JP4866402B2 - Chemical vapor deposition method - Google Patents

Chemical vapor deposition method Download PDF

Info

Publication number
JP4866402B2
JP4866402B2 JP2008216024A JP2008216024A JP4866402B2 JP 4866402 B2 JP4866402 B2 JP 4866402B2 JP 2008216024 A JP2008216024 A JP 2008216024A JP 2008216024 A JP2008216024 A JP 2008216024A JP 4866402 B2 JP4866402 B2 JP 4866402B2
Authority
JP
Japan
Prior art keywords
heating element
predetermined
temperature
vapor deposition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008216024A
Other languages
Japanese (ja)
Other versions
JP2009010412A (en
Inventor
秀二 野村
浩二 池田
仁史 森崎
周悟 渡辺
啓次 石橋
稔 柄澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Canon Anelva Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Canon Anelva Corp
Priority to JP2008216024A priority Critical patent/JP4866402B2/en
Publication of JP2009010412A publication Critical patent/JP2009010412A/en
Application granted granted Critical
Publication of JP4866402B2 publication Critical patent/JP4866402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

本願の発明は、所定の高温に維持された発熱体を用いる化学蒸着方法に関する。   The invention of the present application relates to a chemical vapor deposition method using a heating element maintained at a predetermined high temperature.

LSI(大規模集積回路)を始めとする各種半導体デバイスやLCD(液晶ディスプレイ)等の製作においては、基板上に所定の薄膜を作成するプロセスが存在する。このうち、所定の組成の薄膜を比較的容易に作成できることから、従来から化学蒸着(Chemical Vapor Deposition、CVD)法による成膜が多く用いられている。CVD法には、プラズマを形成してプラズマのエネルギーにより気相反応を生じさせて成膜を行うプラズマCVD法や基板を加熱して基板の熱により気相反応を生じさせて成膜を行う熱CVD法等の他に、所定の高温に維持した発熱体を経由して原料ガスを供給するタイプのCVD法(以下、発熱体CVD法)がある。   In the manufacture of various semiconductor devices such as LSI (Large Scale Integrated Circuit) and LCD (Liquid Crystal Display), there is a process of creating a predetermined thin film on a substrate. Among these, since a thin film having a predetermined composition can be formed relatively easily, film formation by a chemical vapor deposition (CVD) method has been often used. The CVD method is a plasma CVD method in which plasma is generated and a gas phase reaction is caused by plasma energy to form a film, or a substrate is heated and a gas phase reaction is caused by the heat of the substrate to form a film. In addition to the CVD method and the like, there is a type of CVD method (hereinafter referred to as a heating element CVD method) in which a source gas is supplied via a heating element maintained at a predetermined high temperature.

発熱体CVD法を行う化学蒸着装置は、処理容器内に基板を配置し、処理容器内に設けられた発熱体を所定の高温に維持しながら原料ガスを導入する。導入された原料ガスが発熱体の表面を通過する際、分解や活性化等の変化が原料ガスに生じ、この変化による生成物が基板に到達することにより最終的な目的物である材料の薄膜が基板の表面に堆積する。尚、このような発熱体CVDのうち、ワイヤー状の発熱体を用いるものについては、ホットワイヤ(Hot Wire)CVDと呼ばれる場合がある。   A chemical vapor deposition apparatus that performs a heating element CVD method arranges a substrate in a processing container and introduces a source gas while maintaining the heating element provided in the processing container at a predetermined high temperature. When the introduced source gas passes through the surface of the heating element, changes such as decomposition and activation occur in the source gas, and the product resulting from this change reaches the substrate, so that the thin film of the material that is the final target material Is deposited on the surface of the substrate. Of these heating element CVDs, those using wire-like heating elements may be called hot wire (Hot Wire) CVD.

このような発熱体を経由して原料ガスを基板に到達させると、基板の熱のみによって反応を生じさせる熱CVD法に比べて基板の温度を低くできる長所がある。また、プラズマCVD法のようにプラズマを形成することがないので、プラズマによる基板へのダメージといった問題からも無縁である。このようなことから、上記発熱体CVD法は、高集積度化や高機能化が益々進む次世代の半導体デバイスの製作に有力視されている。
特開平10−83988号公報 実願昭57−27147号マイクロフィルム 特開平05−144802号公報
When the source gas reaches the substrate through such a heating element, there is an advantage that the temperature of the substrate can be lowered as compared with the thermal CVD method in which a reaction is caused only by the heat of the substrate. Further, since plasma is not formed unlike the plasma CVD method, there is no concern from the problem of damage to the substrate due to plasma. For this reason, the above-mentioned heating element CVD method is regarded as promising for the production of next-generation semiconductor devices that are becoming increasingly highly integrated and highly functional.
Japanese Patent Laid-Open No. 10-83988 No. 57-27147 microfilm Japanese Patent Laid-Open No. 05-144802

しかしながら、発明者の研究によると、発熱体CVD法では、通常の熱CVD法やプラズマCVD法では考えられない不純物が膜中に混入することが判明した。図6は、この問題を確認した実験の結果を示す図であり、実験用の化学蒸着装置で作成した窒化シリコン膜を二次イオン質量分析法(Secondary Ion Mass Spectroscopy;SIMS)により分析した結果を示す図である。尚、基板は、ガリウム砒素基板が使用された。   However, according to the inventor's research, it has been found that in the heating element CVD method, impurities that cannot be considered in the normal thermal CVD method or plasma CVD method are mixed in the film. FIG. 6 is a diagram showing the result of an experiment confirming this problem. The result of analyzing a silicon nitride film prepared by an experimental chemical vapor deposition apparatus by secondary ion mass spectrometry (SIMS) is shown. FIG. As the substrate, a gallium arsenide substrate was used.

図6の横軸は、基板の厚さ方向の位置を示している。また、図6の右側の縦軸は、検出器に二次イオンが入射することにより流れる電流から単位時間あたりの入射二次イオン数(カウント/秒)を示しており、左側の縦軸は、二次イオン数から定量的に算出される各元素の濃度(単位体積あたりの元素の数,atoms/cc)を示している。尚、各元素の濃度の定量は、標準試料を使用して得られた二次イオン数のデータと比較して行われている。   The horizontal axis in FIG. 6 indicates the position in the thickness direction of the substrate. Further, the vertical axis on the right side of FIG. 6 indicates the number of incident secondary ions (count / second) per unit time from the current that flows when the secondary ions enter the detector, and the left vertical axis indicates The concentration of each element (number of elements per unit volume, atoms / cc) calculated quantitatively from the number of secondary ions is shown. The concentration of each element is quantified by comparing with the data on the number of secondary ions obtained using a standard sample.

図6において、基板の表面(横軸の0の点)から2000オングストローム程度の位置まではSiが1平方センチあたり1018個以上の濃度で検出されており、表面から2000オングストローム程度の厚さで窒化シリコン膜が作成されていると判断される。そして、この0〜2000オングストロームの領域に、Fe,Ni,W,Mnに相当する二次イオン電流が計測されている。二次イオン数から換算すると、平均して、Feが5×1017atoms/cc程度、Niが1×1017atoms/cc程度、Wが1×1016atoms/cc程度、Mnが1×1015atoms/cc程度の濃度で混入しているとされる。但し、この分析に使用されたSIMS装置は、検出系のSN比等から、5×1015atoms/cc程度が検出限界となっており、WやMnについては、本当にこの程度の濃度の混入があるかどうか不明である。 In FIG. 6, Si is detected at a concentration of 10 18 or more per square centimeter from the surface of the substrate (the zero point on the horizontal axis) to a position of about 2000 angstroms, with a thickness of about 2000 angstroms from the surface. It is determined that a silicon nitride film has been formed. Then, secondary ion currents corresponding to Fe, Ni, W, and Mn are measured in the region of 0 to 2000 angstroms. When converted from the number of secondary ions, on average, Fe is about 5 × 10 17 atoms / cc, Ni is about 1 × 10 17 atoms / cc, W is about 1 × 10 16 atoms / cc, and Mn is 1 × 10. It is assumed that it is mixed at a concentration of about 15 atoms / cc. However, the SIMS device used for this analysis has a detection limit of about 5 × 10 15 atoms / cc due to the SN ratio of the detection system, and W and Mn are really mixed at this level. It is unknown whether there is.

いずれにしても、上記図6に示すデータから、従来の化学蒸着装置を使用して作成した薄膜中に、FeやNiが高い濃度で混入しているのが確認された。このような金属元素の混入は、通常の熱CVD装置やプラズマCVD装置では見られなかった現象である。このような意図しない金属元素の高濃度の混入があると、デバイス特性を阻害する結果となる可能性が高い。どのように阻害されるかは、薄膜の種類や目的によって変わる。例えば、シランと水素の混合ガスを使用して作成したシリコン膜の場合、1016atoms/cc程度の金属元素の混入があると、キャリアの移動度が減少し始める。そして、1017atoms/cc以上になると、極端なキャリア移動度の低下によりデバイスが正常に動作しない等の著しい特性阻害が生じる。また、窒化シリコン膜など、薄膜が素子形成後の表面保護膜や表面不動態(パシベーション)膜として作成される場合、膜中に上述のような重金属の不純物が混入すると、絶縁耐圧が低下して電気的な保護膜としての機能が阻害される恐れがある。 In any case, it was confirmed from the data shown in FIG. 6 that Fe and Ni were mixed at a high concentration in a thin film prepared using a conventional chemical vapor deposition apparatus. Such mixing of metal elements is a phenomenon that has not been observed in a normal thermal CVD apparatus or plasma CVD apparatus. If there is such a high concentration of an unintended metal element, there is a high possibility that the device characteristics will be impaired. How it is inhibited depends on the type and purpose of the thin film. For example, in the case of a silicon film formed using a mixed gas of silane and hydrogen, the carrier mobility starts to decrease when a metal element of about 10 16 atoms / cc is mixed. When it is 10 17 atoms / cc or more, significant characteristic inhibition such as device malfunction does not occur due to an extremely low carrier mobility. In addition, when a thin film such as a silicon nitride film is formed as a surface protective film or a surface passivation film after formation of an element, if the above heavy metal impurities are mixed in the film, the dielectric strength voltage is lowered. There is a possibility that the function as an electrical protective film may be hindered.

本願発明は、上記発明者の実験により確認された、発熱体CVD法特有の課題、即ち薄膜中への不純物混入という課題を解決するために成されたものである。   The present invention has been made in order to solve the problem specific to the heating element CVD method, that is, the problem of impurity contamination in the thin film, which has been confirmed by the experiments of the inventors.

上記課題を解決するため、本願の請求項1記載の発明は、処理容器外の1Pa以下の圧力の還元性ガス又は不活性ガス雰囲気中で発熱体を不純物が蒸発する温度に5分以上維持する第一の工程と、
第一の工程が行われた前記発熱体を前記処理容器内の所定位置に配置した状態で所定の薄膜を作成する第二の工程とを有しており、
第二の工程は、前記処理容器内に所定の原料ガスを供給し、供給された原料ガスを所定の高温に発熱させた発熱体の表面を通過させ、その通過の際の発熱体の表面での原料ガスの分解及び又は活性化により、前記処理容器内に保持された基板に前記所定の薄膜を作成する工程であり、
第一の工程における発熱体の温度は、第二の工程において前記所定の薄膜を作成する際の発熱体の温度より高いという構成を有する。
In order to solve the above problems, the invention according to claim 1 of the present application maintains the heating element at a temperature at which impurities are evaporated for 5 minutes or more in a reducing gas or inert gas atmosphere at a pressure of 1 Pa or less outside the processing vessel. The first step,
A second step of creating a predetermined thin film in a state where the heating element subjected to the first step is disposed at a predetermined position in the processing container,
In the second step, a predetermined raw material gas is supplied into the processing vessel, and the supplied raw material gas is passed through the surface of the heating element that has generated heat to a predetermined high temperature. A step of creating the predetermined thin film on the substrate held in the processing container by decomposing and / or activating the raw material gas;
The temperature of the heating element in the first step is higher than the temperature of the heating element when the predetermined thin film is formed in the second step.

以下に説明する通り、本願発明によれば、発熱体を不純物が蒸発する温度に予めするので、発熱体に不純物が存在していたとしても不純物が除去でき、薄膜中への混入が抑制される。このため、不純物の混入が極めて少ない優れた特性の薄膜が発熱体CVD法にて作成できる。
また、請求項2の発明によれば、上記効果に加え、ワイヤー状に加工する際に不純物が混入するという特有の課題が解決されるという効果が得られる。
また、請求項3の発明によれば、上記効果に加え、発熱体を不純物が蒸発する温度にするのが発熱体の酸化を防止しながら行われるので、発熱体の作用が阻害されることがないという効果が得られる。
As described below, according to the present invention, since the heating element is preliminarily set to a temperature at which the impurities evaporate, the impurities can be removed even if the impurities are present in the heating element, and mixing into the thin film is suppressed. . For this reason, a thin film having excellent characteristics with very few impurities can be formed by the heating element CVD method.
Further, according to the invention of claim 2, in addition to the above-described effect, there is obtained an effect that a specific problem that impurities are mixed when processing into a wire shape is solved.
According to the invention of claim 3, in addition to the above effect, the heating element is set to a temperature at which impurities are evaporated while preventing the oxidation of the heating element. There is no effect.

以下、本願発明の実施形態について説明する。図1は、本願発明の実施形態の化学蒸着方法に用いられる化学蒸着装置の概略構成を示す正面図である。図1に示す装置は、内部で基板に対して所定の処理がなされる処理容器1と、処理容器1内に所定の原料ガスを供給するガス供給系2と、供給された原料ガスが表面を通過するように処理容器1内に設けられた発熱体3と、発熱体3が所定の高温に維持されるよう発熱体3にエネルギーを与えるエネルギー供給機構30と、所定の高温に維持された発熱体3の表面での原料ガスの分解及び又は活性化により所定の薄膜が作成される処理容器1内の所定位置に基板9を保持する基板ホルダー4とを備えている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a front view showing a schematic configuration of a chemical vapor deposition apparatus used in a chemical vapor deposition method according to an embodiment of the present invention. The apparatus shown in FIG. 1 includes a processing container 1 in which a predetermined process is performed on a substrate, a gas supply system 2 for supplying a predetermined raw material gas into the processing container 1, and the supplied raw material gas on the surface. A heating element 3 provided in the processing container 1 so as to pass through, an energy supply mechanism 30 that gives energy to the heating element 3 so that the heating element 3 is maintained at a predetermined high temperature, and a heat generation maintained at a predetermined high temperature A substrate holder 4 for holding the substrate 9 at a predetermined position in the processing container 1 where a predetermined thin film is formed by decomposition and / or activation of the source gas on the surface of the body 3 is provided.

処理容器1は、排気系11を備えた気密な容器であり、基板9の出し入れを行うための不図示のゲートバルブを備えている。尚、処理容器1には、ゲートバルブを介して不図示のロードロックチャンバーが気密に接続されている。処理容器1は、ステンレス又はアルミニウム等の材質で形成されており、電気的には接地されている。排気系11は、ターボ分子ポンプ等の真空ポンプを備えており、処理容器1内を1×10−4Pa以下に排気可能に構成されている。尚、排気系11は、不図示の排気速度調整器を備えている。
ガス供給系2は、所定の原料ガスを溜めたガスボンベ21と、処理容器1内に設けられたガス供給器22と、ガスボンベ21とガス供給器22とを繋ぐ配管23と、配管23上に設けられたバルブ24や流量調整器25とから構成されている。ガス供給器22は中空の部材であり、基板ホルダー4に対向した前面を有している。この前面には、小さなガス吹き出し孔220が多数形成されている。ガスボンベ21から配管23を通してガス供給器22にガスが導入され、このガスがガス吹き出し孔220から吹き出して処理容器1内に供給されるようになっている。
The processing container 1 is an airtight container including an exhaust system 11 and includes a gate valve (not shown) for taking in and out the substrate 9. Note that a load lock chamber (not shown) is airtightly connected to the processing container 1 via a gate valve. The processing container 1 is made of a material such as stainless steel or aluminum and is electrically grounded. The exhaust system 11 includes a vacuum pump such as a turbo molecular pump, and is configured to be able to exhaust the processing container 1 to 1 × 10 −4 Pa or less. The exhaust system 11 includes an exhaust speed adjuster (not shown).
The gas supply system 2 includes a gas cylinder 21 in which a predetermined raw material gas is stored, a gas supply device 22 provided in the processing container 1, a pipe 23 connecting the gas cylinder 21 and the gas supply apparatus 22, and a pipe 23. The valve 24 and the flow rate regulator 25 are configured. The gas supply unit 22 is a hollow member and has a front surface facing the substrate holder 4. A large number of small gas blowing holes 220 are formed on the front surface. A gas is introduced from the gas cylinder 21 through the pipe 23 into the gas supply device 22, and this gas is blown out from the gas blowing hole 220 and supplied into the processing container 1.

基板ホルダー4は、処理容器1の上壁部から内部に突出するよう設けられた部材であり、下面に基板9を保持するようになっている。基板9は、基板ホルダー4に設けられた不図示の爪によりその縁が掛けられて保持されるか、又は、下面に静電吸着されて保持されるようになっている。尚、ガス供給器22が上側で、基板ホルダー4が下側に設けられる場合もある。この場合は、基板ホルダー4の上面に基板9は載置されて保持される。また、この基板ホルダー4は、基板9を加熱する加熱機構としても機能している。即ち、基板ホルダー4内には、基板9を所定温度に加熱するヒータ41が設けられている。ヒータ41は、カートリッジヒータ等の抵抗発熱方式のものである。基板9はヒータ41により室温〜300又は600℃程度に加熱されるようになっている。   The substrate holder 4 is a member provided so as to protrude from the upper wall portion of the processing container 1 and holds the substrate 9 on the lower surface. The substrate 9 is held by being hooked by a claw (not shown) provided in the substrate holder 4 or electrostatically attracted to the lower surface. In some cases, the gas supply unit 22 is provided on the upper side and the substrate holder 4 is provided on the lower side. In this case, the substrate 9 is placed and held on the upper surface of the substrate holder 4. The substrate holder 4 also functions as a heating mechanism for heating the substrate 9. That is, a heater 41 for heating the substrate 9 to a predetermined temperature is provided in the substrate holder 4. The heater 41 is of a resistance heating type such as a cartridge heater. The substrate 9 is heated to about room temperature to 300 or 600 ° C. by the heater 41.

次に、図1及び図2を使用して発熱体3の構成について説明する。図2は、図1の装置に使用された発熱体3の構成を説明する平面概略図である。発熱体3は、タングステン製のワイヤー状の部材である。ワイヤー状の部材からなる発熱体3は、鋸波状に折り曲げられ、枠体31に保持されている。エネルギー供給機構30は、発熱体3を通電してジュール熱を発生させることで発熱体3を所定の高温に維持するよう構成されている。具体的には、エネルギー供給機構30は発熱体3に所定の交流電流を流す交流電源である。枠体31はセラミック等の絶縁材である。エネルギー供給機構30は、発熱体3を1500〜1900℃程度の高温に維持できるよう構成される。   Next, the configuration of the heating element 3 will be described with reference to FIGS. 1 and 2. FIG. 2 is a schematic plan view illustrating the configuration of the heating element 3 used in the apparatus of FIG. The heating element 3 is a tungsten wire member. A heating element 3 made of a wire-like member is bent in a sawtooth shape and held by a frame 31. The energy supply mechanism 30 is configured to maintain the heating element 3 at a predetermined high temperature by energizing the heating element 3 to generate Joule heat. Specifically, the energy supply mechanism 30 is an AC power supply that allows a predetermined AC current to flow through the heating element 3. The frame 31 is an insulating material such as ceramic. The energy supply mechanism 30 is configured to maintain the heating element 3 at a high temperature of about 1500 to 1900 ° C.

本実施形態の方法の大きな特徴点は、上記発熱体3が、真空中、還元性ガス雰囲気中又は不活性ガス雰囲気中で且つ薄膜の作成の際の温度以上の高温に所定時間維持された後に用いられるものである点である。具体的に説明すると、本実施形態における発熱体3は、1×10−6〜1Pa程度の真空中で2000〜3000℃程度の高温に5分から60分程度維持する高温処理が施されたものである。このような高温処理を施した後、発熱体3は処理容器1内に持ち込まれて所定位置に取り付けられている。 The major feature of the method of this embodiment is that the heating element 3 is maintained in a vacuum, in a reducing gas atmosphere or in an inert gas atmosphere at a high temperature equal to or higher than the temperature at the time of forming a thin film for a predetermined time. It is a point that is used. More specifically, the heating element 3 in this embodiment is subjected to a high temperature treatment that is maintained at a high temperature of about 2000 to 3000 ° C. for about 5 to 60 minutes in a vacuum of about 1 × 10 −6 to 1 Pa. is there. After performing such high temperature processing, the heating element 3 is brought into the processing container 1 and attached to a predetermined position.

このように発熱体3を予め高温処理しておくことは、前述した薄膜中への重金属の混入という現象を分析した発明者の研究に基づくものである。発明者は、薄膜中に混入する重金属がどこからもたらされるのかについて鋭意検討した結果、発熱体3から来るのではないかという結論に達した。   Preliminarily treating the heating element 3 at a high temperature is based on the research of the inventor who analyzed the phenomenon of heavy metal mixing into the thin film described above. As a result of intensive studies as to where the heavy metal mixed in the thin film comes from, the inventor has come to the conclusion that it may come from the heating element 3.

具体的に説明すると、タングステン製の発熱体3は、タングステン粉末を焼結させて形成されるが、タングステン粉末の段階では、99.999%程度という極めて高い純度であり、上述した重金属を多く含んでいることはないと考えられる。しかしながら、焼結したタングステン材をワイヤー状に加工していく際、タングステン材は金属製の圧縮器で圧縮されながら圧延される。そして、タングステン材に接触する圧縮器は金属性であり、その表面には鉄やニッケル等が存在し、圧延の際にこれらの重金属がタングステン材中に混入するものと考えられる。発明者の調査によると、タングステン材をワイヤー状に加工すると、その純度は99.9%程度になり2桁低下してしまう。   More specifically, the tungsten heating element 3 is formed by sintering tungsten powder. At the stage of tungsten powder, it has an extremely high purity of about 99.999% and contains a large amount of the heavy metals described above. It seems that there is no going out. However, when the sintered tungsten material is processed into a wire shape, the tungsten material is rolled while being compressed by a metal compressor. And the compressor which contacts tungsten material is metallic, and iron, nickel, etc. exist in the surface, and it is thought that these heavy metals mix in tungsten material at the time of rolling. According to the inventor's investigation, when a tungsten material is processed into a wire shape, its purity is about 99.9%, which is two orders of magnitude lower.

このように重金属が混入した発熱体3を用いて成膜を行うと、発熱体3が高温に発熱した結果、混入した重金属が蒸発し、これが基板9に達して薄膜中に取り込まれることになる。前述した薄膜中への高濃度の鉄やニッケル等の混入は、これが原因であると考えられる。   When film formation is performed using the heat generating element 3 mixed with heavy metal in this way, the heat generating element 3 generates heat at a high temperature. As a result, the mixed heavy metal evaporates and reaches the substrate 9 and is taken into the thin film. . This is considered to be caused by the high concentration of iron, nickel or the like mixed into the thin film.

発明者は、このような推定のもと、前述の通り発熱体3を予め所定時間高温に維持する高温処理を施しその後処理容器1内に持ち込んで成膜に利用するようにした。この高温処理の際の温度は、成膜時の温度以上にした。つまり、成膜時に到達する温度以上に予め到達させて、重金属の放出を予め生じさせてしまうという考え方である。このような構成により、成膜時の発熱体3からの重金属の放出が極めて少なくなり、その結果、薄膜中への重金属の混入もまた極めて少なくなる。   Based on such estimation, the inventor performed a high temperature treatment for maintaining the heating element 3 at a high temperature for a predetermined time as described above, and then brought it into the processing container 1 for use in film formation. The temperature during the high temperature treatment was set to be equal to or higher than the temperature at the time of film formation. That is, the concept is that heavy metal is released in advance by reaching a temperature higher than the temperature reached at the time of film formation. With such a configuration, the release of heavy metals from the heating element 3 during film formation is extremely reduced, and as a result, the mixing of heavy metals into the thin film is also extremely reduced.

図3は、上記本実施形態の方法の効果を確認した実験の結果を示す図である。この図3は、図6に示す実験と同様、ガリウム砒素基板上に窒化シリコン膜を作成して、その膜をSIMS分析した結果が示されている。尚、窒化シリコン膜は、上述した装置を用いて作成した。具体的には、発熱体3はタングステン製であり、2500℃の温度にて7分間高温処理されたものを使用した。また、成膜条件としては、発熱体3の温度は1800℃、基板9の温度は280℃、成膜時の処理容器1内の圧力は1Pa、原料ガスはシランとアンモニアの混合ガスであり、流量比は1:100、全体の流量は101cc/分とした。   FIG. 3 is a diagram showing the results of an experiment confirming the effects of the method of the present embodiment. FIG. 3 shows the result of SIMS analysis of a silicon nitride film formed on a gallium arsenide substrate, as in the experiment shown in FIG. The silicon nitride film was prepared using the above-described apparatus. Specifically, the heating element 3 was made of tungsten, and was subjected to a high temperature treatment at a temperature of 2500 ° C. for 7 minutes. Further, as film formation conditions, the temperature of the heating element 3 is 1800 ° C., the temperature of the substrate 9 is 280 ° C., the pressure in the processing container 1 during film formation is 1 Pa, the source gas is a mixed gas of silane and ammonia, The flow rate ratio was 1: 100, and the overall flow rate was 101 cc / min.

図3と図6とを比較すると分かるように、窒化シリコン膜中のFeやNiはSIMSの検出限界程度に、CrやMnは検出限界以下に減少していることが分かる。これらの結果は、前述したように発熱体3を成膜時の温度以上に予め発熱させることで、発熱体3中の重金属不純物が除去でき、薄膜中への混入が劇的に抑制できることを示している。従って、本実施形態の方法によれば、そのような重金属不純物の混入が極めて少ない優れた特性の薄膜が発熱体CVD法にて作成できることになる。   As can be seen by comparing FIG. 3 and FIG. 6, it can be seen that Fe and Ni in the silicon nitride film are reduced to the SIMS detection limit and Cr and Mn are reduced to the detection limit or less. These results show that the heavy metal impurities in the heating element 3 can be removed and the mixing into the thin film can be drastically suppressed by heating the heating element 3 in advance to the temperature at the time of film formation as described above. ing. Therefore, according to the method of the present embodiment, such a thin film having excellent characteristics with very little mixing of heavy metal impurities can be formed by the heating element CVD method.

次に、本願発明の装置を実施する上で重要となる発熱体3の高温処理の時間の問題について説明する。図4は、発熱体3の高温処理の時間について検討した実験の結果を示す図である。この実験では、図3に示す実験と同様の条件でガリウム砒素基板上に窒化シリコン膜を作成した。但し、この実験では、高温処理をしていない発熱体3を真空容器1内に持ち込み、上記条件で最初に10分間(100nm)の成膜を行った(第1回目の成膜)。その後、処理容器1内を5×10−6Pa以下の圧力まで排気した後、発熱体3を5分間2500℃で高温処理した。そして、処理容器1内を5×10−6Pa以下の圧力まで再度排気した後、一回目の成膜と同じ条件で10分間成膜を行った(第2回目の成膜)。その後、処理容器1内を再度5×10−6Pa以下まで排気した後、同様に5分間高温処理を行った。このように、10分の成膜処理と5分の高温処理を交互に行いながら、成膜処理を10回繰り返し、合計1μm程度の厚さの窒化シリコン膜を作成した。この窒化シリコン膜をSIMS分析し、この分析結果から膜中の深さ方向の不純物(Cr)の濃度分布を概略的に表したのが、図4である。尚、5×1015atoms/ccがこのSIMSの検出限界である。従って、これ以下の濃度のデータについては、推測値で表されている。 Next, the problem of the time for high-temperature treatment of the heating element 3 that is important in implementing the apparatus of the present invention will be described. FIG. 4 is a diagram showing the results of an experiment that examined the time for high-temperature treatment of the heating element 3. In this experiment, a silicon nitride film was formed on the gallium arsenide substrate under the same conditions as in the experiment shown in FIG. However, in this experiment, the heating element 3 that was not subjected to the high temperature treatment was brought into the vacuum vessel 1, and film formation was first performed for 10 minutes (100 nm) under the above conditions (first film formation). Then, after exhausting the inside of the processing container 1 to a pressure of 5 × 10 −6 Pa or less, the heating element 3 was subjected to a high temperature treatment at 2500 ° C. for 5 minutes. Then, after the inside of the processing container 1 was evacuated again to a pressure of 5 × 10 −6 Pa or less, film formation was performed for 10 minutes under the same conditions as the first film formation (second film formation). Thereafter, the inside of the processing container 1 was again evacuated to 5 × 10 −6 Pa or less, and then a high temperature treatment was similarly performed for 5 minutes. As described above, the film forming process was repeated 10 times while alternately performing the film forming process for 10 minutes and the high temperature process for 5 minutes to form a silicon nitride film having a total thickness of about 1 μm. This silicon nitride film was subjected to SIMS analysis, and FIG. 4 schematically shows the concentration distribution of impurities (Cr) in the depth direction in the film from the analysis result. Note that 5 × 10 15 atoms / cc is the detection limit of SIMS. Therefore, the density data below this value is represented by an estimated value.

図4に示すように、第1回目の成膜においては、不純物濃度が4×1017atoms/cc程度存在しているが、第2回目の成膜においては、9×1015atoms/cc程度まで減少している。そして、第3回目の成膜においては、検出限界に近い6×1015atoms/cc程度まで減少している。そしてさらに成膜処理を繰り返す過程で、不純物濃度は検出限界を下回って段階的に減少していると推測される。 As shown in FIG. 4, an impurity concentration of about 4 × 10 17 atoms / cc exists in the first film formation, but about 9 × 10 15 atoms / cc in the second film formation. It has decreased to. And in the 3rd film-forming, it has decreased to about 6 × 10 15 atoms / cc which is close to the detection limit. Further, in the process of repeating the film formation process, it is presumed that the impurity concentration decreases step by step below the detection limit.

この結果から分かるように、たかだか5分程度の高温処理を行うだけで、不純物の濃度は、高温処理を行わない場合に比べて1桁以上も低下し、不純物混入の上限値とされる1×1017atoms/ccを下回る値となることが分かる。従って、上記高温処理は5分程度以上行えば好適であることが確認された。勿論、図4に示されているように、5分以上の高温処理を行うとさらに不純物濃度が低下するのでより好適である。上記実験では、Crの濃度をSIMS分析したが、他の不純物についても同様である。 As can be seen from this result, the impurity concentration decreases by an order of magnitude or more as compared with the case where the high temperature treatment is not performed only by performing the high temperature treatment for about 5 minutes, and the upper limit value of the impurity contamination is 1 ×. It can be seen that the value is less than 10 17 atoms / cc. Therefore, it was confirmed that the high temperature treatment is preferably performed for about 5 minutes or more. Of course, as shown in FIG. 4, the high temperature treatment for 5 minutes or more is more preferable because the impurity concentration is further reduced. In the above experiment, the Cr concentration was analyzed by SIMS, but the same applies to other impurities.

次に、上記構成に係る化学蒸着装置の動作について説明する。この説明は、実施形態の化学蒸着方法のより詳細な説明でもある。まず、処理容器1に隣接した不図示のロードロック室に基板9を配置するとともにロードロック室及び処理容器1内を所定の圧力まで排気し、その後、不図示のゲートバルブを開けて基板9を処理容器1内に搬入する。基板9は、基板ホルダー4に保持される。基板ホルダー4内のヒータ41が予め動作しており、基板ホルダー4に保持された基板9は、ヒータ41からの熱によって所定温度に加熱される。平行してエネルギー供給機構30が動作し、発熱体3を通電して発熱させ所定の高温に維持する。   Next, operation | movement of the chemical vapor deposition apparatus which concerns on the said structure is demonstrated. This description is also a more detailed description of the chemical vapor deposition method of the embodiment. First, the substrate 9 is placed in a load lock chamber (not shown) adjacent to the processing container 1 and the inside of the load lock chamber and the processing container 1 is exhausted to a predetermined pressure. Thereafter, a gate valve (not shown) is opened to remove the substrate 9. It is carried into the processing container 1. The substrate 9 is held by the substrate holder 4. The heater 41 in the substrate holder 4 operates in advance, and the substrate 9 held by the substrate holder 4 is heated to a predetermined temperature by the heat from the heater 41. In parallel, the energy supply mechanism 30 operates, energizes the heating element 3 to generate heat, and maintains a predetermined high temperature.

この状態で、ガス供給系2が動作する。即ち、バルブ24が開き、ガス供給器22を通して原料ガスが処理容器1内に供給される。供給された原料ガスは、発熱体3の表面を経由して基板9に達する。この際、発熱体3の表面で原料ガスが分解及び又は活性化する。そして、これら分解及び又は活性化した原料ガスが基板9の表面に到達することで、基板9の表面に所定の薄膜が堆積する。薄膜が所定の厚さに達したら、バルブ24を閉じて原料ガスの供給を停止し、処理容器1内を再度排気した後、エネルギー供給機構6の動作を停止する。その後、基板9を処理容器1から取り出す。   In this state, the gas supply system 2 operates. That is, the valve 24 is opened, and the source gas is supplied into the processing container 1 through the gas supplier 22. The supplied source gas reaches the substrate 9 via the surface of the heating element 3. At this time, the source gas is decomposed and / or activated on the surface of the heating element 3. Then, when the decomposed and / or activated source gas reaches the surface of the substrate 9, a predetermined thin film is deposited on the surface of the substrate 9. When the thin film reaches a predetermined thickness, the supply of the source gas is stopped by closing the valve 24, the inside of the processing container 1 is exhausted again, and then the operation of the energy supply mechanism 6 is stopped. Thereafter, the substrate 9 is taken out from the processing container 1.

蒸着の具体例について、前述と同様に窒化シリコン膜を作成する場合を例にして説明すると、原料ガスとして、モンシランを0.1〜20.0cc/分、アンモニアを10.0〜2000.0cc/分の割合で混合して導入する。発熱体3の温度を1600〜2000℃、基板9の温度を200〜350℃、処理容器1内の圧力を0.1〜100Paに維持して蒸着を行うと、1〜10nm/分程度の成膜速度で窒化シリコン膜の作成が行える。尚、このような窒化シリコン膜は、パッシベーション膜や保護膜として効果的に利用できる。   A specific example of vapor deposition will be described by taking as an example the case of forming a silicon nitride film in the same manner as described above. As source gases, monsilane is 0.1 to 20.0 cc / min, and ammonia is 10.0 to 2000.0 cc / min. Mix and introduce in minutes. When vapor deposition is performed while maintaining the temperature of the heating element 3 at 1600 to 2000 ° C., the temperature of the substrate 9 at 200 to 350 ° C., and the pressure in the processing vessel 1 at 0.1 to 100 Pa, the deposition rate is about 1 to 10 nm / min. A silicon nitride film can be formed at a film speed. Such a silicon nitride film can be effectively used as a passivation film or a protective film.

次に、上述したような発熱体3を利用した成膜のメカニズムについて以下に説明する。発熱体3を利用することは、前述したように成膜時の基板9の温度を低くするためであるが、何故基板9の温度を低くしても成膜が行えるかについては、必ずしも明らかではない。一つのモデルとして、以下のような表面反応が生じていることが考えられる。   Next, the film forming mechanism using the heating element 3 as described above will be described below. The use of the heating element 3 is to reduce the temperature of the substrate 9 during film formation as described above, but it is not always clear why film formation can be performed even if the temperature of the substrate 9 is lowered. Absent. As one model, the following surface reaction may occur.

図5は、本実施形態の方法における成膜の一つの考えられるモデルについて説明する概略図である。上記シリコン窒化膜を作成する場合を例にとると、導入されたモノシランガスが、所定の高温に維持された発熱体3の表面を通過する際、水素分子の吸着解離反応に類似したシランの接触分解反応が生じ、SiH及びHという分解活性種が生成される。詳細なメカニズムは明かではないが、モノシランを構成する一つの水素がタングステン表面に吸着又は接触することで、その水素とシリコンの結合が弱まってモノシランが分解し、タングステン表面への吸着又は接触が熱によって解かれてSiH及びHという分解活性種が生成されると考えられる。アンモニアガスにも同様な接触分解反応が生じ、NH及びHという分解活性種が生成される。そして、これらの分解活性種が基板9に到達してシリコン窒化膜の堆積に寄与する。即ち、反応式で示すと、
SiH(g)→SiH(g)+H(g)
NH(g)→NH(g)+H(g)
aSiH(g)+bNH(g)→cSiN(s)
となる。尚、gの添え字はガス状態、sの添え字は固体状態であることを意味する。
FIG. 5 is a schematic diagram for explaining one possible model of film formation in the method of the present embodiment. Taking the case of producing the silicon nitride film as an example, when the introduced monosilane gas passes through the surface of the heating element 3 maintained at a predetermined high temperature, the catalytic decomposition of silane similar to the adsorption dissociation reaction of hydrogen molecules. Reaction occurs, and decomposition active species of SiH 3 and H * are generated. Although the detailed mechanism is not clear, when one hydrogen constituting monosilane adsorbs or contacts the tungsten surface, the bond between the hydrogen and silicon weakens and monosilane decomposes, and the adsorption or contact on the tungsten surface is hot. It is considered that the decomposition active species of SiH 3 and H * are generated by being dissolved. A similar catalytic decomposition reaction also occurs in ammonia gas, and decomposition active species of NH 2 and H * are generated. These decomposition active species reach the substrate 9 and contribute to the deposition of the silicon nitride film. In other words, the reaction formula shows
SiH 4 (g) → SiH 3 (g) + H * (g)
NH 3 (g) → NH 2 (g) + H * (g)
aSiH 3 (g) + bNH 2 (g) → cSiN x (s)
It becomes. The subscript “g” means a gas state, and the subscript “s” means a solid state.

また、発熱体の作用について、Jan. J. Appl. Pys. Vol.37(1998)pp.3175-3187 の論文で詳細な議論がされている。この論文では、発熱体の温度をパラメータにした成膜速度の傾きが発熱体の材料によって異なることから、発熱体の表面で生じているのは単なる熱分解ではなく触媒作用であるとしている(同 Fig.7参照)。このことから、この種のCVD法を触媒化学蒸着(catalytic CVD、cat−CVD)法と呼んでいる。   Further, the action of the heating element is discussed in detail in the paper of Jan. J. Appl. Pys. Vol. 37 (1998) pp. 3175-3187. In this paper, since the slope of the film formation rate with the temperature of the heating element as a parameter varies depending on the material of the heating element, it is assumed that what occurs on the surface of the heating element is not mere thermal decomposition but catalytic action (same as above). (See Fig. 7). Therefore, this type of CVD method is called a catalytic chemical vapor deposition (catalytic CVD, cat-CVD) method.

さらに、本実施形態のような成膜方法は、発熱体3の表面での熱電子の作用によるものとの考え方もできる。つまり、高温に維持された発熱体4の表面からは、トンネル効果により熱電子がエネルギー障壁を越えて原料ガスに作用し、この結果、原料ガスが分解したり活性化したりするとの考え方を採ることができる。   Furthermore, it can be considered that the film forming method as in this embodiment is based on the action of thermoelectrons on the surface of the heating element 3. In other words, from the surface of the heating element 4 maintained at a high temperature, the thermoelectrons act on the source gas through the tunnel effect due to the tunnel effect, and as a result, the source gas is decomposed or activated. Can do.

本実施形態における成膜のメカニズムについては、上記いずれの考え方も採り得る。また、これらの現象が同時に生じているとの考え方を採ることもできる。いずれの考え方を採るにしても、発熱体3の表面では、原料ガスの分解、活性化、又は、分解及び活性化の双方が生じており、これらいずれかの原料ガスの変化に起因して成膜がされている。そして、このような発熱体3を経由して原料ガスを基板9に到達させることにより、基板9の温度を比較的低くして成膜を行うことができる。   Any of the above-described ideas can be adopted as the film formation mechanism in the present embodiment. It is also possible to take the idea that these phenomena occur simultaneously. Whichever way of thinking is employed, the surface of the heating element 3 is decomposed, activated, or both decomposed and activated, and this is caused by changes in any of these source gases. The membrane has been. Then, by causing the source gas to reach the substrate 9 through such a heating element 3, it is possible to perform film formation with a relatively low temperature of the substrate 9.

上記構成及び動作に係る本実施形態の方法では、前述した通り、発熱体3が成膜時の温度以上の温度に予め所定時間高温処理されているので、成膜時には発熱体3から重金属等が放出されることが極めて少なくなっている。このため、薄膜中への重金属等の混入も極めて少なくなり、良質な薄膜が得られる。   In the method of the present embodiment related to the above configuration and operation, as described above, since the heating element 3 is preliminarily processed at a temperature higher than the temperature at the time of film formation for a predetermined time, heavy metal or the like is generated from the heating element 3 during film formation. Very little is released. For this reason, mixing of heavy metals and the like into the thin film is extremely reduced, and a high-quality thin film can be obtained.

上記本実施形態の説明においては、発熱体3の材質としてはタングステンを採り上げたが、タンタルやモリブデン等の他の高融点金属であってもよい。また、作成する薄膜としては、窒化シリコン膜の他、シリコン酸窒化膜、シリコン酸化膜等の絶縁膜、さらには、アモルファスシリコン膜やポリシリコン膜などの半導体膜の作成にも、本願発明の方法を用いることができる。また、上記実施形態では、真空中で高温処理された発熱体3を用いたが、水素などの還元性ガス中で高温処理を行うと、発熱体3の酸化を防止しつつ又は酸化された表面を還元しつつ高温処理を行うことができる。また、アルゴンや窒素などの不活性ガス中で高温処理を行うことも好適であり、同様に発熱体3の酸化を防止することができる。還元性ガス又は不活性ガスを用いる際の流量については、任意でよい。但し、雰囲気の圧力が大気圧を越えないようにすることが好ましい。大気圧を越える圧力であると、不純物の放出が充分でなくなる恐れがあるからである。   In the description of the present embodiment, tungsten is taken as the material of the heating element 3, but other high melting point metals such as tantalum and molybdenum may be used. In addition to the silicon nitride film, the method of the present invention can be used for forming an insulating film such as a silicon oxynitride film and a silicon oxide film, and a semiconductor film such as an amorphous silicon film and a polysilicon film. Can be used. Moreover, in the said embodiment, although the heat generating body 3 processed at high temperature in the vacuum was used, when performing high temperature processing in reducing gas, such as hydrogen, the oxidation body of the heat generating body 3 was prevented or oxidized High temperature treatment can be performed while reducing Moreover, it is also suitable to perform high temperature processing in inert gas, such as argon and nitrogen, and the oxidation of the heat generating body 3 can be prevented similarly. The flow rate when using the reducing gas or the inert gas may be arbitrary. However, it is preferable that the atmospheric pressure does not exceed atmospheric pressure. This is because if the pressure exceeds atmospheric pressure, impurities may not be released sufficiently.

また、発熱体3は、上記高温処理が行われた後に処理容器1内に設けられるのが一般的であるが、前述した実験のように、処理容器1内に設けられた後、処理容器1内で高温処理を行うようにする場合もある。尚、上記説明では、発熱体3から除去される不純物が重金属であるとして説明したが、これに限られるものではないことは勿論である。成膜時の温度以上に加熱することで蒸発するすべての不純物が発熱体3から除去され、薄膜中への混入が抑制される。   In addition, the heating element 3 is generally provided in the processing container 1 after the high temperature treatment is performed. However, after the heating element 3 is provided in the processing container 1 as described above, the processing container 1 is provided. In some cases, high temperature treatment is performed. In the above description, it has been described that the impurities removed from the heating element 3 are heavy metals, but it is of course not limited thereto. By heating to a temperature equal to or higher than the temperature at the time of film formation, all impurities that evaporate are removed from the heating element 3, and mixing into the thin film is suppressed.

また、エネルギー供給機構30は、通電して、即ち、電気エネルギーを供給することで発熱体3を所定の高温に維持するものではあったが、熱エネルギーを供給して(加熱して)発熱体3を所定の高温に維持するものでもよい。または、輻射エネルギーを供給して発熱体3を所定の高温に維持するものも採用できる。あるいは、電子ビームやレーザーを照射して高温に維持するものも採用できる。   In addition, the energy supply mechanism 30 is energized, that is, supplies the electrical energy to maintain the heating element 3 at a predetermined high temperature. However, the energy supply mechanism 30 supplies (heats) the heating element to generate heat. 3 may be maintained at a predetermined high temperature. Or what supplies radiant energy and maintains the heat generating body 3 at predetermined | prescribed high temperature is also employable. Or what maintains an elevated temperature by irradiating an electron beam or a laser is also employable.

本願発明の実施形態の化学蒸着方法に用いられる化学蒸着装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the chemical vapor deposition apparatus used for the chemical vapor deposition method of embodiment of this invention. 図1の装置に使用された発熱体3の構成を説明する平面概略図である。It is a plane schematic diagram explaining the structure of the heat generating body 3 used for the apparatus of FIG. 本実施形態の方法の効果を確認した実験の結果を示す図である。It is a figure which shows the result of the experiment which confirmed the effect of the method of this embodiment. 発熱体3の高温処理の時間について検討した実験の結果を示す図である。It is a figure which shows the result of the experiment which examined about the time of the high temperature process of the heat generating body. 本実施形態の方法における成膜の一つの考えられるモデルについて説明する概略図である。It is the schematic explaining one possible model of the film-forming in the method of this embodiment. 従来の化学蒸着方法の問題を確認した実験の結果を示す図であり、実験用の化学蒸着装置で作成した窒化シリコン膜を二次イオン質量分析法により分析した結果を示す図である。It is a figure which shows the result of the experiment which confirmed the problem of the conventional chemical vapor deposition method, and is a figure which shows the result of having analyzed the silicon nitride film created with the chemical vapor deposition apparatus for experiment by secondary ion mass spectrometry.

符号の説明Explanation of symbols

1 処理容器
11 排気系
2 ガス供給系
3 発熱体
30 エネルギー供給機構
4 基板ホルダー
9 基板
1 Processing Container 11 Exhaust System 2 Gas Supply System 3 Heating Element 30 Energy Supply Mechanism 4 Substrate Holder 9 Substrate

Claims (4)

処理容器外の1Pa以下の圧力の還元性ガス又は不活性ガス雰囲気中で発熱体を不純物が蒸発する温度に5分以上維持する第一の工程と、
第一の工程が行われた前記発熱体を前記処理容器内の所定位置に配置した状態で所定の薄膜を作成する第二の工程とを有しており、
第二の工程は、前記処理容器内に所定の原料ガスを供給し、供給された原料ガスを所定の高温に発熱させた発熱体の表面を通過させ、その通過の際の発熱体の表面での原料ガスの分解及び又は活性化により、前記処理容器内に保持された基板に前記所定の薄膜を作成する工程であり、
第一の工程における発熱体の温度は、第二の工程において前記所定の薄膜を作成する際の発熱体の温度より高いことを特徴とする化学蒸着方法。
A first step of maintaining a heating element at a temperature at which impurities evaporate for 5 minutes or more in a reducing gas or inert gas atmosphere at a pressure of 1 Pa or less outside the processing vessel;
A second step of creating a predetermined thin film in a state where the heating element subjected to the first step is disposed at a predetermined position in the processing container,
In the second step, a predetermined raw material gas is supplied into the processing vessel, and the supplied raw material gas is passed through the surface of the heating element that has generated heat to a predetermined high temperature. A step of creating the predetermined thin film on the substrate held in the processing container by decomposing and / or activating the raw material gas;
The chemical vapor deposition method, wherein the temperature of the heating element in the first step is higher than the temperature of the heating element when the predetermined thin film is formed in the second step.
前記発熱体は、タングステン、モリブデン又はタンタルよりなるワイヤーを所定の形状に成形したものであることを特徴とする請求項1に記載の化学蒸着方法。   The chemical vapor deposition method according to claim 1, wherein the heating element is formed by forming a wire made of tungsten, molybdenum, or tantalum into a predetermined shape. 前記第一の工程は、前記発熱体を1×10−6Pa以上1Pa以下の圧力の前記雰囲気に配置し、この状態で前記不純物が蒸発する温度に維持する工程であることを特徴とする請求項1又は2に記載の化学蒸着方法。 The first step, according to said heating element is disposed in the atmosphere of 1 × 10 -6 Pa or more 1Pa less pressure, the impurities in this state, characterized in that a step of maintaining the temperature of evaporating Item 3. The chemical vapor deposition method according to Item 1 or 2. 前記第一の工程を行うことで、前記第二の工程において作成される前記所定の薄膜への重金属の混入濃度を二次イオン質量分析において1×1017atoms/cc以下とすることを特徴とする請求項1乃至3いずれかに記載の化学蒸着方法。 By performing the first step, the concentration of heavy metals mixed in the predetermined thin film created in the second step is set to 1 × 10 17 atoms / cc or less in secondary ion mass spectrometry. The chemical vapor deposition method according to claim 1.
JP2008216024A 2008-08-25 2008-08-25 Chemical vapor deposition method Expired - Fee Related JP4866402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216024A JP4866402B2 (en) 2008-08-25 2008-08-25 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216024A JP4866402B2 (en) 2008-08-25 2008-08-25 Chemical vapor deposition method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08262499A Division JP4505072B2 (en) 1999-03-25 1999-03-25 Chemical vapor deposition method and chemical vapor deposition apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009163000A Division JP4866446B2 (en) 2009-07-09 2009-07-09 Catalytic chemical vapor deposition apparatus and thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2009010412A JP2009010412A (en) 2009-01-15
JP4866402B2 true JP4866402B2 (en) 2012-02-01

Family

ID=40325108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216024A Expired - Fee Related JP4866402B2 (en) 2008-08-25 2008-08-25 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP4866402B2 (en)

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866446B2 (en) * 2009-07-09 2012-02-01 独立行政法人科学技術振興機構 Catalytic chemical vapor deposition apparatus and thin film manufacturing method
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) * 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111344522B (en) 2017-11-27 2022-04-12 阿斯莫Ip控股公司 Including clean mini-environment device
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
KR20200108016A (en) 2018-01-19 2020-09-16 에이에스엠 아이피 홀딩 비.브이. Method of depositing a gap fill layer by plasma assisted deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN111699278B (en) 2018-02-14 2023-05-16 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
TWI815915B (en) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
TW202405220A (en) 2019-01-17 2024-02-01 荷蘭商Asm Ip 私人控股有限公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
CN111593319B (en) 2019-02-20 2023-05-30 Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling recesses formed in a substrate surface
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
JP2020133004A (en) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Base material processing apparatus and method for processing base material
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188254A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
KR20210042810A (en) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. Reactor system including a gas distribution assembly for use with activated species and method of using same
CN112635282A (en) 2019-10-08 2021-04-09 Asm Ip私人控股有限公司 Substrate processing apparatus having connection plate and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210050453A (en) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
TW202140135A (en) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Gas supply assembly and valve plate assembly
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
TW202129068A (en) 2020-01-20 2021-08-01 荷蘭商Asm Ip控股公司 Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
CN113394086A (en) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 Method for producing a layer structure having a target topological profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
TW202140831A (en) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride–containing layer and structure comprising the same
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
KR20210145080A (en) 2020-05-22 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220006455A (en) 2020-07-08 2022-01-17 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161727A (en) * 1985-01-10 1986-07-22 Fujitsu Ltd Method and apparatus for preventing warpage of silicon wafer
JPS6369219A (en) * 1986-09-10 1988-03-29 Sumitomo Electric Ind Ltd Molecular beam source cell
JP3737221B2 (en) * 1996-09-06 2006-01-18 英樹 松村 Thin film forming method and thin film forming apparatus

Also Published As

Publication number Publication date
JP2009010412A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4866402B2 (en) Chemical vapor deposition method
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
TWI691616B (en) Etching method and etching device
JP4963539B2 (en) Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
Roberts et al. Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum
WO2006088062A1 (en) Production method for semiconductor device and substrate processing device
JP2011080142A (en) Use of nitrogen-based compound in beam-induced processing
Capece et al. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM
JP4505072B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JP4505073B2 (en) Chemical vapor deposition equipment
US20040221798A1 (en) Atomic layer deposition using multilayers
JP4866446B2 (en) Catalytic chemical vapor deposition apparatus and thin film manufacturing method
Wegewitz et al. Plasma-oxidation of Ge (100) surfaces using dielectric barrier discharge investigated by metastable induced electron spectroscopy, ultraviolet photoelectron spectroscopy, and x-ray photoelectron spectroscopy
JP4705668B2 (en) Chemical vapor deposition method using chemical vapor deposition equipment
US10276393B2 (en) Method of manufacturing semiconductor device
WO2022050099A1 (en) Etching method
Nazarova et al. Growth of graphene on tantalum and its protective properties
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
JPS61135126A (en) Equipment of plasma treatment
Takeguchi et al. Post-deposition processes for nanostructures formed by electron beam induced deposition with Pt (PF 3) 4 precursor
JP6726264B2 (en) Method and apparatus for surface treating a substrate
KR101121055B1 (en) Apparatus and method for forming nitridation film of using the nitrogen atom beam a energy controllable
US20200083520A1 (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
JP3664472B2 (en) Coating processing method and aperture plate
KR101858315B1 (en) Film forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees