valve A in Figure 4 Example 3 is an explanatory view showing a time variation of the opening and closing and the deposition of B.

【図5】実施例4におけるピエゾバルブA、Bの開閉と成膜の時間変化を示す説明図である。 5 is a piezoelectric valve A, change with time in the opening and closing and the deposition of B in Example 4.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 反応室 2 基板 3 電極 4 電源 33 バルブ開閉制御機 A ピエゾバルブ B ピエゾバルブ 1 reaction chamber 2 substrate 3 electrodes 4 Power 33 valve opening and closing control apparatus A piezoelectric valve B piezoelectric valve

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 排気された反応室に複数の成膜用原料ガス、放電ガスおよび原料分解用ガスを導入し、上記反応室に間隔を隔てて設けた基板と電極との間に電力を供給して、上記原料ガスを分解させ、上記基板表面に皮膜を形成させるプラズマCVDによる成膜方法において、上記複数の成膜用原料ガスを間欠的に導入して、基板表面への上記原料ガス分解物の堆積過程と堆積物中の未分解元素の除去過程とを別個に設定するとともに、この両過程を周期5秒以下で繰り返し行うことを特徴とするプラズマCVDによる成膜方法。 1. A plurality the evacuated reaction chamber film formation raw material gas, introducing the discharge gas and the raw material decomposition gas, powering between the substrate and the electrode provided at intervals in the above reaction chamber to, to decompose the raw material gas, the film deposition method of the plasma CVD for forming a film on the substrate surface, and intermittently introducing the plurality of film-forming material gas, the raw material gas decomposition of the substrate surface and it sets the process removal of undecomposed element deposition process and sediments goods separately, a film forming method by plasma CVD, wherein a repeating this two step cycle 5 seconds or less.
JP5277897A 1993-10-07 1993-10-07 Formation of film by plasma cvd Granted JPH07109576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5277897A JPH07109576A (en) 1993-10-07 1993-10-07 Formation of film by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5277897A JPH07109576A (en) 1993-10-07 1993-10-07 Formation of film by plasma cvd

Publications (1)

Publication Number Publication Date
JPH07109576A true JPH07109576A (en) 1995-04-25

Family

ID=17589816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5277897A Granted JPH07109576A (en) 1993-10-07 1993-10-07 Formation of film by plasma cvd

Country Status (1)

Country Link
JP (1) JPH07109576A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273954B2 (en) 1998-09-03 2001-08-14 Mitsubishi Denki Kabushiki Kaisha System for manufacturing a semiconductor device
JP2003508932A (en) * 1999-09-08 2003-03-04 エーエスエム アメリカ インコーポレイテッド Growing a thin film, improved apparatus and method
WO2003021650A1 (en) * 2001-09-03 2003-03-13 Tokyo Electron Limited Film forming method
WO2004074543A1 (en) * 2003-02-20 2004-09-02 Tokyo Electron Limited Method for forming film
JP2011054968A (en) * 2009-09-03 2011-03-17 Asm Japan Kk METHOD FOR FORMING CONFORMAL DIELECTRIC FILM HAVING Si-N COMBINATION BY PECVD
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273954B2 (en) 1998-09-03 2001-08-14 Mitsubishi Denki Kabushiki Kaisha System for manufacturing a semiconductor device
JP4994551B2 (en) * 1999-09-08 2012-08-08 アーエスエム インターナショナル エヌフェー Improved apparatus and method for growing thin films
JP2003508932A (en) * 1999-09-08 2003-03-04 エーエスエム アメリカ インコーポレイテッド Growing a thin film, improved apparatus and method
WO2003021650A1 (en) * 2001-09-03 2003-03-13 Tokyo Electron Limited Film forming method
US7935384B2 (en) 2001-09-03 2011-05-03 Tokyo Electron Limited Film forming method
WO2004074543A1 (en) * 2003-02-20 2004-09-02 Tokyo Electron Limited Method for forming film
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
JP2011054968A (en) * 2009-09-03 2011-03-17 Asm Japan Kk METHOD FOR FORMING CONFORMAL DIELECTRIC FILM HAVING Si-N COMBINATION BY PECVD
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10364493B2 (en) 2016-08-25 2019-07-30 Asm Ip Holding B.V. Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film

Similar Documents

Publication Publication Date Title
US4684542A (en) Low pressure chemical vapor deposition of tungsten silicide
KR100790416B1 (en) Method for vapour deposition of a film onto a substrate
US4539068A (en) Vapor phase growth method
USRE35785E (en) Low-pressure chemical vapor deposition process for depositing high-density highly-conformal, titanium nitride films of low bulk resistivity
US5439715A (en) Process and apparatus for microwave plasma chemical vapor deposition
US6977225B2 (en) Chemical vapor deposition of titanium from titanium tetrachloride and hydrocarbon reactants
US4918033A (en) PECVD (plasma enhanced chemical vapor deposition) method for depositing of tungsten or layers containing tungsten by in situ formation of tungsten fluorides
US7067439B2 (en) ALD metal oxide deposition process using direct oxidation
US9605343B2 (en) Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US7794546B2 (en) Sealing device and method for a processing system
JP2018174327A (en) METHOD FOR DEPOSITING CHLORINE-FREE CONFORMAL SiN FILM
DE60027401T2 (en) Radical assisted sequential gas phase deposition
KR101277036B1 (en) Deposition system for forming deposit on substrate
US5129958A (en) Cleaning method for semiconductor wafer processing apparatus
US7107998B2 (en) Method for preventing and cleaning ruthenium-containing deposits in a CVD apparatus
US6645574B1 (en) Method of forming a thin film
JP3730865B2 (en) Method for passivating a CVD chamber
JP2922145B2 (en) Pretreatment method of a semiconductor substrate
KR100355914B1 (en) Method of manufacturing integrated circuit using a low-temperature plasma
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
US5607722A (en) Process for titanium nitride deposition using five-and six-coordinate titanium complexes
US5508066A (en) Method for forming a thin film
US20040083963A1 (en) Method and apparatus for delivering precursors
JP5209197B2 (en) Apparatus and method of operation for thermal and plasma enhanced deposition
CN1306571C (en) Fabricating method of metallic silicide film and metal-oxide semiconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128