JPH0340422A - Film formation device - Google Patents

Film formation device

Info

Publication number
JPH0340422A
JPH0340422A JP1082988A JP1082988A JPH0340422A JP H0340422 A JPH0340422 A JP H0340422A JP 1082988 A JP1082988 A JP 1082988A JP 1082988 A JP1082988 A JP 1082988A JP H0340422 A JPH0340422 A JP H0340422A
Authority
JP
Japan
Prior art keywords
plasma
film
magnetic field
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082988A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yano
博之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1082988A priority Critical patent/JPH0340422A/en
Publication of JPH0340422A publication Critical patent/JPH0340422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the evenness of filming rate and filming quality by periodically changing the magnetic field impressed on a plasma production chamber. CONSTITUTION:After exhausting the air in a plasma production chamber 1 and a film deposition chamber 2 from an exhaust pipe 9 at the pressure of 5X10<-5>Pa, e.g. O2 as plasma production gas is led in from a gas leading-in port 3. Next, a magnetic coil 10 is impressed with a magnetic field by supplying it with power so as to produce high density oxygen plasma. The positions showing the flux density meeting the electronic cyclotron requirements are changing periodically within the range of 4-12cm from a plasma leading out window 12. E.g. SiH4 gas as a reaction gas is led-into the film deposition chamber 2 at the pressure of 5X10<-2>Pa. Through these procedures, the magnetic field impressed on the plasma production chamber 1 is periodically changed so that the evenness of filming rate and film quality may be notably improved thereby enabling the filming rate to be accelerated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子サイクロトロン共鳴による高密度プラズ
マを利用する膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a film forming apparatus that utilizes high-density plasma generated by electron cyclotron resonance.

(従来の技術) 半導体製造プロセスにおける薄膜形成方法の一つとして
、プラズマ気相成長法(プラズマCVD法)が広く用い
られている。さらに、成膜の低温化。
(Prior Art) Plasma vapor deposition (plasma CVD) is widely used as one of the methods for forming thin films in semiconductor manufacturing processes. Furthermore, lowering the temperature of film formation.

高速化を目ざしたECR(電子サイクロトロン共鳴)プ
ラズマを使ったCVD法も知られている。このECRプ
ラズマを使った膜形成装置は、従来より第2図に示した
ような構成であった。マイクロ波励起によりプラズマ生
成室21にプラズマを発生させるが、同時にマグネット
コイル30による時間が印加されており、プラズマ生成
室21内の電子サイクロトロン共鳴条件を満足する領域
で高密度プラズマが発生する0例えば、2.45G)l
zのマイクロ波に対して、この電子サイクロトロン条件
を満足する磁束密度は875Gaussである。マグネ
ットコイル30による磁界は基板26の方向にその強度
が減少するいわゆる発散磁界になっており、このためプ
ラズマ生成室21に生じた高密度プラズマは基板方向に
引き出され、膜堆積室22に導入された反応ガスと反応
し基板26上に膜が形成される。
A CVD method using ECR (electron cyclotron resonance) plasma is also known, which aims to increase the speed. A film forming apparatus using ECR plasma has conventionally had a configuration as shown in FIG. 2. Plasma is generated in the plasma generation chamber 21 by microwave excitation, but at the same time time is applied by the magnet coil 30, and high-density plasma is generated in a region within the plasma generation chamber 21 that satisfies the electron cyclotron resonance conditions. , 2.45G)l
For the microwave of z, the magnetic flux density that satisfies this electron cyclotron condition is 875 Gauss. The magnetic field generated by the magnet coil 30 is a so-called diverging magnetic field whose intensity decreases in the direction of the substrate 26, so that the high-density plasma generated in the plasma generation chamber 21 is drawn out toward the substrate and introduced into the film deposition chamber 22. A film is formed on the substrate 26 by reacting with the reactant gas.

しかしながら、従来のECRプラズマを用いた膜形成装
置においては、プラズマ生成室21のまわりに設けられ
たマグネットコイル30の発散磁界によって引き出され
たプラズマの密度はプラズマの中央部と周辺部では異な
り、成膜速度や膜質が基板中央部と周辺部で大きく異な
るという問題があった。
However, in the conventional film forming apparatus using ECR plasma, the density of the plasma extracted by the divergent magnetic field of the magnet coil 30 provided around the plasma generation chamber 21 is different between the central part and the peripheral part of the plasma, There was a problem in that the film speed and film quality were significantly different between the center and the periphery of the substrate.

(発明が解決しようとする課題) 前述したように、従来の単純な発散磁界によりプラズマ
引き出しを行なう膜形成装置においては、プラズマ密度
の不均一性のため成膜速度やI!!質が基板中央部と周
辺部で大きく異なるという問題があった1本発明の目的
は、この成膜速度や膜質の均一性を改善することにある
(Problems to be Solved by the Invention) As mentioned above, in conventional film forming apparatuses that extract plasma using a simple divergent magnetic field, the film forming rate and I! ! There has been a problem in that the quality of the film differs greatly between the center and the periphery of the substrate.An object of the present invention is to improve the film formation rate and the uniformity of the film quality.

〔発明の構成〕 (課題を解決するための手段) 本発明は、前記問題点を解決するためにOCRプラズマ
を使った膜形成装置において、プラズマ室に印加する磁
場を周期的に変化させることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a film forming apparatus using OCR plasma in which the magnetic field applied to the plasma chamber is periodically changed. Features.

(作用) プラズマ生成室から引き出され基板に到達する電子およ
びイオンの密度や進行方向、エネルギーは堆積膜の成膜
速度や膜質に大きな影響を及ぼす。
(Function) The density, traveling direction, and energy of electrons and ions extracted from the plasma generation chamber and reaching the substrate have a large effect on the film formation rate and film quality of the deposited film.

それゆえ、プラズマ室に印加する磁場を周期的に変化さ
せることにより基板に到達する電子やイオンの密度や進
行方向、エネルギーを基板上全面にわたって均一にして
やれることにより、成膜速度や膜質の基板面内均一性は
向上する。
Therefore, by periodically changing the magnetic field applied to the plasma chamber, the density, traveling direction, and energy of electrons and ions reaching the substrate can be made uniform over the entire surface of the substrate, thereby improving the deposition rate and film quality of the substrate. In-plane uniformity is improved.

(実施例) 本発明による膜形成装置の一実施例を第1図を参照しな
がら説明する。真空室はプラズマ生成室lと膜堆積室2
とから成っており、プラズマ生成室1にはプラズマ生成
用ガスを導入するためのガス導入口3およびマイクロ波
電源4からのマイクロ波電力を導入するためのマイクロ
波導波管5が接続されている。I!堆積室2内には、基
板6を設置するための基板ホルダー7があり、また、反
応ガスを導入するためのガス導入口8および真空に排気
するためのガス排気口9が設けられている。
(Example) An example of a film forming apparatus according to the present invention will be described with reference to FIG. The vacuum chambers are plasma generation chamber 1 and film deposition chamber 2.
The plasma generation chamber 1 is connected to a gas inlet 3 for introducing plasma generation gas and a microwave waveguide 5 for introducing microwave power from a microwave power source 4. . I! Inside the deposition chamber 2, there is a substrate holder 7 for installing a substrate 6, and also a gas inlet 8 for introducing a reaction gas and a gas exhaust port 9 for evacuation to a vacuum.

さらにプラズマ生成室1の周囲には磁界を印加するため
のマグネットコイル10が設けられており、また、マグ
ネットコイルルには直流電源13および120Hzの交
流電源14が接続されている。
Further, a magnet coil 10 for applying a magnetic field is provided around the plasma generation chamber 1, and a DC power source 13 and a 120 Hz AC power source 14 are connected to the magnet coil.

次に上記実施例で示した膜形成装置を用いて酸化シリコ
ン膜を形成する方法およびSaの均一性向上の効果につ
いて説明する。まず、プラズマ生成室21と膜堆積室2
2の管を5X10’″’Paまで排気した後、ガス導入
口3からプラズマ生成用ガスとして1例えば0.ガスを
40cc/winの流量で導入する。
Next, a method of forming a silicon oxide film using the film forming apparatus shown in the above embodiment and the effect of improving the uniformity of Sa will be explained. First, the plasma generation chamber 21 and the film deposition chamber 2
After the tube No. 2 is evacuated to 5X10'''' Pa, a plasma generation gas such as No. 1 gas is introduced from the gas introduction port 3 at a flow rate of 40 cc/win.

そして、プラズマ生成室の周囲に設けられているマグネ
ットコイル10に通電し磁場を印加すると共に、例えば
300vのマイクロ波電力を印加して酸素の高密度プラ
ズマを発生させる0発生したプラズマは発散磁界により
引き出され基板に到達する。
Then, the magnet coil 10 provided around the plasma generation chamber is energized to apply a magnetic field, and a microwave power of, for example, 300V is applied to generate high-density plasma of oxygen.The generated plasma is caused by the divergent magnetic field. It is pulled out and reaches the board.

このとき、プラズマ室内において電子サイクロトロン条
件を満足する磁束密度を有する位置は、プラズマ引き出
し窓12から、4cfflから12c11の間で周期的
に変化している。また、膜堆積室には、反応用ガスとし
て、例えばSiH4ガスを25cc/winの流量で導
入する。この時の膜堆積室の圧力は5X10−”Paと
なった。
At this time, the position in the plasma chamber having a magnetic flux density that satisfies the electron cyclotron conditions periodically changes from 4cffl to 12c11 from the plasma extraction window 12. Further, as a reaction gas, for example, SiH4 gas is introduced into the film deposition chamber at a flow rate of 25 cc/win. At this time, the pressure in the film deposition chamber was 5×10 −″Pa.

この状態で3分間酸化シリコン膜を6インチシリコンウ
ェハーに堆積した時の膜厚は最も厚いところ(Tmax
)で4600℃、最も薄いところ(Twin)で425
λ、成膜速度の均一性((Tmax−Twin)/ (
Tmax+Twin)は4.0%で、屈折率は最も大き
いところ(Dmax)で1.472、最も小さいところ
(5min)で468、屈折率の均一性((Dmax=
Dmin)/ (Dmax+Dmin))は0.14%
であった。一方、第2図で示した膜形成装置で膜堆積を
行なった場合のTmaxは3800人、Twinは34
00人、 Dvaaxは1.473、Dminは1.4
64で、成膜速度の均一性は5.6%、屈折率の均一性
は0.31%であった。このように、プラズマ室に印加
する磁場を周期的に変化させた場合には、成膜速度およ
び膜質の面内均一性は著しく改善され、さらに成膜速度
も12%程度増加した。
When a silicon oxide film is deposited on a 6-inch silicon wafer for 3 minutes in this state, the film thickness is the thickest (Tmax
) 4600℃, 425 at the thinnest point (Twin)
λ, uniformity of film formation rate ((Tmax-Twin)/(
Tmax+Twin) is 4.0%, the refractive index is 1.472 at the largest point (Dmax), 468 at the smallest point (5 min), and the uniformity of the refractive index ((Dmax=
Dmin)/(Dmax+Dmin)) is 0.14%
Met. On the other hand, when the film is deposited using the film forming apparatus shown in Figure 2, Tmax is 3800 people and Twin is 34.
00 people, Dvaax is 1.473, Dmin is 1.4
64, the uniformity of film formation rate was 5.6% and the uniformity of refractive index was 0.31%. As described above, when the magnetic field applied to the plasma chamber was changed periodically, the film formation rate and in-plane uniformity of film quality were significantly improved, and the film formation rate also increased by about 12%.

本発明は上記実施例に限定されるものではなく。The present invention is not limited to the above embodiments.

堆積させる膜を窒化シリコン膜等の他の絶縁膜や金属膜
とした場合に対しても有効であり、さらに、基板にバイ
アス電圧を印加する方法に対しても有効である。また、
マグネットコイルに流す電流の周波数を変えた場合にも
有効である。
This method is also effective when the film to be deposited is another insulating film such as a silicon nitride film or a metal film, and is also effective when applying a bias voltage to the substrate. Also,
It is also effective when changing the frequency of the current flowing through the magnet coil.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によりECRプラズマを使っ
た膜堆積において、成膜速度および膜質の均一性は著し
く改善され、さらに成膜速度+−大きくすることができ
る。
As described above, according to the present invention, in film deposition using ECR plasma, the film formation rate and uniformity of film quality are significantly improved, and the film formation rate can be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す装置構成図、第2図は従
来例を示す装置構成図である。 1.21・・・プラズマ生成室 2,22・・・膜堆積
室3.23・・・ガス導入口(プラズマ生成用ガス)4
.24・・・マイクロ波電源 5.25・・・マイクロ波導波管 6,26・・・基板
7.27・・・基板ホルダー 8.28・・・ガス導入口(反応用ガス)9.29・・
・ガス排気口 30・・・マグネットコイル 31・・・電子およびイオンの流束 32・・・プラズマ引き出し窓
FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention, and FIG. 2 is an apparatus configuration diagram showing a conventional example. 1.21...Plasma generation chamber 2,22...Film deposition chamber 3.23...Gas inlet (plasma generation gas) 4
.. 24... Microwave power supply 5.25... Microwave waveguide 6, 26... Substrate 7.27... Substrate holder 8.28... Gas inlet (reaction gas) 9.29.・
・Gas exhaust port 30... Magnet coil 31... Electron and ion flux 32... Plasma extraction window

Claims (2)

【特許請求の範囲】[Claims] (1)マイクロ波励起によりプラズマが形成されるプラ
ズマ生成室を備え、該プラズマ生成室に磁界を印加し、
電子サイクロトロン共鳴による高密度プラズマを発生さ
せ、プラズマ生成室に印加した磁界の発散により膜堆積
室にプラズマを引き出して基板への成膜を行なう膜形成
装置において、前記プラズマ生成室に印加する磁界を周
期的に変化させることのできる手段を有することを特徴
とする膜形成装置。
(1) comprising a plasma generation chamber in which plasma is formed by microwave excitation, applying a magnetic field to the plasma generation chamber;
In a film forming apparatus that generates high-density plasma by electron cyclotron resonance and draws the plasma to a film deposition chamber to form a film on a substrate by divergence of a magnetic field applied to a plasma generation chamber, the magnetic field applied to the plasma generation chamber is A film forming apparatus characterized by having a means capable of changing periodically.
(2)プラズマ室に印加する磁界を周期的に変化させる
手段が、マグネットコイルに交流成分を含む電流を流す
ことを特徴とする請求項1記載の膜形成装置。
(2) The film forming apparatus according to claim 1, wherein the means for periodically changing the magnetic field applied to the plasma chamber causes a current containing an alternating current component to flow through the magnet coil.
JP1082988A 1988-01-22 1988-01-22 Film formation device Pending JPH0340422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082988A JPH0340422A (en) 1988-01-22 1988-01-22 Film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082988A JPH0340422A (en) 1988-01-22 1988-01-22 Film formation device

Publications (1)

Publication Number Publication Date
JPH0340422A true JPH0340422A (en) 1991-02-21

Family

ID=11761250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082988A Pending JPH0340422A (en) 1988-01-22 1988-01-22 Film formation device

Country Status (1)

Country Link
JP (1) JPH0340422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196446A (en) * 1992-12-24 1994-07-15 Nec Corp High frequency magnetic field excitation treatment device
US5366586A (en) * 1992-02-03 1994-11-22 Nec Corporation Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JP2006225970A (en) * 2005-02-17 2006-08-31 Tostem Corp Sunshade device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366586A (en) * 1992-02-03 1994-11-22 Nec Corporation Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPH06196446A (en) * 1992-12-24 1994-07-15 Nec Corp High frequency magnetic field excitation treatment device
JP2006225970A (en) * 2005-02-17 2006-08-31 Tostem Corp Sunshade device

Similar Documents

Publication Publication Date Title
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
JPS61179872A (en) Apparatus and method for magnetron enhanced plasma auxiliarytype chemical vapor deposition
JP4504684B2 (en) Etching method
JPH0340422A (en) Film formation device
JPH04343420A (en) Plasma reaction device
JPH0521983B2 (en)
JP2750430B2 (en) Plasma control method
JPH0415921A (en) Method and apparatus for activating plasma
JPH05144773A (en) Plasma etching apparatus
JP2725203B2 (en) Microwave plasma processing equipment
JP2956395B2 (en) Magnetic field plasma processing equipment
JPH0680640B2 (en) Plasma equipment
JPH02138474A (en) Formation of thin film
JPH01246367A (en) Formation of film and device therefor
JPS611025A (en) Plasma processing apparatus
JPH06275564A (en) Microwave plasma etching device
JPH0244720A (en) Microwave plasma treatment device
JPH08172081A (en) Plasma surface treater
JPS63137431A (en) Film forming apparatus
JP2990838B2 (en) Dry etching equipment
JPS60233816A (en) Thin film formation and device therefor
JPH03166367A (en) Method and device for sputtering
JPS63219128A (en) Treatment apparatus
JPH0283924A (en) Method for microwave plasma treatment
ONO et al. METAL AND METALLIC COMPOUND DEPOSITION APPARATUS USING AN ELECTRON CYCLOTRON RESONANCE PLASMA