JP3038827B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3038827B2
JP3038827B2 JP2188370A JP18837090A JP3038827B2 JP 3038827 B2 JP3038827 B2 JP 3038827B2 JP 2188370 A JP2188370 A JP 2188370A JP 18837090 A JP18837090 A JP 18837090A JP 3038827 B2 JP3038827 B2 JP 3038827B2
Authority
JP
Japan
Prior art keywords
processing
film
treatment
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2188370A
Other languages
Japanese (ja)
Other versions
JPH0474419A (en
Inventor
隆之 大場
寿哉 鈴木
樹 原
信裕 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2188370A priority Critical patent/JP3038827B2/en
Publication of JPH0474419A publication Critical patent/JPH0474419A/en
Application granted granted Critical
Publication of JP3038827B2 publication Critical patent/JP3038827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 配線形成の前処理方法に関し, 成膜の安定化と処理容器の最適化を図った前処理方法
の提供を目的とし, 1)被処理物表面を処理ガスとしてCO,COCl2,HCNの内の
少なくとも1つを含む励起したガス雰囲気にさらして,
該被処理物表面上に存在する炭化水素を除去する処理
と,該被処理物表面を処理ガスとしてH2,NF3,SF6,BCl3,
BF3の内の少なくとも1つを含む励起したガス雰囲気に
さらして,該被処理物表面上に存在する酸化物を除去す
る処理と,前記2処理終了後,水素を含む励起したガス
雰囲気にさらして,該被処理物表面上に存在する前記2
処理に起因する残留物を除去する処理とを含む該被処理
物表面の清浄化工程を有するように構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] Regarding a pretreatment method for forming a wiring, the object of the present invention is to provide a pretreatment method that stabilizes film formation and optimizes a treatment container. Exposure to an excited gas atmosphere containing at least one of CO, COCl 2 and HCN as
A treatment for removing hydrocarbons present on the surface of the object; and treating the surface of the object with H 2 , NF 3 , SF 6 , BCl 3 ,
A treatment for removing an oxide present on the surface of the object by exposing to an excited gas atmosphere containing at least one of BF 3 and, after the completion of the two treatments, an exposure to an excited gas atmosphere containing hydrogen. The above-mentioned 2 existing on the surface of the object to be treated
A process of removing the residue resulting from the process, and a step of cleaning the surface of the object to be processed.

2)前記各処理を,熱,光,プラズマによる処理ガスの
励起手段を用いて行うように構成する。
2) Each of the above-described processes is configured to be performed by using a means for exciting a process gas by heat, light, or plasma.

3)前記)1)あるいは2)の清浄化工程の後,前記被
処理物表面に成膜を行うようにする。
3) After the cleaning step 1) or 2), a film is formed on the surface of the workpiece.

4)前記被処理物が前記清浄化工程を行う処理室あるい
は成膜室であるように構成する。
4) The object to be processed is a processing chamber or a film forming chamber for performing the cleaning step.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体装置の製造方法に係り,特に配線形成
の前処理方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a pre-processing method for forming a wiring.

半導体装置の製造においては,膜界面の最適化,成膜
の安定化および高い量産性が必要であり,そのためのシ
リコン(Si)基板やアルミニウム(Al)等金属配線の下
地材料の前処理法法として本発明を適用することができ
る。
In the manufacture of semiconductor devices, it is necessary to optimize the film interface, stabilize film formation, and achieve high mass productivity. For this purpose, a pretreatment method for the underlying material of metal wiring such as silicon (Si) substrates and aluminum (Al) The present invention can be applied as

〔従来の技術〕[Conventional technology]

従来の成膜前の下地材料の前処理として,希弗酸を用
いたウエット処理や,基本的にSF6,NF3,BCl3を用いたド
ライ処理が行われていた。
Conventionally, as a pretreatment of a base material before film formation, a wet treatment using dilute hydrofluoric acid and a dry treatment using SF 6 , NF 3 , and BCl 3 have been basically performed.

しかし,ウエット処理では,下地の自然酸化膜の再形
成や,下地が異種のものからなる場合の,例えば,Siと
金属の同時処理が難しいという問題がある。
However, in the wet processing, there is a problem that it is difficult to re-form the underlying natural oxide film or to simultaneously treat, for example, Si and metal when the underlying layer is made of a different kind.

また,SF6,NF3,BCl3を用いたドライ処理や,原料ガス
としてWF6やTiCl4を用いる成膜では,基板表面や装置内
にこれらのガスを原因とした不純物〔例えば,F,Cl,ある
いはこれらを含む副生成物(SFx,NFx,WFx,SiFx,AlFx,BC
Lx,SiClx,AlClx,HF,HCl等)やレジスト等に起因する炭
化水素等〕が残留する。
In dry processing using SF 6 , NF 3 , or BCl 3 , or in film formation using WF 6 or TiCl 4 as a raw material gas, impurities caused by these gases (for example, F, Cl or by-products containing these (SF x , NF x , WF x , SiF x , AlF x , BC
L x , SiCl x , AlCl x , HF, HCl, etc.) and hydrocarbons resulting from resists, etc.] remain.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従って,処理基板のプロセスの再現性が低下し,成膜
異常や配線のコンタクト抵抗の増加や素子形成後のリー
ク電流の浄化が発生する。
Therefore, the reproducibility of the process of the processing substrate is reduced, and an abnormal film formation, an increase in the contact resistance of the wiring, and a purification of the leak current after the formation of the element occur.

本発明は成膜の安定化と処理容器の最適化を図った前
処理方法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pretreatment method that stabilizes film formation and optimizes a processing container.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題の解決は, 1)被処理物表面を処理ガスとしてCO,COCl2,HCNの内の
少なくとも1つを含む励起したガス雰囲気にさらして,
該被処理物表面上に存在する炭化水素を除去する処理
と,該被処理物表面を処理ガスとしてH2,NF3,SF6,BCl3,
BF3の内の少なくとも1つを含む励起したガス雰囲気に
さらして,該被処理物表面上に存在する酸化物を除去す
る処理と,前記2処理終了後,水素を含む励起したガス
雰囲気にさらして,該被処理物表面上に存在する前記2
処理に起因する残留物を除去する処理とを含む該被処理
物表面の清浄化工程を有する半導体装置の製造方法,あ
るいは 2)前記励起ガス雰囲気は,熱,光,プラズマの内の少
なくとも1つの励起手段によって形成する前記1)記載
の半導体装置の製造方法,あるいは 3)前記)1)あるいは2)記載の清浄化工程の後,前
記被処理物表面に成膜を行う半導体装置の製造方法,あ
るいは 4)前記被処理物が前記清浄化工程を行う処理室あるい
は成膜室である前記1)あるいは2)記載の半導体装置
の製造方法により達成される。
To solve the above problems: 1) Exposing the surface of an object to be treated to an excited gas atmosphere containing at least one of CO, COCl 2 , and HCN as a processing gas;
A treatment for removing hydrocarbons present on the surface of the object; and treating the surface of the object with H 2 , NF 3 , SF 6 , BCl 3 ,
A treatment for removing an oxide present on the surface of the object by exposing to an excited gas atmosphere containing at least one of BF 3 and, after the completion of the two treatments, an exposure to an excited gas atmosphere containing hydrogen. The above-mentioned 2 existing on the surface of the object to be treated
A method of manufacturing a semiconductor device having a step of cleaning the surface of the object to be processed, including a step of removing residues caused by the processing; or 2) the excited gas atmosphere is at least one of heat, light, and plasma. A method for manufacturing a semiconductor device according to the above 1), wherein the semiconductor device is formed by excitation means; or 3) a method for manufacturing a semiconductor device, wherein a film is formed on the surface of the workpiece after the cleaning step according to the above 1) or 2). Or 4) The semiconductor device manufacturing method according to 1) or 2), wherein the object to be processed is a processing chamber or a film forming chamber for performing the cleaning step.

〔作用〕[Action]

本発明は被処理物表面の炭化水素の除去,自然酸
化膜の除去,前記,による残留物の除去を行うこ
とにより被処理物表面の清浄化を行えば,被処理物表面
上への成膜が安定化することを実験的に確かめた結果
(第2図のコンタクト抵抗のデータ参照)を利用したも
のである。
The present invention provides a method for forming a film on the surface of an object to be processed by removing hydrocarbons on the surface of the object to be processed, removing a natural oxide film, and removing a residue by the above-described method. Is obtained by experimentally confirming that the stabilization is achieved (see the data of contact resistance in FIG. 2).

また,これらを一連の連続処理が行えるようにし,処
理室内に基板がない場合,あるいは基板に対し上記清浄
化処理を行った後に,処理室に同様の清浄化処理を行う
ことにより一層発明の効果を高めることができる。
In addition, it is possible to perform a series of continuous processes, and when there is no substrate in the processing chamber, or after performing the above-described cleaning process on the substrate, the same cleaning process is performed in the processing chamber to further improve the effect of the present invention. Can be increased.

〔実施例〕〔Example〕

第1図(a),(b)は本発明の一実施例を説明する
基板の断面図である。
1 (a) and 1 (b) are cross-sectional views of a substrate for explaining an embodiment of the present invention.

図において,1はSi基板またはAl,タングステン
(W),チタン(Ti)等金属膜あるいはこれら金属のシ
リサイド膜の下地材料,2はコンタクトホールが開口され
た絶縁膜で,二酸化シリコン(SiO2)膜,3は基板表面に
被着した炭化水素と酸化物,4は酸化物でSiOx,あるいはA
lOx,WOx等である。
In the figure, 1 is a base material of a silicon substrate or a metal film such as Al, tungsten (W), titanium (Ti) or a silicide film of these metals, and 2 is an insulating film having a contact hole formed therein, which is silicon dioxide (SiO 2 ). The film, 3 is a hydrocarbon and oxide deposited on the substrate surface, and 4 is an oxide of SiO x or A
lO x , WO x and the like.

つぎに,高周波(RF)電力により発生した処理ガスの
プラズマによる前処理を含めた成膜を工程順に説明す
る。
Next, film formation including pre-treatment by plasma of a processing gas generated by high frequency (RF) power will be described in the order of steps.

(1) 処理 炭化水素の除去(第1図(a)参照) COCl2 :5SCCM ガス圧力 :0.05Torr RF電力 :50W/基板 RF周波数 :13.56MHz 炭化水素(CmHn)除去過程の化学式: CmHn+COCl2→CCl4+H2O+・・・ (2) 処理 酸化物の除去(第1図(b)参照) i)下地がSi,Wの場合 NF3 : 5SCCM H2 :500SCCM ガス圧力 :0.02Torr RF電力 :20W/基板 RF周波数 :13.56MHz 処理時間 :5〜30sec 酸化物除去過程の化学式: SiOx+NF3→SiF4+NO2+・・・ WOx+NF3→ WF6+NO2+・・・ ii)下地がAlの場合 BCl3 : 5SCCM H2 :500SCCM ガス圧力 :0.02Torr RF電力 :20W/基板 RF周波数 :13.56MHz 処理時間 :5〜30sec 酸化物除去過程の化学式: AlOx+BCl3→AlCly+BOz+・・・ 以上の処理,が終わった後,必要ならば基板をH2
中で800℃で2分間加熱する。ただし,Al等低融点の材料
ではこの加熱は行ないで,その代わりにつぎの処理に
ようにプラズマ等励起してH2処理を行えばよい。
(1) Treatment Removal of hydrocarbons (see Fig. 1 (a)) COCl 2 : 5SCCM Gas pressure: 0.05Torr RF power: 50W / substrate RF frequency: 13.56MHz Chemical formula of hydrocarbon (C m H n ) removal process: C m H n + COCl 2 → CCl 4 + H 2 O + ··· (2) if the removal of the treated oxide (FIG. 1 (b) refer) i) underlying Si, of W NF 3: 5SCCM H 2: 500SCCM gas Pressure: 0.02 Torr RF power: 20 W / substrate RF frequency: 13.56 MHz Processing time: 5 to 30 sec Chemical formula of oxide removal process: SiO x + NF 3 → SiF 4 + NO 2 + ・ ・ ・ WO x + NF 3 → WF 6 + NO 2 Ii) When the base is Al BCl 3 : 5 SCCM H 2 : 500 SCCM Gas pressure: 0.02 Torr RF power: 20 W / substrate RF frequency: 13.56 MHz Processing time: 5 to 30 sec Chemical formula of oxide removal process: AlO x + BCl 3 → AlCl y + BO z + ... After the above processing, the substrate is replaced with H 2 if necessary.
Heat at 800 ° C for 2 minutes in. However, at no heating row is a material of Al Hitoshihiku melting point, may be performed with H 2 treatment is excited plasma or the like as the next process instead.

(3) 処理 処理,の処理ガスに起因する残留不純物の除去 H2 :500SCCM ガス圧力 :0.01〜0.1Torr RF電力 :300W/基板 RF周波数 :13.56MHz 処理時間 :20〜60sec 不純物除去過程の化学式: F(Cl,B)+H2→HF(HCl,B2H6) 上記の処理,の処理ガスに起因する不純物とし
て,前記のようにF,Cl等があるが,この処理により除
去できる。
(3) treatment process, removing H of the residual impurities resulting from the process gas 2: 500 SCCM Gas pressure: 0.01~0.1Torr RF Power: 300 W / substrate RF frequency: 13.56 MHz processing time: 20~60Sec impurity removal process of the formula: F (Cl, B) + H 2 → HF (HCl, B 2 H 6 ) As an impurity resulting from the processing gas in the above processing, there is F, Cl, etc. as described above, but can be removed by this processing.

(4) 配線膜の成膜 この成膜は,膜の種類により,例えば通常行われてい
るつぎの方法による。
(4) Wiring film formation This film formation is performed by, for example, the following method that is usually performed depending on the type of the film.

i)Alのスパッタ Arガスの圧力 :0.001Torr RF電力 :200W/基板 RF周波数 :13.56MHz ii)Wの気相成長(CVD) 原料ガスとして,WF6およびSiH4またはH2を用い,これ
を基板上で熱分解してWを堆積する。
i) Sputtering of Al Ar gas pressure: 0.001 Torr RF power: 200 W / substrate RF frequency: 13.56 MHz ii) Vapor phase growth of W (CVD) WF 6 and SiH 4 or H 2 were used as source gases. W is deposited by thermal decomposition on the substrate.

iii)TiNのCVD 原料ガスとして,TiCl4およびNH3またはN2H4を用い,
基板上で熱分解してTinを堆積する。
iii) Using TiCl 4 and NH 3 or N 2 H 4 as the source gas for CVD of TiN,
Thermal decomposition is performed on the substrate to deposit Tin.

TiのソースガスとしてTiの有機化合物,例えば(C
2H52iTi(N3を用いる場合もある。
Organic compounds of Ti such as (C
2 H 5) is sometimes used 2 iTi (N 3) 2.

ここで,W膜,TiN膜は,例えばつぎのように使用されて
いる。
Here, the W film and the TiN film are used, for example, as follows.

まず,コンタクト孔内にWを選択成長して埋め込み,W
層間の接着性をよくするためにTiN膜を挟み,その上に
Wを前面成長している。
First, W is selectively grown and embedded in the contact hole.
In order to improve the adhesiveness between the layers, a TiN film is interposed and W is grown on the TiN film on the front surface.

この場合のコンタクト抵抗を第2図に示す。 FIG. 2 shows the contact resistance in this case.

第2図は実施例のコンタクト抵抗を従来例に対比して
示す図である。
FIG. 2 is a diagram showing the contact resistance of the embodiment in comparison with the conventional example.

図において,横軸は成長回数を示し,縦軸は実施例の
値で基準化したコンタクト抵抗を示す。
In the figure, the horizontal axis shows the number of times of growth, and the vertical axis shows the contact resistance standardized by the value of the embodiment.

点線は装置をクリーニングした時点を示す。 The dotted line indicates the time when the apparatus was cleaned.

この結果,実施例はコンタクト界面が安定化している
ことが分かる。
As a result, it can be seen that in the example, the contact interface is stabilized.

(5) 処理室のクリーニング i)Alのスパッタ室 処理,BCl3またはBF3を用いて処理,処理の順序
で,処理室のクリーニングを行う。
(5) Processing chamber cleaning i) Al sputter chamber The processing chamber is cleaned in the order of processing, processing using BCl 3 or BF 3 , and processing.

ii)W−CVD室 処理,NF3またはSF6を用いて処理,処理の順序
で,処理室のクリーニングを行う。
ii) W-CVD chamber treatment, treatment with NF 3 or SF 6, the order of processing, cleaning the process chamber.

iii)清浄化処理(前処理)室 処理,処理,処理の順序で,処理室のクリーニ
ングを行う。
iii) Cleaning treatment (pretreatment) room The treatment room is cleaned in the order of treatment, treatment, and treatment.

第3図は実施例に使用した前処理装置の模式断面図で
ある。
FIG. 3 is a schematic sectional view of a pretreatment device used in the embodiment.

図において,11は処理室,12はガス導入口,13は排気口,
14は基板ホルダ兼接地電極,15はRF電極,16はRF電源,17
〜19はマスフローコントローラ(MFC)である。
In the figure, 11 is a processing chamber, 12 is a gas inlet, 13 is an exhaust port,
14 is the substrate holder / ground electrode, 15 is the RF electrode, 16 is the RF power supply, 17
Numeral 19 denotes a mass flow controller (MFC).

また,上記の前処理→成膜1→成膜2のように継続し
て処理できるように,第4図のように前処理室と各成長
室を真空搬送可能に接続した装置が望ましい。
Further, as shown in FIG. 4, an apparatus in which a pretreatment chamber and each growth chamber are connected in a vacuum-transportable manner as shown in FIG.

第4図は前処理室と2つの成長室間を真空搬送可能に
した連続処理装置の模式平面図である。
FIG. 4 is a schematic plan view of a continuous processing apparatus capable of carrying a vacuum between a pretreatment chamber and two growth chambers.

図の矢印は,工程の流れを示し,(A)は前処理室,
(B)と(C)は成長室を示している。
The arrows in the figure show the flow of the process, (A) shows the pretreatment chamber,
(B) and (C) show the growth chamber.

第5図(a),(b)は連続処理装置の処理のタイム
チャートの例を示す。
FIGS. 5 (a) and 5 (b) show examples of a time chart of the processing of the continuous processing apparatus.

図で矢印は各処理基板の流れを示し,斜線はコンディ
ショニング(前処理室,成長室のクリーニング処理)を
示す。
In the figure, arrows indicate the flow of each processing substrate, and oblique lines indicate conditioning (cleaning processing of the pre-processing chamber and the growth chamber).

実施例では処理ガスの励起をプラズマで行ったが,こ
れの代わりに熱,光によっても同様の効果があり,この
場合は通常の基板加熱手段,基板への光照射手段を用い
ればよい。
In the embodiment, the processing gas is excited by plasma, but the same effect can be obtained by heat or light instead of this. In this case, ordinary substrate heating means and means for irradiating the substrate with light may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば,成膜の安定化と
処理容器の最適化を図った前処理方法が得られた。
As described above, according to the present invention, a pretreatment method that stabilizes film formation and optimizes a processing container is obtained.

この結果,処理基板,処理室の清浄化が達成でき,阻
止特性の安定化,複数処理の高い再現性が得られた。
As a result, cleaning of the processing substrate and the processing chamber could be achieved, stabilization of the blocking characteristics, and high reproducibility of a plurality of processes were obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明の一実施例を説明する基
板の断面図, 第2図は実施例のコンタクト抵抗を従来例に対比して示
す図, 第3図は実施例に使用した前処理装置の模式断面図, 第4図は前処理室と2つの成長室間を真空搬送可能にし
た連続処理装置の模式平面図, 第5図(a),(b)は連続処理装置の処理のタイムチ
ャートの例を示す。 図において, 1はSi基板またはAl,W等金属膜の下地材料, 2はコンタクトホールが開口された絶縁膜でSiO2膜, 3は基板表面に被着した炭化水素と酸化物, 4は酸化物でSiOx,あるいはAlOx,WOx, 11は処理室, 12はガス導入口, 13は排気口, 14は基板ホルダ兼接地電極, 15はRF電極, 16はRF電源, 17〜19はマスフローコントローラ(MFC) である。
1 (a) and 1 (b) are cross-sectional views of a substrate for explaining one embodiment of the present invention, FIG. 2 is a diagram showing contact resistance of the embodiment in comparison with a conventional example, and FIG. 3 is an embodiment. FIG. 4 is a schematic plan view of a continuous processing apparatus in which a vacuum transfer can be performed between the preprocessing chamber and two growth chambers, and FIGS. 5 (a) and 5 (b) are continuous views. 4 shows an example of a time chart of processing of the processing device. In the figure, 1 is a base material of a metal film such as an Si substrate or Al, W, 2 is an SiO 2 film which is an insulating film having a contact hole opened, 3 is a hydrocarbon and an oxide deposited on the substrate surface, and 4 is an oxidized film. SiO x or AlO x , WO x , 11 are processing chambers, 12 is a gas inlet, 13 is an exhaust port, 14 is a substrate holder / ground electrode, 15 is an RF electrode, 16 is an RF power source, and 17 to 19 are It is a mass flow controller (MFC).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三沢 信裕 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭63−215037(JP,A) 特開 昭63−267430(JP,A) 特開 平1−152274(JP,A) 特開 昭63−76333(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304,21/88 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nobuhiro Misawa 1015 Uedanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (56) References JP-A-63-215037 (JP, A) JP-A-63-267430 (JP, A) JP-A-1-152274 (JP, A) JP-A-63-76333 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/304, 21 / 88

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体装置に配線を形成する際に行う前処
理であって, 被処理物表面を処理ガスとして、CO,COCl2,HCNの内の少
なくとも1つを含む励起ガス雰囲気にさらして,該被処
理物表面上に存在する炭化水素を除去する処理と, 該被処理物表面を処理ガスとして,H2,NF3,SF6,BCl3,BF3
の内の少なくとも1つを含む励起ガス雰囲気にさらし
て,該被処理物表面上に存在する酸化物を除去する処理
と, 前記2処理終了後,水素を含む励起ガス雰囲気にさらし
て,前記2処理に起因する残留物を除去する処理 とを含む該被処理物表面の清浄工程を有することを特徴
とする半導体装置の製造方法。
1. A pre-process for forming a wiring in a semiconductor device, wherein a surface of an object to be processed is exposed to an excited gas atmosphere containing at least one of CO, COCl 2 , and HCN as a process gas. , A treatment for removing hydrocarbons present on the surface of the object, and H 2 , NF 3 , SF 6 , BCl 3 , BF 3
A treatment for removing oxides present on the surface of the workpiece by exposing to an excited gas atmosphere containing at least one of the following: A method of cleaning a surface of the object to be processed, the method including a step of removing a residue resulting from the processing.
【請求項2】前記励起ガス雰囲気は,熱,光,プラズマ
の内の少なくとも1つの励起手段によって形成すること
を特徴とする請求項1記載の半導体装置の製造方法。
2. The method according to claim 1, wherein the excited gas atmosphere is formed by at least one of heat, light, and plasma.
【請求項3】請求項1あるいは2記載の清浄化工程の
後,前記被処理物表面に成膜を行うことを特徴とする半
導体装置の製造方法。
3. A method for manufacturing a semiconductor device, comprising, after the cleaning step according to claim 1 or 2, forming a film on the surface of the object to be processed.
【請求項4】前記被処理物が前記清浄化工程を行う処理
室あるいは成膜室であることを特徴とする請求項1ある
いは2記載の半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the object to be processed is a processing chamber or a film forming chamber for performing the cleaning step.
JP2188370A 1990-07-17 1990-07-17 Method for manufacturing semiconductor device Expired - Fee Related JP3038827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188370A JP3038827B2 (en) 1990-07-17 1990-07-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188370A JP3038827B2 (en) 1990-07-17 1990-07-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0474419A JPH0474419A (en) 1992-03-09
JP3038827B2 true JP3038827B2 (en) 2000-05-08

Family

ID=16222430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188370A Expired - Fee Related JP3038827B2 (en) 1990-07-17 1990-07-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3038827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412488B (en) * 2004-03-26 2007-03-28 Applied Materials Inc Ion sources
FR2949237B1 (en) * 2009-08-24 2011-09-30 Ecole Polytech METHOD OF CLEANING THE SURFACE OF A SILICON SUBSTRATE
CN111566786B (en) * 2017-12-14 2024-03-15 应用材料公司 Method for etching metal oxide with less etching residue

Also Published As

Publication number Publication date
JPH0474419A (en) 1992-03-09

Similar Documents

Publication Publication Date Title
KR100447284B1 (en) Method of cleaning chemical vapor deposition chamber
US7232492B2 (en) Method of forming thin film for improved productivity
JP3529989B2 (en) Film forming method and semiconductor device manufacturing method
KR100363343B1 (en) Cleaning gas and method for cleaning vacuum treatment apparatus by flowing the cleaning gas
JP2019515505A (en) Plasma processing process to improve in-situ chamber cleaning efficiency in plasma processing chamber
JP2010205854A (en) Method of manufacturing semiconductor device
JP6325057B2 (en) Manufacturing method of semiconductor device
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
KR19980032434A (en) A method of laminating a titanium film and a barrier metal film on the surface of a workpiece
US20060254613A1 (en) Method and process for reactive gas cleaning of tool parts
JPH07176484A (en) Method of uniformly depositing tungsten silicide on semiconductor wafer by treating suscepter having surface of aluminum nitride after purification of susceptor
JP2837087B2 (en) Thin film formation method
JP3038827B2 (en) Method for manufacturing semiconductor device
EP1154036A1 (en) Gas reactions to eliminate contaminates in a CVD chamber
JP2611466B2 (en) Method of forming capacitive insulating film
JP3189771B2 (en) Method for manufacturing semiconductor device
KR100240532B1 (en) Pretreatment process for treating aluminum-bearing surfaces of deposition chamber prior to deposition tungsten silicide coating on substrate therein
JPH0793276B2 (en) Thin film forming pretreatment method and thin film forming method
EP1154037A1 (en) Methods for improving chemical vapor deposition processing
JP2558738B2 (en) Surface treatment method
US20030170983A1 (en) Plasma enhanced chemical vapor deposition methods of forming titanium silicide comprising layers over a plurality of semiconductor substrates
JPH06302565A (en) Plasma cleaning method for chamber
EP1154038A1 (en) Method of conditioning a chamber for chemical vapor deposition
JPH1180962A (en) Method for laminating polycrystal material on silicon base substrate
US6291358B1 (en) Plasma deposition tool operating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees