JPS6292443A - Plasma apparatus - Google Patents

Plasma apparatus

Info

Publication number
JPS6292443A
JPS6292443A JP23367985A JP23367985A JPS6292443A JP S6292443 A JPS6292443 A JP S6292443A JP 23367985 A JP23367985 A JP 23367985A JP 23367985 A JP23367985 A JP 23367985A JP S6292443 A JPS6292443 A JP S6292443A
Authority
JP
Japan
Prior art keywords
magnetic field
substrate
high frequency
plasma
field intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23367985A
Other languages
Japanese (ja)
Other versions
JPH0740553B2 (en
Inventor
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60233679A priority Critical patent/JPH0740553B2/en
Publication of JPS6292443A publication Critical patent/JPS6292443A/en
Publication of JPH0740553B2 publication Critical patent/JPH0740553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To raise the efficiency by producing a magnetic field intensity near a high frequency input unit less than the magnetic field intensity B0 of ECR condition, producing a magnetic field intensity near a substrate less than B0 and forming a magnetic field distribution having at least one magnetic field being higher than the magnetic field intensity B0 of ECR condition from the input unit to the substrate, thereby preventing an impurity from being mixed. CONSTITUTION:A TE01 mode square waveguide (WJR-2) is used as a high frequency input unit 1, and the end of the unit 1 is used as a high frequency input unit terminal 8 by a quartz plate 2 having 10mm in thickness to interrupt the atmosphere from vacuum. Argon-diluted silane gas (SiH4 containing 20% of silane) and nitrogen gas are fed at 4:3 of flow rate under total pressure of 0.08Pa. A magnetic field 3 is disposed on the outer periphery of a plasma chamber 5, a Helmholtz's coil (0.093wb/m<2> of maximum magnetic flux density) is used, and the unit 1 is secured to a substrate supporting base 7 opposed to the unit 1. The magnetic field intensity is 0.08wb/m<2> at the terminal 8, 0.093wb/m<2> of the maximum magnetic flux density 70cm from said terminal 8 and 0.06wb/m<2> near the substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波と磁場によるRGRプラズマを用いたプ
ラズマ装置の改良に関し、特に磁場の強度分布に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvement of a plasma device using RGR plasma using high frequency waves and a magnetic field, and particularly relates to the intensity distribution of the magnetic field.

従来の技術 プラズマCVDやプラズマドライエツチングは半導体プ
ロセスなどのh9膜プロセスにおける重要な基幹技術の
一つであり、現在基鈑の処理温度の低温化や基板の低損
傷化を図るため、基板へのイオンの入射エネルギーを下
げる研究がさかんに行なわれている。この分野に関して
は、例えば([3 ・ − 電子材料」編集部編[超LSI時代のプラズマ化学」工
業調査会、昭和58年出版P11了〜P119)羨基本
的な技術が述べられている。基板へのイオンの入射エネ
ルギーを下げ、かつプラズマ放電を維持するためには、
高周波の周波数と磁場の強度と分布が重要な役割をはだ
す。
Conventional technology Plasma CVD and plasma dry etching are important core technologies in H9 film processes such as semiconductor processes. Research is being actively conducted to lower the incident energy of ions. Regarding this field, for example, the basic technology is described ([3. - Electronic Materials] Editorial Department [Plasma Chemistry in the VLSI Era] Industrial Research Group, Published in 1988, P11-P119). In order to lower the incident energy of ions to the substrate and maintain plasma discharge,
The frequency of the radio frequency and the strength and distribution of the magnetic field play important roles.

高周波の周波数を高クシ、また磁場の強度を高周波の周
波数で決まる電子サイクロトロン共鳴(K CR)条件
になるようにすると、例えば245GHz  のマイク
ロ波の場合、磁場の強度を0.0875Th/Im2に
すれば容易にプラズマ放電の維持ができ、丑だ、適当な
磁場の分布をもたせて、基板へのイオンの入射エネルギ
ーが数十eV程度に下げることができることが知られて
いる。そして、このようなプラズマを利用してCvDや
エツチングを行なうことが研究されている。
For example, in the case of a 245 GHz microwave, the magnetic field strength should be 0.0875 Th/Im2 if the high frequency is set to a high frequency and the magnetic field strength is set to the electron cyclotron resonance (KCR) condition determined by the high frequency. It is known that plasma discharge can be easily maintained and, by providing an appropriate magnetic field distribution, the incident energy of ions to the substrate can be lowered to about several tens of eV. Further, research is being carried out on using such plasma to perform CvD and etching.

従来の磁場の強度分布を第2図(a)、 (b)に示す
The strength distribution of the conventional magnetic field is shown in Figures 2(a) and (b).

以下においては、高周波の周波数fを2.45GH2と
して簡明する。寸ず第2図(&)の磁場分布において、
高周波導入部付近を、高周波の周波数で決まるFOR条
件を満たす磁場強度Boにしである。
In the following, the high frequency frequency f will be simplified as 2.45 GH2. In the magnetic field distribution in Figure 2 (&),
The magnetic field strength Bo is set near the high frequency introduction part to satisfy the FOR condition determined by the frequency of the high frequency.

(f :2.45 GHzのときBo = 0.087
5 Wb、i2である。)そのあと、高周波の進行方向
に対して磁場の強度を徐々に単調減少させて、KCR放
電で発生させたイオンを加速させ、かつ拡散させている
(Bo = 0.087 when f: 2.45 GHz
5 Wb, i2. ) Thereafter, the intensity of the magnetic field is gradually monotonically decreased in the direction of propagation of the high frequency wave, thereby accelerating and diffusing the ions generated by the KCR discharge.

つぎに第2図(b)の磁場分布において、高周波導入部
付近を、ECR条件の磁場強度Bo以上にしてあり、そ
して第2図(a)の磁場分布と同様に磁場強度を単調減
少させて、ECR条件の磁場強度B。
Next, in the magnetic field distribution in Fig. 2(b), the magnetic field strength near the high frequency introduction part is set to be higher than the ECR condition magnetic field strength Bo, and the magnetic field strength is monotonically decreased as in the magnetic field distribution in Fig. 2(a). , magnetic field strength B under ECR conditions.

以下まで下げ、再びECR条件の磁場強度以上まで増加
させている。
The magnetic field strength was lowered to below, and then increased again to the magnetic field strength of ECR conditions or higher.

以上のように磁場温度の分布を変化させることによって
基板へのイオンの入射エネルギーを下げて、基板の損傷
ヲ下げている。
By changing the magnetic field temperature distribution as described above, the incident energy of ions to the substrate is lowered, thereby reducing damage to the substrate.

発明が解決しようとする問題点 しかし、上のような磁場強度の分布であると以下のよう
な問題点がある。
Problems to be Solved by the Invention However, the above distribution of magnetic field strength causes the following problems.

捷ず、高周波導入部は通常アンテナや導波管の端面ある
いは高周波を透過させる材料(従来石英板やテフロン)
と導波管側の大気とプラズマ室の真空とを遮断するため
の0リング等で構成されているが、高周波導入部付近で
KCR放電に直接曝されるので、高周波導入部の構成物
の損傷がおこり構成物のプラズマへの混入や最悪の場合
リークの原因となる。またECR放電が起こると電子密
度が上昇して、高周波の反射電力が多くなる。
The high frequency introduction part is usually the end face of the antenna or waveguide, or a material that transmits high frequencies (conventionally quartz plate or Teflon).
It consists of an O-ring and other devices to isolate the atmosphere on the waveguide side from the vacuum of the plasma chamber, but since it is directly exposed to KCR discharge near the high-frequency introduction section, there is a risk of damage to the components of the high-frequency introduction section. This can cause contaminants to enter the plasma or, in the worst case, cause leaks. Further, when ECR discharge occurs, the electron density increases and the reflected power of high frequency increases.

つぎに高周波導入部付近の磁場強度をECR条件の磁場
強度80以上にすると、高周波放電がおこシ高周波はプ
ラズマ中でも吸収されるが、[OR放電におけるイオン
生成はどの電子数を得られない。
Next, when the magnetic field strength near the high-frequency introduction part is set to 80 or higher under the ECR conditions, high-frequency discharge occurs and the high-frequency waves are absorbed even in the plasma, but [ion generation in OR discharge does not yield any number of electrons.

本発明は、かかる点に鑑みてなされたもので磁場強度の
分布で、不純物の混入を防ぎ、効率のよいプラズマ装置
を提供するものである。
The present invention has been made in view of this point, and provides an efficient plasma device that prevents impurity contamination through the distribution of magnetic field strength.

問題点を解決するための手段 高周波導入部付近の磁場強度をECR条件の磁場強度8
0未満にし、また基板付近の磁場強度をBO以下にし、
高周波導入部から基板までにECR条件の磁場強度80
以上の磁場を少々くとも16ベー。
Measures to solve the problem: Change the magnetic field strength near the high frequency introduction part to 8 under ECR conditions.
0, and the magnetic field strength near the substrate is below BO,
Magnetic field strength 80 under ECR conditions from the high frequency introduction part to the board
The magnetic field is at least 16 be.

力所を有する磁場分布にする。Create a magnetic field distribution with a force field.

作用 高周波導入部付近の磁場強度1EcR条件の磁場強度B
O以下にして高周波導入部を直接ECR放電に曝さ々い
ことによって、高周波電力を有効に吸収させかつ高周波
導入部の損傷を少なくし、また高周波導入部から基板ま
でに少なくとも2力所以上のECR放電領域をもつこと
により高周波電力を有効に吸収させることができた。
Magnetic field strength B near the working high frequency introduction part under 1EcR condition
By directly exposing the high frequency introduction part to ECR discharge at a temperature below 0, high frequency power can be effectively absorbed and damage to the high frequency introduction part can be reduced. By having a discharge region, high frequency power could be effectively absorbed.

実施例 以下本発明について実施例とともに説明する。Example The present invention will be explained below along with examples.

第1図(a)は本発明の一実施例のプラズマ装置の概略
図であり、第2図(b)にプラズマ装置の高周波導入部
端からの距離と磁場強度との関係を示した。
FIG. 1(a) is a schematic diagram of a plasma device according to an embodiment of the present invention, and FIG. 2(b) shows the relationship between the distance from the end of the high frequency introduction part of the plasma device and the magnetic field strength.

ここではプラズマCVD装置による窒化シリコン膜の形
成を仮シとして説明する。
Here, the formation of a silicon nitride film using a plasma CVD apparatus will be explained as a temporary process.

高周波はマイクロ波(2,45GHz) e用いた。Microwaves (2.45 GHz) were used as the high frequency.

マイクロ波はマグネトロン(図示せず)で発生させた。Microwaves were generated with a magnetron (not shown).

1は高周波導入部でTEn1モードの方形導波管(WJ
R−2)’jz用い、高周波導入部1の端7′− ば、大気と真空を遮断するため厚さ10πm石英板2を
用いて、高周波導入部端8とした。ガス導入口4より、
アルゴン希釈のシランガス(SiH2、シラン2o%含
有)と窒素ガスを流量比4:3で全圧0.08Paとし
て導入した。磁場3はプラズマ室5の外周に配置し、ヘ
ルムホルツコイル(最大磁束密度0.093 wbβ)
を用いた。基板6は高周波導入部1と対向して設けた基
板支持台7に固定した。マイクロ波のパワーlI′j:
200Wとした。ここでいうマイクロ波のパワーは、入
射電力と反射電力との差である。
1 is a high frequency introduction section, which is a TEn1 mode rectangular waveguide (WJ
R-2)'jz was used, and the end 7' of the high frequency introduction part 1 was made into the high frequency introduction part end 8 by using a quartz plate 2 with a thickness of 10πm to block the atmosphere and vacuum. From gas inlet 4,
Argon-diluted silane gas (SiH2, containing 20% silane) and nitrogen gas were introduced at a flow rate ratio of 4:3 and a total pressure of 0.08 Pa. The magnetic field 3 is placed around the outer periphery of the plasma chamber 5, and is a Helmholtz coil (maximum magnetic flux density 0.093 wbβ).
was used. The substrate 6 was fixed to a substrate support stand 7 provided opposite the high frequency introduction section 1. Microwave power lI'j:
It was set to 200W. The microwave power here is the difference between incident power and reflected power.

そして第1図中〕に示すように、磁場強度分布は高周波
導入部端8で0.08 W b /n?とし、高周波導
入端から70 CILLのところで最大磁束密度の0.
093wb/n?とし、基板付近で0.06 Vrbl
dとした。基板6としてシリコン基板および石英板を用
いた。
As shown in Figure 1, the magnetic field strength distribution is 0.08 W b /n? at the end 8 of the high frequency introduction section. The maximum magnetic flux density is 0.70 CILL from the high frequency introduction end.
093wb/n? and 0.06 Vrbl near the board
It was set as d. A silicon substrate and a quartz plate were used as the substrate 6.

なお、基板加熱は行なわなかった。Note that the substrate was not heated.

以上のような構成でシリコン基板6上に窒化シリコン膜
を形成したところ、窒化シリコン膜の屈折率は2.o1
緩衝フッ酸(50%HF:50%NH4F=3 : 1
7)によるエッチ速度は2人7 minでありこれは非
常に緻密なことを意味する。次に同様に石英板上に窒化
ンリコン膜を形成した。この窒化シリコン膜の光学バン
ドギャップの測定によりその光学バンドギャップは6e
v以上あり、これは熱窒化膜と同等な値である。捷だ基
板加熱を行っていない、基板表面の温度は測定によると
60°C以下であった。!、た入射電力は206Wで、
反射電力は6Wであるので、入射電力の3%しか反射し
ていない。
When a silicon nitride film was formed on the silicon substrate 6 with the above configuration, the refractive index of the silicon nitride film was 2. o1
Buffered hydrofluoric acid (50% HF:50%NH4F=3:1
The etching speed according to 7) is 7 min for two people, which means that it is very precise. Next, a silicon nitride film was formed on the quartz plate in the same manner. The optical band gap of this silicon nitride film was measured to be 6e.
v or more, which is a value equivalent to that of a thermal nitride film. The temperature of the substrate surface was measured to be 60° C. or less without heating the substrate. ! , the incident power is 206W,
Since the reflected power is 6 W, only 3% of the incident power is reflected.

第3図に従来例第2図(a)の磁場強度分布に設定した
場合と本発明について入射電力を横軸に、反射電力を縦
軸として特性を比較すると、従来例第2図(a)の場合
1o%の反則であるが、本発明の場合は3%以下であっ
た。
Figure 3 shows a comparison of the characteristics of the conventional example when the magnetic field strength distribution is set to the magnetic field intensity distribution shown in Figure 2 (a) and the present invention, with the incident power on the horizontal axis and the reflected power on the vertical axis. In the case of , the violation was 10%, but in the case of the present invention, it was 3% or less.

高周波導入部の石英板、0リングおよびプラズマ室の高
周波導入部側に損傷は観察できなかった。
No damage was observed on the quartz plate of the high-frequency introduction part, the O-ring, or the high-frequency introduction part side of the plasma chamber.

また、オージェ電子分光やX線光電子分光においても酸
素、プラズマ室周辺の構成物からの混入は認められなか
った。
Furthermore, no oxygen or contamination from components around the plasma chamber was observed in Auger electron spectroscopy or X-ray photoelectron spectroscopy.

9・−・ 以上のように本発明における磁場強度分布によるとその
窒化1戻には不純物の混入が認められず、また、高周波
電力も有効に利用できる。
9.-- As described above, according to the magnetic field strength distribution in the present invention, no impurities are found in the nitriding process, and high frequency power can also be used effectively.

なお、ここでは、高周波に2.45 GHzのマイクロ
波を用いたが、数kHz以上の高周波であればよく、ま
た高周波導入部付近と基板付近もECR条件を満足する
磁場強度未満であればよく、そして基板付近はEOR条
件を満足する磁場強度であってもよい。ここではプラズ
マ装置をプラズマCVDとして説明したが導入ガスに塩
素ガス、弗化物ガス、フレオンガス等を用いてプラズマ
エッチをしてもよい。またプラズマCVDにおいてもこ
こでは窒化シリコン膜をシランガスと窒素ガスで形成し
たが、所望する薄膜の分子を構成する1種類以」二のガ
スおよびプラズマ放電を維、持または促進する例えばヘ
リウムガス等のガスによって形成してもよい。また、高
周波導入部付近と基板付近以外の領域でECR条件を満
足する磁場強度以上の磁場強度であってもよく、高周波
導入部から基板に至る領域で%RCR条件を満足する磁
場強度1 0’\ 。
Note that here, a 2.45 GHz microwave was used as the high frequency, but any high frequency of several kHz or more is sufficient, and the magnetic field strength near the high frequency introduction part and the substrate may be less than that satisfying the ECR conditions. , and the magnetic field strength near the substrate may satisfy the EOR condition. Although the plasma apparatus is described here as plasma CVD, plasma etching may be performed using chlorine gas, fluoride gas, Freon gas, or the like as the introduced gas. In addition, in plasma CVD, the silicon nitride film was formed here using silane gas and nitrogen gas, but one or more gases constituting the molecules of the desired thin film and, for example, helium gas, which maintains or promotes plasma discharge, are also used. It may also be formed by gas. Furthermore, the magnetic field strength may be greater than or equal to the magnetic field strength that satisfies the ECR condition in areas other than the vicinity of the high-frequency introduction part and the vicinity of the substrate, and the magnetic field strength that satisfies the %RCR condition in the area from the high-frequency introduction part to the substrate is 10'. \.

以下の磁場強度を1カ所以上含んでもよい。The following magnetic field strengths may be included at one or more locations.

また磁場はへルムホルツコイルを用いてミラー磁場をし
たが、電磁石や永久磁石を用いてもよく、またカスプ磁
場を用いてもよく、磁場の極性にかかわりなく、磁場の
絶対値の強度分布が本発明の磁場強度分布であればよい
In addition, although the magnetic field is a mirror magnetic field using a Helmholtz coil, an electromagnet or a permanent magnet may be used, or a cusp magnetic field may be used. Regardless of the polarity of the magnetic field, the intensity distribution of the absolute value of the magnetic field is Any magnetic field strength distribution according to the present invention may be used.

発明の効果 以上本発明のプラズマ装置全プラズマCVDとしての実
施例について説明したように、磁場強度分布を本発明の
分布にすることにより、高周波電力を有効に吸収させ、
かつ高周波導入部の構成物のプラズマ混入を防ぐのに有
効であり、特に半導体集積回路における膜形成やエツチ
ングのように不純物混入を極度に嫌う産業分野における
有効性は大であシ、産業上の効果は極めて大きい。
Effects of the Invention As described above regarding the embodiment of the plasma device of the present invention as an all-plasma CVD system, by making the magnetic field intensity distribution the distribution of the present invention, high frequency power can be effectively absorbed,
It is also effective in preventing plasma contamination in the components of the high frequency introduction section, and is particularly effective in industrial fields where impurity contamination is extremely disliked, such as film formation and etching in semiconductor integrated circuits. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)t (b)は本発明の実施例のプラズマ装
置の概略図、高周波導入部端からの磁場強度分布図、第
2図(a)t (b)は従来例の高周波導入部端からの
磁場強度分布図、第3図は従来例第2図(a)と本発明
11 l・− における入射電力と反射電力の関係を示す図である。 1・・・・・・高周波導入部、2・・・・・・石英板、
3・・・・・・磁場、6・−・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 高岡2更導入音p看浩〃うの2近街艮(C衿第2図 q) 喧 憾 鍼 ■ Tt−I刈:L導べ邦塙カ・すっA1雛(C札2俸 疑 可 商用(良導入(P橢tうへ距離(C〜う第3図 θ /60 2(II  JOO406w入相t、)I
PmCVv)
Figures 1 (a) and (b) are schematic diagrams of a plasma device according to an embodiment of the present invention, and magnetic field strength distribution diagrams from the end of the high-frequency introduction section; Figures 2 (a) and (b) are diagrams of the high-frequency introduction of a conventional example. FIG. 3 is a diagram showing the relationship between incident power and reflected power in the conventional example shown in FIG. 2(a) and the present invention 11 l·−. 1... High frequency introduction section, 2... Quartz plate,
3... Magnetic field, 6... Substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Takaoka 2nd introduction sound p view Uno 2 near street 艮 (C collar 2nd figure q) hustle acupuncture ■ Tt-I harvest: L lead Kuninaka Su A1 Hina (C tag 2 yen possible commercial (Good introduction (P) Distance (C ~ Fig. 3 θ /60 2 (II
PmCVv)

Claims (4)

【特許請求の範囲】[Claims] (1)真空槽内に高周波電力と磁場とを印加して誘起し
たプラズマを用いる真空装置であって、高周波電力導入
部から基板に至る間における前記高周波電力導入部から
前記基板に至る方向と平行な磁界の強度の分布を、上記
高周波電力導入部付近では高周波電力の周波数で決まる
電子サイクロトロン共鳴条件を満たす磁界密度未満にし
、かつ、前記基板付近では前記共鳴条件を満たす磁界密
度以下にし、かつ前記高周波導入部から前記基板に至る
間に少なくとも1ケ所以上の前記共鳴条件を満たす磁界
密度より強い領域を有することとしたことを特徴とする
プラズマ装置。
(1) A vacuum device that uses plasma induced by applying high-frequency power and a magnetic field in a vacuum chamber, which is parallel to the direction from the high-frequency power introduction section to the substrate between the high-frequency power introduction section and the substrate. The intensity distribution of the magnetic field is set to be less than the magnetic field density that satisfies the electron cyclotron resonance condition determined by the frequency of the high-frequency power near the high-frequency power introduction part, and below the magnetic field density that satisfies the resonance condition near the substrate, and A plasma device characterized in that it has at least one region between the high frequency introduction part and the substrate where the magnetic field density is stronger than the magnetic field density that satisfies the resonance condition.
(2)高周波電力導入部から基板に至る方向と高周波電
力の伝搬方向を一致させることを特徴とする特許請求の
範囲第1項記載のプラズマ装置。
(2) The plasma apparatus according to claim 1, wherein the direction from the high-frequency power introduction part to the substrate is made to coincide with the propagation direction of the high-frequency power.
(3)真空槽内にエッチング性のガスを導入させてプラ
ズマを誘起させて基板表面をエッチングすることを特徴
とする特許請求の範囲第1項または第2項記載のプラズ
マ装置。
(3) The plasma apparatus according to claim 1 or 2, characterized in that an etching gas is introduced into the vacuum chamber to induce plasma to etch the substrate surface.
(4)真空槽内に少なくとも1種類以上のガスを導入さ
せてプラズマを誘起させて基板表面に膜形成を行なうこ
とを特徴とする特許請求の範囲第1項または第2項記載
のプラズマ装置。
(4) The plasma apparatus according to claim 1 or 2, wherein at least one type of gas is introduced into the vacuum chamber to induce plasma to form a film on the surface of the substrate.
JP60233679A 1985-10-18 1985-10-18 Thin film forming method and etching method Expired - Lifetime JPH0740553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60233679A JPH0740553B2 (en) 1985-10-18 1985-10-18 Thin film forming method and etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233679A JPH0740553B2 (en) 1985-10-18 1985-10-18 Thin film forming method and etching method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6292870A Division JP2685418B2 (en) 1994-11-28 1994-11-28 Thin film forming method and etching method

Publications (2)

Publication Number Publication Date
JPS6292443A true JPS6292443A (en) 1987-04-27
JPH0740553B2 JPH0740553B2 (en) 1995-05-01

Family

ID=16958837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233679A Expired - Lifetime JPH0740553B2 (en) 1985-10-18 1985-10-18 Thin film forming method and etching method

Country Status (1)

Country Link
JP (1) JPH0740553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179324A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Microwave plasma treatment apparatus and its method
JPH05347260A (en) * 1993-02-19 1993-12-27 Hitachi Ltd Plasma treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213377A (en) * 1985-03-18 1986-09-22 Hitachi Ltd Method and apparatus for plasma deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213377A (en) * 1985-03-18 1986-09-22 Hitachi Ltd Method and apparatus for plasma deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179324A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Microwave plasma treatment apparatus and its method
JPH05347260A (en) * 1993-02-19 1993-12-27 Hitachi Ltd Plasma treatment device

Also Published As

Publication number Publication date
JPH0740553B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
EP0300447B1 (en) Method and apparatus for treating material by using plasma
JP3729939B2 (en) Plasma processing method and apparatus
JPS6292443A (en) Plasma apparatus
JPS61213377A (en) Method and apparatus for plasma deposition
JPH0339480A (en) Ecr plasma device
JPS61241930A (en) Plasma chemical vapor deposition device
JP2685418B2 (en) Thin film forming method and etching method
JP2709162B2 (en) Microwave plasma processing equipment
JP3246788B2 (en) Microwave plasma etching equipment
JPS6267822A (en) Plasma processor
JPH0582449A (en) Electron cycrotron resonance plasma cvd equipment
JP3071450B2 (en) Microwave plasma processing equipment
JPH01187824A (en) Plasma processor
JPH01134926A (en) Plasma producing source and plasma processor using the same
JP2634910B2 (en) Microwave plasma processing equipment
Ishii et al. Super‐wide electron cyclotron resonance plasma source excited by traveling microwave as an efficient tool for diamondlike carbon film deposition
Ishii et al. Diamond-like carbon film deposition by super-wide electron-cyclotron resonance plasma source excited by traveling microwave
JPH0724761B2 (en) Plasma processing device
JPH0340422A (en) Film formation device
JPH0414822A (en) Microwave plasma etching method
JPH01107539A (en) Microwave plasma processor
JPH0521391A (en) Microwave plasma device
JPH02256233A (en) Plasma treatment method and apparatus
JPS63292625A (en) Controlling method for plasma
JP2000277492A (en) Plasma processor, plasma processing method, and manufacture of semiconductor