JPH05347260A - Plasma treatment device - Google Patents

Plasma treatment device

Info

Publication number
JPH05347260A
JPH05347260A JP5030873A JP3087393A JPH05347260A JP H05347260 A JPH05347260 A JP H05347260A JP 5030873 A JP5030873 A JP 5030873A JP 3087393 A JP3087393 A JP 3087393A JP H05347260 A JPH05347260 A JP H05347260A
Authority
JP
Japan
Prior art keywords
magnetic field
vacuum container
microwave
field generating
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5030873A
Other languages
Japanese (ja)
Other versions
JP2546596B2 (en
Inventor
Takuya Fukuda
琢也 福田
Yasuhiro Mochizuki
康弘 望月
Tadashi Sonobe
正 園部
Kazuo Suzuki
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP5030873A priority Critical patent/JP2546596B2/en
Publication of JPH05347260A publication Critical patent/JPH05347260A/en
Application granted granted Critical
Publication of JP2546596B2 publication Critical patent/JP2546596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To obtain a plasma treatment device where a vacuum chamber is lessened in size without deteriorating in plasma treatment characteristics. CONSTITUTION:A treatment object 11 is placed in a vacuum chamber 1 whose diameter is larger than its axial length, and a microwave guide 2 is provided to a microwave introducing window 10 provided to the upside of the vacuum chamber 1 so as to introduce microwaves into the vacuum chamber 1 in its axial direction. Reaction gas feed tubes 7 and 8 and an exhaust vent 6 are provided to the side face of the vacuum chamber 1, and magnetic field generating coils 4 and 5 are vertically provided to the side of the vacuum chamber 1 sandwiching the gas feed tubes 7 and 8 and the exhaust vent 6 between them. An electron cyclotron resonant plane is located at a point separate from the microwave introducing window 10 by a distance (n+1/4) times (n=0, 1, 2...) as long as the wavelength of microwave, and the reaction gas feed tubes 7 and 8 and the exhaust vent 6 are formed at the same point as the above point.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、プラズマ処理装置に係
り、特に、電子サイクロトロン共鳴(以下ECRと称
す)を利用したプラズマ処理装置に関する。 【0002】 【従来の技術】従来のECRを利用したプラズマ処理装
置は、例えば、特開昭56−155535号公報および
特開昭57−79621号公報に記載されており、これ
を図3に示している。同図のプラズマ処理装置は、プラ
ズマ生成室13内においてプラズマ活性種を生じさせ、
磁界発生コイル4による発散磁界等で活性種の生成効率
最大領域から充分離れた位置に設置された被処理物11
にプラズマ流をあてて処理するものであった。 【0003】 【発明が解決しようとする課題】上述した従来のプラズ
マ処理装置は、図示の如くプラズマ生成室13と比較的
軸長の大きなプラズマ処理室14とを有しているため、
真空容器1の大型化と共に、この大型化に起因して排気
口6および磁界発生コイル4の大型化を招いていた。 【0004】この点、本発明者等の実験によれば、EC
Rを利用したプラズマ処理において、その処理特性は、
ECR位置と被処理物11との距離とその処理に関わる
イオン種の基板入射方向とに依存し、この距離が短いほ
ど、また、イオン入射方向が基板に垂直になるほど処理
特性に優れ、また、ECR位置における導入ガス濃度を
高くすると、この位置でマイクロ波3はほとんど吸収さ
れてしまい、被処理物11まで到達しないので被処理物
11や支持台9等から反射が消失することがわかった。 【0005】しかしながら図3の構成において、被処理
物11をマイクロ波導入窓10の近くに位置させて真空
容器1の軸長を短縮することも考えられるが、被処理物
11によるマイクロ波の反射があり、プラズマ処理効率
および処理特性を低下させてしまう。 【0006】本発明の目的は、プラズマ処理特性を低下
させることなく真空容器を小型化したプラズマ処理装置
を提供するにある。 【0007】 【課題を解決するための手段】本発明は上記目的を達成
するために、ECR面内に反応ガスを導入するととも
に、プラズマにより分解した、もはやマイクロ波の吸収
が低くなつた粒子をECR面方向に排気することによ
り、このECR面内での導入ガス濃度の高い状態を形成
し、かつ、基板に向う磁力線方向を、基板面とほぼ同じ
高さに設置した磁界コイルにより基板面に垂直にしたこ
とを特徴とする。 【0008】 【作用】本発明のプラズマ処理方式は上述の如きである
から、マイクロ波の吸収が低くなった粒子を効率よく排
気できるため、結果的に導入ガス濃度を高めることがで
きる。このためECR面を含んだ領域をマイクロ波の高
吸収帯として、マイクロ波の透過率を著しく低下させる
ことができ、ECR位置近傍にマイクロ波導入部および
被処理物を位置させても、プラズマ処理特性を低下させ
ることなくプラズマ処理が可能となり、従って、少なく
ともマイクロ波の伝播方向における真空容器の長さを従
来よりも著しく短縮することができ、小型のプラズマ処
理装置が得られる。 【0009】つまり、成膜やエッチング等のプラズマ処
理特性は、プラズマ活性種のうち特にイオン種の種別,
濃度,寿命でほぼ決定され、イオン種の最大生成位置は
ECR位置であり、ここでイオン種の種別,濃度が決定
され、また寿命内で被処理物に達するか否かはECR位
置と被処理物の距離で、また、イオンの基板に対する入
射方向は磁力線方向で決定される。更にマイクロ波の伝
播は、ECR位置およびその近傍の分子,原子,イオン
等による吸収によって決定される。 【0010】マイクロ波の吸収は分子量が高い粒子程高
い。すなわち、プラズマ化により分解生成したイオンや
ラジカルよりは導入ガス分子の方が、はるかにマイクロ
波をよく吸収する。また、ECR位置でのプラズマ密度
は、導入されるガス種及びその分圧で決定される。すな
わち、ECR位置でのマイクロ波の吸収は、吸収効率の
高い未分解の導入ガス濃度が高いと、そこで一定のプラ
ズマ密度になるまで導入ガス分子がプラズマ化されるこ
とにより生じる。 【0011】しかし、分解して生成したラジカル等、吸
収効率の低い粒子濃度が高いとマイクロ波の吸収程度は
低く、この結果基板まで高パワーのマイクロ波が達する
ことになる。従って、最も分解効率の高いECR面はも
ちろんのこと、ECR面と基板までの間に存在するマイ
クロ波吸収効率の低い粒子を基板に到達する前に極力排
気し、基板までの導入ガス濃度を高い状態とするよう
に、すなわち、上記排気をECR面とほぼ同一面方向、
少なくとも、ECR面と基板面との間から排気するよう
にすると、基板にマイクロ波が達する程度が低くなり、
マイクロ波の反射を防止することができる。 【0012】なお、基板処理に関与するイオン種は、磁
力線により輸送されるので処理効率を低下させることは
ない。そして、これらのガス濃度が高いほどマイクロ波
の同領域における透過率が低くなる。 【0013】従って、ECR面(ω=B・e/m マイ
クロ波の周波数ωで電子の電荷e,質量mを満足する磁
束密度Bの面)に導入ガスを吹付けたり、この面を含ん
で同面あるいはこの面に平行に排気を行うことにより、
同面内の導入ガス濃度を高めると、この領域においてマ
イクロ波の高吸収帯が形成され、被処理物へのマイクロ
波の伝播、あるいは被処理物や支持台からのマイクロ波
の反射が抑制されるため導入するマイクロ波の実効効力
が損われることがない。このため、ECR位置近傍にマ
イクロ波導入部および被処理物を位置させても、プラズ
マ処理特性を低下させることはなくプラズマ処理ができ
る。 【0014】 【実施例】以下本発明の実施例を図面によって説明す
る。 【0015】図1に示す本発明の一実施例は、直径より
も軸長を小さくした真空容器1を用い、その上端のマイ
クロ波導入窓10から軸方向にマイクロ波3を導入する
ようマイクロ波導波管2を備えている。真空容器1の側
方には、反応ガス供給管7,8および排気口6が形成さ
れ、底部の基板支持台9上に被処理物11を配置してい
る。このような構成の真空容器1の直径は350mm,軸
長は62mmで、マイクロ波導波管2から供給するマイク
ロ波3は、300Wで2.45〔GHz〕、波長123
mmである。 【0016】反応ガス供給管7,8および排気口6の中
心位置と、マイクロ波導入窓10と、被処理物11との
位置関係は図2に示されている。同図は、真空容器1の
中心軸上の磁束密度分布を示し、破線は2.45〔GH
z〕のマイクロ波3に対し、ECR条件(875〔Ga
uss〕)を満す磁束密度値を示している。従って、E
CR条件は、マイクロ波導入窓10からマイクロ波の波
長λの1/4である31mmの位置で満たされ、同位置は
反応ガス供給管7,8からの反応ガスの導入位置となっ
ている。また、被処理物11は、マイクロ波導入窓10
から1/2λの位置にあり、0点はマイクロ波導入窓1
0の位置を示している。なお、上述の如き磁束密度分布
は図1の如く真空容器1の外周に設けた主磁界発生コイ
ル4と制御磁界発生コイル5への電流を制御することに
より行なっている。 【0017】基板処理に際して、磁力線が、基板に対し
て基板端部で斜めに入射すると、成膜において、段差部
でイオン入射部の陰になる所では成膜量が少なくなった
り、膜質が悪くなるといった問題や、エッチングにおい
て、基板に垂直にエッチングが進まないといった問題が
発生する。従って、基板処理に際しては、磁力線が基板
にほぼ垂直になるように磁力線を制御する必要がある。 【0018】図3に示した従来技術の場合、基板のはる
か上方に磁界発生部があるため、基板に入る磁力線は、
基板中心部では基板に垂直となるが、基板端部では斜め
に入射することになる。 【0019】基板端部でも垂直に入射する磁力線を形成
するには、基板処理室の周り全体に磁界発生コイルを設
置することが効果的である。しかし、処理室の外周部全
体にコイルを設置すると、本発明であるECR面とほぼ
同一平面高さで、低マイクロ波吸収体粒子の排気を行う
ことが、コイルが障害となって実現できず、本発明を完
成させることができない。 【0020】しかし、実験によれば、基板にほぼ垂直な
磁力線を形成するには、基板とほぼ同じ高さ位置に磁界
発生コイルを設置すれば良く、上記ECRを発生させる
主磁界発生コイル4と制御磁界発生コイル5との間隔
を、排気口を設置できる程度に空けても良いことが判っ
た。このため、図1に示す本発明の一実施例は、主磁界
発生コイル4と制御磁界発生コイル5は、真空容器1の
軸方向において排気口6及び反応ガス供給管7,8の両
側に分散して配置している。 【0021】次に、被処理物11として直径100mmの
シリコンウエハを用い、しかも、その処理面をマイクロ
波3の伝播方向に向けて配置し、二酸化けい素(SiO
2)膜を形成する場合について説明する。 【0022】この場合、マイクロ波3は300W、24
5〔GHz〕、波長123mmで、反応ガス供給管7,8
からそれぞれモノシラン(SiH4)を20ml/min、酸
素(O2)を80ml/minで導入し、反応圧力が1×10
~3〔Torr〕となるように真空容器1内を排気し、基
板端部における磁力線もほぼ基板垂直方向になるように
した。このとき、装置中心軸の磁束密度分布は、図2の
条件を満たすように制御されている。 【0023】このとき、マイクロ波3の反射波は20W
で、平均成膜速度は60〔nm/min〕、推積膜の屈折率
は1.46、緩衝フッ酸液(HF:NH4F=1:6)
によるエッチレートは280nm/min、SiとOとの組
成比は1.0:2.0であった。 【0024】この実施例による効果を比較するために、
図1で示す位置に排気口6’を形成してECR面での低
マイクロ波吸収体を側方から排気せず、すなわち、EC
R面でのガス濃度を低下させて成膜したところ、マイク
ロ波3の反射波は入力300Wに対し250Wと著しく
増大し、推積速度は上記の実施例の1/10、また、推
積膜質のエッチレートは上記実施例の300倍となり、
成膜特性が著しく低下した。 【0025】図4は従来のプラズマ処理装置を、上記実
施例の如き観点から分析した真空容器中心軸上の磁束密
度分布を示しており、図2の条件を満たしていないこと
が判る。このため、図3の従来技術によるプラズマ処理
装置を用いて先の実施例と同様にSiO2膜を形成した
ところ、マイクロ波3の入力300Wに対して反射波は
10Wであったが、成膜速度は50〔nm/min〕で、成
膜された膜の屈折率は1.45、エッチレートは600
〔nm/min〕、SiとOとの組成比は1.9:2.0で
あった。 【0026】この成膜特性と先の本実施例の成膜特性を
比較すると判るように、本実施例の如くECR面で発生
した低マイクロ波吸収粒子の排気を真空容器側壁から行
ない、ECR面での導入ガス濃度を高めることによっ
て、本発明の実施例は、マイクロ波3の高吸収帯を形成
し、実効効率をほとんど変えることなく、むしろプラズ
マ処理特性を向上させて、真空容器1のマイクロ波伝播
方向の軸長を短縮することができる。 【0027】上述した本発明の実施例において、マイク
ロ波導入窓10の位置と、ECR位置と、被処理物11
の位置とのそれぞれの関係は、導入するマイクロ波3の
交番電界強度がほぼ零となる位置にマイクロ波導入窓1
0を形成し、ECR位置は、このマイクロ波導入窓10
から(1/4+n)λ,(n=0,1,2…)の位置と
し、被処理物は(1/2+n)λの位置とすると、プラ
ズマを発生させる実効効率や反射波の減少を期待でき
る。また、磁界発生コイル4,5による磁界分布は、マ
イクロ波3の伝播方向に単調減少とすると、マイクロ波
3の導入の阻害を防止することができる。更に、図1に
示すように、マイクロ波3の伝播方向の軸長を直径より
小さくした真空容器1を用いると、上述した効果を得る
上で実際的である。 【0028】 【発明の効果】以上説明したように本発明では、ECR
面において発生する低マイクロ波吸収粒子を排気し、E
CR面での高マイクロ波吸収粒子である未反応ガスを導
入してECR面での導入ガス濃度の高い状態を形成した
ため、プラズマ処理特性を低下させることなく、また、
基板にほぼ垂直な磁力線を生成することができるため、
特にマイクロ波伝播方向に真空容器を小型にすることが
できる。また、2分割したコイルの間に排気口が設置さ
れているため、排気効率が良く、排気装置の大型化を招
くことなく装置の小型化を達成することができる。 【0029】また、反応ガス供給管も分割したコイルの
間の空間を利用して真空容器に接続されているため、ガ
ス供給系の単純化を図ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and more particularly to a plasma processing apparatus utilizing electron cyclotron resonance (hereinafter referred to as ECR). 2. Description of the Related Art A conventional plasma processing apparatus using ECR is described in, for example, Japanese Patent Application Laid-Open No. 56-155535 and Japanese Patent Application Laid-Open No. 57-79621, which is shown in FIG. ing. The plasma processing apparatus in the figure generates plasma active species in the plasma generation chamber 13,
An object to be treated 11 installed at a position sufficiently distant from the maximum generation efficiency region of active species due to a divergent magnetic field by the magnetic field generation coil 4 or the like.
The plasma flow was applied to the substrate. Since the above-mentioned conventional plasma processing apparatus has the plasma generating chamber 13 and the plasma processing chamber 14 having a relatively large axial length as shown in the drawing,
With the increase in the size of the vacuum container 1, the exhaust port 6 and the magnetic field generating coil 4 are increased in size due to the increase in size. In this respect, according to the experiments conducted by the present inventors, EC
In plasma processing using R, the processing characteristics are
