JPH0390568A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH0390568A
JPH0390568A JP22645789A JP22645789A JPH0390568A JP H0390568 A JPH0390568 A JP H0390568A JP 22645789 A JP22645789 A JP 22645789A JP 22645789 A JP22645789 A JP 22645789A JP H0390568 A JPH0390568 A JP H0390568A
Authority
JP
Japan
Prior art keywords
plasma
chamber
sample
generation chamber
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22645789A
Other languages
Japanese (ja)
Inventor
Tomoaki Sugawara
智明 菅原
Masaharu Tanaka
正治 田中
Kiyoto Shibata
清人 柴田
Shinji Tezuka
伸治 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22645789A priority Critical patent/JPH0390568A/en
Publication of JPH0390568A publication Critical patent/JPH0390568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To stabilize generation of plasma and actuation of an evaporation source and to enhance quality of a formed film by partitioning a plasma generating chamber from the sample chamber containing an evaporation source and the base plate a sample with a pulling window and pulling plasma out through this window. CONSTITUTION:Prescribed reactive gas is introduced into a plasma generating chamber 1 and plasma is generated in this chamber 1 by utilizing a microwave plasma source having a magnetic field. At this time, the chamber 1 is held at the degree of vacuum not lower than about 5X10<-5>Torr. An electronic cyclotron resonance plasma flow P is pulled out into a sample chamber 5 containing the base plate 7 of a sample and an evaporation source 6 through the communication hole 11a of a pulling window 11 by the magnetic field of a coil 4 therefor and difference in the degree of vacuum, between the chamber 1 and the sample chamber 5. At this time, the plasma flow P starts to be spread but is squeezed by a magnet 8. The chambers 1, 5 are partitioned by the window 11 and vacuum exhaust conductance is made small. Therefore when the chamber 5 is vacuumized and exhausted, the difference is caused in the degree of vacuum between the chambers 1, 5 and the aim cam be achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマ処理装置に係り、例えば非平衡プラ
ズマによる反応性蒸着成膜装置としてのプラズマ処理装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma processing apparatus, for example, a plasma processing apparatus as a reactive vapor deposition apparatus using non-equilibrium plasma.

(従来の技術) 従来のこの種のプラズマ処理装置は半導体集積回路や光
ディスク等の製造に用いられており、例えば特開昭61
−135126号公報に記載のものが知られている。
(Prior Art) Conventional plasma processing apparatuses of this type are used for manufacturing semiconductor integrated circuits, optical disks, etc.
The one described in JP-A-135126 is known.

このものは、反応ガスをプラズマ化し、これを金属蒸気
と反応させて試料基板に窒化物や酸化物の薄膜を成膜す
るようにしている。プラズマを発生させるプラズマ源に
は熱フィラメントを用いない有磁場マイクロ波プラズマ
源を用いており、金属蒸気を発生させる蒸発源には電子
線加熱型のものが用いられている。プラズマ源と蒸発源
とは同一の容器内に設けられているが空間的に分離され
ており、これによりプラズマ源と蒸発源の互いの干渉に
よる動作不良等を防止するようにしている。
This method converts a reactive gas into plasma and reacts it with metal vapor to form a thin film of nitride or oxide on a sample substrate. A magnetic field microwave plasma source that does not use a hot filament is used as a plasma source to generate plasma, and an electron beam heating type is used as an evaporation source to generate metal vapor. Although the plasma source and the evaporation source are provided in the same container, they are spatially separated, thereby preventing malfunctions due to mutual interference between the plasma source and the evaporation source.

この場合、必然的にプラズマ源と試料基板との離隔距離
は長くなり、プラズマ流が拡がり、いわゆる管壁スパッ
タによる試料汚染および蒸発速度の低下を招くことにな
るが、試料基板を挟んでプラズマ源の反対側に電磁石あ
るいは永久磁石を設け、その形成する磁場によりプラズ
マ流を絞って上述の不具合を解消するようにしている。
In this case, the distance between the plasma source and the sample substrate inevitably becomes longer, and the plasma flow spreads, resulting in sample contamination due to so-called tube wall spatter and a decrease in the evaporation rate. An electromagnet or a permanent magnet is provided on the opposite side of the magnet, and the magnetic field generated by the electromagnet or permanent magnet narrows the plasma flow to eliminate the above-mentioned problems.

(発明が解決しようとする課題) しかしながら、従来のこの種のプラズマ処理装置にあっ
ては、プラズマ源と蒸発源とが同一の容器内に設けられ
ていたため、プラズマ源と蒸発源とが同じ真空度の下に
置かれていた。
(Problem to be Solved by the Invention) However, in the conventional plasma processing apparatus of this type, the plasma source and the evaporation source were provided in the same container, so the plasma source and the evaporation source were placed in the same vacuum. It was placed under the control.

ここでプラズマ源のプラズマの発生を安定させるために
は7 xto−”r o r r以上の真空が必要であ
り、一方蒸発源すなわち電子銃は5 X 1O−5T 
Here, in order to stabilize the generation of plasma in the plasma source, a vacuum of 7xto-"r o r r or more is required, while the evaporation source, that is, the electron gun, has a vacuum of 5x1O-5T.
.

rr以下の真空で使用しないと異常放電の可能性がある
If it is not used in a vacuum below rr, there is a possibility of abnormal discharge.

この結果、プラズマ源の動作の安定と蒸発源の動作の安
定とを両立させることができずに成膜の品質が低下する
といった問題点があった。
As a result, there has been a problem in that it is not possible to achieve both stable operation of the plasma source and stable operation of the evaporation source, resulting in a decrease in the quality of film formation.

(発明の目的〉 そこで本発明は、プラズマ源としてのプラズマ生成室と
蒸発源および試料基板を収納した試料室とを引出窓によ
り仕切り、プラズマ生成室のプラズマを引出窓の連通孔
を通して引き出すようにしたことにより、プラズマ生成
室と試料室との真空度に差を生じさせて、プラズマの発
生および蒸発源の動作を安定させ、成膜の品質を向上す
ることを目的としている。
(Purpose of the Invention) Therefore, the present invention has a structure in which a plasma generation chamber as a plasma source and a sample chamber containing an evaporation source and a sample substrate are partitioned by a drawer window, and the plasma in the plasma generation chamber is drawn out through the communication hole of the drawer window. By doing so, the purpose is to create a difference in the degree of vacuum between the plasma generation chamber and the sample chamber, stabilize the plasma generation and the operation of the evaporation source, and improve the quality of film formation.

なお、プラズマ生成室と試料室とを分離させたプラズマ
CV D (Chemical Vapor Depo
sition)装置が特公昭62−43335号公報に
記載されているが、このものは、蒸発源を用いるもので
はなく、また、発散磁界によりプラズマ生成室のプラズ
マを試料室に引き出しているので前述した管壁スパッタ
による試料汚染を防止することができない。
In addition, a plasma CVD (Chemical Vapor Depot) in which the plasma generation chamber and the sample chamber are separated
Japanese Patent Publication No. Sho 62-43335 describes a device (situation), but this device does not use an evaporation source and draws the plasma in the plasma generation chamber into the sample chamber using a diverging magnetic field, so it is similar to the one described above. Sample contamination due to tube wall spatter cannot be prevented.

(発明の構成) 本発明によるプラズマ処理装置は上記目的達成のため、
所定の反応ガスを導入し、プラズマを発生させ活性化す
るプラズマ生成室と、プラズマ生成室に隣接して設けら
れ、所定の物質を蒸発させる蒸発源、プラズマ処理され
る試料基板および試料基板を挟んでプラズマ生成室の反
対側に配設された磁石を収納した試料室と、を備え、プ
ラズマ生成室内のプラズマを試料基板に向けて試料室内
に引き出してプラズマ処理するプラズマ処理装置におい
て、前記プラズマ生成室と試料室とを仕切り、プラズマ
生成室と試料室とを連通させる連通孔を有する引出窓を
設け、プラズマ生成室内のプラズマを引出窓の連通孔を
通して試料室内に引き出すようにしたことを特徴とする
ものであり、また、前記プラズマ生成室にマイクロ波を
導入するマイクロ波導入手段と、電子サイクロトロン共
鳴を引き起こす磁場を発生させる磁場手段と、を設け、
プラズマ生成室がマイクロ波空洞共鳴器となるように、
プラズマ生成室の形状および寸法を設定するようにして
もよい。
(Structure of the Invention) In order to achieve the above object, the plasma processing apparatus according to the present invention has the following features:
A plasma generation chamber that introduces a predetermined reaction gas to generate and activate plasma, an evaporation source that evaporates a predetermined substance that is installed adjacent to the plasma generation chamber, a sample substrate to be plasma processed, and a sample substrate sandwiched therebetween. a sample chamber housing a magnet disposed on the opposite side of the plasma generation chamber; A drawer window having a communication hole that partitions the chamber and the sample chamber and communicates the plasma generation chamber and the sample chamber is provided, and the plasma in the plasma generation chamber is drawn out into the sample chamber through the communication hole of the drawer window. Further, a microwave introducing means for introducing microwaves into the plasma generation chamber and a magnetic field means for generating a magnetic field that causes electron cyclotron resonance are provided,
Just as the plasma generation chamber becomes a microwave cavity resonator,
The shape and dimensions of the plasma generation chamber may be set.

以下、本発明の実施例に基づいて具体的に説明する。Hereinafter, the present invention will be specifically explained based on examples.

図は本発明に係るプラズマ処理装置の一実施例を示す図
である。
The figure shows an embodiment of a plasma processing apparatus according to the present invention.

まず、構成を説明する。First, the configuration will be explained.

図において、lはプラズマ生成室であり、プラズマ生成
室1は所定の反応ガスをマスフローコントローラおよび
ガス導入管(何れも図示しない)を介して導入し、プラ
ズマを発生させ活性化するものである。プラズマ生成室
lには導波管2から石英ガラス等からなるマイクロ波導
入窓3を通してマイクロ波が導入されるようになってい
る。マイクロ波源(図示しない)としては例えば周波数
2.45GIIzのマグネトロンを用いることができる
In the figure, l denotes a plasma generation chamber, and a plasma generation chamber 1 introduces a predetermined reaction gas through a mass flow controller and a gas introduction pipe (none of which are shown) to generate and activate plasma. Microwaves are introduced into the plasma generation chamber 1 from a waveguide 2 through a microwave introduction window 3 made of quartz glass or the like. As a microwave source (not shown), for example, a magnetron with a frequency of 2.45 GIIz can be used.

ま・たプラズマ生成室1の外周には磁場用コイル4が設
けられており、磁場用コイル4により発生する磁界の強
度は、マイクロ波による電子サイクロトロン共鳴を引き
起こすように設定される。例えば周波数2.45GHz
のマイクロ波の条件は磁束密度875Gであるため、磁
場用コイル4は最大磁束密度1000G程度まで得られ
るようになっている。すなわち、上述の導波管2および
マイクロ波導入窓3はプラズマ生成室lにマイクロ波を
導入するマイクロ波導入手段を構成し、磁場用コイル4
は電子サイクロトロン共鳴を引き起こす磁場を発生させ
る磁場手段を構成する。プラズマ生成室lの形状および
寸法は、プラズマ生成室lがマイクロ波空洞共鳴器とな
るように、設定されており、−例として円形空洞共振モ
ードT E + + 3を採用することができる。
Further, a magnetic field coil 4 is provided around the outer periphery of the plasma generation chamber 1, and the strength of the magnetic field generated by the magnetic field coil 4 is set to cause electron cyclotron resonance due to microwaves. For example, frequency 2.45GHz
Since the microwave condition is a magnetic flux density of 875G, the magnetic field coil 4 can obtain a maximum magnetic flux density of about 1000G. That is, the above-mentioned waveguide 2 and microwave introduction window 3 constitute microwave introduction means for introducing microwaves into the plasma generation chamber l, and the magnetic field coil 4
constitutes a magnetic field means for generating a magnetic field that causes electron cyclotron resonance. The shape and dimensions of the plasma generation chamber 1 are set such that the plasma generation chamber 1 becomes a microwave cavity resonator, for example a circular cavity resonance mode T E + + 3 can be adopted.

一方、5はプラズマ生成室lに隣接して設けられた試料
室であり、試料室5は蒸発源6、プラズマ処理される試
料基板7および磁石8を収納している。蒸発a6は所定
の金属やその他の化合物を蒸発させるいわゆる電子銃蒸
発源であり、金属等の蒸気Sを試料基板7に照射する。
On the other hand, 5 is a sample chamber provided adjacent to the plasma generation chamber 1, and the sample chamber 5 houses an evaporation source 6, a sample substrate 7 to be plasma treated, and a magnet 8. The evaporator a6 is a so-called electron gun evaporation source that evaporates a predetermined metal or other compound, and irradiates the sample substrate 7 with vapor S of metal or the like.

試料基板7は、基板ホルダ9により基板面がプラズマ生
成室1と蒸発源6の両方に面するように支持されている
The sample substrate 7 is supported by a substrate holder 9 so that the substrate surface faces both the plasma generation chamber 1 and the evaporation source 6.

磁石8は電磁石あるいは永久磁石であり、試料基板7を
挟んでプラズマ生成室1の反対側に配設されている。l
Oは排気口であり、試料室5は排気口lOを通して真空
排気される。
The magnet 8 is an electromagnet or a permanent magnet, and is disposed on the opposite side of the plasma generation chamber 1 with the sample substrate 7 in between. l
O is an exhaust port, and the sample chamber 5 is evacuated through the exhaust port IO.

ここで、11はプラズマ生成室1と試料室5とを仕切る
引出窓であり、引出窓11はプラズマ生成室1と試料室
5とを連通させる1個あるいは複数個の連通孔11aを
有している。プラズマ生成室1のプラズマは連通孔11
aを通して試料室5に引き出されるようになっており、
プラズマ流Pで表される。連通孔11aの径および数は
試料室5が排気口10を通して真空排気された場合、プ
ラズマ生成室lと試料室5との真空度に所定の差が生し
るように、設定されている。
Here, 11 is a drawer window that partitions the plasma generation chamber 1 and the sample chamber 5, and the drawer window 11 has one or more communication holes 11a that communicate the plasma generation chamber 1 and the sample chamber 5. There is. The plasma in the plasma generation chamber 1 is transmitted through the communication hole 11.
It is designed to be drawn out to the sample chamber 5 through a.
It is expressed as a plasma flow P. The diameter and number of the communication holes 11a are set so that when the sample chamber 5 is evacuated through the exhaust port 10, a predetermined difference in the degree of vacuum occurs between the plasma generation chamber 1 and the sample chamber 5.

次に作用を説明する。Next, the action will be explained.

まず、プラズマ生成室に導入されたマイクロ波が磁場用
コイル4により形成された磁場によってサイクロトロン
運動する電子により共鳴吸収される。マイクロ波からエ
ネルギーを得た電子が反応ガスを励起し、これを解離、
イオン化し、プラズマを作り出す。このときのプラズマ
生成室lは5xlO−’T o r r程度以上の真空
度に保たれ、この真空は排気口10を通しての真空排気
により作り出される。そして、プラズマ生成室1のプラ
ズマが磁場用コイル4の磁場およびプラズマ生成室1と
試料室5との真空度の差によりECR(電子サイクロト
ロン共鳴)プラズマ流Pとして引出窓11の連通孔11
aを通して試料室5に引き出され、試料基板7に到達し
、金属蒸気Sと反応して、試料基板7のプラズマ処理が
行われる。またECRプラズマ流Pが試料室5に引き出
されるとき、ビーム状をなしているECRプラズマ流P
が拡がろうとするが、磁石8が設けられているので、拡
がろうとするECRプラズマ流Pを絞ることができる。
First, microwaves introduced into the plasma generation chamber are resonantly absorbed by electrons moving in a cyclotron due to the magnetic field formed by the magnetic field coil 4. Electrons obtained energy from microwaves excite the reactant gas and dissociate it,
Ionizes and creates plasma. At this time, the plasma generation chamber 1 is maintained at a degree of vacuum of about 5xlO-'T or r or more, and this vacuum is created by evacuation through the exhaust port 10. Then, the plasma in the plasma generation chamber 1 becomes an ECR (electron cyclotron resonance) plasma flow P due to the magnetic field of the magnetic field coil 4 and the difference in the degree of vacuum between the plasma generation chamber 1 and the sample chamber 5.
a into the sample chamber 5, reaches the sample substrate 7, reacts with the metal vapor S, and plasma-processes the sample substrate 7. Furthermore, when the ECR plasma flow P is drawn out into the sample chamber 5, the ECR plasma flow P is in a beam shape.
However, since the magnet 8 is provided, the ECR plasma flow P that is trying to spread can be constricted.

上述のように本実施例では、プラズマ生成室lと試料室
5が引出窓11により仕切られ真空排気コンダクタンス
を小さくしているので、試料室5を排気口10を通して
真空排気した場合、プラズマ生成室lと試料室5との真
空度に差を生しさせることができる。例えばプラズマ生
成室1を7X10−5Torr以上の真空にして、試料
室5を5X10−’Torr以下の真空にすることがで
きる。したがって、プラズマ生成の安定と蒸発源6の動
作の安定、すなわち異常放電の防止との両立を図ること
ができ、プラズマ処理による成膜の品質を向上すること
ができる。
As described above, in this embodiment, the plasma generation chamber l and the sample chamber 5 are partitioned by the drawer window 11 to reduce the evacuation conductance, so when the sample chamber 5 is evacuated through the exhaust port 10, the plasma generation chamber It is possible to create a difference in the degree of vacuum between the sample chamber 5 and the sample chamber 5. For example, the plasma generation chamber 1 can be made to have a vacuum of 7×10 −5 Torr or more, and the sample chamber 5 can be made to be a vacuum of 5×10 −′ Torr or less. Therefore, it is possible to achieve both stable plasma generation and stable operation of the evaporation source 6, that is, prevention of abnormal discharge, and it is possible to improve the quality of film formation by plasma processing.

また、マイクロ波を導入するとともに磁場用コイル4を
設けているので電子サイクロトロン共鳴プラズマを発生
させることができ、さらにプラズマ生成室1がマイクロ
波空洞共鳴器となっているので、マイクロ波の電界強度
を高め、マイクロ波放電の効率を高めることができ、活
性度の高いプラズマを高真空中で発生させることができ
る。この結果、蒸発源6との同時使用が可能になり、本
実施例をプラズマを用いた反応性蒸着装置に適用するこ
とができる。
In addition, since microwaves are introduced and a magnetic field coil 4 is provided, electron cyclotron resonance plasma can be generated, and since the plasma generation chamber 1 is a microwave cavity resonator, the electric field strength of the microwave is It is possible to increase the efficiency of microwave discharge and generate highly active plasma in a high vacuum. As a result, simultaneous use with the evaporation source 6 is possible, and this embodiment can be applied to a reactive evaporation apparatus using plasma.

なお、本実施例において、プラズマ流と蒸発源6からの
金属蒸気とを同時にまたは交互に照射するようにすれば
、化合物と金属の層状構造の薄膜を形成することができ
る。
In this example, if the plasma flow and the metal vapor from the evaporation source 6 are irradiated simultaneously or alternately, a thin film having a layered structure of a compound and a metal can be formed.

また、本実施例において、プラズマ生成室1から引き出
されるプラズマ粒子の運動エネルギーを変化させるイオ
ン引出電極等の電界印手段を設けるようにすれば、より
高性能の薄膜を形成することができる。
Further, in this embodiment, if an electric field application means such as an ion extraction electrode that changes the kinetic energy of plasma particles extracted from the plasma generation chamber 1 is provided, a thin film with higher performance can be formed.

(効果) 本発明によれば、プラズマ生成室と蒸発源および試料基
板を収納した試料室とを引出窓により仕切り、プラズマ
生成室のプラズマを引出窓の連通孔を通して引き出すよ
うにしているので、プラズマ生成室と試料室とをそれぞ
れ適正な真空度に保つことができる。
(Effects) According to the present invention, the plasma generation chamber and the sample chamber containing the evaporation source and the sample substrate are partitioned by the drawer window, and the plasma in the plasma generation chamber is drawn out through the communication hole of the drawer window. The generation chamber and the sample chamber can each be maintained at an appropriate degree of vacuum.

したがって、プラズマの発生および蒸発源の動作を安定
させることができ、成膜の品質を向上することができる
Therefore, the generation of plasma and the operation of the evaporation source can be stabilized, and the quality of film formation can be improved.

また、プラズマ生成室がマイクロ波空洞共鳴器となるよ
うに、プラズマ生成室の形状および寸法を設定した場合
、マイクロ波の電界強度を高めることができる。
Further, when the shape and dimensions of the plasma generation chamber are set so that the plasma generation chamber becomes a microwave cavity resonator, the electric field strength of the microwave can be increased.

したがって、マイクロ波放電の効率を高めることができ
、活性度の高いプラズマを高真空中で発生させることが
できる。
Therefore, the efficiency of microwave discharge can be increased, and highly active plasma can be generated in a high vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係るプラズマ処理装置の一実施例を示すそ
の断面図である。 l・・・・・・プラズマ生成室、 4・・・・・・磁場用コイル(磁場手段)5・・−・・
・試料室、 6・・・・・・蒸発源、 7・・・・・・試料基板、 8・・・・・・磁石、 11・・・・・・引出窓、 11a・・・・・・連通孔。 代 理 人
The figure is a sectional view showing an embodiment of a plasma processing apparatus according to the present invention. l...Plasma generation chamber, 4...Magnetic field coil (magnetic field means) 5...
- Sample chamber, 6... Evaporation source, 7... Sample substrate, 8... Magnet, 11... Drawer window, 11a... Communication hole. agent

Claims (2)

【特許請求の範囲】[Claims] (1) 所定の反応ガスを導入し、プラズマを発生させ
活性化するプラズマ生成室と、プラズマ生成室に隣接し
て設けられ、所定の物質を蒸発させる蒸発源、プラズマ
処理される試料基板および試料基板を挟んでプラズマ生
成室の反対側に配設された磁石を収納した試料室と、を
備え、プラズマ生成室内のプラズマを試料基板に向けて
試料室内に引き出してプラズマ処理するプラズマ処理装
置において、前記プラズマ生成室と試料室とを仕切り、
プラズマ生成室と試料室とを連通させる連通孔を有する
引出窓を設け、プラズマ生成室内のプラズマを引出窓の
連通孔を通して試料室内に引き出すようにしたことを特
徴とするプラズマ処理装置。
(1) A plasma generation chamber that introduces a predetermined reaction gas to generate and activate plasma, an evaporation source that is installed adjacent to the plasma generation chamber and evaporates a predetermined substance, and a sample substrate and sample to be plasma treated. A plasma processing apparatus comprising a sample chamber housing a magnet disposed on the opposite side of the plasma generation chamber with a substrate in between, and performs plasma processing by drawing plasma in the plasma generation chamber toward the sample substrate into the sample chamber, partitioning the plasma generation chamber and the sample chamber;
A plasma processing apparatus characterized in that a drawer window having a communication hole that communicates a plasma generation chamber and a sample chamber is provided, and plasma in the plasma generation chamber is drawn out into the sample chamber through the communication hole of the drawer window.
(2) 前記プラズマ生成室にマイクロ波を導入するマ
イクロ波導入手段と、電子サイクロトロン共鳴を引き起
こす磁場を発生させる磁場手段と、を設け、プラズマ生
成室がマイクロ波空洞共鳴器となるように、プラズマ生
成室の形状および寸法を設定したことを特徴とする請求
項1記載のプラズマ処理装置。
(2) Microwave introduction means for introducing microwaves into the plasma generation chamber and magnetic field means for generating a magnetic field that causes electron cyclotron resonance are provided, and the plasma generation chamber is configured to serve as a microwave cavity resonator. 2. The plasma processing apparatus according to claim 1, wherein the shape and dimensions of the generation chamber are set.
JP22645789A 1989-08-31 1989-08-31 Plasma treating device Pending JPH0390568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22645789A JPH0390568A (en) 1989-08-31 1989-08-31 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22645789A JPH0390568A (en) 1989-08-31 1989-08-31 Plasma treating device

Publications (1)

Publication Number Publication Date
JPH0390568A true JPH0390568A (en) 1991-04-16

Family

ID=16845399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22645789A Pending JPH0390568A (en) 1989-08-31 1989-08-31 Plasma treating device

Country Status (1)

Country Link
JP (1) JPH0390568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223333A (en) * 1990-12-25 1992-08-13 Matsushita Electric Ind Co Ltd Manufacture of thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223333A (en) * 1990-12-25 1992-08-13 Matsushita Electric Ind Co Ltd Manufacture of thin film transistor

Similar Documents

Publication Publication Date Title
JP2886978B2 (en) Electron cyclotron resonance plasma source and operation method
US4610770A (en) Method and apparatus for sputtering
KR940000384B1 (en) Treating apparatus of plasma
EP0217361B1 (en) Ion source
US4521286A (en) Hollow cathode sputter etcher
KR920002864B1 (en) Apparatus for treating matrial by using plasma
NL8303458A (en) DEVICE FOR PERFORMING A DRY TREATMENT.
JPS6338585A (en) Plasma device
JPS61135126A (en) Equipment of plasma treatment
JPH0390568A (en) Plasma treating device
US5433788A (en) Apparatus for plasma treatment using electron cyclotron resonance
JP2849771B2 (en) Sputter type ion source
EP0290036B1 (en) Plasma treatment apparatus
JPH0217636A (en) Dry etching device
JP3034692B2 (en) Vacuum reactor and semiconductor substrate processing method
JPS6364247A (en) Plasma device
JP3123203B2 (en) Plasma device and method of using the device
JP2610477B2 (en) Plasma processing equipment
JPH0535218B2 (en)
JPH01139758A (en) Method and device for thin film vapor deposition
JPH03150377A (en) Plasma treating device
JP2738810B2 (en) Plasma processing equipment
JPH0368764A (en) Plasma treating device for forming thin film
JPS59133364A (en) Electric discharge chemical reaction device
JPH0722405A (en) Method and device for chemical vapor growth