JPH06163434A - Film forming method by pulse plasma cvd method - Google Patents

Film forming method by pulse plasma cvd method

Info

Publication number
JPH06163434A
JPH06163434A JP33510992A JP33510992A JPH06163434A JP H06163434 A JPH06163434 A JP H06163434A JP 33510992 A JP33510992 A JP 33510992A JP 33510992 A JP33510992 A JP 33510992A JP H06163434 A JPH06163434 A JP H06163434A
Authority
JP
Japan
Prior art keywords
gas
film
reaction chamber
raw material
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33510992A
Other languages
Japanese (ja)
Other versions
JP3186872B2 (en
Inventor
Takashi Kitanaka
隆司 北中
Shinichi Kobayashi
伸一 小林
Yasushi Kawashita
安司 川下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Priority to JP33510992A priority Critical patent/JP3186872B2/en
Publication of JPH06163434A publication Critical patent/JPH06163434A/en
Application granted granted Critical
Publication of JP3186872B2 publication Critical patent/JP3186872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a thin film which contains no undecomposed element to be formed on the surface of a work through a pulse plasma CVD method. CONSTITUTION:Various types of gases used for forming a film, making discharge, and decomposing material are introduced into an exhausted and heated reaction chamber 1 by opening piezo valves 16, 19, 22, and 25, an electric power of high frequency is impressed between a work 3 and a high frequency electrode 5 which are provided separate from each other in the reaction chamber 1 to decompose the introduced film forming material gas for the formation of a thin film on the surface of the work 3. Material 26 out of film forming material gases and liquid at normal temperatures is vaporized by heating in a thermostatic chamber 27 and introduced into the reaction chamber 1 through a heated reaction gas introducing pipe 32 as kept in a gas state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被処理物表面にパル
スプラズマCVDにて高品質の薄膜を形成する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a high quality thin film on the surface of an object to be processed by pulse plasma CVD.

【0002】[0002]

【従来の技術】プラズマCVD法は化学蒸着法の1方法
として被処理物表面への皮膜形成に広く採用されてい
る。このプラズマCVD法はガスの供給および電力供給
を連続的に行うものであり、面積当たりのプラズマエネ
ルギーの密度が重要である。しかし、供給されるガスの
分解はプラズマエネルギーのみでは不十分であり、加熱
される基板の熱にも頼っている。現在行われているプラ
ズマCVDでは成膜温度は300℃以上であるが、この
ような温度で皮膜を形成した合金工具鋼のような基板
は、それ自体が鈍って硬度が低下し、冷間処理用の金型
として用いることはできない。従って、そのような用途
には200℃以下の皮膜温度が要求される。一方、成膜
組成としてTiNの良質皮膜を得ようとすると、500
℃以上の成膜温度を必要とすることから、使用する基板
材料が限定されるという問題がある。
2. Description of the Related Art Plasma CVD is widely used as a method of chemical vapor deposition for forming a film on the surface of an object to be processed. The plasma CVD method continuously supplies gas and electric power, and the density of plasma energy per area is important. However, the plasma energy alone is not sufficient for the decomposition of the supplied gas, and it relies on the heat of the heated substrate. In plasma CVD currently performed, the film formation temperature is 300 ° C. or higher, but a substrate such as an alloy tool steel on which a film is formed at such a temperature becomes dull by itself and its hardness is lowered, so that the cold treatment is performed. It cannot be used as a mold. Therefore, coating temperatures below 200 ° C. are required for such applications. On the other hand, when trying to obtain a good quality TiN film as the film-forming composition,
Since a film forming temperature of ℃ or more is required, there is a problem that the substrate material used is limited.

【0003】また、パルスプラズマCVD法も一部で発
表されているが、これは反応室内に被処理物と、高周波
電力が供給される電極とを間隔を隔てて配置し、反応室
内を排気し、複数の反応ガスを導入するとともに、上記
電極に間欠的に高周波電力を供給し、この高周波電力に
よって各反応ガスをそれぞれを構成する原子に解離させ
て、プラズマを発生させ、これら原子が被処理物上にお
いて化学反応して薄膜を形成させるものである。
A part of the pulse plasma CVD method has also been announced, in which an object to be treated and an electrode to which high-frequency power is supplied are placed in a reaction chamber with a space therebetween, and the reaction chamber is evacuated. Introducing a plurality of reaction gases, intermittently supplying high frequency power to the electrode, and dissociating each reaction gas into atoms constituting each by this high frequency power to generate plasma, and these atoms are processed. It is a chemical reaction on an object to form a thin film.

【0004】この方法では、低い電力でその供給時間と
休止時間の比率が1:1〜1:5程度でガス種も混合か
交互に供給されている。また、プラズマエネルギー密度
を高くするために、大電力を使用するパルスプラズマC
VD法ではパルス状にガスを供給し、ガスが反応室内に
充分拡散したころに高周波電力をパルス状に供給するも
のである。この方法は、1周期が原料ガスと放電用ガス
を同時に供給し、その後電力をパルス状に供給し、次に
反応ガスを供給し、さらに電力をパルス状に供給してい
る。
In this method, the gas species are mixed or alternately supplied with a low electric power at a ratio of the supply time to the rest time of about 1: 1 to 1: 5. Also, in order to increase the plasma energy density, pulsed plasma C that uses a large amount of electric power
In the VD method, gas is supplied in pulses, and high-frequency power is supplied in pulses when the gas is sufficiently diffused in the reaction chamber. In this method, the source gas and the discharge gas are simultaneously supplied for one cycle, and then the power is supplied in a pulsed form, then the reaction gas is supplied, and then the power is supplied in a pulsed form.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
方法では反応室内が加熱されておらず、供給された原料
ガスが凝縮して反応室の壁面に付着したりするため、供
給された原料ガスを完全に分解することは難しく、従っ
て、未分解の元素が膜のなかに残ってしまい良質な膜が
得られないという問題があった。
However, in the above method, the reaction chamber is not heated, and the supplied source gas is condensed and adheres to the wall surface of the reaction chamber. It is difficult to completely decompose it. Therefore, there is a problem that undecomposed elements remain in the film and a good quality film cannot be obtained.

【0006】本発明者らは上記に鑑みて、成膜温度が低
くても未分解元素が残留することなく、良質な皮膜の得
られる成膜方法を提供することを目的とするものであ
る。
In view of the above, it is an object of the present inventors to provide a film forming method capable of obtaining a high quality film without leaving undecomposed elements even when the film forming temperature is low.

【0007】[0007]

【課題を解決するための手段】即ち、この発明の第1の
発明は排気され、加熱された反応室に成膜用原料ガス、
放電用ガスおよび原料分解用ガスを夫々別個にコントロ
ールしつつ間欠的に導入し、高周波電力をパルス状に供
給してパルスプラズマCVDにて上記反応室内の被処理
物表面に皮膜を形成させるに当たり、その成膜工程にお
いて1回の成膜用原料ガスの供給に対して放電用ガス、
原料分解用ガスおよび高周波電力を複数回供給すること
を特徴とするパルスプラズマCVDによる成膜方法であ
り、第2の発明は排気され、加熱された反応室に成膜用
原料ガス、放電用ガスおよび原料分解用ガスを夫々別個
にコントロールしつつ間欠的に導入し、高周波電力をパ
ルス状に供給してパルスプラズマCVDにて上記反応室
内の被処理物表面に化合物皮膜を形成させるに当たり、
その成膜工程において化合物薄膜を構成する数種の成膜
用原料ガスを夫々別個に段階的に上記反応室に供給し、
これら成膜用原料ガスの供給の都度他の放電用ガス、原
料分解用ガスおよび高周波電力を供給することを特徴と
するパルスプラズマCVDによる成膜方法を提供するも
のである。
That is, the first aspect of the present invention is to provide an exhausted and heated reaction chamber with a raw material gas for film formation,
In order to form a film on the surface of the object to be processed in the reaction chamber by pulse plasma CVD by intermittently introducing the discharge gas and the raw material decomposing gas while controlling them separately, and supplying high-frequency power in a pulsed manner, In the film forming process, a discharge gas is supplied for each single supply of the film forming source gas,
A second aspect of the present invention is a film forming method by pulsed plasma CVD, characterized in that a gas for raw material decomposition and a high-frequency power are supplied multiple times. A second invention is a raw material gas for film formation and a gas for discharge in an exhausted and heated reaction chamber. And intermittently introducing the raw material decomposing gas while controlling them separately, and supplying a high frequency power in a pulsed manner to form a compound film on the surface of the object to be treated in the reaction chamber by pulse plasma CVD,
In the film forming step, several kinds of film forming raw materials forming the compound thin film are separately and stepwise supplied to the reaction chamber,
The present invention provides a film forming method by pulse plasma CVD characterized in that a discharge gas, a material decomposition gas, and a high-frequency power are supplied every time the film forming material gas is supplied.

【0008】[0008]

【作用】プラズマCVDによる成膜方法において成膜用
原料ガスとしては、化合物を用いる場合が多いが、この
化合物の分解を反応室内で完全に行うことは非常に難し
く、このため被処理物表面に成膜した薄膜中には未分解
の元素が残留していて良質な膜とは言いがたい。このよ
うな未分解の元素を除去するには、未分解の元素と反応
するガスを供給しながらタイミングよく電力を供給する
ことが必要である。
In the film-forming method by plasma CVD, a compound is often used as a film-forming raw material gas, but it is very difficult to completely decompose this compound in the reaction chamber. Undecomposed elements remain in the formed thin film, so it is hard to say that it is a good film. In order to remove such undecomposed elements, it is necessary to supply electric power in good timing while supplying a gas that reacts with the undecomposed elements.

【0009】この発明は成膜工程において、成膜用原料
ガスが1種の場合は、これをただ1回の供給に対して放
電用ガス、原料分解用ガス、高周波電力を複数回供給
し、また、数種の成膜用原料ガスを用いる場合は、これ
を夫々別個に段階的に供給し、その都度放電用ガス、原
料分解用ガス、高周波電力を複数回供給するようにした
ことによって、原料ガスの分解を完全に行い、未分解元
素を含まない良質な薄膜が得られるのである。
According to the present invention, in the film forming process, when there is only one kind of film forming source gas, the discharge gas, the material decomposing gas, and the high-frequency power are supplied a plurality of times for only one supply. Further, when using several kinds of film-forming raw material gas, these are supplied separately in stages, and discharge gas, raw material decomposition gas, and high-frequency power are supplied multiple times each time, The raw material gas is completely decomposed, and a high-quality thin film containing no undecomposed element can be obtained.

【0010】次に、図1に示すこの発明で使用するパル
スプラズマCVDの成膜装置についてその概略を説明す
る。図において、1はその外周を加熱ヒータ2で覆った
反応室である。この反応室1の内部にはその下方寄りに
被処理物(基板)3を配置し、上方にはこの被処理物3
に対向するように高周波電極5を配置しており、この高
周波電極5はマッチングボックス(整合器)6を経てパ
ルス高周波電源7に接続している。被処理物3はその下
方に加熱ヒータ4を具えている。また、上記反応室1は
主弁8、ルーツポンプ9を介して油回転真空ポンプ10
に接続されており、この油回転真空ポンプ10の作動に
よって反応室1内が排気されるようになっている。な
お、油回転真空ポンプ10には廃ガス処理装置(図示せ
ず)への導入管12が接続されており、油回転真空ポン
プ10とルーツポンプ9との間の分岐管には窒素ガスを
油回転真空ポンプ10に供給する窒素ガス導入弁11が
設けられている。
Next, the outline of the pulse plasma CVD film forming apparatus used in the present invention shown in FIG. 1 will be described. In the figure, 1 is a reaction chamber whose outer periphery is covered with a heater 2. An object to be processed (substrate) 3 is arranged in the lower part of the reaction chamber 1, and the object to be processed 3 is arranged above the object.
A high-frequency electrode 5 is arranged so as to face with, and the high-frequency electrode 5 is connected to a pulse high-frequency power source 7 via a matching box (matching device) 6. The workpiece 3 has a heater 4 below it. Further, the reaction chamber 1 is provided with an oil rotary vacuum pump 10 via a main valve 8 and a roots pump 9.
The interior of the reaction chamber 1 is exhausted by the operation of the oil rotary vacuum pump 10. The oil rotary vacuum pump 10 is connected with an introduction pipe 12 to a waste gas treatment device (not shown), and a branch pipe between the oil rotary vacuum pump 10 and the roots pump 9 is filled with nitrogen gas. A nitrogen gas introduction valve 11 that supplies the rotary vacuum pump 10 is provided.

【0011】13は導入ガスストップバルブであり、該
バルブから成膜用原料ガス、放電用ガス、原料分解用ガ
スなどが反応室1に導入される。即ち、Arガス、H2
ガスはマスフローコントロールバルブ14、17で流量
をコントロールしながらバッファタンク15、18に送
られ、そこからピエゾバルブ16、19を瞬間的に開閉
して導入ガスストップバルブ13から反応室1へ送られ
る。また、原料ガスの1つとして用いるN2 ガスはマス
フローコントロールバルブ20で流量をコントロールし
ながらバッファタンク21に送られ、そこからピエゾバ
ルブ22を瞬間的に開閉して導入ガスストップバルブ1
3から反応室1へ送られる。
Reference numeral 13 denotes an introduction gas stop valve through which a film forming raw material gas, a discharge gas, a raw material decomposing gas and the like are introduced into the reaction chamber 1. That is, Ar gas, H 2
The gas is sent to the buffer tanks 15 and 18 while controlling the flow rates by the mass flow control valves 14 and 17, and from there, the piezo valves 16 and 19 are momentarily opened and closed to be sent from the introduction gas stop valve 13 to the reaction chamber 1. The N 2 gas used as one of the raw material gases is sent to the buffer tank 21 while controlling the flow rate by the mass flow control valve 20, and from there, the piezo valve 22 is opened and closed instantaneously to introduce the gas stop valve 1.
3 is sent to the reaction chamber 1.

【0012】さらに、TiCl4 、AlCl3 のような
常温で液体の物質を原料として用いる時は恒温槽27内
の原料26をヒータ28で加熱して気化させておき、こ
の気化させた反応ガスを、反応室へ供給する反応ガス導
入管32にストップバルブ29、30を操作して導き、
この反応ガス導入管32にキャリアガスとして用いるマ
スフローコントロールバルブ23で流量をコントロール
されたH2 ガスをストップバルブ29、30を開閉して
供給し、このH2 ガスとともに反応ガスをバッファタン
ク24、ピエゾバルブ25を経て導入ガスストップバル
ブ13から反応室1へ送るのである。この反応ガスを反
応室1へ供給するに当たっては、該ガスが供給途中の反
応ガス導入管32内において凝縮するのを防ぐために、
反応ガス導入管32の周囲には導入管加熱ヒータ33を
取り付けておくことが好ましい。
Further, when a material which is liquid at room temperature, such as TiCl 4 or AlCl 3 , is used as a raw material, the raw material 26 in the constant temperature bath 27 is heated by a heater 28 to be vaporized, and the vaporized reaction gas is By operating the stop valves 29, 30 to the reaction gas introduction pipe 32 to be supplied to the reaction chamber,
The H 2 gas whose flow rate is controlled by the mass flow control valve 23 used as a carrier gas is supplied to the reaction gas introduction pipe 32 by opening and closing the stop valves 29 and 30, and the reaction gas together with the H 2 gas is supplied to the buffer tank 24 and the piezo valve. It is sent from the introduced gas stop valve 13 to the reaction chamber 1 via 25. In supplying the reaction gas to the reaction chamber 1, in order to prevent the gas from condensing in the reaction gas introduction pipe 32 during the supply,
It is preferable to install an introduction pipe heater 33 around the reaction gas introduction pipe 32.

【0013】なお、キャリアガスとしては、H2 のほか
にArやHe等を用いることができる。また、反応ガス
の1つであるN2 に代えてNH3 ガスを用いてもよい。
さらに、酸化物を成膜する場合にはN2 に代えてO2
2 O、COを用いることもできる。この発明において
被処理物としては、Siウエハー、高速度鋼、ダイス
鋼、ステンレス鋼などが用いられ、この発明の方法で表
面に導電性膜、絶縁性膜、バリヤ膜を形成したSiウエ
ハーは半導体デバイスや電子部品として使用され、超硬
質皮膜を形成した高速度鋼などは金型、切削工具や耐磨
耗性機械部品として用いられる。
As the carrier gas, Ar, He or the like can be used in addition to H 2 . Further, NH 3 gas may be used instead of N 2 which is one of the reaction gases.
Furthermore, in case of forming an oxide in place of the N 2 O 2,
N 2 O and CO can also be used. In the present invention, an Si wafer, high speed steel, die steel, stainless steel or the like is used as the object to be treated, and a Si wafer having a conductive film, an insulating film or a barrier film formed on the surface by the method of the present invention is a semiconductor. Used as devices and electronic parts, high-speed steel with ultra-hard coating is used as molds, cutting tools and wear-resistant machine parts.

【0014】[0014]

【実施例】以下、この発明を図1を参照し実施例により
詳細に説明する。 実施例1(TiN膜の形成) まず、反応室1に接続している管の主弁8を開き、真空
ポンプ9、10を作動して反応室1内を排気したのち、
加熱ヒータ2にて予め反応室1内を100℃前後に加熱
する。一方、恒温槽27に収容されている液化原料であ
る四塩化チタン(TiCl4 )26を加熱ヒータ28で
加熱しておく。次に、被処理物3を加熱ヒータ4にて加
熱し、200℃になったらArガス、H2 ガスを夫々マ
スフローコントロールバルブ(以下、これをMFCとい
う)14および17で流量を調節しながらバッファタン
ク15、18に溜め込んだのち、ピエゾバルブ16、1
9を瞬間的に開閉し、導入ガスストップバルブ13を開
いて反応室1にパルス状に導入する。これらの導入は、
25ms周期で7msピエゾバルブを開くことを繰り返
すことで行われる。なお、導入ガスストップバルブ13
は放電開始時点から放電終了まで開いたままにしてお
く。パルス状に導入したArガス、H2 ガスが反応室1
に充分拡散したら、パルス高周波電源7から高周波電極
5にパルス状に40KW,13.56MHzの高周波電
力を印加してプラズマを発生させて、反応室1の内壁面
および被処理物3に付着している水分を除去する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment with reference to FIG. Example 1 (Formation of TiN film) First, after opening the main valve 8 of the pipe connected to the reaction chamber 1 and operating the vacuum pumps 9 and 10 to exhaust the inside of the reaction chamber 1,
The inside of the reaction chamber 1 is preheated to about 100 ° C. by the heater 2. On the other hand, titanium tetrachloride (TiCl 4 ) 26, which is a liquefied raw material, contained in a constant temperature bath 27 is heated by a heater 28. Next, the object to be treated 3 is heated by the heater 4, and when the temperature reaches 200 ° C., the Ar gas and the H 2 gas are buffered while adjusting the flow rates by the mass flow control valves (hereinafter referred to as MFC) 14 and 17, respectively. After storing in tanks 15 and 18, piezo valves 16 and 1
9 is opened and closed instantaneously, the introduction gas stop valve 13 is opened, and the gas is introduced into the reaction chamber 1 in a pulsed manner. These introductions
It is performed by repeating opening of the 7 ms piezo valve at a cycle of 25 ms. The introduced gas stop valve 13
Remains open from the beginning of discharge to the end of discharge. Ar gas and H 2 gas introduced in pulse form are used in the reaction chamber 1.
Once sufficiently diffused, pulsed high-frequency power source 7 applies high-frequency power of 40 KW, 13.56 MHz to high-frequency electrode 5 in a pulsed manner to generate plasma, which adheres to the inner wall surface of reaction chamber 1 and object 3 to be treated. Remove any water that is present.

【0015】次に、成膜工程の第1段階としてまず最初
に、恒温槽27で加熱して気化せしめたTiCl4 ガス
を成膜用原料ガスとしてストップバルブ29、30から
反応ガス導入管32に導入し、同時にMFC23で流量
を調節したH2 ガスをキャリアガスとしてストップバル
ブ29、30を開閉して上記反応ガス導入管32に導入
して、このキャリアガスとともにTiCl4 ガスと、M
FC14、17で流量を調節したArガス、H2 ガスと
を同期して25ms周期で7msピエゾバルブ25、1
6、19を開き、これを繰り返して間欠的に反応室1内
に導入する。これらのガスが反応室1内に充分拡散した
とき、パルス高周波電源7から150μsの間上記と同
じ高周波電力を印加してTiCl4 ガスを分解し、Ti
元素を被処理物上に膜として堆積させる。
Next, as the first step of the film forming process, first, TiCl 4 gas heated and vaporized in a constant temperature bath 27 is used as a film forming source gas from the stop valves 29 and 30 to the reaction gas introducing pipe 32. At the same time, the H 2 gas whose flow rate was adjusted by the MFC 23 was used as a carrier gas to open and close the stop valves 29 and 30 to introduce it into the reaction gas introducing pipe 32, and together with this carrier gas, TiCl 4 gas and M
7ms piezo valve 25, 1 with a 25ms cycle in synchronization with Ar gas and H 2 gas whose flow rates are adjusted by FC14, 17
6 and 19 are opened, and this is repeated to intermittently introduce into the reaction chamber 1. When these gases are sufficiently diffused in the reaction chamber 1, the same high frequency power as described above is applied between the pulse high frequency power source 7 and 150 μs to decompose the TiCl 4 gas,
The element is deposited as a film on the object to be processed.

【0016】さらに、MFC14、17で流量を調節し
たArガス、H2 ガスを25ms周期で7msピエゾバ
ルブを開くことを6〜7回繰り返して間欠的に供給し、
同時に高周波電力をもその都度間欠的に供給することに
より、膜中に残存しているClやO元素を除去する。
Further, the Ar gas and the H 2 gas whose flow rates have been adjusted by the MFCs 14 and 17 are intermittently supplied by repeating the 7 ms piezo valve opening every 25 ms for 6 to 7 times,
At the same time, high-frequency power is also intermittently supplied each time to remove the Cl and O elements remaining in the film.

【0017】次に、成膜工程の第2段階として成膜用原
料ガスとしてのN2 ガスをMFC20で流量を調節し
て、MFC14、17からのArガス、H2 ガスととも
に上記と同じ条件で2〜3回繰り返し間欠的に供給する
とともに、高周波電力をも複数回間欠的に供給すること
により、被処理物上のTi元素にN2 ガスを反応させ
る。さらに、Arガス、H2 ガスを5〜6回とこれとほ
ぼ同期して高周波電力を間欠的に供給してTiN膜の形
成時に膜中に残存しがちなClやO元素を除去する。か
くして、被処理物上にTiN膜を形成した。
Next, as the second stage of the film forming process, the flow rate of N 2 gas as a film forming source gas is adjusted by the MFC 20, and the Ar gas and H 2 gas from the MFCs 14 and 17 are used under the same conditions as above. N 2 gas is made to react with the Ti element on the object to be processed by intermittently supplying the high-frequency power a plurality of times as well as intermittently supplying it a few times repeatedly. Further, Ar gas and H 2 gas are supplied 5 to 6 times, in synchronism with this, to intermittently supply high-frequency power to remove Cl and O elements that tend to remain in the TiN film during formation. Thus, a TiN film was formed on the object to be processed.

【0018】上記における成膜工程の所要時間は300
〜500ms、反応室内圧力は0.08〜0.15To
rrで、成膜速度は0.5〜1.5μm/hであった。
また、得られた膜の硬さはヌープ硬さ(Hk)1800
〜2500であり、オージェ電子分光法(AES)によ
る分析の結果、Cl,O元素は夫々1%、5%以下しか
認められなかった。
The time required for the above film forming process is 300.
~ 500ms, pressure in the reaction chamber is 0.08 ~ 0.15To
In rr, the film forming rate was 0.5 to 1.5 μm / h.
The hardness of the obtained film is Knoop hardness (Hk) 1800.
˜2500, and as a result of analysis by Auger electron spectroscopy (AES), only 1% and 5% or less of Cl and O elements were recognized.

【0019】実施例2(Al膜の形成) 実施例1のTiCl4 に代えて塩化アルミニウム(Al
Cl3 )を液化原料として用いた。また、反応室1の内
壁面および被処理物3に付着している水分を除去するま
での工程を実施例1と同様に行ったのち、成膜工程とし
てまず最初に、恒温槽27で加熱して気化せしめたAl
Cl3 ガスを成膜用原料ガスとしてストップバルブ2
9、30から反応ガス導入管32に導入し、同時にMF
C23で流量を調節したH2 ガスをキャリアガスとして
ストップバルブ29、30を開閉して上記反応ガス導入
管32に導入して、このキャリアガスとともにAlCl
3 ガスと、MFC14、17で流量を調節したArガ
ス、H2 ガスとを同期して25ms周期で7msピエゾ
バルブを開き、これを数回繰り返して間欠的に反応室1
内に導入する。これらのガスが反応室1内に充分拡散し
たとき、パルス高周波電源7から約150μsの間40
KW,13.56MHzの高周波電力を数回印加してA
lCl3 ガスを分解し、Al元素を被処理物上に膜とし
て堆積させる。
Example 2 (Formation of Al film) Instead of TiCl 4 of Example 1, aluminum chloride (Al film) was formed.
Cl 3 ) was used as a liquefaction raw material. Moreover, after performing the steps up to removing the water adhering to the inner wall surface of the reaction chamber 1 and the object 3 to be processed in the same manner as in Example 1, first, as a film forming step, first, heating in the constant temperature bath 27 is performed. Vaporized Al
Stop valve 2 using Cl 3 gas as a raw material gas for film formation
It is introduced into the reaction gas introduction pipe 32 from 9 and 30, and at the same time MF
The stop valves 29 and 30 are opened / closed by using H 2 gas whose flow rate is adjusted by C23 as a carrier gas and introduced into the reaction gas introducing pipe 32, and AlCl together with the carrier gas.
The 3 gas and the Ar gas and the H 2 gas whose flow rates were adjusted by the MFCs 14 and 17 were synchronized and the 7 ms piezo valve was opened in a cycle of 25 ms, and this was repeated several times to intermittently react with the reaction chamber 1.
Introduce inside. When these gases are sufficiently diffused in the reaction chamber 1, the pulse high frequency power source 7 keeps the temperature for about 150 μs.
Applying high frequency power of kW, 13.56MHz several times A
lCl 3 gas is decomposed and Al element is deposited as a film on the object to be processed.

【0020】さらに、MFC14、17で流量を調節し
たArガス、H2 ガスを25ms周期で7msピエゾバ
ルブを開き、これを12〜13回繰り返して間欠的に供
給し、同時に高周波電力をも間欠的に供給することによ
り、膜中に残存しているClやO元素を除去して純粋な
Al膜を形成した。上記における成膜工程の所要時間は
150〜300ms、反応室内圧力は0.08〜0.1
5Torrで、成膜速度は1.0〜2.0μm/hであ
った。
Further, the Ar gas and the H 2 gas whose flow rates are adjusted by the MFCs 14 and 17 are opened at a 7 ms piezo valve in a cycle of 25 ms, and this is repeated 12 to 13 times to intermittently supply high frequency power at the same time. By supplying, the Cl and O elements remaining in the film were removed to form a pure Al film. The time required for the above film forming step is 150 to 300 ms, and the pressure in the reaction chamber is 0.08 to 0.1.
At 5 Torr, the film formation rate was 1.0 to 2.0 μm / h.

【0021】この他、実施例1のTiN膜の形成と同じ
ような成膜工程を用い、SiN膜、SiO2 膜の形成を
行ったところ、SiN膜では原料ガスとしてSiH4
2ガスを使用して成膜速度は1.5〜2.5μm/h
であった。また、SiO2 膜では原料ガスとしてSiH
4 、O2 、Arガスを使用して成膜速度は2.0〜3.
0μm/hであった。
In addition, when a SiN film and a SiO 2 film were formed using the same film forming process as the TiN film of Example 1, SiH 4 and N 2 gas were used as the source gas in the SiN film. The film formation rate used is 1.5 to 2.5 μm / h
Met. Further, in the SiO 2 film, SiH is used as a source gas.
The film forming rate is 2.0 to 3 using O 4 , O 2 and Ar gas.
It was 0 μm / h.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、排気した反応室内に成膜用原料ガス、放電用ガス、
原料分解用ガスを導入し、高周波電力を印加して反応室
内の被処理物表面に薄膜を形成するに際して、成膜用原
料ガスの1回の供給に対して他の放電用ガス、原料分解
用ガスを複数回供給し、その都度高周波電力を印加する
こと、あるいは数種の成膜用原料ガスを用いる場合にそ
れらの原料ガスを夫々別個に段階的に供給し、その都度
他の放電用ガス、原料分解用ガスの供給と、高周波電力
の印加を行うこと、さらに反応室内を加温状態に保持す
ることによって、反応室内に導入された原料ガスの凝縮
を防止し、且つ原料ガスをほぼ完全に分解することがで
きるので、パルスプラズマCVD法で200℃あるいは
それ以下の温度で被処理物表面に未分解元素を含まない
高品質の薄膜を得ることができる。
As described above, according to the present invention, the film forming raw material gas, the discharge gas,
When a raw material decomposition gas is introduced and a high-frequency power is applied to form a thin film on the surface of the object to be processed in the reaction chamber, a single supply of the film forming raw material gas to another discharge gas or the raw material decomposition gas Gas is supplied multiple times and high frequency power is applied each time, or when several kinds of film forming source gases are used, these source gases are separately supplied in stages, and another discharge gas each time. By supplying the gas for decomposing the raw material, applying high-frequency power, and keeping the reaction chamber warm, the condensation of the raw material gas introduced into the reaction chamber is prevented and the raw material gas is almost completely removed. Therefore, a high-quality thin film containing no undecomposed element on the surface of the object to be treated can be obtained at a temperature of 200 ° C. or lower by the pulse plasma CVD method.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明で用いるパルスプラズマCVD成膜装
置の1例を示す概略図である。
FIG. 1 is a schematic view showing an example of a pulse plasma CVD film forming apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 反応室 3 被処理物 5 高周波電極 7 高周波電源 13 導入ガスストップバルブ 25 ピエゾバルブ 26 液化原料 27 恒温槽 32 反応ガス導入管 DESCRIPTION OF SYMBOLS 1 Reaction chamber 3 Processing object 5 High frequency electrode 7 High frequency power supply 13 Introduction gas stop valve 25 Piezo valve 26 Liquefaction raw material 27 Constant temperature bath 32 Reaction gas introduction pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排気され、加熱された反応室に成膜用原
料ガス、放電用ガスおよび原料分解用ガスを夫々別個に
コントロールしつつ間欠的に導入し、高周波電力をパル
ス状に供給してパルスプラズマCVDにて上記反応室内
の被処理物表面に皮膜を形成させるに当たり、その成膜
工程において1回の成膜用原料ガスの供給に対して放電
用ガス、原料分解用ガスおよび高周波電力を複数回供給
することを特徴とするパルスプラズマCVDによる成膜
方法。
1. A raw material gas for film formation, a gas for discharge, and a gas for raw material decomposition are separately controlled and intermittently introduced into an evacuated and heated reaction chamber, and high-frequency power is supplied in a pulsed manner. When forming a film on the surface of the object to be processed in the reaction chamber by pulse plasma CVD, the discharge gas, the raw material decomposition gas and the high frequency power are supplied to the film forming raw material gas once in the film forming step. A film forming method by pulsed plasma CVD, which is supplied a plurality of times.
【請求項2】 排気され、加熱された反応室に成膜用原
料ガス、放電用ガスおよび原料分解用ガスを夫々別個に
コントロールしつつ間欠的に導入し、高周波電力をパル
ス状に供給してパルスプラズマCVDにて上記反応室内
の被処理物表面に化合物薄膜を形成させるに当たり、そ
の成膜工程において化合物薄膜を構成する数種の成膜用
原料ガスを夫々別個に段階的に上記反応室に供給し、こ
れら成膜用原料ガスの供給の都度他の放電用ガス、原料
分解用ガスおよび高周波電力を供給することを特徴とす
るパルスプラズマCVDによる成膜方法。
2. A raw material gas for film formation, a gas for discharge and a gas for raw material decomposition are separately controlled and intermittently introduced into the evacuated and heated reaction chamber, and high-frequency power is supplied in a pulsed manner. When a compound thin film is formed on the surface of an object to be processed in the reaction chamber by pulse plasma CVD, several kinds of film-forming raw material gases that form the compound thin film in the film forming process are separately and stepwise introduced into the reaction chamber. A method for forming a film by pulse plasma CVD, which comprises supplying a discharge gas, a material decomposition gas, and a high-frequency power each time the film forming material gas is supplied.
JP33510992A 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD Expired - Fee Related JP3186872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33510992A JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33510992A JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Publications (2)

Publication Number Publication Date
JPH06163434A true JPH06163434A (en) 1994-06-10
JP3186872B2 JP3186872B2 (en) 2001-07-11

Family

ID=18284876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33510992A Expired - Fee Related JP3186872B2 (en) 1992-11-19 1992-11-19 Film forming method by pulse plasma CVD

Country Status (1)

Country Link
JP (1) JP3186872B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050948A1 (en) * 2002-12-05 2004-06-17 Tokyo Electron Limited Film-forming method and apparatus using plasma cvd
US6905549B2 (en) 2002-04-11 2005-06-14 Hitachi Kokusai Electric Inc. Vertical type semiconductor device producing apparatus
JP2006222265A (en) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2007016277A (en) * 2005-07-07 2007-01-25 Shinko Seiki Co Ltd Method for forming silicon oxide film
JP2007526399A (en) * 2004-03-05 2007-09-13 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming insulating film or metal film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056170A1 (en) * 2004-08-06 2006-03-16 Aixtron Ag Apparatus and method for high throughput chemical vapor deposition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905549B2 (en) 2002-04-11 2005-06-14 Hitachi Kokusai Electric Inc. Vertical type semiconductor device producing apparatus
US7622396B2 (en) 2002-04-11 2009-11-24 Hitachi Kokusai Electric Inc. Method of producing a semiconductor device
WO2004050948A1 (en) * 2002-12-05 2004-06-17 Tokyo Electron Limited Film-forming method and apparatus using plasma cvd
KR100788061B1 (en) * 2002-12-05 2007-12-21 동경 엘렉트론 주식회사 Film-forming method and apparatus using plasma cvd
KR100788060B1 (en) * 2002-12-05 2007-12-21 동경 엘렉트론 주식회사 Film-forming method and apparatus using plasma cvd
JP2007526399A (en) * 2004-03-05 2007-09-13 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming insulating film or metal film
JP2006222265A (en) * 2005-02-10 2006-08-24 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2007016277A (en) * 2005-07-07 2007-01-25 Shinko Seiki Co Ltd Method for forming silicon oxide film

Also Published As

Publication number Publication date
JP3186872B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6656282B2 (en) Atomic layer deposition apparatus and process using remote plasma
JPH07109576A (en) Formation of film by plasma cvd
US6884738B2 (en) Manufacturing method of semiconductor device and substrate processing apparatus
EP2934775B1 (en) Process and method for in-situ dry cleaning of thin film deposition reactors and thin film layers
TWI394858B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
US20100012153A1 (en) Method of cleaning film forming apparatus and film forming apparatus
US20070087579A1 (en) Semiconductor device manufacturing method
JP2002512307A (en) Method for passivating a CVD chamber
US20050284370A1 (en) High rate atomic layer deposition apparatus and method of using
JPS6345373A (en) Adhesion of tungsten silicide high in silicon content
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
US20060193983A1 (en) Apparatus and methods for plasma vapor deposition processes
US20090071404A1 (en) Method of forming titanium film by CVD
JPH04228572A (en) Method for synthesizing hard boron nitride
US8257790B2 (en) Ti-containing film formation method and storage medium
KR970008361A (en) Method of pretreatment of semiconductor substrate
WO1998033950A1 (en) METHOD OF LOW TEMPERATURE PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION OF TiN FILM OVER TITANIUM FOR USE IN VIA LEVEL APPLICATIONS
KR20010039780A (en) A hot element cvd apparatus and a method for removing a deposited film
US10096475B1 (en) System and method for depositing a homogenous interface for PECVD metal-doped carbon hardmasks
JP3186872B2 (en) Film forming method by pulse plasma CVD
EP1154036A1 (en) Gas reactions to eliminate contaminates in a CVD chamber
KR101941766B1 (en) Substrate processing method and recording medium
JP3224469B2 (en) Thin film formation method and apparatus
KR100375834B1 (en) gas transfer device of ALE apparatus using the remote plasma
TWI545628B (en) N-metal film deposition with initiation layer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees