JPH0521983B2 - - Google Patents

Info

Publication number
JPH0521983B2
JPH0521983B2 JP60146528A JP14652885A JPH0521983B2 JP H0521983 B2 JPH0521983 B2 JP H0521983B2 JP 60146528 A JP60146528 A JP 60146528A JP 14652885 A JP14652885 A JP 14652885A JP H0521983 B2 JPH0521983 B2 JP H0521983B2
Authority
JP
Japan
Prior art keywords
magnetic field
gas
film
vacuum chamber
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60146528A
Other languages
Japanese (ja)
Other versions
JPS627859A (en
Inventor
Takeshi Watanabe
Kazufumi Azuma
Masahiro Tanaka
Mitsuo Nakatani
Tadashi Sonobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14652885A priority Critical patent/JPS627859A/en
Publication of JPS627859A publication Critical patent/JPS627859A/en
Publication of JPH0521983B2 publication Critical patent/JPH0521983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は基体たとえば導電性基板にアモルフア
スシリコン膜を形成する方法に係り、特に電子サ
イクロトロン共鳴プラズマを利用したアモルフア
スシリコン膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of forming an amorphous silicon film on a substrate, such as a conductive substrate, and particularly to a method of forming an amorphous silicon film using electron cyclotron resonance plasma.

〔発明の背景〕 電子サイクロトロン共鳴プラズマを利用したア
モルフアスシリコン膜の形成に関しては、特開昭
59−159167号記載の公知例がある。上記公知例に
おいては0.2〜0.5Torrのガス圧力域でH2ガスも
しくはH2−N2混合ガスを磁場とマイクロ波との
共鳴によりプラズマ励起しシリコン原子含有ガス
と接触せしめて300℃に加熱した基体上にアモル
フアスシリコン膜を形成しているが、暗導電率
10-11S/cm、光導電率10-7S/cm程度の膜であり
必ずしも良好なアモルフアスシリコン膜が得られ
ているとはいい難く、ここで得られている膜質は
従来の平行平板グロー放電プラズマによつて得ら
れるアモルフアスシリコン膜と同等のものである
(特開昭59−159167)。
[Background of the Invention] Regarding the formation of an amorphous silicon film using electron cyclotron resonance plasma,
There is a known example described in No. 59-159167. In the above-mentioned known example, H 2 gas or H 2 -N 2 mixed gas is excited in plasma by the resonance of a magnetic field and microwaves in a gas pressure range of 0.2 to 0.5 Torr, brought into contact with a silicon atom-containing gas, and heated to 300°C. Although an amorphous silicon film is formed on the substrate, dark conductivity
The film has a photoconductivity of 10 -11 S/cm and a photoconductivity of about 10 -7 S/cm, so it is difficult to say that a good amorphous silicon film has been obtained, and the film quality obtained here is comparable to that of a conventional parallel plate. This is equivalent to an amorphous silicon film obtained by glow discharge plasma (Japanese Unexamined Patent Publication No. 159167-1983).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した公知例によるアモル
フアスシリコン膜より光導電率が高くまた光導電
率と暗導電率との比が大きな光導電特性に優れる
アモルフアスシリコン膜の形成方法を提供するこ
とにある。
An object of the present invention is to provide a method for forming an amorphous silicon film which has a higher photoconductivity than the amorphous silicon films of the known examples mentioned above and has excellent photoconductive properties such as a large ratio of photoconductivity to dark conductivity. It is in.

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は上述の公知例とは異り3
×10-2Torr以下のガス圧での電子サイクロトロ
ン共鳴プラズマを利用する事にある。3×
10-2Torr以上の圧力域でのプラズマ中の電子の
エネルギは約4eV以下であるが、上述の圧力域に
おける電子のエネルギは圧力の低下とともに上昇
し約8eVに達する。一方、原料ガスたとえば
SiH4の分解反応に必要なエネルギは次のとおり
である。
The first feature of the present invention is different from the above-mentioned known examples.
The purpose is to utilize electron cyclotron resonance plasma at a gas pressure of less than ×10 -2 Torr. 3×
The energy of electrons in plasma in a pressure range of 10 -2 Torr or more is about 4 eV or less, but the energy of electrons in the above pressure range increases as the pressure decreases and reaches about 8 eV. On the other hand, the raw material gas, for example
The energy required for the decomposition reaction of SiH 4 is as follows.

SiH4→Si+2H2;4.4eV SiH4→SiH+H2+H;5.9eV SiH4→SiH2+H2;2.1eV SiH4→SiH3+H;4.1eV 一般にアモルフアスシリコン膜はSiH3型や
SiH2型の結合が少く、膜中のダングリングボン
ドをSiH型結合によつて効果的にターミネートし
た膜が光導電特性がよいが、この様な膜を得るに
は上記反応エネルギからみても電子エネルギの大
きな低圧でのプラズマを利用するのが有利であ
る。またこのような低圧デポはH2のような非成
膜性ガスの放出の面でも有利である。但しガス圧
を5×10-5Torr以下とすると実質的に安定プラ
ズマが得られ難くなるのでこのガス圧が下限とな
る。
SiH 4 →Si+2H 2 ; 4.4eV SiH 4 →SiH+H 2 +H; 5.9eV SiH 4 →SiH 2 +H 2 ; 2.1eV SiH 4 →SiH 3 +H; 4.1eV Generally, amorphous silicon films are SiH 3 type or
A film with few SiH 2 -type bonds and in which dangling bonds in the film are effectively terminated by SiH-type bonds has good photoconductive properties, but in order to obtain such a film, considering the reaction energy mentioned above, electrons are required. It is advantageous to use energetic, low-pressure plasmas. Such a low-pressure deposition is also advantageous in terms of releasing non-film-forming gases such as H 2 . However, if the gas pressure is 5×10 -5 Torr or less, it becomes difficult to obtain a stable plasma, so this gas pressure is the lower limit.

本発明の第2の特徴はNeまたはArまたはKrま
たはXeという比較的原子量の大きな希ガスを含
有するガスを上述のガス圧域で電子サイクロトロ
ン共鳴によりプラズマ励起し、シリコン原子を含
有するガスに接触させアモルフアスシリコン膜を
成膜することにあり、HeあるいはH2のような軽
ガスにのみによる電子サイクロトロン共鳴プラズ
マを利用して成膜した場合に比して良好な膜質の
アモルフアスシリコン膜が得る事が可能となる。
NeまたはArまたはKrまたはXeの導入量は、導
入するシリコン原子含有ガス量に対し0.05以上あ
る事が必要であり、上限は実質的にはないが、上
述した低圧成膜の観点からみれば20倍程度の限界
となる。上述した比較的原子量の大きな希ガスは
上述した成膜圧の条件下では通常の平行平板型グ
ロー放電プラズマや前記公知例の場合に比し102
〜104倍の電離イオンを含有するが、上記電離イ
オンは10〜20eVに加速され成膜面に入射する事
により膜質向上に寄与するものと考えられる。上
記希ガスによる膜質向上効果は希ガスの原子量が
大きい場合程効果的であるがコスト面からみれば
Arガスの使用が望ましい。
The second feature of the present invention is that a gas containing a rare gas with a relatively large atomic weight, such as Ne, Ar, Kr, or Xe, is plasma-excited by electron cyclotron resonance in the above gas pressure range, and brought into contact with a gas containing silicon atoms. The purpose of this technology is to form an amorphous silicon film with better film quality than when it is formed using electron cyclotron resonance plasma using only a light gas such as He or H2 . It is possible to obtain.
The amount of Ne, Ar, Kr, or Xe introduced needs to be 0.05 or more relative to the amount of silicon atom-containing gas introduced, and although there is no practical upper limit, from the viewpoint of low-pressure film formation mentioned above, The limit is about twice that. The above-mentioned rare gas having a relatively large atomic weight has a 10 2
Although it contains ~10 4 times as many ionized ions, it is thought that the ionized ions contribute to improving the film quality by being accelerated to 10 to 20 eV and incident on the film forming surface. The film quality improvement effect of the above rare gas is more effective when the atomic weight of the rare gas is larger, but from a cost perspective.
It is preferable to use Ar gas.

良好なアモルフアスシリコン膜を得るためには
基体を100℃以上に加熱する事が必要であるが、
通常の平行平板型グロー放電プラズマや前記公知
例の場合に比し50〜100℃低い温度で同等の膜質
のアモルフアス膜が得られ、特に200℃以上に基
体を加熱した場合は従来の手法で得られ難い良好
な膜質が得られる。
In order to obtain a good amorphous silicon film, it is necessary to heat the substrate to over 100℃,
An amorphous film with the same film quality can be obtained at a temperature 50 to 100°C lower than in the case of normal parallel plate glow discharge plasma or the above-mentioned known example, and especially when the substrate is heated to 200°C or higher, it can be obtained using conventional methods. A good film quality that is difficult to be obtained is obtained.

なお上記NeまたはArまたはKrまたはXeを含
有するガスにHeまたはH2ガスを含有させると、
膜質を維持してアモルフアスシリコンの成膜速度
を増大する事が可能である。アモルフアスシリコ
ンの成膜速度の増大効果を得るには、真空室に導
入するシリコン原子含有ガス量に対し0.05以上の
HeまたはH2ガスを導入する必要がある。但し、
あまり多量にかかる軽ガスを含有させると膜質の
低下をきたすのでシリコン原子含有ガス導入量の
10倍程度が限度となる。上述した成膜速度の増大
効果を得るにはHeまたはH2ガスを効率的にプラ
ズマ励起する必要があり、シリコン原子含有ガス
に混合した場合は効果が少ない。
In addition, when He or H 2 gas is added to the gas containing Ne, Ar, Kr, or Xe,
It is possible to increase the deposition rate of amorphous silicon while maintaining the film quality. In order to obtain the effect of increasing the film formation rate of amorphous silicon, it is necessary to
It is necessary to introduce He or H2 gas. however,
If too much light gas is included, the film quality will deteriorate, so the amount of silicon-containing gas introduced should be adjusted accordingly.
The limit is about 10 times. In order to obtain the effect of increasing the film formation rate described above, it is necessary to efficiently excite the plasma of He or H 2 gas, and the effect is small when mixed with a silicon atom-containing gas.

〔発明の実施例〕 以下本発明を実施例によつて説明する。[Embodiments of the invention] The present invention will be explained below with reference to Examples.

第1図は本発明のアモルフアスシリコン膜の形
成の実施例に使用した電子サイクロトロンプラズ
マ成膜装置の構成説明図である。図において、1
はマグネトロンであり、通常0.1〜10GHzのマイ
クロ波を発生させる。発生したマイクロ波は円形
導波管2を通して真空室3内に導びかれる。4は
放電管でありマイクロ波を通すために絶縁物(例
えば石英ガラス、アルミナ等)で形成されてい
る。5は真空室内に磁場を形成させるためのソレ
ノイドコイルである。6,7は系統の異なるガス
導入口であり、ガス導入口6は真空室3内の高磁
場域にガスを供給する様に配置され、ガス導入口
7は真空室3内の低磁場域にガスを供給する様に
配置されている。8は被成膜基体でありガス導入
口7から供給されるガスが表面に入射する様設置
される。9は加熱機構を備えた試料台である。1
0は排気ポートでありターボ分子ポンプや油拡散
ポンプの様な排気速度の大きな減圧ポンプ(図示
せず)が接続される。
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron plasma film forming apparatus used in an embodiment of forming an amorphous silicon film of the present invention. In the figure, 1
is a magnetron, which typically generates microwaves between 0.1 and 10 GHz. The generated microwaves are guided into the vacuum chamber 3 through the circular waveguide 2. 4 is a discharge tube made of an insulating material (for example, quartz glass, alumina, etc.) to transmit microwaves. 5 is a solenoid coil for forming a magnetic field within the vacuum chamber. 6 and 7 are gas inlet ports of different systems, the gas inlet port 6 is arranged to supply gas to the high magnetic field region within the vacuum chamber 3, and the gas inlet port 7 is arranged to supply gas to the low magnetic field region within the vacuum chamber 3. It is arranged to supply gas. Reference numeral 8 denotes a substrate on which a film is to be formed, and is installed so that the gas supplied from the gas inlet 7 is incident on the surface. 9 is a sample stage equipped with a heating mechanism. 1
0 is an exhaust port to which a pressure reducing pump (not shown) with a high exhaust speed such as a turbo molecular pump or an oil diffusion pump is connected.

真空室内に放電ガスを所定の圧力に導入してマ
イクロ波電力を供給すると、マイクロ波電界と磁
場の相互作用によりマイクロ波放電が発生する
が、上記磁場の設定条件と上述したガス導入口の
配置について説明する。磁場中の電子は磁力線の
まわりをサイクロトロン運動するが、電子のサイ
クロトロン周波数ceは磁場強度によつて ce=Be/2πm〔Hz〕 但し、B:磁束密度〔T〕 m:電子質量〔Kg〕 e:電子電荷〔Coulomb〕 と決定される。ceが入射マイクロ波周波数と一
致する磁場強度の位置では電子サイクロトロン共
鳴励起が起こる。第1図において真空室3の放電
管4の領域は上記電子サイクロトロン共鳴が起こ
る磁場強度より大とし、この領域にガス導入口6
からのガスを供給し、磁場強度が電子サイクロト
ロン共鳴磁場より小さな領域にガス導入口7から
の別系統のガスを供給する構成とする。この様な
構成においてガス導入口6から非成膜性のガスを
導入する。ここに導入するガスがNeまたはArま
たはKrまたはXeを含有するとこれら希ガスは効
率的にイオン化され、磁場こう配によつて生ずる
電場により10〜20eVに加速されて基体8の成膜
面に入射する。シリコン原子を含有する成膜ガス
はガス導入口7から供給され、低圧電子サイクロ
トロン共鳴による高エネルギの電離電子により分
解され基体8の表面にアモルフアスシリコン膜が
形成される。アモルフアスシリコン膜中にB,
P,C,N,Ge等の異種原子をドーピングした
い場合は、異種原子を含有するガスをガス導入口
7から供給すれば効率的にドーピングが行える。
When a discharge gas is introduced into a vacuum chamber at a predetermined pressure and microwave power is supplied, a microwave discharge is generated due to the interaction between the microwave electric field and the magnetic field. I will explain about it. Electrons in a magnetic field move in a cyclotron around magnetic lines of force, and the cyclotron frequency ce of the electrons depends on the magnetic field strength: ce = Be/2πm [Hz] However, B: magnetic flux density [T] m: electron mass [Kg] e : Electron charge [Coulomb] is determined. Electron cyclotron resonance excitation occurs at the position of the magnetic field strength where ce coincides with the incident microwave frequency. In FIG. 1, the area of the discharge tube 4 in the vacuum chamber 3 is made larger than the magnetic field strength where the above-mentioned electron cyclotron resonance occurs, and the gas inlet 6 is placed in this area.
The configuration is such that gas is supplied from the gas inlet 7 and another system of gas is supplied from the gas inlet 7 to an area where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field. In such a configuration, a non-film-forming gas is introduced from the gas inlet 6. When the gas introduced here contains Ne, Ar, Kr, or Xe, these rare gases are efficiently ionized, accelerated to 10 to 20 eV by the electric field generated by the magnetic field gradient, and incident on the film-forming surface of the substrate 8. . A film-forming gas containing silicon atoms is supplied from the gas inlet 7 and is decomposed by high-energy ionized electrons due to low-pressure electron cyclotron resonance to form an amorphous silicon film on the surface of the substrate 8. B in the amorphous silicon film,
When it is desired to dope a foreign atom such as P, C, N, Ge, etc., doping can be carried out efficiently by supplying a gas containing a foreign atom through the gas inlet 7.

次に上述したプラズマ成膜装置を用い、本発明
のアモルフアスシリコン膜を形成する方法を代表
的実施例によつて説明する。
Next, a method for forming an amorphous silicon film according to the present invention using the above-mentioned plasma film forming apparatus will be described with reference to a typical example.

Si原子含有ガスとしてはSiH4を用いこれをガ
ス導入口7から供給した。ガス導入口6からは
ArガスををSiH4ガスと同量供給した。マイクロ
波周数=2.45GHz、マイクロ波入力=300W、放
電ガス圧=6×10-4Torr、基体温度=200℃とし
た。磁場分布は放電管4の部分で最大1750G、放
電管4の排気側端部で875G(電子サイクロトロン
共鳴磁場強度)になる様設定した。排気系には排
気速度500/秒のターボ分子ポンプを用いた。
この条件で形成したアモルフアスシリコン膜は光
導電率10-4S/cm、光導電率と暗導電率の比が
10-6という良質の膜であつた。
SiH 4 was used as the Si atom-containing gas and was supplied from the gas inlet 7. From gas inlet 6
Ar gas was supplied in the same amount as SiH 4 gas. Microwave frequency = 2.45 GHz, microwave input = 300 W, discharge gas pressure = 6 x 10 -4 Torr, and substrate temperature = 200°C. The magnetic field distribution was set to a maximum of 1750 G at the discharge tube 4 and 875 G (electron cyclotron resonance magnetic field strength) at the exhaust side end of the discharge tube 4. A turbo molecular pump with an exhaust speed of 500/sec was used for the exhaust system.
The amorphous silicon film formed under these conditions has a photoconductivity of 10 -4 S/cm and a ratio of photoconductivity to dark conductivity.
The film was of good quality with a value of 10 -6 .

この他、Ne,Kr,Xeをガス導入口6から供給
した場合にも光導電率と暗導電率の比が105〜106
の良質膜が得られ、上記比が104程度の膜であれ
ば100℃の基板加熱で形成可能であつた。Ne,
Ar,Kr,XeガスをHeまたはH2によつて希釈し
たガスを用いた場合でも良好であり、上記した実
施例でArガスにHeをSiH4ガス量に対し0.5添加
した実験ではほぼ同等の膜質のアモルフアスシリ
コン膜が約1.5倍の成膜速度で得られた。
In addition, when Ne, Kr, and Xe are supplied from the gas inlet 6, the ratio of photoconductivity to dark conductivity is 10 5 to 10 6
A film of good quality was obtained, and a film with the above ratio of about 10 4 could be formed by heating the substrate at 100°C. Ne,
Good results are obtained even when Ar, Kr, and Xe gases are diluted with He or H 2 . In the above example, an experiment in which 0.5 of He was added to the amount of SiH 4 gas to Ar gas showed almost the same results. A high-quality amorphous silicon film was obtained at about 1.5 times the deposition rate.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、従来より
も光導電特性に優れたアモルフアスシリコンが形
成でき、あるいは比較的良好なアモルフアスシリ
コン膜を低温で形成する事が可能となり光導電性
特性を利用する各種素子への反応が可能となる。
As described above, according to the present invention, it is possible to form amorphous silicon with better photoconductive properties than before, or it is possible to form an amorphous silicon film with relatively good photoconductive properties at a low temperature. It becomes possible to react to various elements that utilize this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のアモルフアスシリコン膜形
成に使用する電子サイクロトロン共鳴プラズマデ
ポジシヨン装置の構成説明図である。 1…マグネトロン、2…導波管、3…真空室、
4…放電管、5…ソレノイドコイル、6,7…ガ
ス導入口、8…基体、9…試料台、10…排気ポ
ート。
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron resonance plasma deposition apparatus used for forming an amorphous silicon film according to the present invention. 1... Magnetron, 2... Waveguide, 3... Vacuum chamber,
4...Discharge tube, 5...Solenoid coil, 6, 7...Gas inlet, 8...Base, 9...Sample stand, 10...Exhaust port.

Claims (1)

【特許請求の範囲】 1 真空室の少くとも一部に磁場を形成し、上記
真空室内にマイクロ波を導入し、上記真空室内に
導入したガスを上記磁場と上記マイクロ波による
電子サイクロトロン共鳴によつてプラズマ励起
し、上記真空室内に導入されたシリコン電子含有
ガスを分解し、上記真空室内に設置された基体上
にアモルフアスシリコン膜を形成するアモルフア
スシリコン膜の形成方法において、上記基体を
100℃〜400℃に加熱した条件で成膜し、放電時の
ガス圧が5×10-5〜3×10-2Torrである事を特
徴とするアモルフアスシリコン膜の形成方法。 2 上記真空室内形成される磁場強度が、マイク
ロ波の導入経路に沿つて電子サイクロトロン共鳴
磁界より大から減少し共鳴磁界をへて共鳴磁界よ
り小となり、上記磁場強度が電子サイクロトロン
共鳴磁界より大の領域にNeまたはArまたはKrま
たはXeを、真空室に導入するシリコン原子含有
ガスに対し0.05〜20,含有する非成膜性ガスを導
入し、上記磁場強度が電子サイクロトロン共鳴磁
界より小の領域にシリコン原子含有ガスを導入し
上記磁場強度が電子サイクロトロン共鳴磁界より
小の領域に設置された基体上に成膜する事を特徴
とする特許請求範囲第1項記載のアモルフアスシ
リコン膜の形成方法。 3 上記NeまたはArまたはKrまたはXeを含有
するガスがHeまたはHzを、真空室に導入するシ
リコン原子含有ガスに対し0.05〜10含有するガス
である事を特徴とする特許請求範囲第1項または
第2項記載のアモルフアスシリコン膜の形成方
法。
[Scope of Claims] 1. A magnetic field is formed in at least a part of a vacuum chamber, microwaves are introduced into the vacuum chamber, and the gas introduced into the vacuum chamber is subjected to electron cyclotron resonance by the magnetic field and the microwaves. In the method for forming an amorphous silicon film, in which the silicon electron-containing gas introduced into the vacuum chamber is decomposed by plasma excitation, and an amorphous silicon film is formed on the substrate placed in the vacuum chamber.
A method for forming an amorphous silicon film, characterized in that the film is formed under heating conditions of 100° C. to 400° C., and the gas pressure during discharge is 5×10 −5 to 3×10 −2 Torr. 2. The magnetic field strength formed in the vacuum chamber decreases from being larger than the electron cyclotron resonance magnetic field along the microwave introduction path, and becomes smaller than the resonance magnetic field after passing through the resonance magnetic field, and the magnetic field strength is greater than the electron cyclotron resonance magnetic field. A non-film-forming gas containing Ne, Ar, Kr, or Xe at 0.05 to 20% relative to the silicon atom-containing gas introduced into the vacuum chamber is introduced into the region where the above magnetic field strength is smaller than the electron cyclotron resonance magnetic field. A method for forming an amorphous silicon film according to claim 1, characterized in that the film is formed on a substrate placed in a region where a silicon atom-containing gas is introduced and the magnetic field strength is smaller than an electron cyclotron resonance magnetic field. 3. Claim 1 or 3, wherein the Ne, Ar, Kr, or Xe-containing gas is a gas containing 0.05 to 10 He or Hz relative to the silicon atom-containing gas introduced into the vacuum chamber. 2. The method for forming an amorphous silicon film according to item 2.
JP14652885A 1985-07-05 1985-07-05 Formation of amorphous silicon film Granted JPS627859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14652885A JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14652885A JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Publications (2)

Publication Number Publication Date
JPS627859A JPS627859A (en) 1987-01-14
JPH0521983B2 true JPH0521983B2 (en) 1993-03-26

Family

ID=15409681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14652885A Granted JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS627859A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672306B2 (en) 1987-04-27 1994-09-14 株式会社半導体エネルギー研究所 Plasma processing apparatus and plasma processing method
JPH0794712B2 (en) * 1987-05-28 1995-10-11 東京エレクトロン株式会社 Plasma processing device
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
EP0488112B1 (en) * 1990-11-30 1994-08-03 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma CVD
US5346792A (en) * 1991-06-11 1994-09-13 Canon Kabushiki Kaisha Color toner
US5204272A (en) * 1991-12-13 1993-04-20 United Solar Systems Corporation Semiconductor device and microwave process for its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film

Also Published As

Publication number Publication date
JPS627859A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
EP0930376B1 (en) Method of processing substrate
CA1159012A (en) Plasma deposition apparatus
US4948750A (en) Method and apparatus for producing semiconductor layers composed of amorphous silicon-germanium alloys through glow discharge technique, particularly for solar cells
US5340621A (en) Plasma CVD method
EP0179665A2 (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US20040086434A1 (en) Apparatus and method for treating objects with radicals generated from plasma
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
JP2005005280A (en) Method for passivating semiconductor substrate
JPH0521983B2 (en)
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JPS62254419A (en) Plasma deposition device
JPH0420985B2 (en)
JPS62295411A (en) Forming method for silicon amorphous film
KR100230356B1 (en) Ecr cvd and method for forming thin film using the same
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH0666272B2 (en) Method for forming silicon-based amorphous film
Yoon et al. Modeling and analysis of the electron cyclotron resonance diamond-like carbon deposition process
JP2001176870A (en) Method for forming nitride film
JPS63152116A (en) Formation of silicon amorphous alloy film
JP2895981B2 (en) Silicon oxide film forming method
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JP2741931B2 (en) Plasma processing apparatus and plasma processing method using the same
JPH0340422A (en) Film formation device