JPS61213377A - Method and apparatus for plasma deposition - Google Patents

Method and apparatus for plasma deposition

Info

Publication number
JPS61213377A
JPS61213377A JP5224385A JP5224385A JPS61213377A JP S61213377 A JPS61213377 A JP S61213377A JP 5224385 A JP5224385 A JP 5224385A JP 5224385 A JP5224385 A JP 5224385A JP S61213377 A JPS61213377 A JP S61213377A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma deposition
microwave
vacuum chamber
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224385A
Other languages
Japanese (ja)
Other versions
JPH0521986B2 (en
Inventor
Takeshi Watanabe
渡辺 猛志
Mitsuo Nakatani
中谷 光雄
Susumu Tsujiku
都竹 進
Masaaki Sato
正昭 佐藤
Masaaki Okunaka
正昭 奥中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5224385A priority Critical patent/JPS61213377A/en
Publication of JPS61213377A publication Critical patent/JPS61213377A/en
Publication of JPH0521986B2 publication Critical patent/JPH0521986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a deposited film having a uniform compsn. on a substrate having a large area by constituting the magnetic field distribution in a plasma deposition device of a combined magnetic field consisting of plural magnetic fields. CONSTITUTION:Plural substrates 9 are placed on a rotary table 13 in a vacuum chamber 1 and a gaseous mixture composed of SiF4 and N2 is introduced through a supply pipe 10 into the chamber. Microwave power of 0.1-10GHz is introduced from a microwave generating part 6 into the chamber through a waveguide 2 to generate microwave discharge by the synergistic effect of the microwave electric field and the magnetic fields generated by magnetic field generators 4, 5, 12. The SiF4 is decomposed by the generated plasma and the amorphous SiN film consisting of the resulted product of decomposition is deposited and formed on the plural substrates 9 under rotation. A magnetic field generator 12 which generates the magnetic field in the direction intersecting with the above-mentioned magnetic field axis is provided in combination in addition to the magnetic field generators 4, 5 consisting of permanent magnets, electromagnets, etc. disposed to form the coaxial magnetic fields. The deposited film having the uniform compsn. and thickness is formed on the substrates having the wide area by adjusting the magnetic field intensity of these generators 4, 5, 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は堆積膜の形成方法及び装置に関し、特に檀膜形
成用源料ガスを高周波放置によって分解し、所定の基体
上に堆積膜を形成するプラズマデポダシフン法及びその
装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method and apparatus for forming a deposited film, and in particular to a method and apparatus for forming a deposited film on a predetermined substrate by decomposing a source gas for forming a deposited film by high frequency exposure. This invention relates to a plasma deposition method and an apparatus thereof.

〔発明の背景〕[Background of the invention]

気相を用いた薄膜生成法としては、CVD法。 CVD method is a thin film production method using a gas phase.

スパッタリング法、プラズマCVD法があるが、特にプ
ラズマCVD法は、処理温度が低い、膜生成速度が大き
い等の長所を有する為に半導体素子製造プロセスや太陽
電池用のアモルファスSL(α−8= )膜の生成に積
極的に用いられようとしている。
There are sputtering methods and plasma CVD methods, but the plasma CVD method in particular has advantages such as low processing temperature and high film formation rate, so it is suitable for amorphous SL (α-8= ) for semiconductor device manufacturing processes and solar cells. It is being actively used in the production of membranes.

従来のプラズマCVD装置では、対向する平行平板電極
にラジオ波(RF)域の高周波電力を投入レプラズマを
発生させる平行平板型RF型プラズマデボジシ盲ン装置
が主流となっている。この方式では試料を電極上に設置
する事により大面積に膜厚、組成の均一な薄膜を形成で
きる事から生産性の高い装置を実現できる利点がある反
面、次の様な欠点を有している。
In the conventional plasma CVD apparatus, the mainstream is a parallel plate type RF type plasma deposition blind apparatus in which high frequency power in the radio frequency (RF) range is applied to opposing parallel plate electrodes to generate plasma. This method has the advantage of being able to form a thin film with uniform thickness and composition over a large area by placing the sample on the electrode, making it possible to realize a highly productive device, but it also has the following drawbacks: There is.

