JPH0722405A - Method and device for chemical vapor growth - Google Patents

Method and device for chemical vapor growth

Info

Publication number
JPH0722405A
JPH0722405A JP15074793A JP15074793A JPH0722405A JP H0722405 A JPH0722405 A JP H0722405A JP 15074793 A JP15074793 A JP 15074793A JP 15074793 A JP15074793 A JP 15074793A JP H0722405 A JPH0722405 A JP H0722405A
Authority
JP
Japan
Prior art keywords
thin film
chemical vapor
dimer
monomer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15074793A
Other languages
Japanese (ja)
Inventor
Koichiro Kawamura
光一郎 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15074793A priority Critical patent/JPH0722405A/en
Publication of JPH0722405A publication Critical patent/JPH0722405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the coating ratio of a vertical step part by absorbing the monomer, dimer and trimer formed from raw material gas when a thin film is formed on a semiconductor substrate, and irradiating with an ion beam on the semiconductor substrate at the same time. CONSTITUTION:The deposition reaction of a semiconductor step part is indicated when a thin film is deposited on a semiconductor substrate and an ion beam is cast is indicated. At a flat part 13, etching reaction is accelerated and the formation of the thin film is suppressed because ion 16 is cast at high energy. Since the irradiation of the ion 16 is less at a vertical step part 12, the etching reaction is slow in comparison with the flat part. Since the thin film formed at the flat part is constituted of a monomer, a dimer and a trimer, the stable film quality is maintained even if the ion beam is applied. Thus, the thin film satisfying the characteristics of the semiconductor device is formed, and the coating rate of the vertical step part can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造に使
用される薄膜の化学気相成長法およびその装置に係わ
り、特に当該薄膜の半導体基板段差部における被履率を
高める化学気相成長法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition method for a thin film used for manufacturing a semiconductor device and the apparatus therefor, and more particularly to a chemical vapor deposition method for increasing the coverage rate of the thin film on a step portion of a semiconductor substrate. Law and its equipment.

【0002】[0002]

【従来の技術】従来の化学気相成長法では、薄膜を形成
する半導体装置の微細パターン上に急俊な段差が存在す
ると、この段差部において当該薄膜の被履率が減少し、
段差垂直部で薄膜の膜厚が不足し、所望の半導体装置特
性が得られなくなる。このため、当該薄膜の段差部被覆
率を向上することは重要である。そこで、段差垂直部に
薄膜を被覆率よく形成するために、薄膜形成中にイオン
ビームを半導体装置基板上に堆積するバイアス印加CV
D法がある。
2. Description of the Related Art In a conventional chemical vapor deposition method, when a steep step exists on a fine pattern of a semiconductor device for forming a thin film, the coverage of the thin film decreases at this step,
The thickness of the thin film is insufficient in the vertical portion of the step, and desired semiconductor device characteristics cannot be obtained. Therefore, it is important to improve the step coverage of the thin film. Therefore, in order to form a thin film with good coverage on the step vertical portion, a bias application CV for depositing an ion beam on the semiconductor device substrate during thin film formation.
There is D method.

【0003】しかし、前記の方法を用いた場合、半導体
基板に形成される薄膜、例えば酸化シリコン膜や窒化シ
リコン膜などを成膜する場合には、気相中でこれら酸化
シリコンや窒化シリコンの前駆体であるテトラエトキシ
シランや有機シリコン化合物等が半導体装置基板上に吸
着しながら堆積して薄膜を形成しているため、薄膜中に
多量体中の不安定な結合であるSi−SiやSi−Cが
多く含まれており、形成された薄膜にイオンビームが照
射されると、この不安定な結合の解離によるダングリン
グボンドの形成のために当該薄膜の膜質が著しく劣化す
る。このため、半導体装置の特性を満足することができ
ないという問題があった。
However, when a thin film formed on a semiconductor substrate, for example, a silicon oxide film or a silicon nitride film is formed by using the above method, precursors of the silicon oxide or silicon nitride are formed in a vapor phase. Since tetraethoxysilane, which is a body, and an organic silicon compound are deposited on a semiconductor device substrate while adsorbing, a thin film is formed, and thus Si--Si and Si-- which are unstable bonds in the polymer in the thin film. When a thin film containing a large amount of C is irradiated with an ion beam, the film quality of the thin film is significantly deteriorated due to the formation of a dangling bond due to the dissociation of this unstable bond. Therefore, there is a problem that the characteristics of the semiconductor device cannot be satisfied.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明の目的
は、半導体装置の特性を満足する薄膜を形成しながら、
段差垂直部の被覆率を向上させる化学気相成長法および
その装置を提供することにある。
Therefore, an object of the present invention is to form a thin film satisfying the characteristics of a semiconductor device,
It is an object of the present invention to provide a chemical vapor deposition method and an apparatus for improving the coverage of a step vertical portion.

【0005】[0005]

【課題を解決するための手段】上記諸目的は、薄膜形成
時に原料ガスから生成される単量体、二量体および三量
体を半導体装置基板上に吸着させると同時に半導体基板
にイオンビームを入射させることを特徴とする化学気相
成長法によって達成される。
Means for Solving the Problems The above-described objects are to adsorb monomers, dimers and trimers produced from a raw material gas during thin film formation on a semiconductor device substrate and at the same time to apply an ion beam to the semiconductor substrate. It is achieved by a chemical vapor deposition method which is characterized by incidence.

【0006】本発明は、単量体、二量体および三量体を
半導体装置基板上に吸着させるために、プラズマ中の圧
力が単量体、二量体および三量体の飽和蒸気圧近傍であ
るように、半導体基板の温度を室温から−70℃の間で
冷却制御することを特徴とする化学気相成長法であり、
また、本発明は、原料ガスから単量体、二量体および三
量体を生成させるプラズマを電子サイクロトロン共鳴に
より形成することを特徴とする化学気相成長法である。
According to the present invention, in order to adsorb a monomer, a dimer and a trimer on a semiconductor device substrate, the pressure in plasma is close to the saturated vapor pressure of the monomer, the dimer and the trimer. As described above, the chemical vapor deposition method is characterized in that the temperature of the semiconductor substrate is controlled to be cooled between room temperature and −70 ° C.,
Further, the present invention is a chemical vapor deposition method characterized in that plasma for producing monomers, dimers and trimers from a source gas is formed by electron cyclotron resonance.

【0007】また上記諸目的は、半導体基板の温度を室
温から−70℃の間で冷却制御するための手段を設けた
ことを特徴とする化学気相成長装置により達成される。
The above objects are also achieved by a chemical vapor deposition apparatus characterized in that a means for cooling the temperature of a semiconductor substrate between room temperature and -70 ° C. is provided.

【0008】[0008]

【作用】本発明は、成膜を行う半導体基板を室温から−
70℃の間で冷却制御するための手段を設けたプラズマ
化学気相成長装置を用いることにより、薄膜を堆積する
半導体基板を装置内の圧力が単量体、二量体および三量
体の飽和蒸気圧となるよような温度に冷却することによ
り、冷却された半導体装置基板には単量体、二量体およ
び三量体のような比較的重合度の低いものが吸着するこ
とにより薄膜が形成される。そしてイオンビームを照射
することにより段差部は、形成された薄膜のエッチング
反応により、薄膜の堆積が抑制される。一方、段差垂直
部にはイオンビームが入射しないため、薄膜の堆積は進
行する。この結果段差垂直部の薄膜被覆率は向上する。
According to the present invention, the semiconductor substrate on which the film is formed is kept at room temperature.
By using a plasma enhanced chemical vapor deposition apparatus provided with a means for controlling cooling between 70 ° C., a semiconductor substrate on which a thin film is deposited has a pressure in the apparatus saturated with a monomer, a dimer and a trimer. By cooling to a temperature such that the vapor pressure is obtained, a film having a relatively low degree of polymerization such as a monomer, a dimer and a trimer is adsorbed on the cooled semiconductor device substrate to form a thin film. It is formed. Then, the irradiation of the ion beam suppresses the deposition of the thin film on the step portion due to the etching reaction of the formed thin film. On the other hand, since the ion beam does not enter the step vertical portion, the deposition of the thin film proceeds. As a result, the thin film coverage in the step vertical portion is improved.

【0009】このとき、イオンビームに照射された平坦
部の薄膜は単量体、二量体および三量体で構成されてい
るため、安定な膜質で構成されており、イオンビーム照
射による膜質の劣化が生じず、半導体装置の特性を満足
する薄膜を形成しながら、段差垂直部の被履率を向上さ
せることができる。
At this time, since the thin film in the flat portion irradiated with the ion beam is composed of the monomer, the dimer and the trimer, it has a stable film quality and the film quality of the film irradiated by the ion beam. It is possible to improve the coverage ratio of the step vertical portion while forming a thin film that does not deteriorate and satisfies the characteristics of the semiconductor device.

【0010】[0010]

【実施例】以下、本発明を実施例に基づき図面を使用し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments with reference to the drawings.

【0011】図1は本発明による化学気相成長装置の概
略図を示す。本実施例においては、プラズマ形成に電子
サイクロトロン共鳴を使用する。薄膜の成膜には、チャ
ンバ3を真空ポンプ4で減圧した後に、ガス導入口1よ
り原料ガスおよび希釈ガスをガス流量制御装置2を介し
てチャンバ3内へ導入する。そして、チャンバ3内を真
空ポンプ4で排気しながら圧力制御装置5を用いて一定
圧力にする。その後、マグネトロン6よりマイクロ波を
導波管7を介して導入すると共にコイル8により磁場を
形成し、プラズマを形成し、薄膜を半導体装置基板9に
堆積させる。このとき半導体装置基板9は電極10に載
荷されており、電極10に高周波を印加し、プラズマ中
からのイオン16を引き込む。また、電極10は温度調
節器11により温度が制御されている。電極10は、半
導体基板の温度を室温から−70℃の間で冷却制御する
ための手段として、例えば液体窒素と電気ヒーターによ
る冷却と加熱の制御等によって、室温から−70℃程度
に冷却することができる。
FIG. 1 shows a schematic view of a chemical vapor deposition apparatus according to the present invention. In this embodiment, electron cyclotron resonance is used for plasma formation. For forming a thin film, after decompressing the chamber 3 with the vacuum pump 4, the raw material gas and the diluting gas are introduced into the chamber 3 through the gas flow rate control device 2 from the gas introduction port 1. Then, while evacuating the inside of the chamber 3 with the vacuum pump 4, the pressure control device 5 is used to maintain a constant pressure. After that, a microwave is introduced from the magnetron 6 through the waveguide 7, a magnetic field is formed by the coil 8, plasma is formed, and a thin film is deposited on the semiconductor device substrate 9. At this time, the semiconductor device substrate 9 is loaded on the electrode 10, and a high frequency is applied to the electrode 10 to attract the ions 16 from the plasma. The temperature of the electrode 10 is controlled by the temperature controller 11. The electrode 10 is a means for controlling the temperature of the semiconductor substrate to be cooled from room temperature to −70 ° C., and is cooled from room temperature to about −70 ° C., for example, by controlling cooling and heating with liquid nitrogen and an electric heater. You can

【0012】図2は薄膜を半導体装置基板9に堆積して
いるときにイオンビームを照射しないときの半導体装置
段差部の堆積反応を示している。当該プラズマ中の圧力
が単量体、二量体の飽和蒸気圧近傍であるような基板9
温度を電極10を冷却することにより達成しているた
め、段差垂直部12および平坦部13では単量体14や
二量体15の堆積反応がおこる。この状態では段差垂直
部が急峻なため堆積速度が平坦部に比べて遅く、被覆率
が低い。
FIG. 2 shows the deposition reaction of the step portion of the semiconductor device when the thin film is deposited on the semiconductor device substrate 9 and the ion beam is not irradiated. Substrate 9 in which the pressure in the plasma is near the saturated vapor pressure of the monomer or dimer
Since the temperature is achieved by cooling the electrode 10, the deposition reaction of the monomer 14 and the dimer 15 occurs in the step vertical portion 12 and the flat portion 13. In this state, since the vertical portion of the step is steep, the deposition rate is slower than that of the flat portion, and the coverage is low.

【0013】図3は薄膜を半導体装置基板9に堆積して
いるときにイオンビームを照射したときの半導体装置段
差部の堆積反応を示している。平坦部13はイオン16
が高エネルギーで入射するためエッチング反応が促進さ
れて薄膜の形成が抑制されるが、段差垂直部12ではイ
オン16の入射が少ないためエッチング反応は平坦部に
比べ遅い。また、平坦部に形成された薄膜が単量体、二
量体および三量体で構成されているため、イオンビーム
が照射されても安定な膜質を保っており、この結果、半
導体装置の特性を満足する薄膜を形成しながら、段差垂
直部の被覆率を向上させることができる。
FIG. 3 shows the deposition reaction of the step portion of the semiconductor device when the thin film is deposited on the semiconductor device substrate 9 and is irradiated with an ion beam. Flat part 13 is ion 16
However, the incidence of ions 16 on the step-difference vertical portion 12 is slower than that on the flat portion because the ion 16 is less incident on the step-vertical portion 12. Further, since the thin film formed on the flat portion is composed of a monomer, a dimer and a trimer, the stable film quality is maintained even when irradiated with an ion beam. It is possible to improve the coverage of the step vertical portion while forming a thin film that satisfies the above condition.

【0014】以下、さらに具体例として半導体基板上に
酸化膜によるアスペクト比1.6(開口0.5μm、深
さ0.8μm)の段差に酸化シリコン膜を成膜する方法
について説明する。
As a further specific example, a method of forming a silicon oxide film on a semiconductor substrate at a step having an aspect ratio of 1.6 (opening 0.5 μm, depth 0.8 μm) by an oxide film will be described.

【0015】上述の装置を用いて酸化シリコン膜を堆積
するときのチャンバ3内に形成されたプラズマの圧力
は、1×10-5Torr程度である。この圧力が単量
体、二量体および三量体の飽和蒸気圧近傍であるための
温度は−50〜−70℃程度である。そこで、基板9が
載荷されている電極10の温度をこの−50〜−70℃
の温度に制御装置11により制御する。そして、基板温
度が−50〜−70℃になったところで、圧力を1×1
-5Torrに保ちながら、原料ガスとしてテトラエト
キシシランをチャンバ3内に導入し、マグネトロン6よ
りマイクロ波を導波管7を介して導入すると共にコイル
8により磁場を形成してプラズマを形成し、原料ガス中
よりケイ素酸化物をイオン化して、SiO2 の単量体、
二量体14および三量体15の薄膜を半導体装置基板9
に堆積させる。このとき、電極10に高周波を印加し、
プラズマ中からのイオン16を引き込むことにより、イ
オンビームを半導体基板9に照射する。これにより、段
差被覆性よく半導体基板上の段差部分に酸化シリコン膜
を堆積させることができる。
The pressure of the plasma formed in the chamber 3 when depositing a silicon oxide film using the above-mentioned apparatus is about 1 × 10 -5 Torr. The temperature is about −50 to −70 ° C. because this pressure is near the saturated vapor pressure of the monomer, dimer and trimer. Therefore, the temperature of the electrode 10 on which the substrate 9 is loaded is set to -50 to -70 ° C.
The temperature is controlled by the controller 11. Then, when the substrate temperature reaches −50 to −70 ° C., the pressure is set to 1 × 1.
While maintaining at 0 -5 Torr, tetraethoxysilane was introduced into the chamber 3 as a source gas, microwaves were introduced from the magnetron 6 through the waveguide 7, and a magnetic field was formed by the coil 8 to form plasma. , Ionize silicon oxide from the raw material gas, SiO 2 monomer,
The thin films of the dimer 14 and the trimer 15 are attached to the semiconductor device substrate 9
To deposit. At this time, a high frequency is applied to the electrode 10,
The semiconductor substrate 9 is irradiated with an ion beam by drawing in the ions 16 from the plasma. Thus, the silicon oxide film can be deposited on the step portion on the semiconductor substrate with good step coverage.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、プ
ラズマ形成に電子サイクロトロン共鳴を用いた化学気相
成長装置において、イオンビーム照射による薄膜膜質の
劣化を生じずに、段差部の薄膜被覆率を向上させること
が可能になる。
As described above, according to the present invention, in a chemical vapor deposition apparatus using electron cyclotron resonance for plasma formation, a thin film coating on a step portion does not occur without deterioration of the thin film quality due to ion beam irradiation. It is possible to improve the rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例における化学気相成長装置を
説明するための図面である。
FIG. 1 is a drawing for explaining a chemical vapor deposition apparatus in an example of the present invention.

【図2】 イオンビームを照射しないときの半導体装置
段差部の堆積反応を示す図面である。
FIG. 2 is a diagram showing a deposition reaction of a semiconductor device step portion when an ion beam is not irradiated.

【図3】 イオンビームを照射したときの半導体装置段
差部の堆積反応を示す図面である。
FIG. 3 is a diagram showing a deposition reaction of a semiconductor device step portion when an ion beam is irradiated.

【符号の説明】[Explanation of symbols]

1…ガス導入口、 2…ガス流量制御装置、
3…チャンバ、4…真空ポンプ、 5…圧力制御装
置、 6…マグネトロン、7…導波管、
8…コイル、 10…電極、11…温
度調節器、 11…段差垂直部、 12…垂
直部、13…平坦部、 14…単量体、
15…二量体、16…イオン。
1 ... Gas inlet, 2 ... Gas flow control device,
3 ... Chamber, 4 ... Vacuum pump, 5 ... Pressure control device, 6 ... Magnetron, 7 ... Waveguide,
8 ... Coil, 10 ... Electrode, 11 ... Temperature controller, 11 ... Vertical step portion, 12 ... Vertical portion, 13 ... Flat portion, 14 ... Monomer,
15 ... Dimer, 16 ... Ion.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄膜形成時に原料ガスから生成される単
量体、二量体および三量体を半導体装置基板上に吸着さ
せると同時に半導体基板にイオンビームを入射させるこ
とを特徴とした化学気相成長法。
1. A chemical vapor characterized by adsorbing a monomer, a dimer and a trimer produced from a raw material gas at the time of forming a thin film onto a semiconductor device substrate and at the same time making an ion beam incident on the semiconductor substrate. Phase growth method.
【請求項2】 単量体、二量体および三量体を半導体装
置基板上に吸着させるために、プラズマ中の圧力が単量
体、二量体および三量体の飽和蒸気圧近傍であるよう
に、半導体基板の温度を室温から−70℃の間で冷却制
御することを特徴とする請求項1に記載の化学気相成長
法。
2. The pressure in plasma is near the saturated vapor pressure of the monomer, dimer and trimer in order to adsorb the monomer, dimer and trimer onto the semiconductor device substrate. The chemical vapor deposition method according to claim 1, wherein the temperature of the semiconductor substrate is controlled to be cooled from room temperature to -70 ° C.
【請求項3】 原料ガスから単量体、二量体および三量
体を生成させるプラズマを電子サイクロトロン共鳴によ
り形成することを特徴とする請求項1または請求項2に
記載の化学気相成長法。
3. The chemical vapor deposition method according to claim 1 or 2, wherein plasma for producing monomers, dimers and trimers from the raw material gas is formed by electron cyclotron resonance. .
【請求項4】 半導体基板の温度を室温から−70℃の
間で冷却制御するための手段を設けたことを特徴とする
化学気相成長装置。
4. A chemical vapor deposition apparatus provided with means for controlling cooling of the temperature of a semiconductor substrate between room temperature and −70 ° C.
JP15074793A 1993-06-22 1993-06-22 Method and device for chemical vapor growth Pending JPH0722405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074793A JPH0722405A (en) 1993-06-22 1993-06-22 Method and device for chemical vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074793A JPH0722405A (en) 1993-06-22 1993-06-22 Method and device for chemical vapor growth

Publications (1)

Publication Number Publication Date
JPH0722405A true JPH0722405A (en) 1995-01-24

Family

ID=15503541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074793A Pending JPH0722405A (en) 1993-06-22 1993-06-22 Method and device for chemical vapor growth

Country Status (1)

Country Link
JP (1) JPH0722405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827786A (en) * 1994-06-28 1998-10-27 Fei Company Charged particle deposition of electrically insulating films
US8159545B2 (en) 2008-07-15 2012-04-17 Canon Kabushiki Kaisha Image stabilization control apparatus and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827786A (en) * 1994-06-28 1998-10-27 Fei Company Charged particle deposition of electrically insulating films
US8159545B2 (en) 2008-07-15 2012-04-17 Canon Kabushiki Kaisha Image stabilization control apparatus and imaging apparatus

Similar Documents

Publication Publication Date Title
KR102479806B1 (en) Flowable low-k dielectric gapfill treatment
US4599135A (en) Thin film deposition
US4668365A (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US4732761A (en) Thin film forming apparatus and method
EP0664344A1 (en) Process for barrier coating of plastic objects
US20080026548A1 (en) Film Forming Apparatus and Film Forming Method
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
JP3842166B2 (en) Room temperature chemical vapor deposition system using electron cyclotron resonance and method for producing composite metal film using the same
JPH09312297A (en) Plasma annealing of thin film
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
KR100518615B1 (en) Method for treating surface of substrate and method for etching
JPH0722405A (en) Method and device for chemical vapor growth
JPH08222557A (en) Manufacture of fluorinated amorphous carbon film
KR102426960B1 (en) Method for forming silicon oxide film using plasmas
US6528865B1 (en) Thin amorphous fluorocarbon films
JPH11204297A (en) Plasma treating device and plasma treating method
JPS644591B2 (en)
JPH03122266A (en) Production of thin nitride film
US6531409B1 (en) Fluorine containing carbon film and method for depositing same
JP2895981B2 (en) Silicon oxide film forming method
JP2687468B2 (en) Thin film forming equipment
JP2003262750A (en) METHOD FOR MANUFACTURING SiON THIN FILM
JPH0317254A (en) Method and device for producing oxide thin film
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JPH01184273A (en) Method and apparatus for producing film with reactive plasma beam

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723