JPS61135126A - Equipment of plasma treatment - Google Patents

Equipment of plasma treatment

Info

Publication number
JPS61135126A
JPS61135126A JP25649084A JP25649084A JPS61135126A JP S61135126 A JPS61135126 A JP S61135126A JP 25649084 A JP25649084 A JP 25649084A JP 25649084 A JP25649084 A JP 25649084A JP S61135126 A JPS61135126 A JP S61135126A
Authority
JP
Japan
Prior art keywords
plasma
substrate
electromagnet
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25649084A
Other languages
Japanese (ja)
Inventor
Hidekazu Murakami
英一 村上
Shinichiro Kimura
紳一郎 木村
Mitsunori Ketsusako
光紀 蕨迫
Kiyoshi Miyake
三宅 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25649084A priority Critical patent/JPS61135126A/en
Publication of JPS61135126A publication Critical patent/JPS61135126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Abstract

PURPOSE:To enable forming a thin film at a low temperature and at a great speed by again squeezing a plasma flow which is expanding at the position of a sample with the magnetic field formed by an electromagnet or a permanent magnet provided at the opposite side of a plasma source against the sample. CONSTITUTION:A microwave generated from a magnetron 11 is guided to a discharge tube 14 through an isolator 12 and a power monitor 13. An electron which resonates and is absorbed by an electron which makes a cyclotron motion by the magnetic field formed with an electromagnet 15 excites, dissociates and ionizes an reactive gas introduced in a vacuum container 16 from a reactive gas source 17 and makes plasma. A plasma flow is carried along the line of magnetic force and arrives at a substrate 19. An electromagnet 20 is provided at the back of the substrate 19 against the plasma flow and is so excited that the direction of the magnetic field is the same with that of the electromagnet 15. The plasma flow is carried by the line of magnetic force formed with the electromagnet 15 and is going to be gradually expanded from a beam state but the electromagnet 20 can squeeze the expanding plasma flow again at near the substrate 19.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマ処理装置にかかわり、特に、化学的に
活性なプラズマ流と金属原子流とを直接反応させて、被
処理基板上に金属の化合物を堆積させるのに好適なプラ
ズマ処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma processing apparatus, and in particular, to directly react a chemically active plasma stream with a metal atomic stream to form a metal compound on a substrate to be processed. The present invention relates to a plasma processing apparatus suitable for depositing.

〔発明の背景〕[Background of the invention]

ICやLSIの製造において、5102やSi3N4な
どの絶縁膜が層間絶縁膜、電荷蓄積用絶縁膜やゲート絶
縁膜として多用されているが、これらの膜の製造には、
従来、CVD(Chemical Vapor Dep
osition)法や熱酸化法などの高温プロセスが用
いられている。しかし、この方法では、1ooo℃近く
の高温熱処理を必要とするため、LSI製造の最終工程
などのように高温熱処理を好まないところには適用しに
(い。また、低融点基板を用いる薄膜トランジスタなど
には適用できないプロセスである。
In the manufacture of ICs and LSIs, insulating films such as 5102 and Si3N4 are often used as interlayer insulating films, charge storage insulating films, and gate insulating films.
Conventionally, CVD (Chemical Vapor Dep.
High-temperature processes such as the oxidation method and the thermal oxidation method are used. However, this method requires high-temperature heat treatment at nearly 100°C, so it cannot be applied to places where high-temperature heat treatment is not preferred, such as the final process of LSI manufacturing. This process cannot be applied to

このような高温CVDプロセスの欠点に対処するため、
最近、反応性ガスのプラズマを使用するプラズマCVD
(以下PCVDと記する)技術が注目されている。これ
は、ステンレス鋼などでできている容器内に、モノシラ
ン(St H4)などのようにSiを成分原子として含
む反応性ガスと、酸素や窒素・アンモニアなどのガスと
を同時に供給し、これらのガスを希薄な状態で保持しな
がら、外部から直流や交流の高電界を印加してプラズマ
を発生させ、基板上にSi O,やSi3N4などを堆
積させる技術である。このPCVD法を用いると、室温
付近の温度での絶縁膜形成も可能であるが、形成された
膜の重大な欠点として、膜中に大量の水素が含有されて
いることが挙げられる。この水素は、5IH4やNH3
が分解したときの副産物として生じるものであり、高温
CVD法では容易に膜外に放出されてしまうが、PCV
D法では、基板温度が低いために膜中に残留してしまう
。この膜中の水素は、絶縁膜中に注入された電子のトラ
ップ源となり、フラットバンド電圧やしきい電圧の変動
などの原因となる。特に、最近のように素子の微細化が
進み、絶縁膜が薄くなってくると、電子も注入されやす
くなり、素子の長期信頼性にとって膜中の水素は重大な
問題となっている。
To address the shortcomings of such high-temperature CVD processes,
Recently, plasma CVD using reactive gas plasma has been developed.
(hereinafter referred to as PCVD) technology is attracting attention. This involves simultaneously supplying a reactive gas containing Si as a component atom, such as monosilane (St H4), and gases such as oxygen, nitrogen, and ammonia into a container made of stainless steel, etc. This is a technique in which plasma is generated by applying a high electric field of direct current or alternating current from the outside while keeping the gas in a diluted state, and deposits Si 2 O, Si3N4, etc. on the substrate. Using this PCVD method, it is possible to form an insulating film at a temperature near room temperature, but a serious drawback of the formed film is that it contains a large amount of hydrogen. This hydrogen is 5IH4 and NH3
It is produced as a byproduct when PCV decomposes, and is easily released outside the film in high-temperature CVD methods, but
In method D, since the substrate temperature is low, it remains in the film. Hydrogen in this film becomes a trap source for electrons injected into the insulating film, causing fluctuations in flat band voltage and threshold voltage. In particular, as devices become increasingly finer and insulating films become thinner, electrons are more likely to be injected, and hydrogen in the film becomes a serious problem for the long-term reliability of devices.

ところで、ベル研究所のR,P、 H,Changらに
よる”Plasma enhanced beam d
eposition of thin films a
tlow temperatures’、 J、 Va
c、 Sci+Techno1. B 1 (4)、 
Oct、−Dec、 1983. p935と題する文
献ニオイテ、従来すら活性化反応性蒸着法として知られ
る方法、すなわち、薄膜を形成する元素以外の元素を含
まない反応ガスをプラズマ化し、これを金属(半導体)
蒸気と反応させて化合物を生成する方法を用いて、5i
n2. Aut03などの薄膜を形成し、この方法によ
って、水素などの不純物□をほとんど含まず、電気的特
性も良好な絶縁膜が得られることが報告されている。
By the way, "Plasma enhanced beam d" by R. P. H. Chang et al. of Bell Laboratories.
position of thin films a
low temperatures', J, Va
c, Sci+Techno1. B 1 (4),
Oct.-Dec., 1983. According to a document titled p935, a method known as the activated reactive vapor deposition method is used, in which a reaction gas containing no elements other than those forming the thin film is turned into plasma, and this is used to deposit metal (semiconductor).
Using a method that generates a compound by reacting with steam, 5i
n2. It has been reported that by forming a thin film such as Aut03, an insulating film containing almost no impurities such as hydrogen and having good electrical characteristics can be obtained.

第2図に、Changらの用いた装置を示す(J、Va
c。
Figure 2 shows the apparatus used by Chang et al. (J, Va
c.

Sci、 Technol、 、 Vol、 14. 
NcLl + Jan、/Feb、 197L p27
8)参図において、プラズマ源21はコラム状の細長い
形状のもので、試料処理室22から独立している。この
コラムの周囲と中央にはRF励起用の電極(図示せず)
があり、また外側には軸方向磁場を作るための電磁コイ
ル23が設けである。プラズマ源21で発生したプラズ
マはこの磁場によって閉じ込められ、試料処理室22へ
と導かれる。
Sci, Technol, Vol. 14.
NcLl + Jan, /Feb, 197L p27
8) In the figure, the plasma source 21 has an elongated column-like shape and is independent from the sample processing chamber 22. Around and in the center of this column are electrodes for RF excitation (not shown).
An electromagnetic coil 23 is provided on the outside for creating an axial magnetic field. The plasma generated in the plasma source 21 is confined by this magnetic field and guided to the sample processing chamber 22.

この装置においては、上記閉じ込め磁場によって、□プ
ラズマ源管壁のスパッタは抑えられるものの、試料処理
室のチェンバー中ではプラズマ流が拡がってしまい、プ
ラズマがチェンバー壁ヲスパッタし、壁から飛来する物
質で試料が汚染される  ゛心配がある。また、プラズ
マとの干渉を避けるために蒸発源を試料から遠ざける必
要があるため、成膜速度はSin、膜の場合で15A/
minに抑えられている。
In this device, although spatter on the wall of the plasma source tube is suppressed by the confining magnetic field, the plasma flow spreads in the chamber of the sample processing chamber, the plasma sputters on the chamber wall, and the material flying from the wall covers the sample. There is a concern that it will be contaminated. In addition, since it is necessary to move the evaporation source away from the sample to avoid interference with the plasma, the deposition rate is 15A/1 in the case of a Sin film.
It is suppressed to min.

〔発明の目的〕 本発明の目的は、管壁スパッタによる試料汚染がなく、
また大きな成膜速度で薄膜低温形成ができるプラズマ処
理装置を提供することにある。
[Object of the Invention] The object of the present invention is to eliminate sample contamination due to tube wall spatter;
Another object of the present invention is to provide a plasma processing apparatus that can form a thin film at a high temperature and at a high temperature.

〔発明の概要〕[Summary of the invention]

プラズマを用いた活性化反応性蒸着法においては、第3
図に示すように、プラズマ源32と蒸発源31とを同時
に用いており、これらの干渉をなくすことが最も重要な
技術課題である。すなわち、蒸発源として電子線加熱型
のものを用いる場合、その電極部には4〜10に■の高
電圧が印加されるため、プラズマ雰囲気での動作は不可
能である。さらに、金属(半導体)蒸気がプラズマ源側
へ照射されると、放電が不安定となる場合がある。
In the activated reactive vapor deposition method using plasma, the third
As shown in the figure, a plasma source 32 and an evaporation source 31 are used at the same time, and the most important technical challenge is to eliminate their interference. That is, when an electron beam heating type is used as an evaporation source, a high voltage of 4 to 10 is applied to the electrode portion of the evaporation source, making it impossible to operate in a plasma atmosphere. Furthermore, if metal (semiconductor) vapor is irradiated onto the plasma source side, the discharge may become unstable.

上記問題点に対する対策として、プラズマ源と蒸発源と
を空間的に分離することが考えられるが、その場合には
必然的に両者とも試料33の位置から遠くなるので、プ
ラズマ流の拡がりによるチェンバー壁スパッタおよび蒸
着速度の低下を招くことになる。
As a countermeasure to the above problem, it may be possible to spatially separate the plasma source and the evaporation source, but in that case, both would necessarily be far from the sample 33, and the chamber wall would be affected by the spread of the plasma flow. This results in a decrease in sputtering and deposition rate.

そこで、本発明では、プラズマ源側の磁気閉じ込め用電
磁石に加えて、試料に対しプラズマ源と反対側に電磁石
あるいは永久磁石を設け、その形成する磁場により、゛
試料位置で拡がりかけたプラズマ流を再び絞るという構
成をとっている。このような構成によって、プラズマは
安定したビーム状となり、これによって管壁スパッタお
よびプラズマの蒸発源との干渉が抑制され、上記問題点
が解決可能となる。
Therefore, in the present invention, in addition to the electromagnet for magnetic confinement on the plasma source side, an electromagnet or a permanent magnet is provided on the opposite side of the sample from the plasma source, and the magnetic field formed by the electromagnet is used to suppress the plasma flow that is about to spread at the sample position. The structure is to narrow it down again. With this configuration, the plasma becomes a stable beam, which suppresses tube wall sputtering and interference of the plasma with the evaporation source, making it possible to solve the above-mentioned problems.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は本発明を実施した有磁場マイクロ波プラズマ源
を有するプラズマ処理装置の構成図である。
FIG. 1 is a block diagram of a plasma processing apparatus having a magnetic field microwave plasma source in which the present invention is implemented.

図において、マグネトロン11から発生した2)45G
Hzのマイクロ波は、アイソレータ12)パワーモニタ
13を通して放電管14に導かれ、電磁石15により形
成された磁場によってサイクロトロン運動する電子によ
り共鳴吸収される。マイクロ波からエネルギーを得た電
子は、真空容器16中に反応ガス源17から導入された
反応ガスを励起し、これを解離・イオン化し、プラズマ
をつくり出す。プラズマ流は電磁石15により形成され
る磁力線に沿って輸送され、基板19に到達し、電子線
加熱蒸発源18から照射される金属蒸気と反応して、基
板のプラズマ処理が行われる。
In the figure, 2) 45G generated from magnetron 11
The Hz microwave is guided to the discharge tube 14 through an isolator 12) and a power monitor 13, and is resonantly absorbed by electrons moving in a cyclotron due to a magnetic field formed by an electromagnet 15. The electrons that have obtained energy from the microwave excites the reactive gas introduced into the vacuum container 16 from the reactive gas source 17, dissociate and ionize it, and create plasma. The plasma flow is transported along magnetic lines of force formed by the electromagnet 15, reaches the substrate 19, reacts with metal vapor irradiated from the electron beam heating evaporation source 18, and performs plasma processing on the substrate.

符号20は本発明の特徴点をなす電磁石であり、基板1
9のプラズ源に対して背後に設けられ、電磁石15と磁
場の向きが同じになるように励磁されている。上記のよ
うにプラズマ流は電磁石15により形成される磁力線に
より輸送され、ビーム状をなしているものが次第に拡が
ろうとするが、電磁石20を設けることによって、基板
19付近で拡がりかけたプラズマ流を再び絞ることがで
きる。
Reference numeral 20 is an electromagnet that is a feature of the present invention, and the substrate 1
It is provided behind the plasma source 9 and is excited so that the direction of the magnetic field is the same as that of the electromagnet 15. As mentioned above, the plasma flow is transported by the magnetic lines of force formed by the electromagnet 15, and the beam shape gradually tries to spread, but by providing the electromagnet 20, the plasma flow that is about to spread near the substrate 19 can be stopped. You can narrow it down again.

上記実施例では、プラズマを絞る磁場を形成するだめに
電磁石を用いているが、電磁石の代りに永久磁石を用い
てもよいことは、明らかである。
In the above embodiment, an electromagnet is used to form the magnetic field that constricts the plasma, but it is clear that a permanent magnet may be used instead of the electromagnet.

次に、本発明によるプラズマ処理装置を用いて具体的に
処理を行った例について述べる。
Next, a specific example of processing performed using the plasma processing apparatus according to the present invention will be described.

処理例1: まず、Si基板上に5in2膜を堆積形成した例につい
て述べる。装置は、第1図に示した構成のものを用いた
。酸素を反応ガスとして真空容器16に導入してプラズ
マをつ(す、真空容器16の下部に設けた電子線加熱蒸
発源I8によりSi蒸気を基板19に照射することによ
り、Siと02プラズマとが反応して基板上に5in2
膜が形成される。処理は、02ガス1.5 X 10−
’ Torr、マイクロ波、パry−100Wの条件で
放電を行った。
Processing Example 1: First, an example in which a 5in2 film was deposited on a Si substrate will be described. The apparatus used had the configuration shown in FIG. Oxygen is introduced into the vacuum chamber 16 as a reaction gas to generate plasma. By irradiating Si vapor onto the substrate 19 using an electron beam heating evaporation source I8 provided at the bottom of the vacuum chamber 16, Si and 02 plasma are generated. React and place 5in2 on the board
A film is formed. The treatment is 02 gas 1.5 x 10-
'Discharge was performed under the conditions of Torr, microwave, and 100W.

上記の例において、蒸発源と基板との距離は、プラズマ
流を絞ったことによって30cmから15cmヘヘと大
幅に大きくなった。また、Si蒸気は有効に基板に照射
され、プラズマ源側へは到達しないため、放電も安定化
された。
In the above example, the distance between the evaporation source and the substrate was significantly increased from 30 cm to 15 cm by narrowing the plasma flow. Further, since the Si vapor was effectively irradiated onto the substrate and did not reach the plasma source side, the discharge was also stabilized.

第4図に、形成された膜の赤外吸収スペクトルを示した
。同図から、波数108108O’付近に見られる5i
−0伸縮振動吸収ピークの大きさおよび位置が熱酸化膜
のそれに近く、緻密な5102膜が形成されているのが
わかる。また、P−エッチ液によるエッチ速度は、基板
加熱を行っていないにもかかわらす5A/secとなり
、熱酸化膜の3倍程度であった。さらに、イオンマイク
ロアナライザによる不純物分析から、チェンバー壁スパ
ッタによる重金属汚染はないことが確かめられた。
FIG. 4 shows the infrared absorption spectrum of the formed film. From the same figure, 5i seen around the wave number 108108O'
It can be seen that the magnitude and position of the -0 stretching vibration absorption peak are close to those of the thermal oxide film, indicating that a dense 5102 film is formed. Furthermore, the etch rate with the P-etching solution was 5 A/sec, which was about three times that of the thermal oxide film, even though the substrate was not heated. Furthermore, impurity analysis using an ion microanalyzer confirmed that there was no heavy metal contamination due to chamber wall sputtering.

処理例2: 次に、反応ガスとして窒素を導入し、窒素プラズマとS
i蒸気との反応によってSi3N4膜を形成した例につ
いて述べる。これには、処理例1と同じ装置を用いた。
Processing example 2: Next, nitrogen is introduced as a reaction gas, and nitrogen plasma and S
An example in which a Si3N4 film is formed by reaction with i vapor will be described. The same apparatus as in Processing Example 1 was used for this.

第5図に、窒素ガス圧I X 10−’ Torr、マ
イクロ波パワー50Wで放電させた場合の、窒素プラズ
マからの発光スペクトルを示した。このスペクトルでは
、N2分子からの発光以外にN2+分子イオンからの発
光も認められ、基板に負バイアスを印加することによっ
て、この運動のエネルギーを有効利用できる。
FIG. 5 shows the emission spectrum from nitrogen plasma when discharge was performed at a nitrogen gas pressure of I.times.10-' Torr and a microwave power of 50 W. In this spectrum, in addition to light emission from N2 molecules, light emission from N2+ molecular ions is also observed, and by applying a negative bias to the substrate, the energy of this movement can be effectively utilized.

第6図に、窒素ガス圧I X 1O−4Torr 1マ
イクロ波パワー140W、Si蒸発源パワー200W、
基板負バイアス300v、基板温度300℃の条件で形
成したSi3N4膜の赤外吸収スペクトルを示した。こ
のスペクトルにおいて、波数840cm−’に5i−N
結合に基づく吸収が観察され、S!3N4膜が形成され
ているのがわかる。また、波数2150cm−’に5i
−N結合に基づく吸収は見られず、膜中に水素はほとん
ど含まれていないことを示している。
Fig. 6 shows nitrogen gas pressure I x 1O-4Torr, microwave power 140W, Si evaporation source power 200W,
The infrared absorption spectrum of the Si3N4 film formed under the conditions of a negative substrate bias of 300 V and a substrate temperature of 300° C. is shown. In this spectrum, 5i-N at wave number 840 cm-'
Bond-based absorption is observed, and S! It can be seen that a 3N4 film is formed. Also, 5i at wave number 2150cm-'
No absorption based on -N bonds was observed, indicating that the film contained almost no hydrogen.

さらに、段差部にSi3N4を堆積させた結果からその
段差被覆性にも優れていることがわかった。
Furthermore, the results of depositing Si3N4 on the step portion showed that the step coverage was also excellent.

これは、イオンの運動エネルギーの効果と考えられる。This is considered to be an effect of the kinetic energy of the ions.

〔発明の効果〕 本発明によれば、プラズマ処理装置において、なんら複
雑な装置構成をとることなしに、管壁スパッタによる試
料汚染のない高品質薄膜を、十分な成膜速度で低温形成
することが可能となる。
[Effects of the Invention] According to the present invention, a high-quality thin film without sample contamination due to tube wall sputtering can be formed at a sufficient temperature at a sufficient deposition rate in a plasma processing apparatus without any complicated equipment configuration. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である有磁場マイクロ波プラ
ズマを用いたプラズマ処理装置の構成図、第2図は従来
のプラズマ処理装置の一例を示す模式図、第3図は活性
化反応性蒸着法の原理を説明するための模式図、第4図
は本発明を実施した装置を用いて形成した5i02膜の
赤外吸収スペクトルを示す図、第5図は本発明を実施し
た装置における窒素プラズマの発光スペクトルを示す図
、第6図は本発明を実施した装置を用いて形成したSi
3N4膜の赤外吸収スペクトルを示す図である。 符号の説明
Fig. 1 is a configuration diagram of a plasma processing apparatus using magnetic field microwave plasma, which is an embodiment of the present invention, Fig. 2 is a schematic diagram showing an example of a conventional plasma processing apparatus, and Fig. 3 is an activation reaction FIG. 4 is a diagram showing the infrared absorption spectrum of a 5i02 film formed using the apparatus according to the present invention, and FIG. 5 is a schematic diagram for explaining the principle of the chemical vapor deposition method. FIG. 6 is a diagram showing the emission spectrum of nitrogen plasma.
FIG. 3 is a diagram showing an infrared absorption spectrum of a 3N4 film. Explanation of symbols

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマを発生させる放電部と、金属やその合金
を蒸発させる蒸発源と、プラズマ閉じ込め用の磁場を発
生させる電磁石と、被処理基板を内部に保持する真空容
器とを有し、放電部で発生させたプラズマを用いて基板
を処理するプラズマ処理装置であって、前記真空容器の
近傍でかつ前記被処理基板に対しプラズマ源と反対側の
位置に、1個または複数個の電磁石または永久磁石を配
置し、該電磁石または永久磁石の形成する磁場によって
プラズマ流を絞ることを特徴とするプラズマ処理装置。
(1) The discharge section has a discharge section that generates plasma, an evaporation source that evaporates metal or its alloy, an electromagnet that generates a magnetic field for plasma confinement, and a vacuum container that holds the substrate to be processed inside. A plasma processing apparatus for processing a substrate using plasma generated by a plasma processing apparatus, wherein one or more electromagnets or permanent A plasma processing apparatus characterized in that a magnet is arranged and a plasma flow is narrowed by a magnetic field formed by the electromagnet or permanent magnet.
(2)特許請求の範囲第1項に記載のプラズマ処理装置
において、プラズマを用いた基板の処理として、プラズ
マ流と蒸発した金属原子流とを被処理基板上に同時にま
たは交互に照射し、該被処理基板上に前記金属またはそ
の化合物を堆積させることを特徴とするプラズマ処理装
置。
(2) In the plasma processing apparatus according to claim 1, the substrate to be processed is irradiated with a plasma flow and an evaporated metal atom flow simultaneously or alternately, in order to process the substrate using plasma. A plasma processing apparatus characterized in that the metal or its compound is deposited on a substrate to be processed.
(3)特許請求の範囲第2項に記載のプラズマ処理装置
において、プラズマ中の荷電粒子の運動エネルギーを増
大させるイオン引出し電極、または基板に電界を印加す
る手段を設け、荷電粒子の照射効果によって被処理基板
上の堆積膜の付着力や緻密性を向上させたことを特徴と
するプラズマ処理装置。
(3) In the plasma processing apparatus according to claim 2, an ion extraction electrode for increasing the kinetic energy of charged particles in the plasma or a means for applying an electric field to the substrate is provided, and the irradiation effect of the charged particles is A plasma processing apparatus characterized by improved adhesion and density of a deposited film on a substrate to be processed.
(4)特許請求の範囲第1項ないし第3項のいずれか1
項に記載のプラズマ処理装置において、プラズマ流を発
生するガスとして酸素または窒素もしくはそのいずれか
を主要成分とする混合ガスを用い、被処理基板上に金属
の酸化物または窒化物を堆積させることを特徴とするプ
ラズマ処理装置。
(4) Any one of claims 1 to 3
In the plasma processing apparatus described in 1., metal oxides or nitrides are deposited on the substrate to be processed by using oxygen or nitrogen, or a mixed gas containing either of them as a main component, as a gas for generating a plasma flow. Characteristic plasma processing equipment.
JP25649084A 1984-12-06 1984-12-06 Equipment of plasma treatment Pending JPS61135126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25649084A JPS61135126A (en) 1984-12-06 1984-12-06 Equipment of plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25649084A JPS61135126A (en) 1984-12-06 1984-12-06 Equipment of plasma treatment

Publications (1)

Publication Number Publication Date
JPS61135126A true JPS61135126A (en) 1986-06-23

Family

ID=17293360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25649084A Pending JPS61135126A (en) 1984-12-06 1984-12-06 Equipment of plasma treatment

Country Status (1)

Country Link
JP (1) JPS61135126A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628517A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Method for forming compound thin film
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5302208A (en) * 1992-02-08 1994-04-12 Leybold Aktiengesellschaft Vacuum coating installation
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
US5725674A (en) * 1991-03-18 1998-03-10 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers
JP2008532306A (en) * 2005-02-28 2008-08-14 エピスピード エス.アー. Apparatus and method for high density low energy plasma vapor phase epitaxy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102237A (en) * 1979-01-31 1980-08-05 Hitachi Ltd Method and apparatus for plasma processing
JPS5984420A (en) * 1982-09-30 1984-05-16 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Method of producing product including multicomponent material covering substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102237A (en) * 1979-01-31 1980-08-05 Hitachi Ltd Method and apparatus for plasma processing
JPS5984420A (en) * 1982-09-30 1984-05-16 ウエスタ−ン・エレクトリツク・カムパニ−・インコ−ポレ−テツド Method of producing product including multicomponent material covering substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628517A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Method for forming compound thin film
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5019117A (en) * 1986-12-29 1991-05-28 Sumitomo Metal Industries Ltd. Plasma apparatus
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5725674A (en) * 1991-03-18 1998-03-10 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers
US5302208A (en) * 1992-02-08 1994-04-12 Leybold Aktiengesellschaft Vacuum coating installation
JP2008532306A (en) * 2005-02-28 2008-08-14 エピスピード エス.アー. Apparatus and method for high density low energy plasma vapor phase epitaxy

Similar Documents

Publication Publication Date Title
JPS6113626A (en) Plasma processor
US5508066A (en) Method for forming a thin film
US4624214A (en) Dry-processing apparatus
JPS6243335B2 (en)
JPH03185827A (en) Manufacture of thin film of high purity
JPH04253328A (en) Surface treatment device
JPS61135126A (en) Equipment of plasma treatment
JP4505072B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
EP0408062A2 (en) Surface treatment method and apparatus therefor
JPH0950984A (en) Surface treating method
JP3222615B2 (en) Surface treatment equipment
JPS587337B2 (en) Oxide reduction method
JPH1053866A (en) Gas control type arc device and its method
JPH03104881A (en) Formation of thin film of iron-iron nitride
JPS62287072A (en) Thin film forming apparatus
JPH10172793A (en) Plasma generator
JP3367687B2 (en) Plasma processing method and plasma processing apparatus
JP3707989B2 (en) Plasma processing method
JP2610477B2 (en) Plasma processing equipment
JPH01246367A (en) Formation of film and device therefor
JPS60218826A (en) Formation of thin film
JPH0340422A (en) Film formation device
JPS59133364A (en) Electric discharge chemical reaction device
JPH0390568A (en) Plasma treating device
JPS63213664A (en) Ion plating device