Depending on the distance between the ECR position and the object to be processed 11 and the substrate incident direction of the ion species involved in the processing, the shorter this distance is, and the more the ion incident direction is perpendicular to the substrate, the better the processing characteristics. It was found that when the introduced gas concentration at the ECR position is increased, the microwave 3 is almost absorbed at this position and does not reach the object 11 to be processed, so that the reflection disappears from the object 11 to be processed, the support base 9, and the like. However, in the configuration of FIG. 3, it is conceivable to position the object to be processed 11 near the microwave introduction window 10 to shorten the axial length of the vacuum container 1. Therefore, the plasma processing efficiency and processing characteristics are deteriorated. An object of the present invention is to provide a plasma processing apparatus in which the vacuum container is downsized without deteriorating the plasma processing characteristics. In order to achieve the above-mentioned object, the present invention introduces a reaction gas into the ECR plane and decomposes particles by plasma, which are no longer capable of absorbing microwaves. By exhausting in the direction of the ECR plane, a high concentration of introduced gas is formed in this ECR plane, and the magnetic field line direction toward the substrate is applied to the substrate surface by a magnetic field coil installed at almost the same height as the substrate surface. It is characterized by being vertical. Since the plasma processing method of the present invention is as described above, particles having a low microwave absorption can be efficiently exhausted, and as a result, the concentration of introduced gas can be increased. Therefore, the region including the ECR surface can be used as a high absorption band for microwaves to significantly reduce the microwave transmittance, and even if the microwave introduction part and the object to be processed are positioned near the ECR position, the plasma treatment is performed. Plasma processing can be performed without deteriorating the characteristics. Therefore, at least the length of the vacuum container in the microwave propagation direction can be significantly shortened as compared with the conventional case, and a small plasma processing apparatus can be obtained. That is, the characteristics of plasma processing such as film formation and etching depend on the type of ion species among plasma active species,
Almost determined by the concentration and life, the maximum generation position of the ion species is the ECR position. Here, the type and concentration of the ion species are determined, and whether or not to reach the object to be processed within the life is determined by the ECR position and the object to be processed. The distance of the object and the direction of incidence of the ions on the substrate are determined by the direction of the magnetic field lines. Further, the propagation of microwaves is determined by the absorption by molecules, atoms, ions, etc. in the ECR position and its vicinity. Microwave absorption is higher for particles with higher molecular weight. That is, the introduced gas molecule absorbs the microwave much better than the ion or radical decomposed and generated by plasmaization. The plasma density at the ECR position is determined by the type of gas introduced and its partial pressure. That is, the absorption of microwaves at the ECR position occurs when the concentration of the undecomposed introduced gas having high absorption efficiency is high and the introduced gas molecules are turned into plasma until there is a constant plasma density. However, if the concentration of particles having low absorption efficiency such as radicals generated by decomposition is high, the degree of microwave absorption is low, and as a result, high-power microwaves reach the substrate. Therefore, not only the ECR surface with the highest decomposition efficiency, but also the particles with low microwave absorption efficiency existing between the ECR surface and the substrate are exhausted as much as possible before reaching the substrate, and the concentration of introduced gas to the substrate is high. So that the exhaust gas is in the same direction as the ECR surface,
At least, if the air is exhausted from between the ECR surface and the substrate surface, the degree to which the microwave reaches the substrate becomes low,
The reflection of microwaves can be prevented. Since the ionic species involved in the substrate processing are transported by the magnetic lines of force, the processing efficiency is not lowered. The higher the concentration of these gases, the lower the transmittance of microwaves in the same region. Therefore, the introduced gas is blown onto the ECR surface (the surface having the magnetic flux density B satisfying the electron charge e and the mass m at the frequency ω of ω = B · e / m microwave). By exhausting on the same plane or parallel to this plane,
When the concentration of introduced gas in the same plane is increased, a high absorption band of microwaves is formed in this region, and the propagation of microwaves to the object to be processed or the reflection of microwaves from the object to be processed or the support is suppressed. Therefore, the effective effect of the introduced microwave is not impaired. Therefore, even if the microwave introducing part and the object to be processed are located near the ECR position, the plasma processing can be performed without degrading the plasma processing characteristics. Embodiments of the present invention will be described below with reference to the drawings. An embodiment of the present invention shown in FIG. 1 uses a vacuum container 1 having an axial length smaller than its diameter, and a microwave guide window 10 at the upper end of the vacuum container 1 introduces microwaves 3 in the axial direction. The wave tube 2 is provided. Reaction gas supply pipes 7 and 8 and an exhaust port 6 are formed on the side of the vacuum container 1, and an object 11 to be processed is placed on a substrate support 9 at the bottom. The vacuum container 1 having such a configuration has a diameter of 350 mm and an axial length of 62 mm, and the microwave 3 supplied from the microwave waveguide 2 is 2.45 [GHz] at 300 W and a wavelength of 123.
mm. FIG. 2 shows the positional relationship among the center positions of the reaction gas supply pipes 7 and 8 and the exhaust port 6, the microwave introduction window 10 and the object to be treated 11. This figure shows the magnetic flux density distribution on the central axis of the vacuum container 1, and the broken line is 2.45 [GH
z] of the microwave 3 (ECR condition (875 [Ga
[uss]) is satisfied. Therefore, E
The CR condition is satisfied from the microwave introduction window 10 at a position of 31 mm, which is ¼ of the wavelength λ of the microwave, and the same position is the introduction position of the reaction gas from the reaction gas supply pipes 7 and 8. Further, the object to be processed 11 is the microwave introduction window 10
Is at a position of 1/2 λ from the point 0 and the microwave introduction window 1
The position of 0 is shown. The magnetic flux density distribution as described above is performed by controlling the currents to the main magnetic field generating coil 4 and the control magnetic field generating coil 5 provided on the outer circumference of the vacuum container 1 as shown in FIG. In the processing of the substrate, when the magnetic force lines are obliquely incident on the substrate at the substrate end portion, the film formation amount is reduced or the film quality is poor in the film formation where the shadow is behind the ion incident portion. There is a problem that the etching does not proceed perpendicularly to the substrate. Therefore, when processing the substrate, it is necessary to control the magnetic force lines so that the magnetic force lines are substantially perpendicular to the substrate. In the case of the prior art shown in FIG. 3, since the magnetic field generating portion is located far above the substrate, the magnetic field lines entering the substrate are
Although it is perpendicular to the substrate at the center of the substrate, it is obliquely incident at the end of the substrate. In order to form magnetic field lines that are vertically incident even at the edge of the substrate, it is effective to install a magnetic field generating coil around the entire substrate processing chamber. However, if the coil is installed on the entire outer peripheral portion of the processing chamber, it is not possible to realize the exhaust of the low microwave absorber particles at the same level as the ECR surface, which is the present invention, because the coil becomes an obstacle. However, the present invention cannot be completed. However, according to the experiment, in order to form the magnetic field lines substantially perpendicular to the substrate, it suffices to install the magnetic field generating coil at the substantially same height position as the substrate, and the main magnetic field generating coil 4 for generating the ECR. It has been found that the space between the control magnetic field generating coil 5 and the control magnetic field generating coil 5 may be wide enough to allow the exhaust port to be installed. Therefore, in the embodiment of the present invention shown in FIG. 1, the main magnetic field generating coil 4 and the control magnetic field generating coil 5 are dispersed on both sides of the exhaust port 6 and the reaction gas supply pipes 7 and 8 in the axial direction of the vacuum container 1. Have been placed. Next, a silicon wafer having a diameter of 100 mm is used as the object 11 to be processed, and the surface to be processed is arranged so as to face the direction of propagation of the microwave 3, and silicon dioxide (SiO 2) is used.
2 ) The case of forming a film will be described. In this case, the microwave 3 is 300 W, 24
5 [GHz], wavelength 123 mm, reaction gas supply pipes 7, 8
From which monosilane (SiH 4 ) was introduced at 20 ml / min and oxygen (O 2 ) was introduced at 80 ml / min.
The inside of the vacuum chamber 1 was evacuated to 3 to 3 [Torr] so that the lines of magnetic force at the edge of the substrate were substantially in the direction perpendicular to the substrate. At this time, the magnetic flux density distribution on the central axis of the device is controlled so as to satisfy the condition of FIG. At this time, the reflected wave of the microwave 3 is 20 W.
Then, the average film forming rate is 60 [nm / min], the refractive index of the deposited film is 1.46, and the buffer hydrofluoric acid solution (HF: NH 4 F = 1: 6).
The etching rate was 280 nm / min, and the composition ratio of Si and O was 1.0: 2.0. To compare the effects of this embodiment,
The exhaust port 6 ′ is formed at the position shown in FIG. 1 so that the low microwave absorber on the ECR surface is not exhausted from the side, that is, the EC
When the film was formed by reducing the gas concentration on the R surface, the reflected wave of the microwave 3 was remarkably increased to 250 W with respect to the input of 300 W, and the deposition rate was 1/10 of the above-mentioned example, and the deposition film quality. Etch rate is 300 times that of the above example,
The film forming characteristics were significantly reduced. FIG. 4 shows the magnetic flux density distribution on the central axis of the vacuum vessel analyzed from the viewpoint of the above-described embodiment of the conventional plasma processing apparatus, and it can be seen that the condition of FIG. 2 is not satisfied. For this reason, when a SiO 2 film was formed using the plasma processing apparatus according to the prior art shown in FIG. 3 in the same manner as in the previous example, the reflected wave was 10 W for an input of 300 W of the microwave 3, but the film was formed. The speed is 50 [nm / min], the refractive index of the formed film is 1.45, and the etching rate is 600.
[Nm / min], the composition ratio of Si and O was 1.9: 2.0. As can be seen by comparing this film forming characteristic with the film forming characteristic of this embodiment, the low microwave absorption particles generated on the ECR surface as in this embodiment are exhausted from the side wall of the vacuum container to obtain the ECR surface. In the embodiment of the present invention, the high absorption band of the microwaves 3 is formed by increasing the concentration of the introduced gas to improve the plasma processing characteristics without changing the effective efficiency. The axial length in the wave propagation direction can be shortened. In the above-described embodiment of the present invention, the position of the microwave introduction window 10, the ECR position, and the object to be processed 11 are set.
And the position of the microwave introduction window 1 at the position where the alternating electric field strength of the introduced microwave 3 becomes substantially zero.
0, and the ECR position is the microwave introduction window 10
From (1/4 + n) λ, (n = 0,1,2 ...) and the object to be processed is (1/2 + n) λ, expecting effective efficiency of plasma generation and reduction of reflected waves. it can. Further, if the magnetic field distribution by the magnetic field generating coils 4 and 5 monotonously decreases in the propagation direction of the microwave 3, it is possible to prevent the introduction of the microwave 3 from being hindered. Further, as shown in FIG. 1, it is practical to obtain the above-mentioned effects by using the vacuum container 1 in which the axial length of the microwave 3 in the propagation direction is smaller than the diameter. As described above, according to the present invention, ECR
Exhaust low microwave absorption particles generated on the surface,
Since the unreacted gas which is the high microwave absorption particles on the CR surface is introduced to form the high introduced gas concentration on the ECR surface, the plasma processing characteristics are not deteriorated, and
Since it is possible to generate magnetic field lines that are almost perpendicular to the substrate,
In particular, the vacuum container can be downsized in the microwave propagation direction. Further, since the exhaust port is installed between the coils divided into two, the exhaust efficiency is good, and the downsizing of the device can be achieved without increasing the size of the exhaust device. Since the reaction gas supply pipe is also connected to the vacuum container by utilizing the space between the divided coils, the gas supply system can be simplified.

【図面の簡単な説明】 【図1】本発明のプラズマ処理方式を適用したプラズマ
処理装置の縦断面図である。 【図2】図1の真空容器中心軸上の磁束密度分布を示す
図である。 【図3】従来技術によるプラズマ処理装置の縦断面図で
ある。 【図4】図3の真空容器中心軸上の磁束密度分布を示す
図である。 【符号の説明】 1 真空容器 3 マイクロ波 4,5 磁界発生コイル 6 排気口 7,8 反応ガス供給管 10 マイクロ波導入窓 11 被処理物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of a plasma processing apparatus to which a plasma processing method of the present invention is applied. FIG. 2 is a diagram showing a magnetic flux density distribution on the central axis of the vacuum container of FIG. FIG. 3 is a vertical cross-sectional view of a plasma processing apparatus according to the related art. 4 is a diagram showing a magnetic flux density distribution on the central axis of the vacuum container of FIG. [Explanation of reference numerals] 1 vacuum container 3 microwaves 4, 5 magnetic field generating coil 6 exhaust ports 7, 8 reaction gas supply pipe 10 microwave introduction window 11 object to be treated

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園部 正 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 鈴木 和夫 茨城県日立市幸町三丁目2番2号 株式会 社日立エンジニアリングサービス内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Sonobe             3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Company Hitachi, Ltd.Hitachi factory (72) Inventor Kazuo Suzuki             3-2 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Inside Hitachi Engineering Service

Claims (1)

【特許請求の範囲】 1. 内部に被処理物が設置される真空容器と、真空容
器に設けたマイクロ波導入窓と、真空容器に設けたガス
導入口と、真空容器に設けたガス排気口と、真空容器の
外側に配置され真空容器内に電子サイクロトロン共鳴に
よるプラズマを生成するために充分な磁場を生成する磁
場発生手段とを備え、 前記電子サイクロトロン共鳴によりプラズマを生成する
電子サイクロトロン共鳴面が、マイクロ波導入窓からマ
イクロ波の波長の(n+1/4)倍(n=0,1,2・
・・)の位置にあることを特徴とするプラズマ処理装
置。 2. 内部に被処理物が設置される真空容器と、真空容
器に設けたマイクロ波導入窓と、真空容器に設けたガス
導入口と、真空容器に設けたガス排気口と、真空容器の
外側に配置され真空容器内に電子サイクロトロン共鳴に
よるプラズマを生成するために充分な磁場を生成する磁
場発生手段とを備え、 前記磁場発生手段は、マイクロ波導入窓側の位置に配置
された主磁界発生コイルと、被処理物の位置に配置され
た制御磁界発生コイルとからなり、前記ガス排気口は、
主磁界コイルと制御磁界コイルとの間に位置しているこ
とを特徴とするプラズマ処理装置。 3. 前記真空容器は、その直径よりもマイクロ波の伝
播方向の軸長が小さくされていることを特徴とする特許
請求の範囲第2項記載のプラズマ処理装置。 4. 前記ガス導入口は、主磁界発生コイルと制御磁界
発生コイルとの間に位置していることを特徴とする特許
請求の範囲第2項記載のプラズマ処理装置。
[Claims] 1. A vacuum container in which the object to be processed is installed, a microwave introduction window provided in the vacuum container, a gas introduction port provided in the vacuum container, a gas exhaust port provided in the vacuum container, and an outside of the vacuum container And a magnetic field generating means for generating a magnetic field sufficient to generate plasma by electron cyclotron resonance in a vacuum container, wherein the electron cyclotron resonance surface for generating plasma by electron cyclotron resonance has a microwave from a microwave introduction window. (N + 1/4) times the wavelength of (n = 0,1,2.
・ ・) Plasma processing device characterized by being located. 2. A vacuum container in which the object to be processed is installed, a microwave introduction window provided in the vacuum container, a gas introduction port provided in the vacuum container, a gas exhaust port provided in the vacuum container, and an outside of the vacuum container And a magnetic field generating means for generating a magnetic field sufficient to generate plasma by electron cyclotron resonance in the vacuum container, the magnetic field generating means, a main magnetic field generating coil disposed at a position on the microwave introduction window side, And a control magnetic field generating coil arranged at the position of the object to be processed, the gas exhaust port,
A plasma processing apparatus characterized by being located between a main magnetic field coil and a control magnetic field coil. 3. The plasma processing apparatus according to claim 2, wherein the vacuum container has an axial length in the microwave propagation direction smaller than its diameter. 4. The plasma processing apparatus according to claim 2, wherein the gas inlet is located between the main magnetic field generating coil and the control magnetic field generating coil.
JP5030873A 1993-02-19 1993-02-19 Plasma processing device Expired - Fee Related JP2546596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5030873A JP2546596B2 (en) 1993-02-19 1993-02-19 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5030873A JP2546596B2 (en) 1993-02-19 1993-02-19 Plasma processing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21917987A Division JPH0715901B2 (en) 1987-01-19 1987-09-03 Plasma processing device

Publications (2)

Publication Number Publication Date
JPH05347260A true JPH05347260A (en) 1993-12-27
JP2546596B2 JP2546596B2 (en) 1996-10-23

Family

ID=12315850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5030873A Expired - Fee Related JP2546596B2 (en) 1993-02-19 1993-02-19 Plasma processing device

Country Status (1)

Country Link
JP (1) JP2546596B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS57151193A (en) * 1981-03-13 1982-09-18 Sanyo Electric Co Electronic range
JPS59161035A (en) * 1984-01-18 1984-09-11 Hitachi Ltd Plasma generator
JPS59202635A (en) * 1983-05-04 1984-11-16 Hitachi Ltd Plasma treating device
JPS61222533A (en) * 1985-03-29 1986-10-03 Hitachi Ltd Plasma treatment apparatus
JPS61267324A (en) * 1985-05-21 1986-11-26 Fuji Electric Co Ltd Dry thin film processing device
JPS6292443A (en) * 1985-10-18 1987-04-27 Matsushita Electric Ind Co Ltd Plasma apparatus
JPS6464221A (en) * 1987-09-03 1989-03-10 Hitachi Ltd Plasma treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS57151193A (en) * 1981-03-13 1982-09-18 Sanyo Electric Co Electronic range
JPS59202635A (en) * 1983-05-04 1984-11-16 Hitachi Ltd Plasma treating device
JPS59161035A (en) * 1984-01-18 1984-09-11 Hitachi Ltd Plasma generator
JPS61222533A (en) * 1985-03-29 1986-10-03 Hitachi Ltd Plasma treatment apparatus
JPS61267324A (en) * 1985-05-21 1986-11-26 Fuji Electric Co Ltd Dry thin film processing device
JPS6292443A (en) * 1985-10-18 1987-04-27 Matsushita Electric Ind Co Ltd Plasma apparatus
JPS6464221A (en) * 1987-09-03 1989-03-10 Hitachi Ltd Plasma treatment system

Also Published As

Publication number Publication date
JP2546596B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
KR100278187B1 (en) Plasma treatment method and substrate treatment method
KR100322700B1 (en) Plasma processing apparatus provided with microwave applicator having annular waveguide and processing method
JP2925535B2 (en) Microwave supplier having annular waveguide, plasma processing apparatus and processing method having the same
JP2005033055A (en) Surface wave plasma processor using multi-slot antenna for which circular arcuate slot is provided together with radial slot
US20080053816A1 (en) Plasma processing apparatus and method
JP3907444B2 (en) Plasma processing apparatus and structure manufacturing method
JP2546596B2 (en) Plasma processing device
US5433788A (en) Apparatus for plasma treatment using electron cyclotron resonance
JP3530788B2 (en) Microwave supplier, plasma processing apparatus and processing method
JP2008027798A (en) Plasma treatment device
JP2546596C (en)
JP2002270599A (en) Plasma treating apparatus
JPH0715901B2 (en) Plasma processing device
JP2000294548A (en) Microwave plasma treatment apparatus using dielectrics window
EP0290036B1 (en) Plasma treatment apparatus
KR100263902B1 (en) Surface wave coupled etching apparatus
JP2001043997A (en) Plasma processing device
JPH11193466A (en) Plasma treating device and plasma treating method
JP2857090B2 (en) Microwave-excited plasma processing equipment
JPH11329792A (en) Microwave supply container
JP2006012962A (en) Microwave plasma processing apparatus using vacuum ultraviolet light shielding plate with oblique through hole and its processing method
JP2000138171A (en) Non-terminated annular waveguide with circular slot and plasma treatment device and method using it
JP2613313B2 (en) Microwave plasma processing equipment
JP2003332241A (en) Microwave plasma treatment apparatus, microwave plasma treatment method, and structure manufacturing method
JPH08330294A (en) Plasma treatment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees