JP2750430B2 - Plasma control method - Google Patents

Plasma control method

Info

Publication number
JP2750430B2
JP2750430B2 JP62128575A JP12857587A JP2750430B2 JP 2750430 B2 JP2750430 B2 JP 2750430B2 JP 62128575 A JP62128575 A JP 62128575A JP 12857587 A JP12857587 A JP 12857587A JP 2750430 B2 JP2750430 B2 JP 2750430B2
Authority
JP
Japan
Prior art keywords
sample
film
plasma
gas
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62128575A
Other languages
Japanese (ja)
Other versions
JPS63292625A (en
Inventor
孝 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14988145&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2750430(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62128575A priority Critical patent/JP2750430B2/en
Publication of JPS63292625A publication Critical patent/JPS63292625A/en
Application granted granted Critical
Publication of JP2750430B2 publication Critical patent/JP2750430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波を用いた電子サイクロトロン共鳴
(Electron Cyclotron Resonance,ECR)励起により発生
させたプラズマを利用するCVD(Chemical Vapor Deposi
tion)過程におけるプラズマ制御方法に関する。 〔従来の技術〕 マイクロ波を用いた電子サイクロトロン共鳴励起によ
りプラズマを発生させる方法は低ガス圧で活性度の高い
プラズマを生成でき、イオンエネルギの広範囲な選択が
可能であり、また大きなイオン電流がとれ、イオン流の
指向性、均一性に優れるなどの利点があり、高集積半導
体素子等の製造に欠かせないものとしてその研究,開発
が進められている。 ところで、各種の素子を基板面上に3次元的に積層形
成する場合、素子間を結ぶAl線等の導線は相互の間に絶
縁膜を隔てて積層形成されることとなるが、導線は基板
面から導線の厚さ分だけ高くなっており、従ってこの上
に絶縁膜を一様な厚さに被覆形成すると絶縁膜表面にも
同様な段差が形成されることとなる。 このため絶縁膜上に形成すべき他の導線は前記段差を
越えて形成しなければならないこととなり、段差部分で
断線することが多く、成品歩留り上大きな問題となって
いる。 この対策として絶縁膜をその表面が平坦となるよう積
層形成することが行われている。この平坦化の方法とし
て絶縁膜を成膜する過程で同時平行的にAr等を用いたエ
ッチングを行う方法が提案されている(Jpn.Vac.Sci.Te
chad B4(4)818(1986))。ただこの方法において
は、エッチングによる下層膜のダメージを避けるために
最初はエッチングガスであるArガス量を零に設定して絶
縁膜であるSiOを成膜し、絶縁膜が或る程度の厚さに積
層形成された後、原料ガスにArガスを加えてエッチング
能を増大し、段差部分に対するスパッタ効率の相異を利
用して絶縁膜表面を平坦化する技術が提案され、実施さ
れている。 〔発明が解決しようとする問題点〕 ところがこのように原料ガスにエッチング能力増大の
ためのArを加えてガスの成分組成を変化させるとガス量
に応じて励起用マイクロ波の整合性も変化するため、そ
の都度整合性につき再調整を必要とすることとなり、作
業が極めて煩わしいという問題があった。 本発明はかかる事情に鑑みなされたものであって、そ
の目的することろは、エッチング用ガス量、種類を変化
させることなく、成膜と平行的に行うべきエッチング能
を自在に変更可能とするプラズマ制御方法を提供するに
ある。 〔問題点を解決するための手段〕 本発明に係るプラズマ制御方法にあっては、真空室内
に原料ガス及びエッチングガスを導入し、電子サイクロ
トロン共鳴励起により発生させたプラズマを、試料を静
電吸着し、またバイアス電圧を印加するための電極を埋
設した試料台上の試料上面に導き、前記試料に成膜を行
わせる過程で、前記電極にバイアス電圧を印加するため
の高周波電力を零、又は小さく設定して成膜を行う工程
と、この工程の後であって前記高周波電力を前記工程に
おけるそれよりも大きく設定して成膜を行う工程とを含
むことを特徴とする。 〔作用〕 本発明方法はこれによって、電極自体はエッチングに
よる損傷を受けることがなく、またエッチング能を高周
波電力の調節によって変更することで、下地膜を損傷す
ることなく平坦な成膜を効率的に行える。 〔実施例〕 以下本発明を図面に基づき具体的に説明する。第1図
は本発明方法の実施状態を示す模式図であり、図中1は
プラズマ生成室、2は導波管、3は試料Sに対する成膜
を行う試料室たる反応室、4は励磁コイルを示してい
る。 プラズマ生成室1は中空円筒形をなし、マイクロ波に
対して空洞共振器を構成するよう形成されており、軸長
方向の一側壁中央には石英板1bで閉鎖されたマイクロ波
導入口1cを備え、また軸長方向の他側壁中央には前記マ
イクロ波導入口1cと対向する位置にプラズマの引出窓1d
を備えている。前記マイクロ波導入口1cには導波管2の
一端部が接続され、またプラズマ引出窓1dにはこれに臨
ませて反応室3が配設され、更に周囲にはプラズマ生成
室1及びこれに連結された導波管2の一端部にわたって
これらと同心状に励磁コイル4が周設せしめられてい
る。 導波管2はその他端部は図示しない高周波発振器に接
続され、高周波発振器で発せられたマイクロ波をマイク
ロ波導入口1cを経てプラズマ生成室1内に導入するよう
にしてある。 励磁コイル4は図示しない直流電源に接続されてお
り、直流電流の通流によって、プラズマ生成室1内にマ
イクロ波の導入によりプラズマを生成し得るように磁界
を形成すると共に、反応室3側に向けて磁束密度が低く
なる発散磁界を形成し、プラズマ生成室1内に生成され
たプラズマを反応室3内に導入せしめるようになってい
る。 反応室3は中空の直方体形に形成され、プラズマ引出
窓1dと対向する側壁には図示しない排気装置に連なる排
気口3aを開口してあり、また反応室3の内部には前記プ
ラズマ引出窓1dと対向させて試料台5が配設され、この
試料台5の上面に前記プラズマ引出窓1dと対向させて試
料Sが静電吸着等の手段にて着脱可能に装着されてい
る。試料台5内には試料Sを静電吸着し、またバイアス
印加するための電極5aが埋設されており、この電極5aに
は整合器6を介在させて高周波電源であるRF(ラジオ高
周波)電源7が接続されている。 その他1g,3gはガス供給系、1h,1iは夫々冷却水の供給
系,排水系を示している。 而してこのような本発明方法にあってはプラズマ生成
室1,反応室3内を所要の真空度に設定した後、ガス供給
系1gを通じてプラズマ生成室1,反応室3内に原料ガスで
ある例えばN2,O2及びエッチングガスであるArを供給
し、またガス供給系3gを通じて原料ガスである例えばSi
Hを供給し、励磁コイル4に直流電流を通流すると共
に、導波管2,マイクロ波導入口1cを通じてマイクロ波を
プラズマ生成室1内に導入する。導入されたマイクロ波
はプラズマ空洞共振器として機能するプラズマ生成室1
内で共振状態となり、原料ガスを分解し共鳴励起して、
プラズマを生成せしめる。生成されたプラズマは励磁コ
イル4にて形成される発散磁界によって反応室3内に導
入され、ガス供給系3gから供給されるSiHガス等を分解
し、RF電源7にてセルフバイアス電圧を誘起された試料
S表面へ誘導され、ここに成膜が行われることとなる。 この成膜過程は初期においては試料台5,試料Sに誘起
