JPS63219128A - Treatment apparatus - Google Patents
Treatment apparatusInfo
- Publication number
- JPS63219128A JPS63219128A JP5250687A JP5250687A JPS63219128A JP S63219128 A JPS63219128 A JP S63219128A JP 5250687 A JP5250687 A JP 5250687A JP 5250687 A JP5250687 A JP 5250687A JP S63219128 A JPS63219128 A JP S63219128A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- magnetic field
- chamber
- processing
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035699 permeability Effects 0.000 claims abstract description 10
- 230000009471 action Effects 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 19
- 239000010453 quartz Substances 0.000 abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 19
- 238000000605 extraction Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000005530 etching Methods 0.000 description 18
- 239000007789 gas Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 11
- 239000010408 film Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はプラズマによって発生するイオンやうジカルの
物理的及び化学的効果を利用して基板(以下ウェハと記
す)を1枚ずつエツチングしたり、CVD (化学的気
相堆積)法で膜形成したりするのに適した処理装置に関
するものであり、LSI等の微細なパターン及び薄膜の
形成に適した処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes the physical and chemical effects of ions and radicals generated by plasma to etch substrates (hereinafter referred to as wafers) one by one. The present invention relates to a processing apparatus suitable for forming a film using a chemical vapor deposition method, and relates to a processing apparatus suitable for forming fine patterns and thin films such as LSI.
特に、ガス状原料をプラズマ、殊に電子サイクロトロン
共鳴(以下ECRと記す)によるマイクロ波放電によっ
て生成したプラズマを高透磁性部材で分布(強度、方向
、偏りetc )を制御した磁界の力を利用して引き出
して、処理の均一性に優れ、ダメージが少ないウニノー
の処理装置である。In particular, we utilize the force of a magnetic field that controls the distribution (intensity, direction, polarization, etc.) of plasma generated by microwave discharge by electron cyclotron resonance (hereinafter referred to as ECR) using a highly permeable member. Uninow's processing equipment has excellent processing uniformity and minimal damage.
以下代表例としてエツチング装置について説明する。An etching apparatus will be described below as a representative example.
従来の技術 半導体LSIの製造工程ではパターンの微細化。Conventional technology In the manufacturing process of semiconductor LSI, patterns become finer.
高集積化、薄膜化及び工程数の増加に伴ない異方性でか
つ低ダメージのエツチング方法及び装置が要求されてい
る。With the trend toward higher integration, thinner films, and an increase in the number of process steps, anisotropic and low-damage etching methods and devices are required.
これに対応してノ・ロゲン原素を含むガス原料をECR
を用いてプラズマを生成してウェハをエツチングする方
法がある。ECRを用いて作成したプラズマは、プラズ
マの生成部とウエノ・のエツチング部を分離できかつ、
生成したプラズマを電場や磁場で制御し々からエツチン
グできることからダメージを低く抑制することができ、
プラズマの広がりも制御が可硅で処理の均一性を改良す
ることができる。In response to this, ECR of gas raw materials containing norogen elements
There is a method of etching a wafer by generating plasma using a plasma. Plasma created using ECR can separate the plasma generation part from the Ueno etching part, and
Since the generated plasma can be controlled and etched using electric and magnetic fields, damage can be suppressed to a low level.
The spread of plasma can also be controlled and the uniformity of processing can be improved.
その中で、プラズマを磁場で制御する方法はいくつか提
案されているが、構造が簡単な方法が特開昭57−13
3636号公報及び特公符昭58−13626号公報に
記されている。Among them, several methods of controlling plasma using a magnetic field have been proposed, but a method with a simple structure was published in Japanese Patent Application Laid-open No. 57-13.
It is described in Publication No. 3636 and Japanese Patent Publication No. 58-13626.
以下、図面を参照しながら従来の処理装置について説明
する。A conventional processing device will be described below with reference to the drawings.
導波管6を通してプラズマ生成室1に導入されたマイク
ロ波と磁気コイル4によってプラズマ生成室1内でEC
Rを用いてプラズマを発生させる。EC is performed in the plasma generation chamber 1 by the microwave introduced into the plasma generation chamber 1 through the waveguide 6 and the magnetic coil 4.
Generate plasma using R.
そして磁気コイル40周辺から処理室2の周囲まで延在
する高透磁率材料製カバー(外匣)3が設けられており
、このカバーによって処理室2内の磁場分布を調整して
プラズマの引き出し行っている〇一方、被処理試料であ
るSi ウェハ6は処理室2の内周に垂直に並べられて
おり、上記高透磁率材料製カバー3によって引き出され
たプラズマがSi ウェハ6表面に照射されて膜を形成
する。A cover (outer case) 3 made of a high magnetic permeability material is provided that extends from around the magnetic coil 40 to around the processing chamber 2, and this cover adjusts the magnetic field distribution inside the processing chamber 2 to draw out the plasma. On the other hand, Si wafers 6, which are samples to be processed, are arranged vertically on the inner circumference of the processing chamber 2, and the surface of the Si wafers 6 is irradiated with plasma extracted by the cover 3 made of the high magnetic permeability material. to form a film.
発明が解決しようとする問題点
しかしながら、上記の様な構成では、プラズマをプラズ
マ発生室1から引き出し、プラズマ流の方向を変え、か
つ均一性良く処理するために重要な役割を果たす処理室
2内の磁場強度及び分布は、高透磁率材料からなるカバ
ー3が磁気コイル40カバーであるため、磁気コイル4
が発生する磁界強度によってほぼ決まってしまい処理に
適した磁場分布や磁場強度を得るのが困難である。Problems to be Solved by the Invention However, in the above-described configuration, there is a gap in the processing chamber 2 that plays an important role in drawing out the plasma from the plasma generation chamber 1, changing the direction of the plasma flow, and processing with good uniformity. Since the cover 3 made of a high magnetic permeability material covers the magnetic coil 40, the magnetic field strength and distribution of the magnetic coil 4
It is almost determined by the magnetic field strength generated, making it difficult to obtain a magnetic field distribution and magnetic field strength suitable for processing.
例えば、磁気コイル4が発生する磁界強度は、周波数2
.45 GHzのマイクロ波を用いてECR条件を満足
させるためには磁気コイル4で約875ガウスの磁場が
必要で875ガウスよりかけ離れると、大きくても、小
さくてもプラズマは発生しない。プラズマ発生室1の直
下にある処理室2内の6”−
磁場強度は磁気コイル4が形成する磁気回路の磁場強度
すなわちECRを満足する磁界の条件によって決捷っで
しまう。しだがって、従来の構成では処理室2内でプラ
ズマ発生室1から引き出されたプラズマ流の方向を大き
く変えたり、Si ウェハ6を均一性良く又効率的に処
理するのに最適の磁場分布、磁場強度をプラズマを発生
させるための磁場強度と分離し単独に制御するのが困難
であるQ
また、特開昭57−133636号公報に示されている
様に磁気コイルから処理室に至る大きな構造部品を磁場
分布を測定しながら適切な形状に加工することは事実上
不可能に近い。For example, the magnetic field strength generated by the magnetic coil 4 has a frequency of 2
.. In order to satisfy the ECR conditions using microwaves of 45 GHz, a magnetic field of approximately 875 Gauss is required in the magnetic coil 4, and if the field deviates from 875 Gauss, no matter how large or small, plasma will not be generated. The 6"-magnetic field strength in the processing chamber 2 located directly below the plasma generation chamber 1 is determined by the magnetic field strength of the magnetic circuit formed by the magnetic coil 4, that is, the magnetic field conditions that satisfy ECR. Therefore, In the conventional configuration, the direction of the plasma flow drawn from the plasma generation chamber 1 within the processing chamber 2 can be greatly changed, and the magnetic field distribution and intensity optimal for processing the Si wafer 6 with good uniformity and efficiency can be controlled by the plasma. In addition, as shown in Japanese Patent Application Laid-Open No. 57-133636, it is difficult to control the magnetic field strength separately from the magnetic field strength for generating the magnetic field. It is virtually impossible to measure and process the material into an appropriate shape.
さらに、ドライエソチング工程ではウェハ間の処理のバ
ラツキを少なくするために、終点検出器を利用してSi
ウェハを1枚ずつエツチングする枚葉式処理装置が主
流になりつつあるが、従来装置では第2図から分かるよ
うに処理室2内の磁場は、中央部が低く周辺部が高い分
布となる。しだがってプラズマは外周部に強く引き寄せ
られて広eA−;’
かりすぎて中央部ではプラズマ密度が希薄となりエツチ
ング速度及びエツチング速度分布共に枚葉式装置には不
適切なプラズマ分布となる。Furthermore, in the dry ethoching process, an end point detector is used to reduce the variation in processing between wafers.
Single-wafer processing apparatuses that etch wafers one by one are becoming mainstream, but in conventional apparatuses, as can be seen from FIG. 2, the magnetic field within the processing chamber 2 is distributed such that it is low in the center and high in the periphery. Therefore, the plasma is strongly attracted to the outer periphery and becomes too wide, and the plasma density becomes thinner in the center, resulting in an etching rate and etching rate distribution that are inappropriate for a single-wafer type device.
本発明は、上記従来の問題点を解消するもので、処理室
でのプラズマ分布を制御するため構造が簡単で処理室内
の磁場分布を容易に変えることができ、枚葉式処理に適
した磁場分布が得られ、処理速度、処理の均一性が共に
優れた処理装置を提供するものである。The present invention solves the above-mentioned conventional problems.The present invention has a simple structure to control the plasma distribution in the processing chamber, and the magnetic field distribution in the processing chamber can be easily changed. The object of the present invention is to provide a processing apparatus that can obtain a uniform distribution and is excellent in both processing speed and processing uniformity.
問題点を解決するだめの手段
上記問題点を解決するために本発明の処理装置は、マイ
クロ波と磁場の作用でプラズマを発生させるプラズマ発
生室及び前記プラズマを磁場による両極性拡散によって
処理室に導入して処理を行なう処理装置において、プラ
ズマ発生室から処理室に至るプラズマ輸送路の側面周辺
あるいは輸送路の出口(処理室の入口)近傍に高透磁性
部材を設置するものである。Means for Solving the Problems In order to solve the above problems, the processing apparatus of the present invention includes a plasma generation chamber that generates plasma by the action of microwaves and a magnetic field, and a plasma generation chamber that generates plasma by polar diffusion caused by the magnetic field. In a processing apparatus in which plasma is introduced into the processing chamber, a highly permeable member is installed around the side surface of the plasma transport path from the plasma generation chamber to the processing chamber or near the exit of the transport path (inlet of the processing chamber).
作 用
との高透磁件部材の厚さを変えるという簡単々手法でプ
ラズマ輸送の磁場分布を変えることができる。The magnetic field distribution for plasma transport can be changed simply by changing the thickness of the highly permeable material.
以下、ドライエツチングに本発明適用した場合を例とし
て実施例を説明するが本発明はプラズマの輸送方法に関
するものであり、プラズマを用いたCVDに適用した場
合も同様の効果が得られる。Hereinafter, an example will be described in which the present invention is applied to dry etching. However, the present invention relates to a method of transporting plasma, and similar effects can be obtained when applied to CVD using plasma.
実施例
以下、本発明の一実施例について図面を参照しながら説
明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における処理装置の断面図で
ある。第1図において、1aはプラズマ発生室、2aは
処理室、3aは高透磁性部材(炭素鋼;5S41P)、
4aは磁気コイル、5aは導波管、6aは試料(被処理
物)、7aはガス導入パイプ、8は石英板、9はプラズ
マ引き出し口、10は処理室のチャンバー及びフタ(S
US−316;非磁性)である。FIG. 1 is a sectional view of a processing apparatus in an embodiment of the present invention. In FIG. 1, 1a is a plasma generation chamber, 2a is a processing chamber, 3a is a highly permeable member (carbon steel; 5S41P),
4a is a magnetic coil, 5a is a waveguide, 6a is a sample (processed object), 7a is a gas introduction pipe, 8 is a quartz plate, 9 is a plasma extraction port, 10 is a chamber and a lid of the processing chamber (S
US-316; non-magnetic).
以上の様に構成された処理装置について、以下その作用
を説明する。丑ず、マイクロ波発生装置(以下、マグネ
トロンと記す。図示せず。マイクロ波周波数は例えば2
.45GHz)で発生したマイクロ波は導波管5aによ
り石英板8を通してプラズマ発生室1aに印加される。The operation of the processing device configured as described above will be explained below. Microwave generator (hereinafter referred to as magnetron, not shown) The microwave frequency is, for example, 2
.. Microwaves generated at a frequency of 45 GHz) are applied to the plasma generation chamber 1a through a quartz plate 8 by a waveguide 5a.
プラズマ発生室1aにはガス導入パイプ7を通じて、処
理の原料ガスを導入しながら、ターボ分子ポンプ(図示
せず)で排気し1〜10mTorr の真空度に保たれ
ている。また、これと同時にプラズマ発生室1aの外周
に設置された磁気コイル4aによってプラズマ発生室1
aに875ガウスの磁界が印加されると、プラズマ発生
室内のガスはECR条件を満たしてプラズマ状態となり
、電子、イオン、ラジカル等になる。A raw material gas for processing is introduced into the plasma generation chamber 1a through a gas introduction pipe 7, and the chamber is evacuated by a turbo molecular pump (not shown) to maintain a vacuum level of 1 to 10 mTorr. At the same time, the magnetic coil 4a installed on the outer periphery of the plasma generation chamber 1a causes the plasma generation chamber 1
When a magnetic field of 875 Gauss is applied to a, the gas in the plasma generation chamber satisfies the ECR conditions and enters a plasma state, becoming electrons, ions, radicals, etc.
磁気コイル4aの内部にあるプラズマ発生室1a内の磁
力線は、はぼ平行でプラズマも平行に引き出されてくる
が、プラズマ引き出し口9より下方では磁力線は高透磁
性部材3aの影響で磁力線は広がり、しだがって両極性
拡散でプラズマも広がりながら試料6aに到達する。し
かしながら、高透磁性部材3aは磁気コイル4aと離れ
、かつ磁気コイル4aの反対極側(第4図では磁気コイ
ル4aの上方)に至っていないことから、磁気閉回路を
作ることが無く適度に発散する磁場が処理室2a内に形
成される。The magnetic lines of force in the plasma generation chamber 1a inside the magnetic coil 4a are almost parallel, and the plasma is drawn out in parallel, but below the plasma extraction port 9, the lines of magnetic force are spread out due to the influence of the highly permeable member 3a. Therefore, the plasma also spreads due to bipolar diffusion and reaches the sample 6a. However, since the highly permeable member 3a is separated from the magnetic coil 4a and does not reach the opposite pole side of the magnetic coil 4a (above the magnetic coil 4a in FIG. 4), a closed magnetic circuit is not created and the radiation is moderately dispersed. A magnetic field is formed within the processing chamber 2a.
しだがって、発生したプラズマは上記の様な磁場で両極
性拡散し、試料6aに到達してその表面を加工する。Therefore, the generated plasma is bipolarly diffused by the magnetic field as described above, reaches the sample 6a, and processes its surface.
以上のような構成の処理装置において、磁気コイル4a
の中心部で875G(ガウス)の磁場を発生させ、プラ
ズマ引き出し口9の外周下部にNiメッキ(厚さ1Q/
1m)を施した高透磁性材料(炭素鋼;5S41P)の
リングを厚さ10〜40rMlO間で変化させてその時
の試料6a位置における磁場強度の変化をガウスメータ
で測定した。第3図に高透磁性部材3aの厚みが、10
,20.40嘔の特の結果を示す(他の材料はステンレ
ス鋼(SUS316)、銅、アルミニウム、石英等の非
磁性材料である0)。In the processing device configured as described above, the magnetic coil 4a
A magnetic field of 875G (Gauss) is generated at the center of the plasma extraction port 9, and Ni plating (thickness 1Q/
A ring made of a highly permeable material (carbon steel; 5S41P) coated with 1 m) was varied in thickness between 10 and 40 rMlO, and the change in magnetic field strength at the sample 6a position was measured using a Gaussmeter. In FIG. 3, the thickness of the highly permeable member 3a is 10
, 20.40 (other materials are non-magnetic materials such as stainless steel (SUS316), copper, aluminum, quartz, etc.).
この結果から、試料位置での磁場の分布はプラズマ引き
出し口近傍の高透磁性材料の厚みだけで容易に変えるこ
とが出来る。From this result, the distribution of the magnetic field at the sample position can be easily changed simply by changing the thickness of the highly permeable material near the plasma extraction port.
10ベー。10 be.
以下、第2の実施例について説明する。The second example will be described below.
第1の実施例に用いた装置で、ガス導入パイプ7aから
SF6 ガスを毎分2QCC流し、ターボ分子ポンプで
排気して真空度を6mTorr に保ちながら、マグネ
トロン(図示せず)から2.45GH2のマイクロ波(
400W)を導波管5aを通じてプラズマ発生室1aに
導入し、かつ磁気コイル4aで875ガウスの磁場を印
加してプラズマを発生させた。In the apparatus used in the first embodiment, SF6 gas is flowed through the gas introduction pipe 7a at a rate of 2QCC per minute, and while the vacuum level is maintained at 6mTorr by exhausting with a turbo molecular pump, 2.45GH2 gas is supplied from the magnetron (not shown). Microwave (
400 W) was introduced into the plasma generation chamber 1a through the waveguide 5a, and a magnetic field of 875 Gauss was applied by the magnetic coil 4a to generate plasma.
一方、被処理物の試料は直径5インチのSi単結晶ウェ
ハを900’Cに加熱して1000人の3102膜を形
成し、そしてCVD(化学的気相膜成長)法で多結晶S
i (ポリSi)膜を3000人形成し、さらにフォト
レジストを塗布(厚さ1.2μm)し、パターンを露光
、現像したものを用いてポ1Jsi膜のエツチングを行
なった。On the other hand, the sample to be processed was prepared by heating a 5 inch diameter Si single crystal wafer to 900'C to form a 3102 film of 1000 layers, and then using a CVD (chemical vapor deposition) method to form a polycrystalline Si single crystal wafer.
3,000 polySi (polySi) films were formed, a photoresist was applied (thickness: 1.2 μm), a pattern was exposed and developed, and etching was performed on the polySi film.
エツチング結果は、処理室2a内で若干ガス流れの影響
を受けるものの、エツチング速度の分布は実施例1aの
磁場分布とほぼ一致し、5S41からなる高透磁性部材
3aの厚さが10肺の時は中央部のエツチング速度が早
く、周囲に向う程遅くなっていた。高透磁性部材3aの
厚さが40個の時は、10關の時とは逆に周辺部でのエ
ツチング速度が早く、中央部で少し遅い。一方、高透磁
性部材3aの厚さが20循ではほぼ全面で均一にエツチ
ングでき、均一性は2.1%であった。Although the etching results are slightly affected by the gas flow in the processing chamber 2a, the etching rate distribution almost matches the magnetic field distribution in Example 1a, and when the thickness of the highly permeable member 3a made of 5S41 is 10 mm. The etching speed was fast in the center and slowed toward the periphery. When the thickness of the high magnetic permeability member 3a is 40, the etching speed is faster at the periphery and slightly slower at the center, contrary to when the thickness is 10. On the other hand, when the high magnetic permeability member 3a had a thickness of 20 times, it was possible to uniformly etch almost the entire surface, and the uniformity was 2.1%.
次に本発明の第3の実施例を示す。Next, a third embodiment of the present invention will be described.
上記第2の実施例に用いた装置において、エツチング用
ガスとしてSF6 の代りに02を10係含むCHF3
ガスを毎分30匡を、また被処理試料としては、単結晶
Stを900℃でパイロジェニック法にて8102膜2
000人を形成しさらに、フォトレジスト(1,2μm
厚)を塗布しパターンを露光、現像したSi ウェハ6
aを用いた。In the apparatus used in the second embodiment, CHF3 containing 10 parts of 02 instead of SF6 was used as the etching gas.
8102 film 2 was processed using the pyrogenic method at 900° C. as a sample to be processed.
000, and then photoresist (1,2 μm
Si wafer 6 on which a pattern was coated, exposed and developed
A was used.
エツチング結果は第2の実施例と同じであった。The etching results were the same as in the second example.
一方、比較のために、第1図の処理装置から処理室2a
内の高透磁性材料3aを取りはずし、その代りに磁気コ
イル4aの上端面から側面を通りさらに処理室2aの側
面下部まで全周にわたって厚さ10m+nの5S41か
らなる高透磁性部材3aを取り付けて、第3の実施例の
ガス用被処理試料を用いてその他は実施例と同様にして
エツチングを行なったが、エツチング速度は極端に低下
し、エツチング速度分布はsi ウェハ6aの外周部が
エツチングされ、中央部はほとんどエツチングされなか
った。On the other hand, for comparison, the processing chamber 2a from the processing apparatus in FIG.
The high magnetic permeability material 3a inside is removed, and in its place, a high magnetic permeability member 3a made of 5S41 with a thickness of 10 m+n is attached along the entire circumference from the upper end surface of the magnetic coil 4a to the side surface and further to the lower side surface of the processing chamber 2a. Etching was carried out using the gas processing sample of the third example in the same manner as in the example, but the etching rate was extremely low and the etching rate distribution was such that the outer periphery of the Si wafer 6a was etched. The central part was hardly etched.
以下、第4の実施例を第4図を参照しながら説明する。A fourth embodiment will be described below with reference to FIG.
第4図において、1bはプラズマ発生室、2bは処理室
、3bは炭素鋼5S41Pからなるリング状の高透磁性
部材3b、4bは磁気コイル、5bは導波管、6bは被
処理物(試料)、7はガス導入石英チューブ、10bは
処理室のチャンバー及びフタ(ステンレス鋼5US−3
1ey )、 11は石英製ペルジャー、12はプラズ
マの輸送路(プラズマ発生室1bと同一ペルジャー内)
、13は磁気コイル4bの高さ調節用スペーサ(銅製)
、14は石英ペルジャー10円筒状保護筒(SUS−3
16製)である。In Fig. 4, 1b is a plasma generation chamber, 2b is a processing chamber, 3b is a ring-shaped highly permeable member 3b made of carbon steel 5S41P, 4b is a magnetic coil, 5b is a waveguide, and 6b is an object to be processed (sample ), 7 is the gas introduction quartz tube, 10b is the chamber and lid of the processing chamber (stainless steel 5US-3
1ey), 11 is a quartz Pelger, and 12 is a plasma transport path (in the same Pelger as the plasma generation chamber 1b).
, 13 is a spacer (made of copper) for adjusting the height of the magnetic coil 4b.
, 14 is a quartz Pelger 10 cylindrical protection tube (SUS-3
16).
以上の様に構成された処理装置の作用は次の通13 ・
りである。まず、マグネトロン(図示せず)で発生した
2、45GHzマイクロ波は導波管6を通って石英ペル
ジャー11に印加される。さらに、石英ペルジャーには
磁気コイル4から875ガウスの磁場と石英製チューブ
7bを通じてガスを導入しながら石英ペルジャー11内
の圧力をターボ分子ポンプで1〜10mTorr に保
つと石英チャンバー11内でプラズマが発生する(プラ
ズマ発生部1bで)。磁気コイル4b周辺では磁力線が
平行であることから発生したプラズマ中のイオンや電子
等の粒子は両極性拡散の効果でプラズマ輸送路12(石
英ペルジャー11の内部でプラズマ発生室1bと同一径
の通路)内を流れ下る。The operation of the processing device configured as described above is as follows. First, 2.45 GHz microwaves generated by a magnetron (not shown) are applied to the quartz Pelger 11 through the waveguide 6. Furthermore, plasma is generated in the quartz chamber 11 by maintaining the pressure inside the quartz Pelger 11 at 1 to 10 mTorr using a turbo molecular pump while introducing a magnetic field of 875 Gauss from the magnetic coil 4 and gas through the quartz tube 7b into the quartz Pelger 11. (at the plasma generation section 1b). Because the lines of magnetic force are parallel around the magnetic coil 4b, particles such as ions and electrons in the plasma generated due to the effect of bipolar diffusion form a plasma transport path 12 (a path with the same diameter as the plasma generation chamber 1b inside the quartz Pelger 11). ) flows down inside.
ところがプラズマ輸送路12の末端近く(石英ペルジャ
ー11の保護筒14の外周部)には高透磁性部材3bが
設置されており、磁力線は広げられ(一部は高透磁性材
料に吸引される)ることがらプラズマも広がりながら試
料6に至り処理が行なわれる。However, a highly permeable member 3b is installed near the end of the plasma transport path 12 (at the outer periphery of the protective tube 14 of the quartz Pelger 11), and the lines of magnetic force are widened (some are attracted to the highly permeable material). As the plasma spreads, it reaches the sample 6 and is processed.
上記装置を用いて、磁気コイル4で875ガウ14 ・
スの磁場を発生させ、磁気コイル4の高さは一定に彦る
ようにスペーサ13の厚みを調節しなから高透磁性部材
3bの厚みを1Q、20及び40脳と変え、試料6の高
さにおける磁場分布をガウスメータで測定した結果、第
1の実施例の第3図の結果と酷似していた。なお、磁場
測定は全て大気圧下で行っている。Using the above device, a magnetic field of 875 Gauss 14. was changed to 1Q, 20, and 40 brains, and the magnetic field distribution at the height of sample 6 was measured with a Gaussmeter, and the results were very similar to the results shown in FIG. 3 of the first example. All magnetic field measurements were conducted under atmospheric pressure.
さらに、石英ペルジャー11内に石英チューブ7bを通
して酸素10係を含んだCHF3ガス30CC/分流し
、真空度を6mTorrに保ちながら2.45GH2の
マイクロ波を印加しプラズマ発生室1bにプラズマを発
生させた(石英ペルジャー11の外部は大気圧である。Further, 30 CC/min of CHF3 gas containing 10% oxygen was flowed through the quartz Pelger 11 through the quartz tube 7b, and while maintaining the degree of vacuum at 6 mTorr, microwaves of 2.45 GH2 were applied to generate plasma in the plasma generation chamber 1b. (The outside of the quartz Pelger 11 is at atmospheric pressure.
)。試料としては第3の実施例と同じものを用いてエツ
チングしたが、エツチング結果は第3の実施例と同じで
あった。). Etching was carried out using the same sample as in the third example, and the etching results were the same as in the third example.
発明の効果
以−ヒのように本発明は、プラズマ輸送路の出口(処理
室入口)あるいは輸送路の側面近傍に高透磁性材料を設
置することにより、容易に処理室内でのプラズマ分布を
変えることができ、枚葉式で15 ・
均一にかつ、効率良く処理することができる。Effects of the Invention As described above, the present invention allows the plasma distribution within the processing chamber to be easily changed by installing a highly permeable material near the exit of the plasma transport path (inlet of the processing chamber) or the side surface of the transport path. 15 ・Can be processed uniformly and efficiently using a single-wafer system.
第1図は本発明の第1の実施例における処理装置の断面
図、第2図は従来例のプラズマ低温付着装置の断面図、
第3図は本発明の第1の実施例における磁場分布の測定
結果を示す図、第4図は本発明の第4の実施例における
処理装置の断面図である。
1a、1b・・・・・・プラズマ発生室、2a、2b・
・・・・・処理室、3a、3b・・・・・・高透磁性材
料、4a。
4b・・・・・・磁気コイル、sa、5b・・・・・・
導波管、6a。
6b・・・・・試料(被処理物)、7a、7b・・・・
・ガス導入パイプ、8・・・・・・石英板、9・・・・
・・プラズマ引き出し口、1Q・・・・・・処理室のチ
ャンバー及びフタ、11・・・・・・石英製ペルジャー
、12・・・・・プラズマ輸送路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名14
開目UG3−219128 (6)第4図
b
b
1牛
b
イ2FIG. 1 is a sectional view of a processing apparatus according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a conventional plasma low-temperature deposition apparatus.
FIG. 3 is a diagram showing the measurement results of the magnetic field distribution in the first embodiment of the present invention, and FIG. 4 is a sectional view of the processing apparatus in the fourth embodiment of the present invention. 1a, 1b...Plasma generation chamber, 2a, 2b.
...Processing chamber, 3a, 3b...High magnetic permeability material, 4a. 4b...Magnetic coil, sa, 5b...
Waveguide, 6a. 6b...Sample (object to be processed), 7a, 7b...
・Gas introduction pipe, 8...Quartz plate, 9...
...Plasma extraction port, 1Q...Chamber and lid of the processing chamber, 11...Quartz Pel jar, 12...Plasma transport path. Name of agent: Patent attorney Toshio Nakao and 1 other person14
Open eyes UG3-219128 (6) Fig. 4 b b 1 Cow b A 2
Claims (2)
プラズマ発生室では真空中でマイクロ波及び磁場の作用
でプラズマを発生させ、前記プラズマを磁場強度のこう
配を利用して真空の処理室に導入して被処理物表面を処
理する処理装置において、プラズマ発生室から処理室に
至るプラズマ輸送路の近傍に高透磁性部材を設置し、前
記被処理物は1枚ずつ処理室に投入して処理を行なうこ
とを特徴とする処理装置。(1) It has at least a plasma generation chamber and a processing chamber, in which plasma is generated in a vacuum by the action of microwaves and a magnetic field, and the plasma is transferred to the vacuum processing chamber by using gradients in magnetic field strength. In a processing apparatus for processing the surface of an object to be processed, a highly magnetically permeable member is installed near a plasma transport path from a plasma generation chamber to a processing chamber, and the objects to be processed are introduced into the processing chamber one by one. A processing device characterized by processing.
をリング状に囲む様に設置されていることを特徴とする
特許請求の範囲第1項に記載の処理装置。(2) The processing apparatus according to claim 1, wherein the high magnetic permeability member is installed so as to surround the entire circumference of the plasma transport path in a ring shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5250687A JPS63219128A (en) | 1987-03-06 | 1987-03-06 | Treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5250687A JPS63219128A (en) | 1987-03-06 | 1987-03-06 | Treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63219128A true JPS63219128A (en) | 1988-09-12 |
Family
ID=12916615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5250687A Pending JPS63219128A (en) | 1987-03-06 | 1987-03-06 | Treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63219128A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174223A (en) * | 1988-12-27 | 1990-07-05 | Sumitomo Metal Ind Ltd | Plasma vapor growth device, usage thereof and formation of film |
JPH02205020A (en) * | 1989-02-03 | 1990-08-14 | Hitachi Ltd | Microwave plasma treatment equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813626A (en) * | 1981-07-17 | 1983-01-26 | Nippon Shokubai Kagaku Kogyo Co Ltd | Preparation of water-dispersible alkyd resin |
JPS60134423A (en) * | 1983-12-23 | 1985-07-17 | Hitachi Ltd | Microwave plasma etching device |
JPS60223126A (en) * | 1984-04-20 | 1985-11-07 | Hitachi Ltd | Plasma treater |
-
1987
- 1987-03-06 JP JP5250687A patent/JPS63219128A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813626A (en) * | 1981-07-17 | 1983-01-26 | Nippon Shokubai Kagaku Kogyo Co Ltd | Preparation of water-dispersible alkyd resin |
JPS60134423A (en) * | 1983-12-23 | 1985-07-17 | Hitachi Ltd | Microwave plasma etching device |
JPS60223126A (en) * | 1984-04-20 | 1985-11-07 | Hitachi Ltd | Plasma treater |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174223A (en) * | 1988-12-27 | 1990-07-05 | Sumitomo Metal Ind Ltd | Plasma vapor growth device, usage thereof and formation of film |
JPH02205020A (en) * | 1989-02-03 | 1990-08-14 | Hitachi Ltd | Microwave plasma treatment equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2680338B2 (en) | Electrostatic chuck device | |
EP0300447B1 (en) | Method and apparatus for treating material by using plasma | |
US5851600A (en) | Plasma process method and apparatus | |
US20130323916A1 (en) | Plasma doping method and apparatus | |
JPH06342771A (en) | Dry etching apparatus | |
US5518547A (en) | Method and apparatus for reducing particulates in a plasma tool through steady state flows | |
US7858155B2 (en) | Plasma processing method and plasma processing apparatus | |
JPS6136589B2 (en) | ||
JPH088235B2 (en) | Plasma reactor | |
JPS63219128A (en) | Treatment apparatus | |
JPH04343420A (en) | Plasma reaction device | |
JP3192351B2 (en) | Plasma processing equipment | |
JPS63279599A (en) | Microwave plasma generating method | |
JPH0415921A (en) | Method and apparatus for activating plasma | |
JPS59139629A (en) | Plasma dry treating device | |
JP2004128209A (en) | Plasma doping method | |
JPH0680640B2 (en) | Plasma equipment | |
JPH01107539A (en) | Microwave plasma processor | |
JP3077144B2 (en) | Sample holding device | |
JPH098010A (en) | Plasma processor | |
JP2000269202A (en) | Plasma treatment method and apparatus | |
JPH0799098A (en) | Plasma treating device | |
JPS61222533A (en) | Plasma treatment apparatus | |
JPS58124223A (en) | Plasma treating device | |
JP2990838B2 (en) | Dry etching equipment |