(1)放電可能なガス圧力が一般に10−2〜10−’
Ton;であり放電の電子温度が低い(〜4gV ) 
、このため結合エネルギの高い化学構造のハロゲン化シ
リコンガス等は十分分解できないため、杉皮可能な膜物
性に限界がある、(2)試料前面にイオンシースが形成
されて、プラズマに対して自動的にセルフバイアスが印
加されるため、試料に入射してくるイオンはセルフバイ
アスに相当スる運動エネルギを持つ事になるが、このエ
ネルギは数百#V以上もある、このため生成する膜特性
は入射イオン衝撃の影響を受け、はなはだしい場合はイ
オンによるスパッタリングや分解作用を受けて膜成長が
阻害される、(3)電極材料(金属)がプラズマに接し
ており、この電極材料がスパッタされて生成膜の中に不
純物として混入する。
(1) The gas pressure that can be discharged is generally 10-2 to 10-'
Ton; and the electron temperature of discharge is low (~4 gV)
For this reason, halogenated silicon gas, which has a chemical structure with high binding energy, cannot be decomposed sufficiently, so there is a limit to the physical properties of the film that can be coated with cedar. (2) An ion sheath is formed in front of the sample, which automatically Since a self-bias is applied to the sample, the ions entering the sample have a kinetic energy equivalent to the self-bias, but this energy is more than several hundred #V, which affects the characteristics of the film produced. (3) The electrode material (metal) is in contact with the plasma, and the electrode material is sputtered. It mixes into the produced film as an impurity.

このため電子温度が高く、かつ入射イオンエネルギの低
いプラズマCVD装置として、例えば特開昭59−30
18号に提示されている様なマイクロ波放電方式のプラ
ズマデポジション装置が開発されている。第1図はマイ
クロ波放電方式のプラズマデポジション装置の構成説明
図である。図において、1は真空室、2はマイクa波導
入のための導波管、3は放電管、4は電磁石または永久
磁石による電子サイクロン共鳴用の磁場発生装置、5は
真空室内に所望の磁場分布を形成するための電磁石また
は永久磁石による磁場発生装置、6はマイクロ波発生部
、7は試料室、8は試料台、9は試料、10は原料ガス
導入口、11は排気ボートである。なお、真空室1は放
電管3の内部と試料室7よりなる。
For this reason, as a plasma CVD apparatus with high electron temperature and low incident ion energy, for example,
A microwave discharge type plasma deposition apparatus as presented in No. 18 has been developed. FIG. 1 is an explanatory diagram of the configuration of a microwave discharge type plasma deposition apparatus. In the figure, 1 is a vacuum chamber, 2 is a waveguide for introducing microphone A-waves, 3 is a discharge tube, 4 is a magnetic field generator for electron cyclone resonance using an electromagnet or a permanent magnet, and 5 is a desired magnetic field in the vacuum chamber. A magnetic field generator using an electromagnet or a permanent magnet for forming a distribution, 6 a microwave generator, 7 a sample chamber, 8 a sample stage, 9 a sample, 10 a source gas inlet, and 11 an exhaust boat. Note that the vacuum chamber 1 consists of the inside of the discharge tube 3 and the sample chamber 7.

真空室1内に導入するマイクロ波(通常0.1〜1oG
Hg)は例えばマグネトロンによって発生させ、円形導
波管2を通して導ひかれる。放電管3はマイクロ波を通
ずため絶縁物(例えは石英、アルミナ44)で形成され
る。真空室内に放電ガスを所定の圧力に導入してマイク
ロ波電力を導入するとマイクロ波電界と磁場発生装置4
による磁場の相乗効果によりマイクロ波放電が発生する
。上記磁場強度は、電子の磁力線のまわりのサイクロト
ロン運動の周波数がマイクロ波周波数とほぼ一致する様
に設定される。但し、上記画周波数が完全に一致すると
マイクロ波は完全反射してしまうため、共鳴点を少しず
らしす様に設定される。発生したプラズマはローレンツ
力によって磁場強度の強い放電管部から、磁場強度の弱
い試料室方向に移送される。磁場発生装置5は試料9の
表面位置で磁力線を絞り、磁力線に沿って運ばれてきた
プラズマを閉じこめ試料位置にプラズマを収束させるた
めに設置される。全体の磁場分布はミラー磁場と呼ばれ
るもので、この結果、第1図中において破線Iで囲まれ
た領域にプラズマをとじこめる事が可能となる。
Microwave (usually 0.1 to 1oG) introduced into the vacuum chamber 1
Hg) is generated, for example, by a magnetron and guided through the circular waveguide 2. The discharge tube 3 is made of an insulator (for example, quartz or alumina 44) to pass microwaves. When a discharge gas is introduced into a vacuum chamber at a predetermined pressure and microwave power is introduced, a microwave electric field and magnetic field generator 4 is generated.
Microwave discharge occurs due to the synergistic effect of the magnetic field. The magnetic field strength is set so that the frequency of cyclotron motion around the magnetic field lines of electrons substantially matches the microwave frequency. However, if the image frequencies perfectly match, the microwave will be completely reflected, so the resonance point is set to be slightly shifted. The generated plasma is transferred by the Lorentz force from the discharge tube section where the magnetic field strength is strong to the sample chamber where the magnetic field strength is weak. The magnetic field generator 5 is installed to constrict the lines of magnetic force at the surface position of the sample 9, confine the plasma carried along the lines of magnetic force, and converge the plasma at the position of the sample. The overall magnetic field distribution is called a mirror magnetic field, and as a result, it becomes possible to confine the plasma in the area surrounded by the broken line I in FIG.

上述の構成のマイクロ波プラズマデボジシ雪ン方法乃至
装置はガス圧5 X 10”−’〜3 X 1O−2T
orrの低ガス圧で放電が可能であり、高い電子温度が
得られ(〜agv)、原料ガスの分解効率が高く、また
イオンの入射エネルギが低い(約20 gV )ために
、必要に応じて試料台8に外部電圧を印加して入射イオ
ンの運動エネルギを制御できる、更に無電極放電である
ので生成膜中に不純物の混入による汚染が少ないという
特長がある。
The microwave plasma deposition method and apparatus having the above-mentioned configuration are performed at a gas pressure of 5 x 10"-' to 3 x 10-2T.
discharge is possible at a low gas pressure of orr, a high electron temperature can be obtained (~agv), the decomposition efficiency of the source gas is high, and the incident energy of ions is low (about 20 gV), so it can be used as needed. It has the advantage that the kinetic energy of incident ions can be controlled by applying an external voltage to the sample stage 8, and that there is less contamination due to impurities in the produced film since it is an electrodeless discharge.

しかしながら、上述した方法乃至装置で均一の組成およ
び成膜速度が得られるのは、直径15副の放電管を用い
た場合、高々直径20備程度の領域であり、それより大
きな直径の試料では中心部分の成膜速度が大となる傾向
がある。これは半導体ウェハの処理方法としては、大き
な欠点である。均一成膜領域を拡げるには放電管3の径
を大きくする事が考えられるが、電子サイクロトロン共
鳴条件を満足するためには、例えば2.45 GHzの
マイクロ波を用いた場合、磁場発生装置4による磁束密
度は0.2T程度必要であるから大幅な放電管径の拡大
のため大規模な電磁石が必要となり現実的でなくなる。
However, with the above-mentioned method or apparatus, a uniform composition and film formation rate can only be obtained in an area with a diameter of at most 20 mm when a discharge tube with a diameter of 15 mm is used; There is a tendency for the film formation rate to be high in some parts. This is a major drawback as a method for processing semiconductor wafers. In order to expand the uniform film formation area, it is possible to increase the diameter of the discharge tube 3, but in order to satisfy the electron cyclotron resonance condition, for example, when using a 2.45 GHz microwave, the magnetic field generator 4 Since the required magnetic flux density is about 0.2 T, a large-scale electromagnet is required due to the drastic increase in the diameter of the discharge tube, which is impractical.

単にプラズマ領域を拡大するだけなら磁場発生装置4に
よる磁界方向と磁場発生装置5による磁界方向を対向さ
せるいわゆるカプス型磁場といわれる磁場分布にする事
により第1図点線■で示す領域にプラズマを形成する事
が可能であるが、大面積にわたって均一な組成および成
膜速度を得る事は、困難であり、またプラズマが真空室
7に接し真空室壁をスパッタして不純物混入の原因とな
り、また壁面でデポジションが起り発塵の原因となる等
の問題があり実用的でない。したがって従来のマイクロ
波プラズマデポジション装置は大面積均一成膜という量
産性の面で大きな欠点を有するものであった。
If you simply want to expand the plasma region, plasma can be formed in the region indicated by the dotted line (■) in Figure 1 by creating a magnetic field distribution known as a so-called cupped magnetic field, in which the direction of the magnetic field produced by the magnetic field generator 4 and the direction of the magnetic field produced by the magnetic field generator 5 are opposed to each other. However, it is difficult to obtain a uniform composition and film formation rate over a large area, and the plasma contacts the vacuum chamber 7 and sputters the vacuum chamber walls, causing impurity contamination. This method is not practical because of problems such as deposition occurring and causing dust generation. Therefore, the conventional microwave plasma deposition apparatus has a major drawback in terms of mass production of uniform film formation over a large area.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来のマイクロ波プラズマデポジション
方法乃至装置の欠点を改良することによって大面積均一
成膜を可能にし、著しく量産性に優れたプラズマデポジ
ション装置および装置を提供する事にある。
An object of the present invention is to provide a plasma deposition apparatus and apparatus which enable uniform film formation over a large area by improving the drawbacks of conventional microwave plasma deposition methods and apparatuses, and which have excellent mass productivity.

〔発明の概要〕[Summary of the invention]

本発明は放電状態にある気体を互いに交又する複数の磁
界から成る合成磁界によって試料表面部まで導き上記気
体材料から成る膜を上記試料表面部に形成するプラズマ
デポジション法である。更に、本発明は、同軸磁界を形
成する様に同軸上に並列的に配置されていた磁場発生装
置の他に、上記磁界軸に交又する方向に磁界を発生する
磁場発生装置を設けたプラズマデポジション装置である
The present invention is a plasma deposition method in which gas in a discharge state is guided to the surface of a sample by a composite magnetic field consisting of a plurality of intersecting magnetic fields to form a film made of the gaseous material on the surface of the sample. Furthermore, the present invention provides a plasma that is provided with a magnetic field generator that generates a magnetic field in a direction perpendicular to the magnetic field axis, in addition to the magnetic field generators that are coaxially arranged in parallel to form a coaxial magnetic field. It is a deposition device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する0 実施例1 本発明の一実施例を第2図に示す。この実施例において
は、その基本的構成は第1図に示しり従来型のマイクロ
波プラズマデポジション装置とほぼ同一である。磁場発
生装置5としては電磁石を用いた。
Hereinafter, the present invention will be explained in detail with reference to examples.0 Example 1 An example of the present invention is shown in FIG. The basic configuration of this embodiment is substantially the same as that of the conventional microwave plasma deposition apparatus shown in FIG. As the magnetic field generator 5, an electromagnet was used.

本実施例の第一の特徴は電子サイクロトロン共鳴用磁場
発生装置による磁界方向と交又する方向に磁場を発生さ
せる磁場発生装置12を設置した事にある。磁場発生装
置5による磁界方向を磁場発生装置4による磁界方向と
一致させてプラズマを発生させると前述した様に第2図
破+1JjIで包まれる領域にプラズマが発生する。こ
こではS、、 F4とN2ガスによるシリコンウェハ上
への5=NW=のti、Mを検討した。磁場発生装置d
12によって磁場発生装置4による磁力線が連続する方
向に磁場を発生させ、かつ磁場発生装置5および磁場発
生装置!12の発生磁場弾度を調整する事によりプラズ
マ発生域を磁場発生装置5の方向に拡大でき均−成膜域
の拡大が可能である事が実験的に確認された。
The first feature of this embodiment is that a magnetic field generator 12 is installed that generates a magnetic field in a direction orthogonal to the direction of the magnetic field generated by the electron cyclotron resonance magnetic field generator. When plasma is generated by making the direction of the magnetic field by the magnetic field generator 5 coincide with the direction of the magnetic field by the magnetic field generator 4, the plasma is generated in the region surrounded by +1JjI in Fig. 2, as described above. Here, we considered ti, M of 5=NW= on a silicon wafer using S, F4 and N2 gas. magnetic field generator d
12 generates a magnetic field in the direction in which the lines of magnetic force by the magnetic field generator 4 are continuous, and the magnetic field generator 5 and the magnetic field generator! It has been experimentally confirmed that by adjusting the elasticity of the generated magnetic field 12, it is possible to expand the plasma generation area in the direction of the magnetic field generator 5 and to expand the uniform film formation area.

本実施例では試料台として回転テーブル13を使用して
いる。上述の条件で大面積均一成膜性を検討したところ
、磁場発生装置12を使用しない場合に比べ、均−成膜
域を面積比で約2倍に拡大できる事が確認された。
In this embodiment, a rotary table 13 is used as a sample stage. When examining the ability to form a uniform film over a large area under the above-mentioned conditions, it was confirmed that the uniform film formation area could be expanded approximately twice in terms of area compared to the case where the magnetic field generator 12 was not used.

次ぎに磁場発生袋[5の電流を切り、磁場発生装置12
のみに磁場を発生させプラズマを発生させたところ、磁
場発生装置12の近傍をピークとして成膜可能である事
が確認された。そこで回転テーブル13上に試料を設置
し、磁場発生装置5による磁場発生時間と磁場発生装置
12による磁場発生時間を調整し大面積均一成膜性を検
討したところ、磁場発生装置12を使用しない場合に比
べ、均−成膜域を面積比で約3.5倍に拡大できる事が
確認された。
Next, turn off the current in the magnetic field generating bag [5, and turn off the current in the magnetic field generating device 12
When a magnetic field was generated to generate plasma, it was confirmed that it was possible to form a film with a peak near the magnetic field generator 12. Therefore, we set the sample on the rotary table 13, adjusted the magnetic field generation time by the magnetic field generator 5 and the magnetic field generation time by the magnetic field generator 12, and examined the uniform film formation over a large area.We found that when the magnetic field generator 12 is not used, It was confirmed that the uniform film formation area could be expanded approximately 3.5 times in terms of area compared to the previous method.

実施例2 第3図はRFプラズマデポジション装置へ本発明を適用
した構成図である。放電管3はガス導入管10を有する
絶縁体(石英ガラスまたはアルミナ)で構成した。図に
おいて15は高周波発生機およびマツチングボックスで
あり、ここでは13.5MH2のラジオ波を使用した。
Embodiment 2 FIG. 3 is a block diagram in which the present invention is applied to an RF plasma deposition apparatus. The discharge tube 3 was made of an insulator (quartz glass or alumina) and had a gas introduction tube 10. In the figure, 15 is a high frequency generator and a matching box, in which 13.5 MH2 radio waves were used.

高周波電力はここでは誘導フィル14によって放電管内
に導入したが容量型での導入も可能である。この装置構
成で5LH4とN20ガスによる5L02成、膵を検討
したところ、実施例1と同様に均−成膜域の拡大を確認
する事ができた。
Although the high frequency power is here introduced into the discharge tube by the induction filter 14, it can also be introduced in a capacitive type. When 5L02 formation using 5LH4 and N20 gas and pancreas were investigated using this device configuration, it was possible to confirm an expansion of the uniform film formation area as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば従来大面積の均一
成膜が困難とされていたプラズマデポジション方法乃至
装置に於いて均−成膜域を大幅に拡大でき、プラズマデ
ポジション法による試料上への薄膜形成の量産性を著し
く高めることができる。特にマイクロ波プラズマデポジ
ション装置の量産性を高めることができる。
As explained above, according to the present invention, it is possible to significantly expand the uniform film formation area in plasma deposition methods and apparatuses that have conventionally been considered difficult to uniformly form a film over a large area. The mass productivity of forming a thin film thereon can be significantly improved. In particular, the mass productivity of the microwave plasma deposition apparatus can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマイクロ波プラズマ装置の構成説朋図、
第2図は本発明に係わるマイクロ波プラズマ装置の構成
説明図、第3Nは本発明に係わる誘導型RF放電方式の
プラズマ装置の構成説明図である。 1・・・真空室、 2・・・導波管、 3・・・放電管、 4・・・磁場発生装置、 5・・・磁場発生装置、 6・・・マイクロ波発生部、 7・・・試料室、 8・・・試料台、 9・・・試料、 10・・・原料ガス導入口、 11・・・排気ボート、 12・・・磁場発生装置、 13・・・回転テーブル、 14・・・ソレノイドコイル、 15・・・RF発振機。 代理人弁理士 小  川  勝  男 易 1 図
Figure 1 is a schematic diagram of the configuration of a conventional microwave plasma device.
FIG. 2 is an explanatory diagram of the configuration of a microwave plasma apparatus according to the present invention, and No. 3N is an explanatory diagram of the configuration of an induced RF discharge type plasma apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Waveguide, 3... Discharge tube, 4... Magnetic field generator, 5... Magnetic field generator, 6... Microwave generator, 7... - Sample chamber, 8... Sample stage, 9... Sample, 10... Source gas inlet, 11... Exhaust boat, 12... Magnetic field generator, 13... Rotary table, 14. ...Solenoid coil, 15...RF oscillator. Representative Patent Attorney Masaru Ogawa 1 Figure

Claims (1)

【特許請求の範囲】 1、気体材料に高周波電力を印加し、上記気体を放電状
態にすると共に、上記放電気体を互いに交又する複数の
磁界から成る合成磁界によって、上記磁界内に設置され
た試料に導き、上記気体材料から成る膜を上記試料表面
に形成することを特徴とするプラズマデポジション法。 2、高周波電力がマイクロ波であり、上記の伝播経路に
沿って磁界の少なくとも1つが形成される様に設置され
、かつ上記磁界強度がマイクロ波の伝播経路に沿って徐
々に減少し途中で部分的に電子サイクロトロン共鳴条件
を満足する事を特徴とする特許請求範囲第1項記載のプ
ラズマデポジション法。 3、真空室と、上記真空室に高周波電力を供給する手段
と、上記真空室内に放電ガスを導入する手段と、上記真
空室内に試料を保持する手段とを備えて構成されたプラ
ズマデポジション装置において、上記真空室内に磁場を
形成する少なくとも三つの磁場形成手段を備え、かつ上
記磁場形成手段により形成される磁界方向の少なくとも
一つが他の形成磁界方向と交又する様に磁場形成手段を
配置した事を特徴とするプラズマデポジション装置。 4、上記磁場形成手段の少なくとも1つが電磁石で構成
されていることを特徴とする特許請求範囲第3項記載の
プラズマデポジション装置5、上記磁場形成手段の少な
くとも1つが、電磁力であり電流の断続あるいは変調に
より、磁場強度の変調ができるようにしたことを特徴と
する特許請求の範囲第3項記載のプラズマデポジション
装置。 6、真空室内に試料載置用回転テーブルを設置した事を
特徴とする特許請求範囲第2項乃至第3項記載のプラズ
マデポジション装置。
[Claims] 1. High-frequency power is applied to a gaseous material to cause the gas to be in a discharge state, and the discharged body is placed within the magnetic field by a composite magnetic field consisting of a plurality of intersecting magnetic fields. A plasma deposition method characterized by introducing the gaseous material into a sample and forming a film made of the gaseous material on the surface of the sample. 2. The high frequency power is a microwave, and the installation is such that at least one magnetic field is formed along the propagation path of the microwave, and the magnetic field strength gradually decreases along the propagation path of the microwave and partially The plasma deposition method according to claim 1, characterized in that it satisfies electron cyclotron resonance conditions. 3. A plasma deposition apparatus comprising a vacuum chamber, means for supplying high-frequency power to the vacuum chamber, means for introducing discharge gas into the vacuum chamber, and means for holding a sample within the vacuum chamber. , comprising at least three magnetic field forming means for forming a magnetic field in the vacuum chamber, and the magnetic field forming means are arranged so that at least one of the directions of the magnetic field formed by the magnetic field forming means intersects the direction of the other formed magnetic field. A plasma deposition device characterized by: 4. A plasma deposition apparatus 5 according to claim 3, wherein at least one of the magnetic field forming means is constituted by an electromagnet, and at least one of the magnetic field forming means is an electromagnetic force and an electric current. 4. The plasma deposition apparatus according to claim 3, wherein the magnetic field strength can be modulated by intermittent or modulation. 6. The plasma deposition apparatus according to claims 2 to 3, characterized in that a rotary table for placing a sample is installed in the vacuum chamber.
JP5224385A 1985-03-18 1985-03-18 Method and apparatus for plasma deposition Granted JPS61213377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5224385A JPS61213377A (en) 1985-03-18 1985-03-18 Method and apparatus for plasma deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5224385A JPS61213377A (en) 1985-03-18 1985-03-18 Method and apparatus for plasma deposition

Publications (2)

Publication Number Publication Date
JPS61213377A true JPS61213377A (en) 1986-09-22
JPH0521986B2 JPH0521986B2 (en) 1993-03-26

Family

ID=12909281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5224385A Granted JPS61213377A (en) 1985-03-18 1985-03-18 Method and apparatus for plasma deposition

Country Status (1)

Country Link
JP (1) JPS61213377A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292443A (en) * 1985-10-18 1987-04-27 Matsushita Electric Ind Co Ltd Plasma apparatus
JPS63283018A (en) * 1986-12-29 1988-11-18 Sumitomo Metal Ind Ltd Plasma device
JPH01191780A (en) * 1988-01-27 1989-08-01 Semiconductor Energy Lab Co Ltd Thin film-forming equipment
US4926791A (en) * 1987-04-27 1990-05-22 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma apparatus employing helmholtz coils and ioffe bars
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus
US5133825A (en) * 1987-04-08 1992-07-28 Hi Tachi, Ltd. Plasma generating apparatus
US5203959A (en) * 1987-04-27 1993-04-20 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma etching and deposition method employing first and second magnetic fields
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
JPH08203693A (en) * 1995-08-28 1996-08-09 Semiconductor Energy Lab Co Ltd Thin film forming device
US5565247A (en) * 1991-08-30 1996-10-15 Canon Kabushiki Kaisha Process for forming a functional deposited film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292443A (en) * 1985-10-18 1987-04-27 Matsushita Electric Ind Co Ltd Plasma apparatus
JPS63283018A (en) * 1986-12-29 1988-11-18 Sumitomo Metal Ind Ltd Plasma device
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5019117A (en) * 1986-12-29 1991-05-28 Sumitomo Metal Industries Ltd. Plasma apparatus
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
US5133825A (en) * 1987-04-08 1992-07-28 Hi Tachi, Ltd. Plasma generating apparatus
US5203959A (en) * 1987-04-27 1993-04-20 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma etching and deposition method employing first and second magnetic fields
US4926791A (en) * 1987-04-27 1990-05-22 Semiconductor Energy Laboratory Co., Ltd. Microwave plasma apparatus employing helmholtz coils and ioffe bars
US5685913A (en) * 1987-04-27 1997-11-11 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
JPH0668152B2 (en) * 1988-01-27 1994-08-31 株式会社半導体エネルギー研究所 Thin film forming equipment
JPH01191780A (en) * 1988-01-27 1989-08-01 Semiconductor Energy Lab Co Ltd Thin film-forming equipment
US5099790A (en) * 1988-07-01 1992-03-31 Canon Kabushiki Kaisha Microwave plasma chemical vapor deposition apparatus
US5565247A (en) * 1991-08-30 1996-10-15 Canon Kabushiki Kaisha Process for forming a functional deposited film
JPH08203693A (en) * 1995-08-28 1996-08-09 Semiconductor Energy Lab Co Ltd Thin film forming device

Also Published As

Publication number Publication date
JPH0521986B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
US6380684B1 (en) Plasma generating apparatus and semiconductor manufacturing method
JPH06342771A (en) Dry etching apparatus
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JP3254069B2 (en) Plasma equipment
JPS61213377A (en) Method and apparatus for plasma deposition
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS63155728A (en) Plasma processor
JP3973283B2 (en) Plasma processing apparatus and plasma processing method
JPS60154620A (en) Treatment of microwave plasma
JP3294839B2 (en) Plasma processing method
JP2003077904A (en) Apparatus and method for plasma processing
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JPS63103088A (en) Plasma treating device
JPH0530500B2 (en)
JPH0687440B2 (en) Microwave plasma generation method
JPS6267822A (en) Plasma processor
JP3205542B2 (en) Plasma equipment
JPS61222533A (en) Plasma treatment apparatus
JP2750430B2 (en) Plasma control method
JP2003077903A (en) Apparatus and method for plasma processing
JPH01205519A (en) Plasma treatment apparatus
JPH025413A (en) Plasma processor
JP2001332541A (en) Plasma processing device
JPH0578849A (en) High magnetic field microwave plasma treating device