するセルフバイアス電圧印加のためのRF電力(W)を零
又は3W/cm2以下に設定する一の工程と、この工程に続い
てRF電力(W)を前記工程におけるRF電力よりも高く設
定する他の工程とに分ける。前記一の工程ではセルフバ
イアスが零又は小さいからAr+状態となっているエッチ
ングガスを試料S表面に誘導する力は弱くエッチング能
は零又は極めて弱く設定され、下地の膜に対するエッチ
ングガスによるダメージを与えることなく成膜を行え
る。所定厚さに成膜がなされるとRF電力を3W/cm2を越え
る値に設定する他の工程によりAr+に対する誘導力を強
め、エッチング能を増大させつつ成膜を行う。一般にス
パッタリング効率は、物質とこれに入射するスパッタ粒
子とのなす角によって異なり、スパッタ粒子の入射方向
に対して、垂直な面のスパッタ効率は少なく、ある角度
を持つと、スパッタ効率は増大する。したがって、スパ
ッタ粒子入射に対し垂直な面換言すれば平坦面のスパッ
タ効率は少なく、側壁面部等の如くある角度を持つ面へ
のスパッタ効率は大きくなり、側壁面等は平坦面に比較
して成膜速度が相対的に低下することとなりその結果と
して表面の平坦化が図れることとなる。 第2図は印加電力と膜の剥離との関係を示すグラフで
あり、横軸に印加電力(W)を、また縦軸に剥離確率
(%)をとって示してある。このグラフから明らかな如
く両者は略比例関係にあり、印加電力の調整によってエ
ッチング(スパッタリング効率)を広い範囲で調整する
ことが可能である。ちなみに印加電力を3W/cm2、換言す
れば100以下とすることによってスパッタリング効果で
ある剥離確率(%)を30%以下となるようにすることが
可能である。 〔効果〕 以上の如く本発明方法にあっては、電極は試料台中に
あってエッチングされることがなく、また電極に付加す
る高周波電力を最初は零、又は小さくして成膜を行い、
次いで電極に付加する高周波電力を大きくし、バイアス
電圧を調節することによって、エッチング能を調整し、
下地膜に対する電気的、物理的ダメージを与えることな
く、しかも表面が平坦な膜を効率的に得られる優れた効
果を奏するものである。
The present invention relates to a CVD (Chemical Vapor Deposi) utilizing a plasma generated by electron cyclotron resonance (ECR) excitation using microwaves.
and a plasma control method in the process. [Prior art] A method of generating plasma by electron cyclotron resonance excitation using microwaves can generate plasma with high activity at low gas pressure, a wide selection of ion energy is possible, and a large ion current is required. However, it has advantages such as excellent directivity and uniformity of ion flow, and its research and development have been promoted as being indispensable for the manufacture of highly integrated semiconductor elements and the like. By the way, when various elements are formed three-dimensionally on the substrate surface, conductive wires such as Al wires connecting the elements are formed by laminating an insulating film between them. The surface is higher by the thickness of the conductive wire from the surface. Therefore, if an insulating film is formed on the insulating film so as to have a uniform thickness, a similar step is formed on the surface of the insulating film. For this reason, other conductors to be formed on the insulating film must be formed so as to exceed the step, which often leads to disconnection at the step, which is a major problem in product yield. As a countermeasure, an insulating film is formed by lamination so that its surface becomes flat. As a method of flattening, a method has been proposed in which etching using Ar or the like is performed simultaneously and in parallel during the process of forming an insulating film (Jpn.Vac.Sci.Te).
chad B4 (4) 818 (1986)). However, in this method, in order to avoid damage to the lower layer film due to etching, first, the amount of Ar gas serving as an etching gas is set to zero, and SiO serving as an insulating film is formed, and the insulating film has a certain thickness. After lamination is formed, a technique for increasing the etching ability by adding Ar gas to the source gas and flattening the surface of the insulating film by utilizing the difference in sputtering efficiency with respect to the step portion has been proposed and implemented. [Problems to be Solved by the Invention] However, when the composition of the gas is changed by adding Ar for increasing the etching ability to the raw material gas, the consistency of the microwave for excitation also changes according to the gas amount. Therefore, it is necessary to readjust the consistency each time, and there is a problem that the operation is extremely troublesome. The present invention has been made in view of such circumstances, and the purpose thereof is to allow the etching ability to be performed in parallel with film formation to be freely changed without changing the amount and type of etching gas. It is to provide a plasma control method. [Means for Solving the Problems] In the plasma control method according to the present invention, a source gas and an etching gas are introduced into a vacuum chamber, and plasma generated by electron cyclotron resonance excitation is electrostatically adsorbed on a sample. Then, the electrode for applying a bias voltage is guided to the upper surface of the sample on the sample table in which the electrode is embedded, and in the process of forming a film on the sample, the high-frequency power for applying the bias voltage to the electrode is zero, or The method is characterized by including a step of forming a film with a small setting, and a step of performing the film formation after setting the high frequency power higher than that in the step after the step. [Effect] The method of the present invention makes it possible to efficiently form a flat film without damaging the base film by preventing the electrode itself from being damaged by etching, and changing the etching ability by adjusting the high-frequency power. Can be done. EXAMPLES Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of the method of the present invention, in which 1 is a plasma generation chamber, 2 is a waveguide, 3 is a reaction chamber as a sample chamber for forming a film on the sample S, and 4 is an exciting coil. Is shown. The plasma generation chamber 1 has a hollow cylindrical shape and is formed so as to form a cavity resonator for microwaves. The plasma generation chamber 1 has a microwave inlet 1c closed by a quartz plate 1b at the center of one side wall in the axial direction. In the center of the other side wall in the axial direction, a plasma extraction window 1d is provided at a position facing the microwave introduction port 1c.
It has. One end of a waveguide 2 is connected to the microwave introduction port 1c, and a reaction chamber 3 is disposed facing the plasma extraction window 1d. An exciting coil 4 is provided concentrically over one end of the waveguide 2 thus formed. The other end of the waveguide 2 is connected to a high-frequency oscillator (not shown) so that microwaves generated by the high-frequency oscillator are introduced into the plasma generation chamber 1 through the microwave inlet 1c. The exciting coil 4 is connected to a DC power supply (not shown), and forms a magnetic field so that plasma can be generated by introducing microwaves into the plasma generating chamber 1 by passing a DC current. A divergent magnetic field having a lower magnetic flux density is formed so that the plasma generated in the plasma generation chamber 1 is introduced into the reaction chamber 3. The reaction chamber 3 is formed in a hollow rectangular parallelepiped shape, and an exhaust port 3a connected to an exhaust device (not shown) is opened on a side wall facing the plasma extraction window 1d. A sample table 5 is disposed so as to face the sample table 5, and a sample S is detachably mounted on the upper surface of the sample table 5 so as to face the plasma extraction window 1 d by means such as electrostatic suction. An electrode 5a for electrostatically adsorbing the sample S and applying a bias is buried in the sample table 5, and an RF (radio high frequency) power source as a high frequency power source is interposed in the electrode 5a with a matching device 6 interposed therebetween. 7 is connected. In addition, 1g and 3g indicate a gas supply system, and 1h and 1i indicate a cooling water supply system and a drainage system, respectively. According to the method of the present invention, after the inside of the plasma generation chamber 1 and the reaction chamber 3 is set to a required degree of vacuum, the raw material gas is introduced into the plasma generation chamber 1 and the reaction chamber 3 through the gas supply system 1 g. For example, N2, O2 and Ar as an etching gas are supplied, and a source gas such as Si is supplied through a gas supply system 3g.
H is supplied to pass a DC current to the exciting coil 4, and a microwave is introduced into the plasma generation chamber 1 through the waveguide 2 and the microwave inlet 1 c. The introduced microwave is applied to the plasma generation chamber 1 which functions as a plasma cavity resonator.
In the resonance state, the raw material gas is decomposed and excited by resonance,
Generate plasma. The generated plasma is introduced into the reaction chamber 3 by a divergent magnetic field formed by the exciting coil 4, decomposes SiH gas and the like supplied from the gas supply system 3 g, and a self-bias voltage is induced by the RF power supply 7. The sample S is guided to the surface of the sample S, where the film is formed. In this film formation process, initially, one step of setting the RF power (W) for applying a self-bias voltage induced to the sample stage 5 and the sample S to zero or 3 W / cm 2 or less, and following this step, The RF power (W) is divided into another step in which the RF power is set to be higher than the RF power in the above step. In the first step, the force for inducing the etching gas in the Ar + state to the surface of the sample S because the self-bias is zero or small is weak, and the etching ability is set to zero or extremely weak, thereby damaging the underlying film by the etching gas. Film formation can be performed without any problem. When the film is formed to a predetermined thickness, the RF power is set to a value exceeding 3 W / cm 2 by another process to increase the inducing force against Ar +, and the film is formed while increasing the etching ability. In general, the sputtering efficiency depends on the angle between a substance and sputtered particles incident on the material. The sputter efficiency on a plane perpendicular to the incident direction of the sputtered particles is small, and the sputtering efficiency increases when the surface has a certain angle. Therefore, in other words, the sputtering efficiency on a flat surface, which is perpendicular to the incidence of the sputtered particles, is low, and the sputtering efficiency on a surface having a certain angle, such as a side wall surface portion, is high. The film speed relatively decreases, and as a result, the surface can be flattened. FIG. 2 is a graph showing the relationship between the applied power and the peeling of the film. The horizontal axis represents the applied power (W), and the vertical axis represents the peeling probability (%). As is clear from this graph, the two are in a substantially proportional relationship, and the etching (sputtering efficiency) can be adjusted in a wide range by adjusting the applied power. By the way, by setting the applied power to 3 W / cm 2 , in other words, to 100 or less, the peeling probability (%), which is a sputtering effect, can be reduced to 30% or less. [Effects] As described above, in the method of the present invention, the electrode is in the sample stage and is not etched, and the high-frequency power applied to the electrode is initially set to zero or small, and the film is formed.
Next, the etching power is adjusted by increasing the high-frequency power applied to the electrode and adjusting the bias voltage,
This provides an excellent effect that a film having a flat surface can be efficiently obtained without causing electrical or physical damage to the underlying film.

【図面の簡単な説明】 第1図は本発明方法の実施状態を示す模式的断面図、第
2図は試料Sに付加する印加電力と剥離確率(%)との
関係を示すグラフである。 1……プラズマ生成室、2……導波管 3……反応室、4……励磁コイル、5……試料台 6……整合器、7……RF電源、S……試料
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an embodiment of the method of the present invention, and FIG. 2 is a graph showing the relationship between applied power applied to a sample S and a peeling probability (%). DESCRIPTION OF SYMBOLS 1 ... Plasma generation chamber, 2 ... Waveguide 3 ... Reaction chamber, 4 ... Exciting coil, 5 ... Sample table 6 ... Matching device, 7 ... RF power supply, S ... Sample

Claims (1)

(57)【特許請求の範囲】 1.真空室内に原料ガス及びエッチングガスを導入し、
電子サイクロトロン共鳴励起により発生させたプラズマ
を、試料を静電吸着し、またバイアス電圧を印加するた
めの電極を埋設した試料台上の試料上面に導き、前記試
料に成膜を行わせる過程で、 前記電極にバイアス電圧を印加するための高周波電力を
零、又は小さく設定して成膜を行う工程と、この工程の
後であって前記高周波電力を前記工程におけるそれより
も大きく設定して成膜を行う工程とを含むことを特徴と
するプラズマ制御方法。
(57) [Claims] Introduce raw material gas and etching gas into the vacuum chamber,
In the process of conducting plasma generated by electron cyclotron resonance excitation, the sample is electrostatically adsorbed, and guided to the upper surface of the sample on a sample table on which electrodes for applying a bias voltage are embedded, and the sample is formed into a film. Forming a film by setting the high-frequency power for applying a bias voltage to the electrode to zero or small, and forming the film after setting the high-frequency power to be higher than that in the step. Performing a plasma control method.
JP62128575A 1987-05-26 1987-05-26 Plasma control method Expired - Fee Related JP2750430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128575A JP2750430B2 (en) 1987-05-26 1987-05-26 Plasma control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128575A JP2750430B2 (en) 1987-05-26 1987-05-26 Plasma control method

Publications (2)

Publication Number Publication Date
JPS63292625A JPS63292625A (en) 1988-11-29
JP2750430B2 true JP2750430B2 (en) 1998-05-13

Family

ID=14988145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128575A Expired - Fee Related JP2750430B2 (en) 1987-05-26 1987-05-26 Plasma control method

Country Status (1)

Country Link
JP (1) JP2750430B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258839B2 (en) * 1994-11-24 2002-02-18 東京エレクトロン株式会社 Plasma processing method
TW286414B (en) * 1995-07-10 1996-09-21 Watkins Johnson Co Electrostatic chuck assembly
TW283250B (en) 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658909B2 (en) * 1985-07-15 1994-08-03 株式会社日立製作所 Film forming method and apparatus by low temperature plasma

Also Published As

Publication number Publication date
JPS63292625A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JP3987131B2 (en) Induction enhanced reactive ion etching
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP2770753B2 (en) Plasma processing apparatus and plasma processing method
US6422172B1 (en) Plasma processing apparatus and plasma processing method
JP3726477B2 (en) Plasma processing apparatus and plasma processing method
US6573190B1 (en) Dry etching device and dry etching method
US6204604B1 (en) Method and apparatus for controlling electrostatic coupling to plasmas
JPS61213377A (en) Method and apparatus for plasma deposition
JP2750430B2 (en) Plasma control method
JP2760845B2 (en) Plasma processing apparatus and method
JP4283360B2 (en) Plasma processing equipment
JP3832934B2 (en) Reactive ion etching system
JP2569019B2 (en) Etching method and apparatus
JPH10284298A (en) Plasma processing method and device
JPH1167725A (en) Plasma etching device
JP3220528B2 (en) Vacuum processing equipment
JP3379506B2 (en) Plasma processing method and apparatus
JPS63301497A (en) Method of controlling plasma
JPH05144773A (en) Plasma etching apparatus
JP2000252099A (en) Matching device, plasma processing method and device
JP2800766B2 (en) Plasma processing method and apparatus
JPH0680640B2 (en) Plasma equipment
JP2002373883A (en) Plasma etching apparatus, plasma etching method, and semiconductor device
JPH0530500B2 (en)
JP3455616B2 (en) Etching equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees