JPS627859A - Formation of amorphous silicon film - Google Patents

Formation of amorphous silicon film

Info

Publication number
JPS627859A
JPS627859A JP14652885A JP14652885A JPS627859A JP S627859 A JPS627859 A JP S627859A JP 14652885 A JP14652885 A JP 14652885A JP 14652885 A JP14652885 A JP 14652885A JP S627859 A JPS627859 A JP S627859A
Authority
JP
Japan
Prior art keywords
magnetic field
gas
film
amorphous silicon
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14652885A
Other languages
Japanese (ja)
Other versions
JPH0521983B2 (en
Inventor
Takeshi Watanabe
渡辺 猛志
Kazufumi Azuma
和文 東
Masahiro Tanaka
政博 田中
Mitsuo Nakatani
中谷 光雄
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14652885A priority Critical patent/JPS627859A/en
Publication of JPS627859A publication Critical patent/JPS627859A/en
Publication of JPH0521983B2 publication Critical patent/JPH0521983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Abstract

PURPOSE:To obtain the titled film having high photoconductivity, large ratio between the photoconductivity and dark conductivity and excellent photoconductive characteristic in the titled method utilizing electron cyclotron resonance plasma by specifying a gaseous pressure and gaseous components. CONSTITUTION:The region of an electric discharge tube 4 of a vacuum chamber 3 is made larger in the magnetic field intensity than the magnetic field intensity at which electron cyclotron resonance arises. Gases are respectively supplied through an introducing port 6 into such region and through an introducing port 7 into the region where the magnetic field intensity is smaller than the above-mentioned resonance magnetic field intensity. The film forming gas contg. Si atoms is supplied through the port 7. The non-film formable gas to be supplied through the port 6 is any among Ne, Ar, Kr and Xe and is introduced at 0.05-20 times the amt. of the Si-contg. gas. The gaseous pressure during the discharge is maintained under 5X10<-5>-3X10<-2> Torr. The intended amorphous silicon film is thus formed on the substrate 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は基体たとえば導電性基板にアモルファスシリコ
ン膜を形成する方法に係り、特に電子サイクロトロン共
鳴プラズマを利用したアモルファスシリコン膜の形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of forming an amorphous silicon film on a substrate, such as a conductive substrate, and particularly to a method of forming an amorphous silicon film using electron cyclotron resonance plasma.

〔発明の背景〕[Background of the invention]

電子サイクロトロン共鳴プラズマを利用したアモルファ
スシリコン膜の形成に関しては、特開昭59−1591
67号記載の公知例がある。上記公知例においては0.
2〜0.5Torrのガス圧力域で4ガスもしくはH,
−N、混合ガスを磁場とマイクロ波との共鳴によりプラ
ズマ励起しシリコン原子含有ガスと接触せしめて300
°Cに加熱した基体上にアモルファスシリコン膜を形成
しているが、暗導電率10−11 S/” l 3導電
率1〇−13,/−+程度の膜であり必ずしも良好なア
モルファスシリコン膜が得られているとはいい難(、こ
こで得られている膜質は従来の平行平板グロー放電プラ
ズマによって得られるアモルファスシリコン膜と同等の
ものである(特開昭59−159167)。
Regarding the formation of amorphous silicon film using electron cyclotron resonance plasma, see Japanese Patent Application Laid-open No. 1591-1989.
There is a known example described in No. 67. In the above known example, 0.
4 gases or H in the gas pressure range of 2 to 0.5 Torr,
-N, the mixed gas is plasma excited by the resonance of a magnetic field and microwaves and brought into contact with a silicon atom-containing gas.
An amorphous silicon film is formed on a substrate heated to °C, but the film has a dark conductivity of 10-11 S/''l 3 and a conductivity of about 10-13,/-+, so it is not necessarily a good amorphous silicon film. However, the film quality obtained here is equivalent to that of an amorphous silicon film obtained by conventional parallel plate glow discharge plasma (Japanese Unexamined Patent Publication No. 159167/1983).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した公知例によるアモルファスシ
リコン膜より光導電率が高くまた光導電率と暗導電率と
の比が大きな光導電特性に優れるアモルファスシリコン
膜の形成方法を提供することにある。
An object of the present invention is to provide a method for forming an amorphous silicon film which has a higher photoconductivity than the amorphous silicon films according to the above-mentioned known examples, and which has excellent photoconductive properties such as a large ratio of photoconductivity to dark conductivity. .

〔発明の概要〕[Summary of the invention]

本発明の第1の特徴は上述の公知例とは異り3×10→
Torr以下のガス圧での電子サイクロトロン共鳴プラ
ズマを利用する事にある。3X10−Torr以上の圧
力域でのプラズマ中の電子のエネルギは約4eV以下で
あるが、上述の圧力域における電子のエネルギは圧力の
低下とともに上昇し約8eN’に達する。一方、原料ガ
スたとえばSiH,の分解反応に必要なエネルギは次の
とおりである。
The first feature of the present invention is that, unlike the above-mentioned known examples, 3×10→
The purpose is to utilize electron cyclotron resonance plasma at a gas pressure of less than Torr. The energy of electrons in plasma in a pressure range of 3×10 Torr or more is about 4 eV or less, but the energy of electrons in the above pressure range increases as the pressure decreases and reaches about 8 eN'. On the other hand, the energy required for the decomposition reaction of the raw material gas, such as SiH, is as follows.

5tH4→St + 2 Ht;  4.4  eVS
iH,4SiH+ He + H;  5.9 eVS
iH4→siH,+ H,r  2.1  eVSiH
4−+ SiH,十H; 4.1eV−ffにアモルフ
ァスシリコン膜はSiH,fjl Jp SiH。
5tH4→St + 2Ht; 4.4 eVS
iH, 4SiH+ He + H; 5.9 eVS
iH4→siH, + H, r 2.1 eVSiH
4-+ SiH, 10H; At 4.1eV-ff, the amorphous silicon film is SiH, fjl Jp SiH.

型の結合が少(、膜中のダングリングボンドをSiH型
結合によって効果的にターミネートした膜が光導電特性
がよいが、この様な膜を得るには上記反応エネルギから
みても電子エネルギの大きな低圧でのプラズマを利用す
るのが有利である。またこのような低圧デボはH3のよ
うな非成膜性ガスの放出の面でも有利である。但しガス
圧を5×10″”−”Torr以下とすると実質的に安
定プラズマが得られ難(なるのでこのガス圧が下限とな
る。
A film with few SiH-type bonds (i.e., a film in which dangling bonds in the film are effectively terminated by SiH-type bonds) has good photoconductive properties, but obtaining such a film requires a large amount of electron energy, even in terms of the reaction energy mentioned above. It is advantageous to use plasma at low pressure. Such low-pressure debossing is also advantageous in terms of releasing non-film forming gases such as H3. If it is below, it will be difficult to obtain a substantially stable plasma (so this gas pressure will be the lower limit).

本発明の第2の特徴はNeまたはArまたはKrまたは
Xeという比較的原子量の大きな希ガスを含有するガス
を上述のガス圧域で電子サイクロトロン共鳴によりプラ
ズマ励起し、シリコン原子を含有するガスに接触させア
モルファスシリコン膜を成膜することにあり、Heある
いはH。
The second feature of the present invention is that a gas containing a rare gas with a relatively large atomic weight, such as Ne, Ar, Kr, or Xe, is plasma excited by electron cyclotron resonance in the above gas pressure range, and brought into contact with a gas containing silicon atoms. The purpose is to form an amorphous silicon film using He or H.

のような軽ガスにのみによる電子サイクロトロン共鳴プ
ラズマを利用して成膜した場合に比して良好な膜質のア
モルファスシリコン膜が得る事が可能となる。Neまた
はArまたはにまたはXeの導入量は、導入するシリコ
ン原子含有ガス量に対しα05以上ある事が必要であり
、上限は実質的にはないが、上述した低圧成膜の観点か
らみれば20倍程度が限界となる。上述した比較的原子
量の犬ぎた希ガスは上述した成膜圧の条件下では通常の
平行平板型グロー放電プラズマや前記公九例の場合に比
し102〜104倍の電離イオンを含有するが、上記電
離イオンは1ト20eVに加速され成膜面に入射する事
により膜質向上に寄与するものと考えられる。上記希ガ
スによる膜質向上効果は希ガスの原子量が大きい場合程
効果的であるがコスト面からみればArガスの使用が望
ましい。
It becomes possible to obtain an amorphous silicon film with better film quality than when the film is formed using electron cyclotron resonance plasma using only a light gas such as. The amount of Ne, Ar, or Xe introduced needs to be α05 or more relative to the amount of silicon atom-containing gas introduced, and although there is no practical upper limit, from the viewpoint of low-pressure film formation mentioned above, it is 20 The limit is about double that. The above-mentioned rare gas having a relatively high atomic weight contains 102 to 104 times as many ionized ions under the above-mentioned film-forming pressure conditions as in the case of a normal parallel plate glow discharge plasma or the above-mentioned example. It is believed that the ionized ions are accelerated to 1 to 20 eV and incident on the film forming surface, thereby contributing to improving the film quality. The film quality improvement effect of the rare gas is more effective when the atomic weight of the rare gas is larger, but from a cost standpoint, it is desirable to use Ar gas.

良好なアモルファスシリコン膜を得るためには基体を1
00°C以上に加熱する事が必要であるが、通常の平行
平板型グロー放電プラズマや前記公知例の場合に比し5
0〜100°C低い温度で同等の膜質のアモルファス膜
が得られ、特に200℃以上に基体を加熱した場合は従
来の手法で得られ難い良好な膜質が得られる。
In order to obtain a good amorphous silicon film, the substrate should be
Although it is necessary to heat the plasma to 00°C or higher, the temperature is 5°C compared to the normal parallel plate type glow discharge plasma or the above-mentioned known example.
An amorphous film with equivalent film quality can be obtained at a temperature 0 to 100°C lower, and particularly when the substrate is heated to 200°C or higher, a good film quality that is difficult to obtain with conventional methods can be obtained.

なお上記NeまたはArまたはKrまたはXeを含有す
るガスKHeまたはH,ガスを含有させると、膜質を維
持してア七ルアスシリコンの成膜速度を増大する事が可
能である。アルモファスシリコンの成膜速度の増大効果
を得るには、真空室に導入するシリコン原子含有ガス量
に対し0.05以上のHeまたはH,ガスを導入する必
要がある。但し、あまり多量にかかる軽ガスを含有させ
ると膜質の低下をきたすのでシリコン原子含有ガス導入
量の10倍程度が限度となる。上述した成膜速度の増大
効果を得るにはHeまたはH,ガ、スを効率的にプラズ
マ励起する必要があ咲シリコン原子含有ガスに混合した
場合は効果が少ない。
Note that by including the gas KHe or H gas containing Ne, Ar, Kr, or Xe, it is possible to maintain the film quality and increase the deposition rate of analysilicon. In order to obtain the effect of increasing the deposition rate of amorphous silicon, it is necessary to introduce 0.05 or more of He or H gas to the amount of silicon atom-containing gas introduced into the vacuum chamber. However, if too much light gas is included, the film quality will deteriorate, so the limit is about 10 times the amount of silicon atom-containing gas introduced. In order to obtain the above-mentioned effect of increasing the film formation rate, it is necessary to efficiently excite the plasma of He, H, gas, or gas. However, when mixed with a gas containing silicon atoms, the effect is small.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例によって説明する。 The present invention will be explained below with reference to Examples.

第1図は本発明のアモルファスシリコン膜の形成の実施
例に使用した電子サイクロトロンプラズマ成膜装置の構
成説明図である。図におい−1はマグネトロンであり、
通常0.1〜10GHzのマイクロ波を発生させる。発
生したマイクロ波は円形導波管2を通して真空室3内に
導びかれる。4は放電管でありマイクロ波を通すために
絶縁物(例えば石英ガラス、アルミナ等)で形成されて
いる。5は真空室内に磁場を形成させるためのソレノイ
ドコイルである。6.7は系統の異なるガス導入口であ
り、ガス導入口6は真空室3内の高磁場域にガスを供給
する様に配置され、ガス導入ロアは真空室3内の低出湯
域にガスを供給する様に配置されている。8は被成膜基
体でありガス導入ロアから供給されるガスが表面に入射
する様設置される。9は加熱機構を備えた試料台である
。10は排気ボートでありターボ分子ポンプや油拡散ポ
ンプの様な排気速度の大きな減圧ポンプ(図示せず)が
接続される。
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron plasma film forming apparatus used in an embodiment of forming an amorphous silicon film of the present invention. In the figure -1 is the magnetron,
Typically, microwaves of 0.1 to 10 GHz are generated. The generated microwaves are guided into the vacuum chamber 3 through the circular waveguide 2. 4 is a discharge tube made of an insulating material (for example, quartz glass, alumina, etc.) to transmit microwaves. 5 is a solenoid coil for forming a magnetic field within the vacuum chamber. 6.7 is a gas inlet of a different system, the gas inlet 6 is arranged to supply gas to the high magnetic field area in the vacuum chamber 3, and the gas inlet lower is arranged to supply gas to the low hot water output area in the vacuum chamber 3. It is arranged to supply. Reference numeral 8 denotes a substrate to be film-formed, which is installed so that the gas supplied from the gas introduction lower is incident on the surface. 9 is a sample stage equipped with a heating mechanism. Reference numeral 10 denotes an exhaust boat to which a decompression pump (not shown) having a high exhaust speed, such as a turbo molecular pump or an oil diffusion pump, is connected.

真空室内に放電ガスを所定の圧力に導入してマイクロ波
電力を供給すると、マイクロ波電界と磁場の相互作用に
よりマイクロ波放電が発生するが、上記磁場の設定条件
と上述したガス導入口の配置について説明する。磁場中
の電子は磁力線のまわりをサイクロトロン運動するが、
電子のサイクロトロン周波数fceは磁場強度によって fce =a 」L(Hz ) 2πm 但し B:@束密度 〔T〕 m:電子質量 (Kg ] e:電子電荷 (Coulomb ) と決定される。fceが入射マイクロ波周波数と一致す
る磁場強度の位置では電子サイクロトロン共鳴励起が起
こる。第1図において真空室3の放電管4の領域は上記
電子サイクロトロン共鳴が起こる磁場強度より犬とし、
この領域にガス導入口6からのガスを供給し、磁場強度
が電子サイクロトロン共鳴磁場より小さな領域にガス導
入ロアからの別系統のガスを供給する構成とする。この
様な構成においてガス導入口6から非成膜性のガスを導
入する。ここに導入するガスがNeまたはArまたはK
rまたはXeを含有するとこれら希ガスは効率的にイオ
ン化され、磁場こう配によって生ずる電場により10〜
20eVに加速されて基体8の成膜面に入射する。シリ
コン原子を含有する成膜ガスはガス導入ロアから供給さ
れ、低圧電子サイクロトロン共鳴による高エネルギの電
離電子により分解され基体8の表面にアモルファスシリ
コン膜が形成される。アモルファスシリコン膜中にB、
P、C。
When a discharge gas is introduced into a vacuum chamber at a predetermined pressure and microwave power is supplied, a microwave discharge is generated due to the interaction between the microwave electric field and the magnetic field. I will explain about it. Electrons in a magnetic field move in a cyclotron around magnetic field lines,
The cyclotron frequency fce of the electron is determined by the magnetic field strength as fce = a ''L (Hz) 2πm where B: @flux density [T] m: electron mass (Kg) e: electron charge (Coulomb). fce is the incident micro Electron cyclotron resonance excitation occurs at a position where the magnetic field strength coincides with the wave frequency.In Fig. 1, the area of the discharge tube 4 in the vacuum chamber 3 is set to be below the magnetic field strength where the electron cyclotron resonance occurs;
The configuration is such that gas is supplied from the gas introduction port 6 to this region, and another system of gas is supplied from the gas introduction lower to the region where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field. In such a configuration, a non-film-forming gas is introduced from the gas inlet 6. The gas introduced here is Ne, Ar, or K.
When containing r or
The light is accelerated to 20 eV and enters the film-forming surface of the base 8. A film-forming gas containing silicon atoms is supplied from the gas introduction lower, and is decomposed by high-energy ionized electrons due to low-pressure electron cyclotron resonance to form an amorphous silicon film on the surface of the substrate 8. B in the amorphous silicon film,
P.C.

N * Ge等の異種原子をドーピングしたい場合&?
When you want to dope a foreign atom such as N*Ge?
.

異種原子を含有するガスをガス導入ロアかも供給すれば
効率的にドーピングが行える。
Doping can be performed efficiently by supplying a gas containing foreign atoms to the gas introduction lower part.

次に上述したプラズマ成膜装置を用い、本発明のアモル
ファスシリコン膜を形成する方法を代表的実施例によっ
て説明する。
Next, a method for forming an amorphous silicon film according to the present invention using the above-mentioned plasma film forming apparatus will be described with reference to a typical example.

8i原子含有ガスとしてはSiH4を用いこれをガス導
入ロアから供給した。ガス導入口6からはArガスを8
iH,ガスと同量供給した。マイクロ波周数−2,45
GHz 、 ? イクロ波入カー3oow’、放電ガス
圧= 6 X 10−’Torr 1基体温度■200
℃とした。a場分布は放電管4の部分で最大1750G
・放電管4の排気側端部で875 G (を子サイクロ
トロン共鳴出湯強度)になる様設定した。
SiH4 was used as the 8i atom-containing gas and was supplied from the gas introduction lower. Ar gas is supplied from gas inlet 6.
The same amount of iH gas was supplied. Microwave frequency -2,45
GHz? Microwave input car 3oow', discharge gas pressure = 6 x 10-'Torr 1 base temperature ■200
℃. The maximum a-field distribution is 1750G in the discharge tube 4 part.
・The discharge tube 4 was set to have a force of 875 G (resonant tapping strength of the child cyclotron) at the exhaust side end.

排気系には排気速度500t/秒のターボ分子ポンプを
用いた。この条件で形成したアモルファスシリコン膜は
光導電率1叶& 5./)x1元導電率と暗導電率の比
が101という良質の膜であった。
A turbo molecular pump with an exhaust speed of 500 t/sec was used for the exhaust system. The amorphous silicon film formed under these conditions has a photoconductivity of 1.5. /)x It was a good quality film with a ratio of primary conductivity to dark conductivity of 101.

この他、Ne e Kr # Xeをガス導入口6から
供給した場合にも光導電率と暗導電率の比が101′〜
106の良質膜が得られ、上記比が104程度の膜であ
れば100°Cの基板加熱で形成可能であっもNe、 
Ar、 Kr+ XeガスをHeまたはH2によって希
釈したガスを用いた場合でも良好であり、上記した実施
例でArガスにHeをSiH4ガス量に対し叶添加した
実験ではほぼ同等の膜質のアモルファスシリコン膜が約
15倍の成膜速度で得られた。
In addition, when Ne e Kr #
A film with a good quality of 106 and the above ratio of about 104 can be formed by heating the substrate at 100°C.
Good results are obtained even when Ar, Kr+ was obtained at about 15 times faster film formation rate.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、従来よりも光導電
特性に優れたアモルファスシリコンが形成でき、あるい
は比較的良好なアモルファスシリコン膜を低温で形成す
る事が可能となり光導電性特性を利用する各種素子への
応用が可能となる。
As described above, according to the present invention, it is possible to form amorphous silicon with better photoconductive properties than before, or it is possible to form a relatively good amorphous silicon film at a low temperature, making use of photoconductive properties. It becomes possible to apply it to various devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のアモルファスシリコン膜形成に使用
する電子サイクロトロン共鳴プラズマデボジシ1ン装置
の構成説明図である。 1・・・マグネトロン、  2・・・導波管、3・・・
真空室、    4・・・放電管、5・・・ソレノイド
コイル、6.7・・・ガス導入口、8・・・基体、  
    9・・・試料台、10・・・排気ボート。 第 1 図 羽ト気 手続補正型動式) 事件の表示 昭和60 年特許願第 146528  号発明の名称 アモルファスシリコン膜の形成方法 補正をする者 1哨との靴 特許出願人 名  称   L5+o+株式会社  日  立  製
  作所代   理   人
FIG. 1 is an explanatory diagram of the configuration of an electron cyclotron resonance plasma deposition apparatus used for forming an amorphous silicon film according to the present invention. 1... Magnetron, 2... Waveguide, 3...
Vacuum chamber, 4...Discharge tube, 5...Solenoid coil, 6.7...Gas inlet, 8...Base body,
9... Sample stand, 10... Exhaust boat. (Figure 1) Indication of the case Patent Application No. 146528 of 1985 Title of the invention Method for forming an amorphous silicon film Shoes with a person who makes corrections Patent applicant name Name L5+o+Hitachi Co., Ltd. Manufacturer's agent

Claims (1)

【特許請求の範囲】 1、真空室の少くとも一部に磁場を形成し、上記真空室
内にマイクロ波を導入し、上記真空室内に導入したガス
を上記磁場と上記マイクロ波による電子サイクロトロン
共鳴によつてプラズマ励起し、上記真空室内に導入され
たシリコン原子含有ガスを分解し、上記真空室内に設置
された基体上にアモルファスシリコン膜を形成するアモ
ルファスシリコン膜の形成方法において、上記放電ガス
がNeまたはArまたはKrまたはXeを、導入するシ
リコン原子含有ガス量に対し0.05〜20含有するガ
スよりなり、放電時のガス圧が5×10^−^5〜3×
10^−^2Torrである事を特徴とするアモルファ
スシリコン膜の形成方法。 2、上記真空室内形成される磁場強度が、マイクロ波の
導入経路に沿つて電子サイクロトロン共鳴磁界より大か
ら減少し共鳴磁界をへて共鳴磁界より小となり、上記磁
場強度が電子サイクロトロン共鳴磁界より大の領域にN
eまたはArまたはKrまたはXeを、真空室に導入す
るシリコン原子含有ガスに対し0.05〜20、含有す
る非成膜性ガスを導入し、上記磁場強度が電子サイクロ
トロン共鳴磁界より小の領域にシリコン原子含有ガスを
導入し上記磁場強度が電子サイクロトロン共鳴磁界より
小の領域に設置された基体上に成膜する事を特徴とする
特許請求範囲第1項記載のアモルファスシリコン膜の形
成方法。 3、上記NeまたはArまたはKrまたはXeを含有す
るガスがHeまたはHzを、真空室に導入するシリコン
原子含有ガスに対し0.05〜10含有するガスである
事を特徴とする特許請求範囲第1項または第2項記載の
アモルファスシリコン膜の形成方法。 4、上記基体を100℃〜400℃に加熱した条件で成
膜する事を特徴とする特許請求範囲第1項または第2項
または第3項記載のアモルファスシリコン膜の形成方法
[Claims] 1. A magnetic field is formed in at least a part of the vacuum chamber, microwaves are introduced into the vacuum chamber, and the gas introduced into the vacuum chamber is subjected to electron cyclotron resonance due to the magnetic field and the microwaves. Accordingly, in the method for forming an amorphous silicon film in which plasma is excited to decompose a silicon atom-containing gas introduced into the vacuum chamber and an amorphous silicon film is formed on a substrate placed in the vacuum chamber, the discharge gas is Ne. Alternatively, the gas contains 0.05 to 20% of Ar, Kr, or
A method for forming an amorphous silicon film characterized by a pressure of 10^-^2 Torr. 2. The magnetic field intensity formed in the vacuum chamber decreases from being larger than the electron cyclotron resonance magnetic field along the microwave introduction path, and becomes smaller than the resonance magnetic field after passing through the resonance magnetic field, and the magnetic field intensity is larger than the electron cyclotron resonance magnetic field. N in the area of
A non-film-forming gas containing e, Ar, Kr, or Xe at a ratio of 0.05 to 20% relative to the silicon atom-containing gas introduced into the vacuum chamber is introduced into a region where the magnetic field strength is smaller than the electron cyclotron resonance magnetic field. 2. The method of forming an amorphous silicon film according to claim 1, wherein the film is formed on a substrate placed in a region where a silicon atom-containing gas is introduced and the magnetic field strength is smaller than an electron cyclotron resonance magnetic field. 3. The gas containing Ne, Ar, Kr, or Xe is a gas containing He or Hz of 0.05 to 10 Hz relative to the silicon atom-containing gas introduced into the vacuum chamber. A method for forming an amorphous silicon film according to item 1 or 2. 4. The method for forming an amorphous silicon film according to claim 1, 2, or 3, wherein the film is formed under the condition that the substrate is heated to 100° C. to 400° C.
JP14652885A 1985-07-05 1985-07-05 Formation of amorphous silicon film Granted JPS627859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14652885A JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14652885A JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Publications (2)

Publication Number Publication Date
JPS627859A true JPS627859A (en) 1987-01-14
JPH0521983B2 JPH0521983B2 (en) 1993-03-26

Family

ID=15409681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14652885A Granted JPS627859A (en) 1985-07-05 1985-07-05 Formation of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS627859A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297566A (en) * 1987-05-28 1988-12-05 Tokyo Electron Ltd Plasma treatment apparatus
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5204272A (en) * 1991-12-13 1993-04-20 United Solar Systems Corporation Semiconductor device and microwave process for its manufacture
US5246744A (en) * 1990-11-30 1993-09-21 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma cvd
US5346792A (en) * 1991-06-11 1994-09-13 Canon Kabushiki Kaisha Color toner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436769A (en) * 1987-04-27 1989-02-07 Semiconductor Energy Lab Plasma treatment device
US5858259A (en) * 1987-04-27 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
JPS63297566A (en) * 1987-05-28 1988-12-05 Tokyo Electron Ltd Plasma treatment apparatus
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5180436A (en) * 1988-07-26 1993-01-19 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
US5246744A (en) * 1990-11-30 1993-09-21 Central Glass Company, Limited Method of forming thin film of amorphous silicon by plasma cvd
US5346792A (en) * 1991-06-11 1994-09-13 Canon Kabushiki Kaisha Color toner
US5204272A (en) * 1991-12-13 1993-04-20 United Solar Systems Corporation Semiconductor device and microwave process for its manufacture

Also Published As

Publication number Publication date
JPH0521983B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
JPS6113626A (en) Plasma processor
JPH0219471A (en) Method for forming membrane
US4818560A (en) Method for preparation of multi-layer structure film
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS627859A (en) Formation of amorphous silicon film
US4913928A (en) Microwave plasma chemical vapor deposition apparatus with magnet on waveguide
US5635144A (en) Low temperature plasma film deposition using dielectric chamber as source material
JPS62295411A (en) Forming method for silicon amorphous film
JPH0488174A (en) Method and device for surface treatment
JPH07153595A (en) Existent magnetic field inductive coupling plasma treating device
JPS6254083A (en) Formation of film
JPS63152116A (en) Formation of silicon amorphous alloy film
KR100230356B1 (en) Ecr cvd and method for forming thin film using the same
CN109922590B (en) Method for forming and maintaining atomic state plasma and method for treating semiconductor material by using plasma
JPS62174382A (en) Method and apparatus for depositing metallic alloy from vapor phase
JP3190100B2 (en) Carbon material production equipment
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JPH0666272B2 (en) Method for forming silicon-based amorphous film
CA2023205C (en) Method of depositing directly activated species onto a remotely located substrate
JP2867150B2 (en) Microwave plasma CVD equipment
JPH0340422A (en) Film formation device
Sano et al. Deposition of High Quality SiO 2 Films Using Teos by ECR Plasma
Spencer et al. New directions in dry processing using the flowing afterglow of a microwave discharge
JPH0453229A (en) Manufacture device of semiconductor device