JP3186872B2 - Film forming method by pulse plasma CVD - Google Patents

Film forming method by pulse plasma CVD

Info

Publication number
JP3186872B2
JP3186872B2 JP33510992A JP33510992A JP3186872B2 JP 3186872 B2 JP3186872 B2 JP 3186872B2 JP 33510992 A JP33510992 A JP 33510992A JP 33510992 A JP33510992 A JP 33510992A JP 3186872 B2 JP3186872 B2 JP 3186872B2
Authority
JP
Japan
Prior art keywords
gas
film
reaction chamber
film forming
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33510992A
Other languages
Japanese (ja)
Other versions
JPH06163434A (en
Inventor
隆司 北中
伸一 小林
安司 川下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Priority to JP33510992A priority Critical patent/JP3186872B2/en
Publication of JPH06163434A publication Critical patent/JPH06163434A/en
Application granted granted Critical
Publication of JP3186872B2 publication Critical patent/JP3186872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、被処理物表面にパル
スプラズマCVDにて高品質の薄膜を形成する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a high-quality thin film on a surface of an object by pulse plasma CVD.

【0002】[0002]

【従来の技術】プラズマCVD法は化学蒸着法の1方法
として被処理物表面への皮膜形成に広く採用されてい
る。このプラズマCVD法はガスの供給および電力供給
を連続的に行うものであり、面積当たりのプラズマエネ
ルギーの密度が重要である。しかし、供給されるガスの
分解はプラズマエネルギーのみでは不十分であり、加熱
される基板の熱にも頼っている。現在行われているプラ
ズマCVDでは成膜温度は300℃以上であるが、この
ような温度で皮膜を形成した合金工具鋼のような基板
は、それ自体が鈍って硬度が低下し、冷間処理用の金型
として用いることはできない。従って、そのような用途
には200℃以下の皮膜温度が要求される。一方、成膜
組成としてTiNの良質皮膜を得ようとすると、500
℃以上の成膜温度を必要とすることから、使用する基板
材料が限定されるという問題がある。
2. Description of the Related Art Plasma CVD is widely used as a chemical vapor deposition method for forming a film on the surface of an object to be processed. In this plasma CVD method, gas supply and power supply are performed continuously, and the density of plasma energy per area is important. However, the decomposition of the supplied gas is not sufficient with the plasma energy alone, but also depends on the heat of the substrate to be heated. At present, plasma CVD is performed at a film forming temperature of 300 ° C. or higher. However, a substrate such as an alloy tool steel having a film formed at such a temperature becomes dull and decreases in hardness, and is subjected to cold treatment. It cannot be used as a metal mold. Therefore, such applications require a coating temperature of 200 ° C. or less. On the other hand, when trying to obtain a high quality film of TiN as the film forming composition, 500
Since a film formation temperature of not less than ° C. is required, there is a problem that a substrate material to be used is limited.

【0003】また、パルスプラズマCVD法も一部で発
表されているが、これは反応室内に被処理物と、高周波
電力が供給される電極とを間隔を隔てて配置し、反応室
内を排気し、複数の反応ガスを導入するとともに、上記
電極に間欠的に高周波電力を供給し、この高周波電力に
よって各反応ガスをそれぞれを構成する原子に解離させ
て、プラズマを発生させ、これら原子が被処理物上にお
いて化学反応して薄膜を形成させるものである。
[0003] A pulse plasma CVD method has also been disclosed in some parts. In this method, an object to be processed and an electrode to which high-frequency power is supplied are arranged at an interval in a reaction chamber, and the reaction chamber is evacuated. , A plurality of reaction gases are introduced, and high-frequency power is intermittently supplied to the electrodes, and the high-frequency power dissociates each reaction gas into its constituent atoms to generate plasma, and these atoms are processed. It forms a thin film by a chemical reaction on an object.

【0004】この方法では、低い電力でその供給時間と
休止時間の比率が1:1〜1:5程度でガス種も混合か
交互に供給されている。また、プラズマエネルギー密度
を高くするために、大電力を使用するパルスプラズマC
VD法ではパルス状にガスを供給し、ガスが反応室内に
充分拡散したころに高周波電力をパルス状に供給するも
のである。この方法は、1周期が原料ガスと放電用ガス
を同時に供給し、その後電力をパルス状に供給し、次に
反応ガスを供給し、さらに電力をパルス状に供給してい
る。
In this method, the ratio of the supply time and the rest time is about 1: 1 to 1: 5 with low power, and gas species are mixed or supplied alternately. Further, in order to increase the plasma energy density, a pulsed plasma C using large power is used.
In the VD method, gas is supplied in a pulsed manner, and high-frequency power is supplied in a pulsed form when the gas is sufficiently diffused into the reaction chamber. In this method, in one cycle, a source gas and a discharge gas are simultaneously supplied, and thereafter, electric power is supplied in a pulse form, then a reaction gas is supplied, and further, electric power is supplied in a pulse form.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
方法では反応室内が加熱されておらず、供給された原料
ガスが凝縮して反応室の壁面に付着したりするため、供
給された原料ガスを完全に分解することは難しく、従っ
て、未分解の元素が膜のなかに残ってしまい良質な膜が
得られないという問題があった。
However, in the above method, the supplied source gas is not heated, and the supplied source gas condenses and adheres to the wall of the reaction chamber. There is a problem that it is difficult to completely decompose, and therefore, undecomposed elements remain in the film and a high-quality film cannot be obtained.

【0006】本発明者らは上記に鑑みて、成膜温度が低
くても未分解元素が残留することなく、良質な皮膜の得
られる成膜方法を提供することを目的とするものであ
る。
[0006] In view of the above, the inventors of the present invention have an object to provide a film forming method capable of obtaining a good film without leaving undecomposed elements even at a low film forming temperature.

【0007】[0007]

【課題を解決するための手段】即ち、この発明の第1の
発明は排気され、加熱された反応室に成膜用原料ガス、
放電用ガスおよび原料分解用ガスを夫々別個にコントロ
ールしつつ間欠的に導入し、高周波電力をパルス状に供
給してパルスプラズマCVDにて上記反応室内の被処理
物表面に皮膜を形成させるに当たり、その成膜工程にお
いて1回の成膜用原料ガスの供給に対して放電用ガス、
原料分解用ガスおよび高周波電力を複数回供給すること
を特徴とするパルスプラズマCVDによる成膜方法であ
り、第2の発明は排気され、加熱された反応室に成膜用
原料ガス、放電用ガスおよび原料分解用ガスを夫々別個
にコントロールしつつ間欠的に導入し、高周波電力をパ
ルス状に供給してパルスプラズマCVDにて上記反応室
内の被処理物表面に化合物皮膜を形成させるに当たり、
その成膜工程において化合物薄膜を構成する数種の成膜
用原料ガスを夫々別個に段階的に上記反応室に供給し、
これら成膜用原料ガスの供給の都度他の放電用ガス、原
料分解用ガスおよび高周波電力を供給することを特徴と
するパルスプラズマCVDによる成膜方法を提供するも
のである。
That is, according to the first aspect of the present invention, a raw material gas for film formation is introduced into an exhausted and heated reaction chamber.
The discharge gas and the raw material decomposition gas are intermittently introduced while being separately controlled, and a high-frequency power is supplied in a pulsed manner to form a film on the surface of the object to be processed in the reaction chamber by pulsed plasma CVD. In the film forming process, a discharge gas,
A method for forming a film by pulsed plasma CVD comprising supplying a raw material decomposition gas and a high-frequency electric power a plurality of times. The second invention provides a film forming raw material gas and a discharge gas in an exhausted and heated reaction chamber. And controlling the gas for raw material decomposition separately while intermittently introducing them, and supplying high frequency power in a pulsed manner to form a compound film on the surface of the object to be processed in the reaction chamber by pulsed plasma CVD.
In the film forming process, several kinds of film forming source gases constituting the compound thin film are separately and stepwise supplied to the reaction chamber,
Another object of the present invention is to provide a film forming method by pulse plasma CVD characterized by supplying another discharge gas, material decomposition gas and high frequency power every time the film forming material gas is supplied.

【0008】[0008]

【作用】プラズマCVDによる成膜方法において成膜用
原料ガスとしては、化合物を用いる場合が多いが、この
化合物の分解を反応室内で完全に行うことは非常に難し
く、このため被処理物表面に成膜した薄膜中には未分解
の元素が残留していて良質な膜とは言いがたい。このよ
うな未分解の元素を除去するには、未分解の元素と反応
するガスを供給しながらタイミングよく電力を供給する
ことが必要である。
In a method of forming a film by plasma CVD, a compound is often used as a raw material gas for film formation, but it is very difficult to completely decompose the compound in a reaction chamber. Undecomposed elements remain in the formed thin film, and it cannot be said that the film is a good quality film. In order to remove such undecomposed elements, it is necessary to supply power in a timely manner while supplying a gas that reacts with the undecomposed elements.

【0009】この発明は成膜工程において、成膜用原料
ガスが1種の場合は、これをただ1回の供給に対して放
電用ガス、原料分解用ガス、高周波電力を複数回供給
し、また、数種の成膜用原料ガスを用いる場合は、これ
を夫々別個に段階的に供給し、その都度放電用ガス、原
料分解用ガス、高周波電力を複数回供給するようにした
ことによって、原料ガスの分解を完全に行い、未分解元
素を含まない良質な薄膜が得られるのである。
According to the present invention, in the film forming step, when a single kind of film forming raw material gas is supplied, a discharge gas, a raw material decomposition gas and a high frequency power are supplied a plurality of times for a single supply. Also, when using several kinds of film forming source gases, these are supplied separately and stepwise, and each time, a discharging gas, a raw material decomposition gas, and a high frequency power are supplied a plurality of times. The source gas is completely decomposed, and a high-quality thin film containing no undecomposed elements can be obtained.

【0010】次に、図1に示すこの発明で使用するパル
スプラズマCVDの成膜装置についてその概略を説明す
る。図において、1はその外周を加熱ヒータ2で覆った
反応室である。この反応室1の内部にはその下方寄りに
被処理物(基板)3を配置し、上方にはこの被処理物3
に対向するように高周波電極5を配置しており、この高
周波電極5はマッチングボックス(整合器)6を経てパ
ルス高周波電源7に接続している。被処理物3はその下
方に加熱ヒータ4を具えている。また、上記反応室1は
主弁8、ルーツポンプ9を介して油回転真空ポンプ10
に接続されており、この油回転真空ポンプ10の作動に
よって反応室1内が排気されるようになっている。な
お、油回転真空ポンプ10には廃ガス処理装置(図示せ
ず)への導入管12が接続されており、油回転真空ポン
プ10とルーツポンプ9との間の分岐管には窒素ガスを
油回転真空ポンプ10に供給する窒素ガス導入弁11が
設けられている。
Next, an outline of a pulse plasma CVD film forming apparatus used in the present invention shown in FIG. 1 will be described. In the figure, reference numeral 1 denotes a reaction chamber whose outer periphery is covered by a heater 2. An object to be processed (substrate) 3 is disposed inside the reaction chamber 1 at a lower portion thereof, and the object to be processed 3
The high-frequency electrode 5 is arranged so as to be opposed to the high-frequency electrode 5, and is connected to a pulse high-frequency power supply 7 via a matching box (matching device) 6. The workpiece 3 has a heater 4 below it. The reaction chamber 1 is connected to an oil rotary vacuum pump 10 via a main valve 8 and a roots pump 9.
The inside of the reaction chamber 1 is evacuated by the operation of the oil rotary vacuum pump 10. The oil rotary vacuum pump 10 is connected to an inlet pipe 12 to a waste gas treatment device (not shown), and a branch pipe between the oil rotary vacuum pump 10 and the roots pump 9 is supplied with nitrogen gas by oil. A nitrogen gas introduction valve 11 for supplying to a rotary vacuum pump 10 is provided.

【0011】13は導入ガスストップバルブであり、該
バルブから成膜用原料ガス、放電用ガス、原料分解用ガ
スなどが反応室1に導入される。即ち、Arガス、H2
ガスはマスフローコントロールバルブ14、17で流量
をコントロールしながらバッファタンク15、18に送
られ、そこからピエゾバルブ16、19を瞬間的に開閉
して導入ガスストップバルブ13から反応室1へ送られ
る。また、原料ガスの1つとして用いるN2 ガスはマス
フローコントロールバルブ20で流量をコントロールし
ながらバッファタンク21に送られ、そこからピエゾバ
ルブ22を瞬間的に開閉して導入ガスストップバルブ1
3から反応室1へ送られる。
Reference numeral 13 denotes an introduction gas stop valve from which a source gas for film formation, a gas for discharge, a gas for decomposition of the source, and the like are introduced into the reaction chamber 1. That is, Ar gas, H 2
The gas is sent to the buffer tanks 15 and 18 while controlling the flow rate by the mass flow control valves 14 and 17, from which the piezo valves 16 and 19 are instantaneously opened and closed, and sent from the introduction gas stop valve 13 to the reaction chamber 1. The N 2 gas used as one of the source gases is sent to the buffer tank 21 while controlling the flow rate by the mass flow control valve 20, from which the piezo valve 22 is opened and closed instantaneously to introduce the introduced gas stop valve 1.
3 to the reaction chamber 1.

【0012】さらに、TiCl4 、AlCl3 のような
常温で液体の物質を原料として用いる時は恒温槽27内
の原料26をヒータ28で加熱して気化させておき、こ
の気化させた反応ガスを、反応室へ供給する反応ガス導
入管32にストップバルブ29、30を操作して導き、
この反応ガス導入管32にキャリアガスとして用いるマ
スフローコントロールバルブ23で流量をコントロール
されたH2 ガスをストップバルブ29、30を開閉して
供給し、このH2 ガスとともに反応ガスをバッファタン
ク24、ピエゾバルブ25を経て導入ガスストップバル
ブ13から反応室1へ送るのである。この反応ガスを反
応室1へ供給するに当たっては、該ガスが供給途中の反
応ガス導入管32内において凝縮するのを防ぐために、
反応ガス導入管32の周囲には導入管加熱ヒータ33を
取り付けておくことが好ましい。
Further, when a liquid material at room temperature, such as TiCl 4 or AlCl 3 , is used as a raw material, the raw material 26 in the constant temperature bath 27 is heated and vaporized by the heater 28, and the vaporized reaction gas is discharged. Operating the stop valves 29 and 30 to the reaction gas introduction pipe 32 to be supplied to the reaction chamber;
H 2 gas whose flow rate is controlled by the mass flow control valve 23 used as a carrier gas is supplied to the reaction gas introduction pipe 32 by opening and closing the stop valves 29 and 30, and the reaction gas together with the H 2 gas is supplied to the buffer tank 24 and the piezo valve. The gas is sent from the introduction gas stop valve 13 to the reaction chamber 1 via 25. In supplying the reaction gas to the reaction chamber 1, in order to prevent the gas from condensing in the reaction gas introduction pipe 32 during the supply,
It is preferable that an introduction pipe heater 33 is attached around the reaction gas introduction pipe 32.

【0013】なお、キャリアガスとしては、H2 のほか
にArやHe等を用いることができる。また、反応ガス
の1つであるN2 に代えてNH3 ガスを用いてもよい。
さらに、酸化物を成膜する場合にはN2 に代えてO2
2 O、COを用いることもできる。この発明において
被処理物としては、Siウエハー、高速度鋼、ダイス
鋼、ステンレス鋼などが用いられ、この発明の方法で表
面に導電性膜、絶縁性膜、バリヤ膜を形成したSiウエ
ハーは半導体デバイスや電子部品として使用され、超硬
質皮膜を形成した高速度鋼などは金型、切削工具や耐磨
耗性機械部品として用いられる。
Incidentally, as the carrier gas, Ar, He or the like can be used in addition to H 2 . Further, NH 3 gas may be used instead of N 2 which is one of the reaction gases.
Furthermore, in case of forming an oxide in place of the N 2 O 2,
N 2 O and CO can also be used. In the present invention, a Si wafer, a high-speed steel, a die steel, a stainless steel, or the like is used as an object to be processed. The Si wafer having a conductive film, an insulating film, and a barrier film formed on the surface by the method of the present invention is a semiconductor. High-speed steel with an ultra-hard coating formed is used as a device or an electronic component, and is used as a mold, a cutting tool, or a wear-resistant mechanical component.

【0014】[0014]

【実施例】以下、この発明を図1を参照し実施例により
詳細に説明する。 実施例1(TiN膜の形成) まず、反応室1に接続している管の主弁8を開き、真空
ポンプ9、10を作動して反応室1内を排気したのち、
加熱ヒータ2にて予め反応室1内を100℃前後に加熱
する。一方、恒温槽27に収容されている液化原料であ
る四塩化チタン(TiCl4 )26を加熱ヒータ28で
加熱しておく。次に、被処理物3を加熱ヒータ4にて加
熱し、200℃になったらArガス、H2 ガスを夫々マ
スフローコントロールバルブ(以下、これをMFCとい
う)14および17で流量を調節しながらバッファタン
ク15、18に溜め込んだのち、ピエゾバルブ16、1
9を瞬間的に開閉し、導入ガスストップバルブ13を開
いて反応室1にパルス状に導入する。これらの導入は、
25ms周期で7msピエゾバルブを開くことを繰り返
すことで行われる。なお、導入ガスストップバルブ13
は放電開始時点から放電終了まで開いたままにしてお
く。パルス状に導入したArガス、H2 ガスが反応室1
に充分拡散したら、パルス高周波電源7から高周波電極
5にパルス状に40KW,13.56MHzの高周波電
力を印加してプラズマを発生させて、反応室1の内壁面
および被処理物3に付着している水分を除去する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to FIG. Example 1 (Formation of TiN film) First, after opening the main valve 8 of the pipe connected to the reaction chamber 1 and operating the vacuum pumps 9 and 10 to exhaust the inside of the reaction chamber 1,
The inside of the reaction chamber 1 is previously heated to about 100 ° C. by the heater 2. On the other hand, titanium tetrachloride (TiCl 4 ) 26, which is a liquefied raw material, housed in a thermostat 27 is heated by a heater 28. Next, the workpiece 3 is heated by the heater 4, and when the temperature reaches 200 ° C., the Ar gas and the H 2 gas are buffered while adjusting the flow rate by mass flow control valves (hereinafter referred to as MFC) 14 and 17, respectively. After storing in the tanks 15 and 18, the piezo valves 16, 1
9 is opened and closed instantaneously, and the introduction gas stop valve 13 is opened to introduce a pulse into the reaction chamber 1. These introductions
This is performed by repeatedly opening the 7 ms piezo valve at a cycle of 25 ms. The introduction gas stop valve 13
Are kept open from the start of discharge to the end of discharge. Ar gas and H 2 gas introduced in a pulsed manner
When the pulse is sufficiently diffused, a high frequency power of 40 KW and 13.56 MHz is applied in a pulse form from the pulse high frequency power supply 7 to the high frequency electrode 5 to generate plasma, which adheres to the inner wall surface of the reaction chamber 1 and the workpiece 3. To remove water.

【0015】次に、成膜工程の第1段階としてまず最初
に、恒温槽27で加熱して気化せしめたTiCl4 ガス
を成膜用原料ガスとしてストップバルブ29、30から
反応ガス導入管32に導入し、同時にMFC23で流量
を調節したH2 ガスをキャリアガスとしてストップバル
ブ29、30を開閉して上記反応ガス導入管32に導入
して、このキャリアガスとともにTiCl4 ガスと、M
FC14、17で流量を調節したArガス、H2 ガスと
を同期して25ms周期で7msピエゾバルブ25、1
6、19を開き、これを繰り返して間欠的に反応室1内
に導入する。これらのガスが反応室1内に充分拡散した
とき、パルス高周波電源7から150μsの間上記と同
じ高周波電力を印加してTiCl4 ガスを分解し、Ti
元素を被処理物上に膜として堆積させる。
Next, as the first stage of the film forming process, first, the TiCl 4 gas heated and vaporized in the constant temperature bath 27 is used as a film forming material gas from the stop valves 29 and 30 to the reaction gas introducing pipe 32. introduced, it was introduced into the reaction gas inlet tube 32 by opening and closing the stop valve 29, 30 the H 2 gas as a carrier gas was adjusted flow rate MFC23 simultaneously, the TiCl 4 gas with the carrier gas, M
The 7 ms piezo valves 25 and 1 are synchronized with the Ar gas and the H 2 gas whose flow rates are adjusted by the FCs 14 and 17 at a cycle of 25 ms.
6 and 19 are opened, and this is repeated to introduce the reaction chamber 1 intermittently. When these gases have sufficiently diffused into the reaction chamber 1, the same high frequency power as described above is applied for 150 μs from the pulse high frequency power supply 7 to decompose the TiCl 4 gas,
The element is deposited as a film on the object.

【0016】さらに、MFC14、17で流量を調節し
たArガス、H2 ガスを25ms周期で7msピエゾバ
ルブを開くことを6〜7回繰り返して間欠的に供給し、
同時に高周波電力をもその都度間欠的に供給することに
より、膜中に残存しているClやO元素を除去する。
Further, Ar gas and H 2 gas whose flow rates have been adjusted by the MFCs 14 and 17 are intermittently supplied by repeating the opening of the 7 ms piezo valve at a cycle of 25 ms for 6 to 7 times,
At the same time, high-frequency power is also intermittently supplied each time, thereby removing the Cl and O elements remaining in the film.

【0017】次に、成膜工程の第2段階として成膜用原
料ガスとしてのN2 ガスをMFC20で流量を調節し
て、MFC14、17からのArガス、H2 ガスととも
に上記と同じ条件で2〜3回繰り返し間欠的に供給する
とともに、高周波電力をも複数回間欠的に供給すること
により、被処理物上のTi元素にN2 ガスを反応させ
る。さらに、Arガス、H2 ガスを5〜6回とこれとほ
ぼ同期して高周波電力を間欠的に供給してTiN膜の形
成時に膜中に残存しがちなClやO元素を除去する。か
くして、被処理物上にTiN膜を形成した。
Next, as the second stage of the film forming process, the flow rate of N 2 gas as a film forming raw material gas is adjusted by the MFC 20 under the same conditions as above with the Ar gas and H 2 gas from the MFCs 14 and 17. The N 2 gas reacts with the Ti element on the workpiece by intermittently supplying it two or three times and also supplying high frequency power intermittently a plurality of times. Further, the high frequency power is intermittently supplied 5 to 6 times with the Ar gas and the H 2 gas almost in synchronism therewith to remove Cl and O elements which tend to remain in the TiN film when the film is formed. Thus, a TiN film was formed on the workpiece.

【0018】上記における成膜工程の所要時間は300
〜500ms、反応室内圧力は0.08〜0.15To
rrで、成膜速度は0.5〜1.5μm/hであった。
また、得られた膜の硬さはヌープ硬さ(Hk)1800
〜2500であり、オージェ電子分光法(AES)によ
る分析の結果、Cl,O元素は夫々1%、5%以下しか
認められなかった。
The time required for the film forming step is 300
~ 500ms, reaction chamber pressure is 0.08 ~ 0.15To
At rr, the deposition rate was 0.5-1.5 μm / h.
The hardness of the obtained film was Knoop hardness (Hk) 1800.
22500, and as a result of analysis by Auger electron spectroscopy (AES), only 1% and 5% or less of Cl and O elements were recognized, respectively.

【0019】実施例2(Al膜の形成) 実施例1のTiCl4 に代えて塩化アルミニウム(Al
Cl3 )を液化原料として用いた。また、反応室1の内
壁面および被処理物3に付着している水分を除去するま
での工程を実施例1と同様に行ったのち、成膜工程とし
てまず最初に、恒温槽27で加熱して気化せしめたAl
Cl3 ガスを成膜用原料ガスとしてストップバルブ2
9、30から反応ガス導入管32に導入し、同時にMF
C23で流量を調節したH2 ガスをキャリアガスとして
ストップバルブ29、30を開閉して上記反応ガス導入
管32に導入して、このキャリアガスとともにAlCl
3 ガスと、MFC14、17で流量を調節したArガ
ス、H2 ガスとを同期して25ms周期で7msピエゾ
バルブを開き、これを数回繰り返して間欠的に反応室1
内に導入する。これらのガスが反応室1内に充分拡散し
たとき、パルス高周波電源7から約150μsの間40
KW,13.56MHzの高周波電力を数回印加してA
lCl3 ガスを分解し、Al元素を被処理物上に膜とし
て堆積させる。
Example 2 (Formation of Al film) Instead of TiCl 4 of Example 1, aluminum chloride (Al
Cl 3 ) was used as a liquefaction raw material. Further, after the steps up to the removal of the moisture adhering to the inner wall surface of the reaction chamber 1 and the object 3 to be processed are performed in the same manner as in Example 1, first, as a film forming step, the film is heated in a constant temperature bath 27. Al vaporized
Stop valve 2 using Cl 3 gas as a source gas for film formation
9 and 30 to the reaction gas introduction pipe 32,
The stop valves 29 and 30 are opened and closed and introduced into the reaction gas introduction pipe 32 using the H 2 gas whose flow rate has been adjusted at C23 as a carrier gas.
The 3 gas, the Ar gas and the H 2 gas whose flow rates were adjusted by the MFCs 14 and 17 were synchronized, and the 7 ms piezo valve was opened at a cycle of 25 ms.
Introduce within. When these gases are sufficiently diffused into the reaction chamber 1, the pulsed high frequency power
KW, applying 13.56 MHz high frequency power several times
The 1Cl 3 gas is decomposed, and the Al element is deposited as a film on the object.

【0020】さらに、MFC14、17で流量を調節し
たArガス、H2 ガスを25ms周期で7msピエゾバ
ルブを開き、これを12〜13回繰り返して間欠的に供
給し、同時に高周波電力をも間欠的に供給することによ
り、膜中に残存しているClやO元素を除去して純粋な
Al膜を形成した。上記における成膜工程の所要時間は
150〜300ms、反応室内圧力は0.08〜0.1
5Torrで、成膜速度は1.0〜2.0μm/hであ
った。
Further, the Ar gas and H 2 gas whose flow rates are adjusted by the MFCs 14 and 17 are opened intermittently by opening the 7 ms piezo valve at a cycle of 25 ms and repeating this 12 to 13 times, and at the same time intermittently supplying high frequency power. By supplying, the Cl and O elements remaining in the film were removed to form a pure Al film. The time required for the film forming step in the above is 150 to 300 ms, and the pressure in the reaction chamber is 0.08 to 0.1.
At 5 Torr, the deposition rate was 1.0 to 2.0 μm / h.

【0021】この他、実施例1のTiN膜の形成と同じ
ような成膜工程を用い、SiN膜、SiO2 膜の形成を
行ったところ、SiN膜では原料ガスとしてSiH4
2ガスを使用して成膜速度は1.5〜2.5μm/h
であった。また、SiO2 膜では原料ガスとしてSiH
4 、O2 、Arガスを使用して成膜速度は2.0〜3.
0μm/hであった。
In addition, when a SiN film and a SiO 2 film were formed using the same film forming process as that for forming the TiN film of Example 1, SiH 4 and N 2 gases were used as raw material gases in the SiN film. The deposition rate is 1.5 to 2.5 μm / h
Met. In the case of a SiO 2 film, SiH is used as a source gas.
4 , O 2 , and Ar gas are used to form a film at a rate of 2.0 to 3.
It was 0 μm / h.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、排気した反応室内に成膜用原料ガス、放電用ガス、
原料分解用ガスを導入し、高周波電力を印加して反応室
内の被処理物表面に薄膜を形成するに際して、成膜用原
料ガスの1回の供給に対して他の放電用ガス、原料分解
用ガスを複数回供給し、その都度高周波電力を印加する
こと、あるいは数種の成膜用原料ガスを用いる場合にそ
れらの原料ガスを夫々別個に段階的に供給し、その都度
他の放電用ガス、原料分解用ガスの供給と、高周波電力
の印加を行うこと、さらに反応室内を加温状態に保持す
ることによって、反応室内に導入された原料ガスの凝縮
を防止し、且つ原料ガスをほぼ完全に分解することがで
きるので、パルスプラズマCVD法で200℃あるいは
それ以下の温度で被処理物表面に未分解元素を含まない
高品質の薄膜を得ることができる。
As described above, according to the present invention, a raw material gas for film formation, a discharge gas,
When a raw material decomposition gas is introduced and high-frequency power is applied to form a thin film on the surface of the object to be processed in the reaction chamber, one discharge of the film formation raw material gas and another discharge gas and raw material decomposition Supplying the gas a plurality of times and applying high-frequency power each time, or when using several kinds of film forming material gases, supplying each of these material gases separately and stepwise, and each time using another discharge gas By supplying the gas for raw material decomposition and applying high frequency power, and further maintaining the reaction chamber in a heated state, the condensation of the raw material gas introduced into the reaction chamber is prevented, and the raw material gas is almost completely Therefore, a high-quality thin film containing no undecomposed elements can be obtained on the surface of the object to be processed at a temperature of 200 ° C. or lower by a pulsed plasma CVD method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明で用いるパルスプラズマCVD成膜装
置の1例を示す概略図である。
FIG. 1 is a schematic view showing one example of a pulse plasma CVD film forming apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 反応室 3 被処理物 5 高周波電極 7 高周波電源 13 導入ガスストップバルブ 25 ピエゾバルブ 26 液化原料 27 恒温槽 32 反応ガス導入管 REFERENCE SIGNS LIST 1 reaction chamber 3 workpiece 5 high-frequency electrode 7 high-frequency power supply 13 introduction gas stop valve 25 piezo valve 26 liquefied raw material 27 constant temperature bath 32 reaction gas introduction pipe

フロントページの続き (56)参考文献 特開 平4−110757(JP,A) 実開 平4−361531(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/515 H01L 21/31 Continuation of the front page (56) References JP-A-4-110757 (JP, A) JP-A-4-361531 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21 / 205 C23C 16/515 H01L 21/31

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気され、加熱された反応室に成膜用原
料ガス、放電用ガスおよび原料分解用ガスを夫々別個に
コントロールしつつ間欠的に導入し、高周波電力をパル
ス状に供給してパルスプラズマCVDにて上記反応室内
の被処理物表面に皮膜を形成させるに当たり、その成膜
工程において1回の成膜用原料ガスの供給に対して放電
用ガス、原料分解用ガスおよび高周波電力を複数回供給
することを特徴とするパルスプラズマCVDによる成膜
方法。
1. A film forming source gas, a discharge gas and a source decomposition gas are intermittently introduced into a evacuated and heated reaction chamber while being individually controlled, and high frequency power is supplied in a pulsed manner. In forming a film on the surface of the object to be processed in the reaction chamber by pulsed plasma CVD, a discharge gas, a material decomposition gas, and a high-frequency power are supplied to a single supply of the film forming material gas in the film forming process. A film formation method by pulsed plasma CVD, wherein the film is supplied a plurality of times.
【請求項2】 排気され、加熱された反応室に成膜用原
料ガス、放電用ガスおよび原料分解用ガスを夫々別個に
コントロールしつつ間欠的に導入し、高周波電力をパル
ス状に供給してパルスプラズマCVDにて上記反応室内
の被処理物表面に化合物薄膜を形成させるに当たり、そ
の成膜工程において化合物薄膜を構成する数種の成膜用
原料ガスを夫々別個に段階的に上記反応室に供給し、こ
れら成膜用原料ガスの供給の都度他の放電用ガス、原料
分解用ガスおよび高周波電力を供給することを特徴とす
るパルスプラズマCVDによる成膜方法。
2. A film forming source gas, a discharge gas, and a source decomposition gas are intermittently introduced into the evacuated and heated reaction chamber while being separately controlled, and high-frequency power is supplied in a pulsed manner. In forming a compound thin film on the surface of an object to be processed in the reaction chamber by pulsed plasma CVD, several kinds of film forming source gases constituting the compound thin film are separately and stepwise introduced into the reaction chamber in the film forming process. And supplying a discharge gas, a raw material decomposition gas, and high-frequency power each time the raw material gas is supplied.
JP33510992A 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD Expired - Fee Related JP3186872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33510992A JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33510992A JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Publications (2)

Publication Number Publication Date
JPH06163434A JPH06163434A (en) 1994-06-10
JP3186872B2 true JP3186872B2 (en) 2001-07-11

Family

ID=18284876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33510992A Expired - Fee Related JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Country Status (1)

Country Link
JP (1) JP3186872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318940B1 (en) * 2004-08-06 2013-10-17 아익스트론 에스이 Device and method for high-throughput chemical vapor deposition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081144A (en) 2002-04-11 2003-10-17 가부시키가이샤 히다치 고쿠사이 덴키 Vertical semiconductor manufacturing apparatus
JP3574651B2 (en) * 2002-12-05 2004-10-06 東京エレクトロン株式会社 Film forming method and film forming apparatus
US7098150B2 (en) * 2004-03-05 2006-08-29 Air Liquide America L.P. Method for novel deposition of high-k MSiON dielectric films
JP2006222265A (en) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP4909537B2 (en) * 2005-07-07 2012-04-04 神港精機株式会社 Method for forming silicon oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318940B1 (en) * 2004-08-06 2013-10-17 아익스트론 에스이 Device and method for high-throughput chemical vapor deposition

Also Published As

Publication number Publication date
JPH06163434A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US6656282B2 (en) Atomic layer deposition apparatus and process using remote plasma
US7484513B2 (en) Method of forming titanium film by CVD
JPH07109576A (en) Formation of film by plasma cvd
TWI394858B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
US6221792B1 (en) Metal and metal silicide nitridization in a high density, low pressure plasma reactor
US5954887A (en) Cleaning processing method of a film forming apparatus
EP0536664B1 (en) A method for forming a thin film
KR100355321B1 (en) Film forming method and apparatus
US5989652A (en) Method of low temperature plasma enhanced chemical vapor deposition of tin film over titanium for use in via level applications
JPS6345373A (en) Adhesion of tungsten silicide high in silicon content
EP1672093A1 (en) Film-forming apparatus and film-forming method
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
US20090071404A1 (en) Method of forming titanium film by CVD
WO2008012665A1 (en) Method of cleaning film forming apparatus and film forming apparatus
JP2002512307A (en) Method for passivating a CVD chamber
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
JPH0689873A (en) Formation of metal thin film by chemical vapor growth
US20100227062A1 (en) METHOD FOR FORMING Ti-BASED FILM AND STORAGE MEDIUM
KR20010039780A (en) A hot element cvd apparatus and a method for removing a deposited film
US5491112A (en) Method and arrangement for treating silicon plates
WO1994019509A1 (en) Film forming method and film forming apparatus
JP3186872B2 (en) Film forming method by pulse plasma CVD
EP0388957A2 (en) Process for depositing tantalum oxide film and chemical vapor deposition system used therefore
EP1222687A2 (en) IMPROVED PECVD AND CVD PROCESSES FOR WNx DEPOSITION
JP3224469B2 (en) Thin film formation method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees