JPH0415921A - Method and apparatus for activating plasma - Google Patents

Method and apparatus for activating plasma

Info

Publication number
JPH0415921A
JPH0415921A JP12034290A JP12034290A JPH0415921A JP H0415921 A JPH0415921 A JP H0415921A JP 12034290 A JP12034290 A JP 12034290A JP 12034290 A JP12034290 A JP 12034290A JP H0415921 A JPH0415921 A JP H0415921A
Authority
JP
Japan
Prior art keywords
plasma
generation chamber
applying
sample
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12034290A
Other languages
Japanese (ja)
Inventor
Akinori Ozaki
成則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12034290A priority Critical patent/JPH0415921A/en
Publication of JPH0415921A publication Critical patent/JPH0415921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a film formation speed and an etching speed by applying a high-frequency electric field to plasma with an electrode on the path of the plasma introduced from a plasma generation chamber to the surface of a sample and accelerating the electrons and ions in the plasma. CONSTITUTION:A microwave from one end of a wave guide 2 is introduced into a plasma generation chamber 1 through a microwave introduction port 1c. A high-frequency-wave-applying coil-shaped electrode 7 is arranged to surround a plasma flow P and applies a high-frequency wave emitted from a high- frequency-wave generator 8 to plasma. When a film is formed on the surface of a sample S, reaction gas is supplied to the plasma generation chamber 1 and a reaction chamber 3 via gas supply systems 1g and 3g, plasma is generated by applying an electric field generated by the microwave to the inside of the plasma generation chamber 1, while a magnetic field is formed by an excitation coil 4, and introduced into the reaction chamber 3 through a plasma drawing window 1d and around the sample S, with the density and activity of the plasma enhanced by applying the high-frequency wave thereto with the high-frequency- wave-applying electrode 7, and the surface is reacted by the ion particles and radical particles in the plasma flow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波を用いた電子サイクロトロン共鳴(
Electron Cyclotron Re5ona
nce ; ECR)励起により生成させたプラズマを
利用して半導体素子、電子材料等を製造するに際し、プ
ラズマを活性化する方法及びその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electron cyclotron resonance (electron cyclotron resonance) using microwaves.
Electron Cyclotron Re5ona
The present invention relates to a method and apparatus for activating plasma when manufacturing semiconductor devices, electronic materials, etc. using plasma generated by excitation (ECR).

〔従来の技術〕[Conventional technology]

電子サイクロトロン共鳴を利用したプラズマ装置は、低
ガス圧で電離度の高いプラズマが生成でき、またイオン
エネルギーの広範な選択が可能で、イオンの指向性・均
一性に優れる等の利点を有していることから、高集積半
導体素子の製造における薄膜形成やエツチング等のプロ
セスには欠かせないものとしてその研究・開発が進めら
れている。
Plasma devices that utilize electron cyclotron resonance have the advantages of being able to generate highly ionized plasma at low gas pressure, allowing a wide selection of ion energies, and having excellent ion directionality and uniformity. Therefore, research and development is progressing on it as an indispensable part of processes such as thin film formation and etching in the production of highly integrated semiconductor devices.

第6図は従来のECRプラズマ装置を示す縦断面図であ
り、図中41はプラズマ生成室を示している。
FIG. 6 is a longitudinal sectional view showing a conventional ECR plasma apparatus, and numeral 41 in the figure indicates a plasma generation chamber.

該プラズマ生成室41は、周囲に冷却水路41aを備え
た円筒形に形成され、その上部壁中央に石英ガラス板4
1bにて封止したマイクロ波導入口41cを、また下部
壁中央には前記マイクロ波導入口41cと対向する位置
にプラズマ引出窓41dを夫々備えている。そして前記
マイクロ波導入口41cには他端を図示しないマイクロ
波発振器に接続した導波管42の一端が接続され、また
プラズマ引出窓41dに望ませて反応室43を配設し、
更に周囲にはプラズマ生成室41及びこれに接続した導
波管42の一端部にわたってこれを囲繞する態様でこれ
らと同心状に励磁コイル44を配設しである。
The plasma generation chamber 41 is formed in a cylindrical shape with a cooling channel 41a around the periphery, and a quartz glass plate 4 is provided at the center of the upper wall.
1b, and a plasma extraction window 41d at a position facing the microwave inlet 41c at the center of the lower wall. One end of a waveguide 42, the other end of which is connected to a microwave oscillator (not shown), is connected to the microwave inlet 41c, and a reaction chamber 43 is disposed facing the plasma extraction window 41d.
Furthermore, an excitation coil 44 is disposed concentrically with the plasma generation chamber 41 and one end of a waveguide 42 connected to the plasma generation chamber 41 so as to surround the plasma generation chamber 41 and the waveguide 42 connected thereto.

反応室43内にはプラズマ引出窓41dと対向する位置
に試料台45が配設され、その上には試料Sがそのまま
、又は静電吸着等の手段にで着脱可能に載置され、更に
反応室43の下部壁には図示しない排気装置に連なる排
気口43aが開口されている。
A sample stage 45 is disposed in the reaction chamber 43 at a position facing the plasma draw-out window 41d, on which the sample S is placed as it is or removably mounted by means such as electrostatic adsorption, and further reacted. An exhaust port 43a connected to an exhaust device (not shown) is opened in the lower wall of the chamber 43.

41g、 43gは夫々ガス供給系である。41g and 43g are gas supply systems, respectively.

而してこのようなECR装置にあっては所要の真空度に
設定したプラズマ生成室411反応室43内にガス供給
系41g及び43gを通じて反応ガスを供給し、励磁コ
イル44にて磁界を形成しつつプラズマ生成室41内に
マイクロ波による高周波電界を印加してプラズマを生成
させ、生成させたプラズマを励磁コイル44にて形成さ
れる発散磁界によってプラズマ生成室41からプラズマ
引出窓41dを経て反応室43内の試料S周辺に導出し
、試料S表面でプラズマ流中のイオン、ラジカル粒子に
よる表面反応を生起させ、試料S表面に成膜、エツチン
グ等の処理を施すようになっている。
In such an ECR device, a reaction gas is supplied through the gas supply systems 41g and 43g into the plasma generation chamber 411 and the reaction chamber 43, which are set to a required degree of vacuum, and a magnetic field is formed by the excitation coil 44. At the same time, a high frequency electric field by microwave is applied in the plasma generation chamber 41 to generate plasma, and the generated plasma is transferred from the plasma generation chamber 41 through the plasma extraction window 41d to the reaction chamber by a divergent magnetic field formed by the excitation coil 44. The sample S is led out to the vicinity of the sample S in the sample S, a surface reaction is caused by ions and radical particles in the plasma flow on the sample S surface, and processing such as film formation and etching is performed on the sample S surface.

なお、必要に応じて試料Sに高周波発振器46から高周
波を印加して試料S表面に負の自己バイアスを誘起し、
イオンを試料S表面に向けて加速を行う。このような自
己バイアス手段によりイオンのスパッタエツチング性を
利用した膜表面の平坦化プロセス(J、νac、Sci
、 Technol、 B 4 f4)、 818(1
986)) 、或いは異方性の高いイオン性の工、チン
グ法(J、νac、Sci、 Technol、  A
 7 (3)、 903(1989))等が提案されて
いる。
Note that, if necessary, a high frequency is applied to the sample S from the high frequency oscillator 46 to induce a negative self-bias on the surface of the sample S,
Accelerate the ions toward the surface of the sample S. A film surface flattening process (J, νac, Sci
, Technol, B 4 f4), 818 (1
986)) or highly anisotropic ionic engineering method (J, νac, Sci, Technol, A
7 (3), 903 (1989)), etc. have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで成膜速度、或いはエツチング速度を高めるべく
マイクロ波パワーを増加しすぎると、マイクロ波導入窓
41cの周縁部が強く加熱されて損傷、破損するためマ
イクロ波パワーの増加には限界があるという問題がある
。またエツチング速度は試料台に高周波を印加すること
によって向上させ得るが、この場合はマスクのエツチン
グ速度も上昇するためマスクと下地の選択性の低下が起
こることに加え、試料台に高周波を印加するためには試
料台の構造が複雑化するという問題があった。
However, if the microwave power is increased too much in order to increase the film formation rate or etching rate, the peripheral edge of the microwave introduction window 41c will be heated strongly and will be damaged or destroyed, so there is a problem that there is a limit to the increase in the microwave power. There is. In addition, the etching speed can be improved by applying high frequency to the sample stage, but in this case, the etching speed of the mask also increases, resulting in a decrease in selectivity between the mask and the substrate. Therefore, there was a problem in that the structure of the sample stage became complicated.

なお成膜に対してはこの方法を用いるとエネルギーイオ
ンのスバフタ性によって成膜速度は減少する。
Note that when this method is used for film formation, the film formation rate decreases due to the buffing property of energetic ions.

本発明はかかる事情に鑑みてなされたものであり、マイ
クロ波のパワーを増加させたり、試料に高周波を印加す
ることなく、高い成膜速度、エツチング速度が得られる
ようにしたプラズマ活性化方法及びその装置を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and provides a plasma activation method and a plasma activation method that can obtain high film forming and etching rates without increasing the power of microwaves or applying high frequencies to the sample. The purpose is to provide such equipment.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明に係るプラズマ活性化方法は、マイクロ波を用い
た電子サイクロトロン共鳴励起によりプラズマ生成室で
生成させたプラズマを反応室内の試料表面に導いて該試
料表面に処理を施す方法において、前記プラズマをプラ
ズマ生成室から試料表面に導く途中に配設した電極によ
りプラズマに高周波電界を印加して、プラズマ中の電子
、イオンを加速することを特徴とする。
The plasma activation method according to the present invention is a method in which plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves is guided to a sample surface in a reaction chamber to treat the sample surface. It is characterized by applying a high-frequency electric field to the plasma using an electrode placed on the way from the plasma generation chamber to the sample surface to accelerate electrons and ions in the plasma.

また本発明に係るプラズマ活性化装置は、マイクロ波を
用いた電子サイクロトロン共鳴励起によりプラズマ生成
室で生成させたプラズマを反応室内の試料表面に導いて
該試料表面に処理を施す装置において、前記プラズマを
プラズマ生成室から試料表面に導く途中に、該プラズマ
に高周波電界を印加するためのコイル状又は二段以上の
円環状の電極を配設したことを特徴とする。
Further, the plasma activation apparatus according to the present invention is an apparatus for treating the surface of a sample by guiding plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves to the surface of a sample in a reaction chamber. The method is characterized in that a coil-shaped or two or more stages of annular electrodes for applying a high-frequency electric field to the plasma are disposed on the way of guiding the plasma from the plasma generation chamber to the sample surface.

更に本発明に係る他のプラズマ活性化装置は、マイクロ
波を用いた電子サイクロトロン共鳴励起によりプラズマ
生成室で生成させたプラズマを反応室内の試料表面に導
いて該試料表面に処理を施すプラズマ装置において、前
記プラズマ生成室の周囲にプラズマに対し高周波電界を
印加するための電極を配設したことを特徴とする。
Furthermore, another plasma activation device according to the present invention is a plasma device that processes plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves by guiding it to the surface of a sample in a reaction chamber. , characterized in that an electrode for applying a high frequency electric field to the plasma is disposed around the plasma generation chamber.

〔作用〕[Effect]

本発明にあってはこれによって、プラズマがプラズマ生
成室から試料表面に導かれる途中、或いはプラズマ生成
室内において、高周波電界を印加されてプラズマ中の電
子及びイオンが加速され、加速された粒子は中性ガス粒
子と衝突して、これを電離、励起することから、プラズ
マのt離度が高まり、高密度、高活性なプラズマ状態が
実現され、高速で成膜処理、或いはエツチング処理が可
能となる。
In the present invention, a high-frequency electric field is applied while the plasma is being guided from the plasma generation chamber to the sample surface, or within the plasma generation chamber, so that electrons and ions in the plasma are accelerated, and the accelerated particles are By colliding with reactive gas particles to ionize and excite them, the t-separation of the plasma increases, creating a high-density, highly active plasma state, which enables high-speed film formation or etching. .

〔実施例1〕 以下本発明をその実施例に基づき具体的に説明する9第
1図はCVO装置として構成した本発明に係るプラズマ
装置(以下本発明装置という)の模式的縦断面図であり
、図中1はプラズマ生成室、2は導波管、3は反応室、
4は励磁コイルを示している。
[Example 1] Hereinafter, the present invention will be specifically explained based on examples thereof.9 Fig. 1 is a schematic vertical cross-sectional view of a plasma device according to the present invention (hereinafter referred to as the device of the present invention) configured as a CVO device. In the figure, 1 is a plasma generation chamber, 2 is a waveguide, 3 is a reaction chamber,
4 indicates an excitation coil.

プラズマ生成室1は、周囲に冷却水路1aを備えた円筒
形に形成され、その上部壁中央には石英ガラス板1bで
閉鎖されたマイクロ波導入口1cを備え、また下部壁中
央には前記マイクロ波導入口1cと対向する位置に円形
のプラズマ引出窓1dを備えており、前記マイクロ波導
入口1cには導波管2の一端部が接続され、またプラズ
マ引出窓1dにはこれに臨ませて反応室3が配設され、
更に周囲にはプラズマ生成室1及びこれに連結された導
波管2の一端部にわたって励磁コイル4が周設せしめら
れている。
The plasma generation chamber 1 is formed in a cylindrical shape with a cooling channel 1a around its periphery, and has a microwave inlet 1c closed with a quartz glass plate 1b at the center of its upper wall, and the microwave guide at the center of its lower wall. A circular plasma extraction window 1d is provided at a position facing the inlet 1c, one end of a waveguide 2 is connected to the microwave introduction port 1c, and a reaction chamber is provided facing the plasma extraction window 1d. 3 is arranged,
Furthermore, an excitation coil 4 is disposed around one end of the plasma generation chamber 1 and the waveguide 2 connected thereto.

導波管2の他端部は図示しないマイクロ波発振器に接続
されており、発せられたマイクロ波(2,45GHz)
はマイクロ波導入口1cからプラズマ生成室1内に導入
されるようにしである。励磁コイル4は図示しない直流
電源に接続されており、直流電流の通流によってプラズ
マ生成室1内にマイクロ波の導入によりプラズマを生成
し得るよう磁界を形成するようにしである。この磁界は
反応室3側に向けて磁束密度が低くなる発散磁界となっ
ており、プラズマ生成室1内に生成されたプラズマをプ
ラズマ反応室3内に導出せしめるようになっている。
The other end of the waveguide 2 is connected to a microwave oscillator (not shown), and the emitted microwave (2.45 GHz)
is introduced into the plasma generation chamber 1 from the microwave introduction port 1c. The excitation coil 4 is connected to a DC power source (not shown), and is designed to generate a magnetic field by passing a DC current into the plasma generation chamber 1 so that plasma can be generated by introducing microwaves into the plasma generation chamber 1. This magnetic field is a diverging magnetic field in which the magnetic flux density decreases toward the reaction chamber 3 side, and the plasma generated in the plasma generation chamber 1 is led out into the plasma reaction chamber 3.

反応室3内にはその下部中央であって、プラズマ引出窓
1gと対向する位置に試料台5が配設され、その上には
ウェーハ等の試料Sがそのまま、又は静電吸着等の手段
にて着脱可能に載置されるようにしてあり、また底壁に
は図示しない排気装置に連なる排気口3aを開口しであ
る。Ig、 3gはガス供給系である。
A sample stage 5 is disposed in the lower center of the reaction chamber 3 at a position facing the plasma extraction window 1g, on which a sample S such as a wafer is placed as is or by means such as electrostatic adsorption. The bottom wall is provided with an exhaust port 3a connected to an exhaust device (not shown). Ig and 3g are gas supply systems.

そして本発明装置にあっては、反応室3内の試料台5と
プラズマ引出窓1dの間の空間にプラズマ室1から引出
されたプラズマ流Pを囲むようにコイル状の高周波印加
用の電極7が配設され、その両端は高周波発振器8に接
続されており、高周波発振器8から発せられた高周波を
プラズマに印加できるようになっている。
In the apparatus of the present invention, a coiled high-frequency application electrode 7 is provided in a space between the sample stage 5 in the reaction chamber 3 and the plasma extraction window 1d so as to surround the plasma flow P extracted from the plasma chamber 1. is provided, and its both ends are connected to the high frequency oscillator 8, so that the high frequency waves emitted from the high frequency oscillator 8 can be applied to the plasma.

なお、印加する高周波は例えばECRスパッタ装置の場
合にはターゲット表面に負のセルフバイアスを誘起して
イオンを引き込むことが目的であるので、イオンの追随
できない10MHz程度の高い周波数を用いる必要があ
るが、本発明の作用を生起させるためには数kHz程度
でも充分な効果がある。
Note that in the case of an ECR sputtering device, for example, the purpose of the applied high frequency is to induce a negative self-bias on the target surface and draw in ions, so it is necessary to use a high frequency of about 10 MHz that cannot be followed by ions. , even a frequency of several kHz is sufficient to bring about the effect of the present invention.

而してこのような本発明方法及びその装置にあっては、
試料S表面に成膜を施す場合、プラズマ生成室1及び反
応室3内へガス供給系1g、 3gを通じて反応ガスを
供給し、励磁コイル4にて磁界を形成しつつ前記プラズ
マ生成室1内にマイクロ波による電界を印加してプラズ
マを生成させ、生成させたプラズマを励磁コイル4にて
形成される発散磁界によって前記プラズマ生成室1から
プラズマ引出窓1dを経て反応室3内に導出し、ここで
高周波印加用電極7により高周波を印加してプラズマを
さらに高密度・高活性化した上で試料S周辺に導き、試
料S表面でプラズマ流中のイオン、ラジカル粒子による
表面反応を生起させ、試料S表面に成膜を施す。
Therefore, in the method and apparatus of the present invention,
When forming a film on the surface of the sample S, a reaction gas is supplied into the plasma generation chamber 1 and the reaction chamber 3 through the gas supply systems 1g and 3g, and while a magnetic field is formed by the excitation coil 4, the reaction gas is supplied into the plasma generation chamber 1. Plasma is generated by applying an electric field by microwaves, and the generated plasma is guided from the plasma generation chamber 1 into the reaction chamber 3 via the plasma extraction window 1d by a divergent magnetic field formed by the excitation coil 4. A high frequency is applied by the high frequency application electrode 7 to further increase the density and activation of the plasma, and then guide it around the sample S to cause a surface reaction by ions and radical particles in the plasma flow on the surface of the sample S. A film is formed on the S surface.

第2図(al〜<elは夫々プラズマに高周波を印加す
べく用いる電極の他の例を夫々示しており、いずれも上
側は側面図、下側は平面図である。
FIG. 2 (al to <el respectively show other examples of electrodes used to apply high frequency waves to plasma, and in both cases, the upper side is a side view and the lower side is a plan view.

第2図(Julは円環状をなす電極23.23を上、下
に所要の間隔を隔ててプラズマ流の周囲に配置しである
。また第2図(b)は同じく円環状をなす電極24を4
箇上下方向に所要の間隔を隔ててプラズマ流の周囲に配
置し、第1番目と第3番目とを同極に、第2番目と第4
番目とを同極にしである。第2図(C1はリング状をな
す周囲枠に金属製の網を張り渡して構成した2箇の電極
25を上下方向に所要の間隔を隔ててプラズマ流の周囲
に配設し、綱部がプラズマ流中に位置するよう設置しで
ある。第2図(d)に示す電橋は半割円環状をなす電極
21.21をプラズマ流を囲う態様で向い合わせに配置
しである。
Fig. 2 (Jul) shows an annular electrode 23, which is arranged around the plasma flow with a required interval above and below. Fig. 2 (b) shows an annular electrode 24 4
They are arranged around the plasma flow at a required interval in the vertical direction, with the first and third poles being the same polarity, and the second and fourth poles being the same polarity.
The th and th are at the same pole. Figure 2 (C1 shows two electrodes 25 constructed by stretching a metal net around a ring-shaped peripheral frame, which are arranged around the plasma stream at a required distance in the vertical direction. The electric bridge shown in FIG. 2(d) has electrodes 21 and 21 each having a half-ring shape and are placed facing each other so as to surround the plasma flow.

第2図(elは8分割の円環状をなす電極22を同様に
プラズマ流の回りに円環状をなすよう配置しである。
FIG. 2 (el) shows an electrode 22 having an annular shape divided into eight parts, which is similarly arranged in an annular shape around the plasma flow.

これらの電極21〜25を用いても第1図に示すコイル
状電極7と実質的に同様の効果が得られることが確認さ
れた。
It has been confirmed that substantially the same effect as the coiled electrode 7 shown in FIG. 1 can be obtained even when these electrodes 21 to 25 are used.

〔数値例〕[Numerical example]

第1図に示す如き装置を用い、反応ガスとして5ll(
4ガス150sccmを反応室3内に、またArガス5
0sccmをプラズマ生成室l内に夫々導入し、マイク
ロ波パワー: 100OW、プラズマ生成室1、反応室
内のガス圧: 2 Xl0−’Torrとし、試料基板
としてSi (100)基板を用いて基板上に非晶質シ
リコン薄膜を形成した場合の成膜速度、光導電率と印加
する高周波パワーとの関係を示すグラフであり、横軸に
高周波パワー(W)を、また縦軸に成膜速度(1/分)
、光導電率(S/cm)をとって示しである。
Using an apparatus as shown in Fig. 1, 5 liters of reaction gas (
4 gas at 150 sccm into the reaction chamber 3, and Ar gas at 5
0sccm was introduced into each plasma generation chamber 1, microwave power: 100OW, plasma generation chamber 1, gas pressure in the reaction chamber: 2Xl0-'Torr, and a Si (100) substrate was used as a sample substrate. This is a graph showing the relationship between the deposition rate, photoconductivity, and applied high-frequency power when forming an amorphous silicon thin film. The horizontal axis represents the high-frequency power (W), and the vertical axis represents the deposition rate (1 / minute)
, photoconductivity (S/cm) is shown.

なお、高周波の周波数は13.6MHzとした。Note that the frequency of the high frequency was 13.6 MHz.

このグラフから明らかな如く高周波印加前の成膜速度は
5800人/分であったが高周波を500 W印加する
ことにより8000人/分まで増加している。
As is clear from this graph, the film forming rate was 5,800 people/min before high frequency application, but it increased to 8,000 people/min by applying 500 W of high frequency.

また光導電率も10−”S/amから10−”S/Cl
11まで向上し、高密度であり、しかも高活性なプラズ
マが生成されていることが解る。
The photoconductivity also varies from 10-”S/am to 10-”S/Cl.
11, indicating that a high-density and highly active plasma is being generated.

〔実施例2〕 また第4図は本発明の他の実施例を示す模式的縦断面図
である。プラズマ生成室31はドーム状の石英チャンバ
により形成されており、反応室33の上部中央にこれと
連通ずるよう配設されている。
[Embodiment 2] FIG. 4 is a schematic vertical sectional view showing another embodiment of the present invention. The plasma generation chamber 31 is formed of a dome-shaped quartz chamber, and is arranged at the upper center of the reaction chamber 33 so as to communicate therewith.

プラズマ生成室31の外方にはその上方からこれを包み
こむようにラッパ状に開いた導波管32の一端部が接続
され、そしてこのプラズマ生成室31及びその外方に被
せた導波管2の一端部にわたって励磁コイル34が周設
せしめられている。
One end of a waveguide 32 opened in a trumpet shape is connected to the outside of the plasma generation chamber 31 so as to wrap around it from above, and the waveguide 2 covering the plasma generation chamber 31 and the outside thereof is connected to the outside of the plasma generation chamber 31. An excitation coil 34 is disposed around one end of the coil.

導波管32の他端部は図示しないマイクロ波発振器に接
続されており、発せられたマイクロ波(2,45GH2
)は石英チャンバを通してプラズマ生成室31内に導入
するようにしである。励磁コイル34は図示しない直流
電流に接続されており、直流電流の通流によってプラズ
マ生成室31内にマイクロ波の導入によりプラズマを生
成し得るように磁界を形成するようになっている。
The other end of the waveguide 32 is connected to a microwave oscillator (not shown), and the emitted microwave (2.45GH2
) is introduced into the plasma generation chamber 31 through a quartz chamber. The excitation coil 34 is connected to a direct current (not shown), and by passing the direct current, a magnetic field is formed so that plasma can be generated by introducing microwaves into the plasma generation chamber 31.

反応室33内には試料台35が配設され、その上には試
料Sが載置されるようにしである。また反応室33底部
には図示しない排気装置に連なる排気口33aを開口し
である。33gは反応ガス供給系である。
A sample stage 35 is disposed within the reaction chamber 33, and the sample S is placed on it. Further, an exhaust port 33a connected to an exhaust device (not shown) is opened at the bottom of the reaction chamber 33. 33g is a reaction gas supply system.

そして本発明にあっては導波管32の内側であって、プ
ラズマ生成室31を形成する石英チャンバーの周囲に、
これを囲んで高周波印加用のコイル状をなす電極37が
配設され、その両端部は高周波発振器36に接続されて
おり、これによって高周波発振器36から発せられた高
周波をプラズマ生成室内のプラズマに印加し得るように
なっている。
In the present invention, inside the waveguide 32 and around the quartz chamber forming the plasma generation chamber 31,
A coil-shaped electrode 37 for applying high frequency is arranged surrounding this, and both ends thereof are connected to a high frequency oscillator 36, thereby applying the high frequency generated from the high frequency oscillator 36 to the plasma in the plasma generation chamber. It is now possible to do so.

第4図に示す如きプラズマ装置を用い、反応ガスとして
CHaガス20sccmを反応ガス供給系33bより導
入し、マイクロ波パワー: 100OW、ガス圧カニ4
XIO弓Torrとして5i(100)試料基板上に成
膜を行った。なお、高周波の周波数は100kHzとし
た。
Using a plasma device as shown in FIG. 4, 20 sccm of CH gas as a reaction gas was introduced from the reaction gas supply system 33b, microwave power: 100 OW, gas pressure 4.
Film formation was performed on a 5i (100) sample substrate using XIO bow Torr. Note that the frequency of the high frequency was 100 kHz.

第5図は本発明方法及び本発明装置を用いて基板上に非
晶質カーボン薄膜を形成した場合における成膜速度と印
加する高周波パワーとの関係を示すグラフである。この
グラフから明らかなようにパワー500Wの高周波の印
加により成膜速度が1100人/分から1600人/分
まで増加しており、本発明装置の有効性が解る。
FIG. 5 is a graph showing the relationship between the film formation rate and the applied high frequency power when an amorphous carbon thin film is formed on a substrate using the method and apparatus of the present invention. As is clear from this graph, the deposition rate increased from 1,100 persons/minute to 1,600 persons/minute by applying a high frequency wave with a power of 500 W, demonstrating the effectiveness of the apparatus of the present invention.

なお実施例1.2はいずれも本発明をCVD装置として
構成した場合を示したがエツチング装置等にも適用し得
ることは言うまでもない。
Although Examples 1 and 2 both show cases in which the present invention is configured as a CVD apparatus, it goes without saying that it can also be applied to an etching apparatus or the like.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明はマイクロ波のパワーを増加したり、
試料に高周波を印加することなく高密度であって、しか
も高活性なプラズマを生成できて、成膜、エツチング等
に用いた場合、成膜、エツチング速度等の処理速度が向
上し、半導体素子、を子材料の量産に優れた効果を奏す
る。
As described above, the present invention increases the power of microwaves,
High-density and highly active plasma can be generated without applying high frequency to the sample, and when used for film formation, etching, etc., processing speeds such as film formation and etching speeds are improved, and semiconductor devices, It has an excellent effect on mass production of secondary materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための本発明装置の模式
的縦断面図、第2図は同じく本発明装置における高周波
印加用電極の他の例を示す側面図及び平面図、第3図は
第1図に示す本発明装置の試験結果を示すグラフ、第4
図は本発明方法を実施するための本発明装置の他の例を
示す模式的縦断面図、第5図は第4図に示す実施例の試
験結果を示すグラフ、第6図は従来装置の模式的縦断面
図である。 1・・・プラズマ生成室 応室  4・・・励磁コイル 電極  8・・・高周波発振器 電極  31・・・プラズマ生成室 33・・・反応室  34・・・励磁コイル37・・・
電極  P・・・プラズマ流2・・・導波管  3・・
・反 5・・・試料台  7・・・ 21.22,23,24.25・・・ 32・・・導波管 35・・・試料台 S・・・試料 特 許 出願人
FIG. 1 is a schematic vertical cross-sectional view of the apparatus of the present invention for carrying out the method of the present invention, FIG. 2 is a side view and a plan view showing another example of the high frequency application electrode in the apparatus of the present invention, and FIG. is a graph showing the test results of the device of the present invention shown in FIG.
The figure is a schematic vertical sectional view showing another example of the apparatus of the present invention for carrying out the method of the present invention, FIG. 5 is a graph showing the test results of the embodiment shown in FIG. 4, and FIG. 6 is a graph of the conventional apparatus. FIG. 3 is a schematic vertical cross-sectional view. 1... Plasma generation chamber reaction chamber 4... Excitation coil electrode 8... High frequency oscillator electrode 31... Plasma generation chamber 33... Reaction chamber 34... Excitation coil 37...
Electrode P...Plasma flow 2...Waveguide 3...
・Reverse 5... Sample stand 7... 21.22, 23, 24.25... 32... Waveguide 35... Sample stand S... Sample patent Applicant

Claims (1)

【特許請求の範囲】 1、マイクロ波を用いた電子サイクロトロン共鳴励起に
よりプラズマ生成室で生成させたプラズマを反応室内の
試料表面に導いて該試料表面に処理を施す方法において
、 前記プラズマをプラズマ生成室から試料表 面に導く途中に配設した電極により、プラズマに高周波
電界を印加して、プラズマ中の電子、イオンを加速する
ことを特徴とするプラズマ活性化方法。 2、マイクロ波を用いた電子サイクロトロン共鳴励起に
よりプラズマ生成室で生成させたプラズマを反応室内の
試料表面に導いて該試料表面に処理を施す装置において
、 前記プラズマをプラズマ生成室から試料表 面に導く途中に、該プラズマに高周波電界を印加するた
めのコイル状又は二段以上の円環状の電極を配設したこ
とを特徴とするプラズマ活性化装置。 3、マイクロ波を用いた電子サイクロトロン共鳴励起に
よりプラズマ生成室で生成させたプラズマを反応室内の
試料表面に導いて該試料表面に処理を施す装置において
、 前記プラズマ生成室の周囲にプラズマに対 し高周波電界を印加するための電極を配設したことを特
徴とするプラズマ活性化装置。
[Scope of Claims] 1. A method in which plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves is guided to a sample surface in a reaction chamber to treat the sample surface, comprising: A plasma activation method characterized by accelerating electrons and ions in the plasma by applying a high-frequency electric field to the plasma using an electrode placed on the way from the chamber to the sample surface. 2. In an apparatus for guiding plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves to a sample surface in a reaction chamber and treating the sample surface, the plasma is guided from the plasma generation chamber to the sample surface. A plasma activation device characterized in that a coil-shaped or two or more stages of annular electrodes are disposed in the middle for applying a high-frequency electric field to the plasma. 3. In an apparatus for guiding plasma generated in a plasma generation chamber by electron cyclotron resonance excitation using microwaves to a sample surface in a reaction chamber and treating the sample surface, a high frequency wave is applied to the plasma around the plasma generation chamber. A plasma activation device characterized by having an electrode for applying an electric field.
JP12034290A 1990-05-09 1990-05-09 Method and apparatus for activating plasma Pending JPH0415921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12034290A JPH0415921A (en) 1990-05-09 1990-05-09 Method and apparatus for activating plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12034290A JPH0415921A (en) 1990-05-09 1990-05-09 Method and apparatus for activating plasma

Publications (1)

Publication Number Publication Date
JPH0415921A true JPH0415921A (en) 1992-01-21

Family

ID=14783874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12034290A Pending JPH0415921A (en) 1990-05-09 1990-05-09 Method and apparatus for activating plasma

Country Status (1)

Country Link
JP (1) JPH0415921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334847A (en) * 1991-05-13 1992-11-20 Tatsuo Shiyouji Method of extracting ion out of plasma by means of high frequency electric field
US6450998B1 (en) 1999-06-29 2002-09-17 Uni-Charm Corporation Disposable article for dealing with feces
US7033341B2 (en) 2000-12-06 2006-04-25 Uni-Charm Corporation Disposable diaper with skin contactable sheets spaced above skin-contactable surface
JP2006136702A (en) * 2004-10-14 2006-06-01 Daio Paper Corp Absorbent article
JP2007090056A (en) * 2005-08-30 2007-04-12 Daio Paper Corp Absorbent article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334847A (en) * 1991-05-13 1992-11-20 Tatsuo Shiyouji Method of extracting ion out of plasma by means of high frequency electric field
US6450998B1 (en) 1999-06-29 2002-09-17 Uni-Charm Corporation Disposable article for dealing with feces
US7033341B2 (en) 2000-12-06 2006-04-25 Uni-Charm Corporation Disposable diaper with skin contactable sheets spaced above skin-contactable surface
JP2006136702A (en) * 2004-10-14 2006-06-01 Daio Paper Corp Absorbent article
US7867210B2 (en) 2004-10-14 2011-01-11 Daio Paper Corporation Absorbent article
JP2007090056A (en) * 2005-08-30 2007-04-12 Daio Paper Corp Absorbent article

Similar Documents

Publication Publication Date Title
JPH0379025A (en) Device for creating magnetically-coupled plane-shaped plasma and method and device for processing products with this plasma
US6909087B2 (en) Method of processing a surface of a workpiece
CN101789354A (en) Plasma treatment device with diffused dissociation
JPH0415921A (en) Method and apparatus for activating plasma
JPS61213377A (en) Method and apparatus for plasma deposition
TWI424796B (en) Plasma processing device with diffusion dissociation region
JPH10284298A (en) Plasma processing method and device
JP3138899B2 (en) Plasma processing equipment
JPH0680640B2 (en) Plasma equipment
JP2750430B2 (en) Plasma control method
JPH0717147Y2 (en) Plasma processing device
JPS6267822A (en) Plasma processor
JPS61181534A (en) Plasma treating device
JP2634910B2 (en) Microwave plasma processing equipment
JPH06120170A (en) Plasma etching treating method
JPH0222486A (en) Microwave plasma treating equipment
JPH01107539A (en) Microwave plasma processor
JPH065549A (en) Ecr plasma ion generation device
JP2963116B2 (en) Plasma processing method and plasma processing apparatus
JPH04107919A (en) Plasma processor provided with magnetic field and absorbing microwave
JPS63283018A (en) Plasma device
JPS61222533A (en) Plasma treatment apparatus
JPS611025A (en) Plasma processing apparatus
JP2827660B2 (en) Microwave plasma processing method
JPH01205534A (en) Plasma treatment apparatus