JPS60218826A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS60218826A
JPS60218826A JP7432584A JP7432584A JPS60218826A JP S60218826 A JPS60218826 A JP S60218826A JP 7432584 A JP7432584 A JP 7432584A JP 7432584 A JP7432584 A JP 7432584A JP S60218826 A JPS60218826 A JP S60218826A
Authority
JP
Japan
Prior art keywords
substrate
processed
plasma
thin film
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7432584A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆司 伊藤
Takashi Kato
隆 加藤
Mikio Takagi
幹夫 高木
Mamoru Maeda
守 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7432584A priority Critical patent/JPS60218826A/en
Publication of JPS60218826A publication Critical patent/JPS60218826A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve a thin film formation speed and obtain a structure more similar to the stoichiometrical composition by allowing chemical vapor growth while a magnetic field which passes through a substrate to be processed is being applied on the occasion of executing chemical vapor growth by placing a substrate to be processed under the plasma ambient. CONSTITUTION:A substrate 1 to be processed is placed on a substrate pedestal 2 comprising a heater and it is wired and connected to a high frequency power supply. Meanwhile, a reaction vessel 4 is insulated from the substrate pedestal 2 through an insulator 5. The one side of such reaction vessel 2 is provided with the source supply hole 6 for plasma CVD and is connected to a gas cylinder through a gas flow meter, while the other side thereof is provided with an exhaustion hole 7 is connected to the exhaustion system and the bottom side thereof is grounded. The outside of substrate pedestal 2 provided on the reaction vessel 4 is provided with a magnet 8 (in this case, an electromagnet) and so that the line of magnetic force passes through the substrate 1 to be processed. Here, it is important that the line of magnetic force passes through the substrate 1 to be processed equally in the form of a loop and therefore a mechanism for moving in parallel the magnet 8 on a support substrate 2 is also provided to attain said objective.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は電子のサイクロイド運動または高密度薄膜形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to cycloidal movement of electrons or a method for forming a high-density thin film.

(b)技術の背景 プラズマとは減圧雰囲気中で自由に運動するフリーラジ
カルおよび正および負の荷電粒子が共存して電気的中性
を保っている状態を言い、プラズマ化学気相反応(以下
略してプラズマCVD)はこれを固体の析出反応に使用
したものである。
(b) Background of the technology Plasma refers to a state in which freely moving free radicals and positively and negatively charged particles coexist in a reduced pressure atmosphere and maintain electrical neutrality. (Plasma CVD) uses this for solid precipitation reactions.

すなわp通常の化学気相反応(CV D)は常圧または
減圧、高温の状態で2種類のガスが反応し、あるいはガ
スの分解により新しい固体とガスを生成する反応である
In other words, a typical chemical vapor phase reaction (CVD) is a reaction in which two types of gas react at normal pressure or reduced pressure at high temperatures, or a reaction in which a new solid and a gas are generated by decomposition of the gas.

一方プラズマCVDは比較的低温の基板温度でプラズマ
を発生させ、2種類のガスが反応し、あるいはガスを解
離することにより、新しい固体とガスを生成する反応で
ある。
On the other hand, plasma CVD is a reaction in which plasma is generated at a relatively low substrate temperature, and two types of gases react or the gases are dissociated to generate a new solid and gas.

ここで後者の反応の特徴はプラズマを利用することによ
り、反応時の基板温度を下げられることで、そのため基
板或いはこの上に存在する薄膜の熱的損傷を減少するこ
とができる。
Here, the feature of the latter reaction is that by using plasma, the substrate temperature during the reaction can be lowered, and therefore thermal damage to the substrate or the thin film existing thereon can be reduced.

本発明はプラズマCVDを更に改良した薄膜形成方法に
関するものである。
The present invention relates to a thin film forming method that is a further improvement on plasma CVD.

(c)従来技術と問題点 ICやLSIなどの半導体素子は半導体単結晶基板上に
薄膜形成技術と写真食刻技術(ホトリソグラフィ)とを
使用して多層構成をとる微細パターンが形成されている
(c) Conventional technology and problems Semiconductor devices such as ICs and LSIs are formed using thin film formation technology and photolithography to form fine patterns with multilayer structures on semiconductor single crystal substrates. .

すなわち導体パターンはアルミニウム(AI)。In other words, the conductor pattern is made of aluminum (AI).

金(Au ) 、タングステン(W)、モリブデン(M
o)のような金属薄膜を使用して形成され、絶縁層は窒
化シリコン(SiJNf)、酸化シリコン(Si O2
)などの誘電体薄膜を用いて形成され、また半導体層は
シリコン(St )などの単体或いは化合物半導体を用
いて形成されている。
Gold (Au), tungsten (W), molybdenum (M
o), and the insulating layer is silicon nitride (SiJNf), silicon oxide (SiO2
), and the semiconductor layer is formed using a single or compound semiconductor such as silicon (St 2 ).

ここで薄膜形成法としては真空蒸着法、スバフタ法など
各種のものがあるが、CVD法はソースガスを選択する
ことにより、金属、半導体、絶縁体の何れをも析出する
ことが可能であり、また化学量論的組成に近い構造の薄
膜を形成できると云う特徴がある。
There are various methods for forming thin films, such as vacuum evaporation and vacuum deposition, but the CVD method can deposit metals, semiconductors, and insulators by selecting the source gas. Another feature is that a thin film having a structure close to stoichiometric composition can be formed.

またプラズマCVDはソースガスをプラズマ励起させ活
性の状態で反応を行わせるためCVDに比べ比較的低温
で薄膜の形成ができると云う特徴がある。
Furthermore, plasma CVD has the characteristic that a thin film can be formed at a relatively low temperature compared to CVD because the source gas is plasma-excited to cause a reaction to occur in an active state.

然し、半導体基板の面積は益々拡大され、一方半導体素
子のコストは低減する傾向が続いており、それに対応し
て薄膜形成速度も向上する必要がある。
However, as the area of semiconductor substrates continues to expand and the cost of semiconductor devices continues to decrease, there is a need to increase the thin film formation rate accordingly.

またプラズマCVDはソースガスをプラズマ励起して反
応させることから、形成された薄膜の組成が化学量論的
組成からずれ易く、これが原因して電気的特性の劣化が
起こり易いと云う問題があり、薄膜形成速度の向上と共
に解決が必要とされていた。
Furthermore, since plasma CVD involves plasma excitation of the source gas to cause a reaction, there is a problem in that the composition of the formed thin film tends to deviate from the stoichiometric composition, which tends to cause deterioration of electrical characteristics. A solution was needed along with an improvement in the speed of thin film formation.

(d)発明の目的 本発明の目的はプラズマCVD法を改良して薄膜形成速
度を向上すると共に、より化学量論的組成に近い構造の
薄膜形成方法を提供するにある。
(d) Object of the Invention An object of the present invention is to improve the plasma CVD method to increase the thin film formation rate, and to provide a method for forming a thin film having a structure closer to the stoichiometric composition.

(e)発明の構成 本発明の目的は処理すべき基板をプラズマ雰囲気にあて
て気相成長を行う際、該処理基板を透過する磁界を印加
しつつ該気相成長を施すことを特徴とする気相成長方法
により達成することができる。
(e) Structure of the Invention The object of the present invention is to perform vapor phase growth by exposing a substrate to be processed to a plasma atmosphere, and to perform the vapor phase growth while applying a magnetic field that passes through the processing substrate. This can be achieved by a vapor phase growth method.

本発明の第1の態様では被処理基板の表面近傍における
プラズマの密度を高める方法として電子のサイクロイド
運動によるガス分子との衝突を利用する。
In the first aspect of the present invention, collisions with gas molecules due to cycloidal movement of electrons are utilized as a method of increasing the density of plasma near the surface of a substrate to be processed.

すなわち被処理基板を載置した基板支持台の背後に磁石
を設け、被処理基板に磁力線が透過するように配置する
That is, a magnet is provided behind a substrate support stand on which a substrate to be processed is mounted, and arranged so that lines of magnetic force are transmitted through the substrate to be processed.

そして従来のように基板支持台と反応容器(チャンバ)
との間に高周波電界を加えることにより励起されて生じ
たガス分子のラジカル或いは分子は磁界によってサイク
ロイド運動するプラズマ中の電子と衝突するため、ラジ
カルは更に活性化が進むと共にガス分子も励起されてラ
ジカルとなり、またガス分子のイオン化も進行する結果
、プラズマの密度は相乗的に高まることになる。
And as before, the substrate support stand and reaction vessel (chamber)
The radicals or molecules of the gas molecules excited by applying a high-frequency electric field between the As a result of the formation of radicals and the progress of ionization of gas molecules, the density of the plasma increases synergistically.

そして、このような環境のもとて活性化したラジカルは
相互に化学反応を起こして被処理基板上に析出する。
The radicals activated under such an environment cause a chemical reaction with each other and are deposited on the substrate to be processed.

そのため電子のサイクロイド運動を加味したプラズマC
VDは単なるプラズマCvDに比べて薄膜成長速度を遥
かに増すことができる。
Therefore, plasma C which takes into account the cycloidal motion of electrons
VD can greatly increase the thin film growth rate compared to simple plasma CVD.

このように被処理基板に磁界を加えながらプラズマCV
Dを行う方法を用いると、低い電界強度の許で高い密度
のプラズマを発生することができるのでソースガスのプ
ラズマ解離は充分に進行し、従来のCVD膜で問題とな
る化学量論的組成からのずれによる電気的特性の劣化を
避けることができる。
In this way, plasma CV is applied while applying a magnetic field to the substrate to be processed.
By using method D, high-density plasma can be generated with low electric field strength, so the plasma dissociation of the source gas progresses sufficiently, and the stoichiometric composition, which is a problem with conventional CVD films, is changed. Deterioration of electrical characteristics due to misalignment can be avoided.

またこの方法においてはプラズマが高密度である割には
電界強度が低く、そのためイオンの加速エネルギを少な
く押さえられるので、イオン衝撃による被処理基板の損
傷が軽減される。
In addition, in this method, the electric field strength is low in spite of the high density of the plasma, and therefore the acceleration energy of the ions can be suppressed to a low level, so that damage to the substrate to be processed due to ion bombardment is reduced.

次に本発明の第2の態様で重要なことは高密度磁界を加
えることにより、プラズマ放電が起こるガス圧を下げる
ことができることであり、これによりプラズマを磁界印
加領域に封じ込むことができ、反応容器の内壁に吸着し
ている不純物ガスの影響を少なくすることができる。
Next, what is important in the second aspect of the present invention is that by applying a high-density magnetic field, the gas pressure at which plasma discharge occurs can be lowered, thereby making it possible to confine the plasma in the magnetic field application area. The influence of impurity gas adsorbed on the inner wall of the reaction vessel can be reduced.

こ−でプラズマ放電がおこるガス圧と磁界との関係はB
 1evinとHaydonにより次のような関係こ\
で Pe・・・磁界下での実効的なガス圧 P ・・・無磁界下でのガス圧 ω ・・・電子の角速度 τ ・・・電子の平均衝突時間 λ ・・・電子のプラズマ中での平均自由行程B ・・
・磁界強度 ■ ・・・電子の加速電圧 この式からBの値を1ooo cとするとプラズマ放電
は10 Torrでも維持されることになる。
The relationship between the gas pressure at which plasma discharge occurs and the magnetic field is B.
1evin and Haydon have the following relationship\
Pe...Effective gas pressure under magnetic field P...Gas pressure under no magnetic field ω...Angular velocity of electrons τ...Average collision time of electrons λ...In electron plasma The mean free path B of...
・Magnetic field strength■ ... Electron acceleration voltage From this equation, if the value of B is 100 c, plasma discharge will be maintained even at 10 Torr.

それ故に高磁界を加えて放電ガス圧を下げれば、プラズ
マ放電を封じ込めることができるので、プラズマ領域以
外の反応容器からのガス出しを更に抑制することが可能
となる。
Therefore, if a high magnetic field is applied and the discharge gas pressure is lowered, the plasma discharge can be contained, thereby making it possible to further suppress gas emission from the reaction vessel other than the plasma region.

以上述べたように従来のプラズマCVDに本発明に係る
磁界印加を加えると、被処理基板への薄膜形成速度が向
上するに留まらず、生成物の組成がより化学量論的組成
に近づき、また不純物の混入の少ない薄膜をつくること
ができる。
As described above, applying the magnetic field according to the present invention to conventional plasma CVD not only improves the rate of thin film formation on the substrate to be processed, but also brings the composition of the product closer to the stoichiometric composition. It is possible to create thin films with less contamination of impurities.

(f)発明の実施例 以下本発明を実施した装置の構成および量産型の装置構
成を図面により説明する。
(f) Embodiments of the Invention The configuration of an apparatus embodying the present invention and the configuration of a mass-produced apparatus will be explained below with reference to the drawings.

第1図は被処理基板1を上向きに保持した場合の実施例
、また第2図は被処理基板を下向きに保持した場合の実
施例である。
FIG. 1 shows an embodiment in which the substrate 1 to be processed is held upward, and FIG. 2 shows an embodiment in which the substrate 1 to be processed is held downward.

第1図において被処理基板1はヒータを内蔵した基板支
持台2の上に載置されており、高周波電源3例えば発振
周波数13.56 MHzで出力が0.5乃至10KW
の電源に配線接続されている。
In FIG. 1, a substrate 1 to be processed is placed on a substrate support 2 having a built-in heater, and a high frequency power source 3 is connected to a high frequency power source 3 having an oscillation frequency of 13.56 MHz and an output of 0.5 to 10 KW.
wired to the power source.

一方反応容器4は基板支持台2とは絶縁物5により絶縁
されており、片方にはプラズマCVDを行うソースガス
の注入口6があり、ガス流量計を経てガスボンベに通じ
ている。また他方には排気ロアが有り、排気系に続いて
おり、また反応容器の底部側は接地されている。
On the other hand, the reaction vessel 4 is insulated from the substrate support 2 by an insulator 5, and on one side there is an injection port 6 for a source gas for plasma CVD, which communicates with a gas cylinder via a gas flow meter. The other side has an exhaust lower, which is connected to the exhaust system, and the bottom side of the reaction vessel is grounded.

次ぎに反応容器4に設けられている基板支持台2の外側
には磁石8(この場合は電磁石)が設けられていて磁力
線が被処理基板1を透過するように構成されている。
Next, a magnet 8 (an electromagnet in this case) is provided on the outside of the substrate support stand 2 provided in the reaction container 4, and is configured so that lines of magnetic force pass through the substrate 1 to be processed.

ここで重要なことは磁力線がループ状に且つ均等に被処
理基板1を透過することで、そのためには磁石8或いは
支持基板2が並行に移動する機構が設けられている。
What is important here is that the lines of magnetic force pass uniformly through the substrate 1 to be processed in a loop shape, and for this purpose a mechanism is provided in which the magnet 8 or the support substrate 2 moves in parallel.

また被処理基板を透過する磁界強度は100G以上が適
当であり、これより小さい場合は電子の軌道の曲がりが
少なく、電子は電極間をサイクロイド運動しないので磁
界の効果はない。
In addition, the strength of the magnetic field passing through the substrate to be processed is suitably 100 G or more; if it is smaller than this, the electron trajectory is less curved and the electrons do not move cycloidally between the electrodes, so the magnetic field has no effect.

実施例として被処理基板1をシリコン(St )とし、
これに配線パターン形成のためにアルミニウム(AI 
)の薄膜を形成する場合は、ソースガスとして水素(H
2)ガスで希釈したトリメチルアルミニウム(TMA)
やトリイソブチルアルミニウム(TIBA)等が用いら
れ、ITorr程度に減圧してプラズマCVDが行われ
るが、本発明を実施する場合は従来と比較してAIの膜
形成速度が一桁以上速(、また従来は膜中に約2%の炭
素(C)が含まれていたが、この含有量も迩かにすくな
く、そのため良質な薄膜を得ることができる。
As an example, the substrate 1 to be processed is made of silicon (St),
Aluminum (AI) is added to this for wiring pattern formation.
), hydrogen (H
2) Trimethylaluminum (TMA) diluted with gas
, triisobutylaluminum (TIBA), etc. are used, and plasma CVD is performed at a reduced pressure of approximately ITorr. However, when implementing the present invention, the AI film formation rate is more than an order of magnitude faster than conventional methods (and Conventionally, the film contained about 2% carbon (C), but this content is much lower, and therefore a high-quality thin film can be obtained.

第2図は被処理基板1がヒータ9を内蔵する対向電極1
0に設けられている場合で、反応容器4を接地している
以外は第1図の構造と変わらない。
FIG. 2 shows a counter electrode 1 in which a substrate 1 to be processed has a built-in heater 9.
The structure is the same as that shown in FIG. 1 except that the reaction vessel 4 is grounded.

この場合は被処理基板1と磁石8の磁極との距離が第1
図と比べて離れているため、膜形成速度は幾分低下する
が、プラズマ放電に際して正電位側となるので、イオン
衝撃の影響及びサイクロイド運動する電子の衝撃を避け
ることができし、更に壁面の付着物が粉となって被処理
基板に落下する問題もなくなる。
In this case, the distance between the substrate 1 to be processed and the magnetic pole of the magnet 8 is the first
Although the film formation rate is somewhat reduced due to the distance compared to the figure, since the potential is on the positive side during plasma discharge, the effects of ion bombardment and the impact of cycloidally moving electrons can be avoided, and furthermore, the wall surface This eliminates the problem of deposits turning into powder and falling onto the substrate to be processed.

次ぎに第3図乃至第5図は本発明の第2の実施態様を示
し高能率化と量産性を図った構造の断面図である。
Next, FIGS. 3 to 5 are sectional views showing a second embodiment of the present invention, and are designed to achieve high efficiency and mass production.

すなわち磁石の磁界を最大限利用してプラズマを被処理
基板の近傍に封じ込め、容器内壁からの汚染をなくする
ために反応容器11を亜鈴形状に作り、窪んだ部分の内
壁にはヒータを内蔵した基板支持台12とその上に被処
理基板13が載置されており、一方窪み部分の外側には
電磁石14が嵌合する形で設けられている。
That is, in order to confine the plasma near the substrate to be processed by making maximum use of the magnetic field of the magnet, and to eliminate contamination from the inner wall of the container, the reaction container 11 was made into a bell shape, and a heater was built into the inner wall of the recessed part. A substrate support 12 and a substrate 13 to be processed are placed thereon, and an electromagnet 14 is provided on the outside of the recess so as to fit therein.

このような磁石の配置を行うことにより、被処理基板に
1000 G以上の磁界を垂直に印加することができ、
対向した鉄芯部で平行な高磁界を実現することができる
By arranging the magnets in this way, a magnetic field of 1000 G or more can be applied perpendicularly to the substrate to be processed.
A parallel high magnetic field can be achieved with the opposing iron core parts.

なお被処理基板13は基板支持台12に接触しているこ
とが必要であり、基板支持台上に保持具を設ける必要が
ある。
Note that the substrate to be processed 13 needs to be in contact with the substrate support 12, and it is necessary to provide a holder on the substrate support.

また反応容器11は接地されており、反応容器11の上
部中央には容器と絶縁してガス導入管15があり、高周
波電源3に回路接続されている。
Further, the reaction container 11 is grounded, and a gas introduction pipe 15 is provided in the upper center of the reaction container 11 insulated from the container, and is connected to the high frequency power source 3 in a circuit.

ここでソースガスはガス導入管15を通じて反応容器1
1に供給され、ガス導入管15の先端部の周辺に設けら
れている微少口より被処理基板13の方向に噴出するよ
うに構成されている。 また反応容器11の上部には排
気系に接続されたウェハ導入予備室16が設けられ、被
処理基板13の装填が行われるよう構成ささている。
Here, the source gas is introduced into the reaction vessel 1 through the gas introduction pipe 15.
1 and is configured to be ejected in the direction of the substrate to be processed 13 from a small opening provided around the tip of the gas introduction tube 15 . Further, a wafer introduction preliminary chamber 16 connected to an exhaust system is provided in the upper part of the reaction vessel 11, and is configured to load a substrate 13 to be processed.

第3図に示す構造の装置を用い、本発明に係るプラズマ
CVDを行う場合はプラズマの封じ込めが確実となり、
また磁力線の分布が均等に行われるために薄膜の形成効
率が向上し、また膜組成もより化学量論的組成に近づく
と共に膜厚の均一性も向上する。
When performing plasma CVD according to the present invention using an apparatus having the structure shown in FIG. 3, plasma containment is ensured,
Furthermore, since the lines of magnetic force are evenly distributed, the efficiency of forming a thin film is improved, and the film composition approaches the stoichiometric composition, and the uniformity of the film thickness is also improved.

すなわちソースガスはガス導入管15から供給され、排
気ロアから排気されるが、電磁石14からの磁力線は被
処理基板13に垂直に、また均等な磁束密度で透過して
おり、一方基板支持台12を含む反応容器11とガス導
入管15との間に高周波電圧が印加されている。
That is, the source gas is supplied from the gas introduction pipe 15 and exhausted from the exhaust lower, but the magnetic lines of force from the electromagnet 14 are transmitted perpendicularly to the substrate 13 to be processed with uniform magnetic flux density. A high frequency voltage is applied between the reaction vessel 11 containing the gas inlet tube 15 and the gas introduction tube 15.

ここで電子は磁力線のまわりを m v / e B ここでm・・・電子の質量 e・・・電子の電荷量 ■・・・電子の速度 B・・・磁界の強さ の半径で旋回運動するためにプラズマは電極空間に閉じ
込められるが第3図の構成をとることにより100OG
以上と高い磁界値をとり、磁束密度を高めることが可能
であり、そのため10’ torr以下の減圧状態でプ
ラズマCVDを行うことが可能となる。
Here, the electron moves around the lines of magnetic force m v / e B where m...Mass of the electron e...Amount of charge of the electron ■...Speed of the electron B...Swirling motion with a radius equal to the strength of the magnetic field Therefore, the plasma is confined in the electrode space, but by adopting the configuration shown in Fig.
It is possible to take a magnetic field value as high as above and increase the magnetic flux density, and therefore it becomes possible to perform plasma CVD in a reduced pressure state of 10' torr or less.

また1000 G以上の磁界を加えることにより、プラ
ズマ周辺のガス圧を10 Torr以下にできるので周
辺の壁からの汚染が少なくなる。
Furthermore, by applying a magnetic field of 1000 G or more, the gas pressure around the plasma can be reduced to 10 Torr or less, thereby reducing contamination from the surrounding walls.

すなわちプラズマは被処理基板13の近傍のみに封じ込
むことができ、反応容器11からのガス出しによる汚染
を防ぐことができる。
In other words, the plasma can be confined only in the vicinity of the substrate 13 to be processed, and contamination due to outgassing from the reaction container 11 can be prevented.

更に完全に反応容器11からの汚染を防ぐ方法として反
応容器11の亜鈴型の窪み部で電磁石14の磁極が対向
する部分を除き、反応容器11の外側を磁性材料例えば
鉄(je)で被覆して磁力線が亜鈴部を除き容器内に浸
入しないようにすればより効果的である。
In order to further completely prevent contamination from the reaction vessel 11, the outside of the reaction vessel 11 is coated with a magnetic material such as iron (JE), except for the portion where the magnetic poles of the electromagnet 14 face each other in the dumbbell-shaped recess of the reaction vessel 11. It would be more effective if the lines of magnetic force were prevented from penetrating into the container except for the dumbbell part.

以上のように第3図の構造をとることにより被処理基板
を2枚づつプラズマCVD処理を行くことができる。 
− 第4図はさらに多数個の同時成長を可能とす4構造で反
応容器11と電磁石14の磁極部分のみを示している。
By adopting the structure shown in FIG. 3 as described above, plasma CVD processing can be performed on two substrates at a time.
- FIG. 4 shows only the reaction vessel 11 and the magnetic pole portion of the electromagnet 14 in four structures that enable the simultaneous growth of a larger number of structures.

この構造の特徴はガス導入管15の先を二股に分割し、
各々の先端から、ソースガスを噴出させるようにしたの
と、反応容器の底部からヒータを備えた基板支持台17
を設け、被処理基板13をガス導入管15の中間位置に
設置することにより、プラズマCVDの4枚同時処理を
行う構成である。
The feature of this structure is that the tip of the gas introduction pipe 15 is divided into two,
A substrate support 17 is provided with a source gas ejected from each tip and a heater from the bottom of the reaction vessel.
By installing the substrate 13 to be processed at an intermediate position of the gas introduction pipe 15, it is possible to simultaneously process four substrates by plasma CVD.

次ぎに第5図は第3図の変形例であって、第3図の構造
ではウェハ導入予備室16からの被処理基板13の供給
および着脱処理が複雑になるのを緩和するもので、基板
支持台12を傾斜させることにより、被処理基板13の
保持が第3図の場合よりも容易となる。
Next, FIG. 5 shows a modification of FIG. 3, in which the structure shown in FIG. 3 alleviates the complexity of supplying the substrate 13 to be processed from the wafer introduction preparatory chamber 16 and loading/unloading the substrate. By tilting the support stand 12, the substrate 13 to be processed can be held more easily than in the case shown in FIG.

なおこの場合、ガス導入管15の先端部はT字状をなし
、この下面に設けられている複数個の噴出口からソース
ガスの噴出が行われるが、第3図の構造と違い、プラズ
マ放電が行われる電極間距離が長く、また磁力線分布も
拡がるのでプラズマの封じ込め効果は減少する。然し中
央部において磁界と電界とが直交するので電子のサイク
ロイド運動のためプラズマ密度は大きくなる。
In this case, the tip of the gas introduction tube 15 has a T-shape, and the source gas is ejected from a plurality of ejection ports provided on the lower surface of the tube, but unlike the structure shown in FIG. The distance between the electrodes at which this occurs is long, and the magnetic field line distribution also expands, so the plasma confinement effect decreases. However, since the magnetic field and the electric field are perpendicular to each other at the center, the plasma density increases due to the cycloidal movement of the electrons.

以上本発明を実施する基本構造および量産構造について
記したが、このように従来のプラズマCVDに本発明に
係る磁界を加えることにより、膜成長速度は増大しまた
従来の問題点を解決することができる。
The basic structure and mass production structure for carrying out the present invention have been described above, and by adding the magnetic field according to the present invention to conventional plasma CVD, the film growth rate can be increased and the problems of the conventional method can be solved. can.

(g)発明の効果 本発明の実施により従来のプラズマCVDの問題点すな
わち生成膜の組成が化学量論的組成よりずれが生じ易く
、薄膜の電気的劣化が起こり易いという欠点が解決され
、また膜生成速度を従来に比べて格段に増加させること
が可能となる。
(g) Effects of the Invention By carrying out the present invention, the problems of conventional plasma CVD, that is, the composition of the produced film tends to deviate from the stoichiometric composition, and the electrical deterioration of the thin film tends to occur, can be solved. It becomes possible to significantly increase the film formation rate compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

実施した量産型プラズマCVD装置の構成図である。 図において 1.13は被処理基板、 2,12は基板
支持台、3は高周波電源、 4,11は反応容器、8は
磁石、 10は対向電極、 14は電磁石、¥−3聞 寮4−wJ
FIG. 2 is a configuration diagram of a mass-produced plasma CVD apparatus. In the figure, 1.13 is the substrate to be processed, 2 and 12 are substrate support stands, 3 is a high frequency power source, 4 and 11 are reaction vessels, 8 is a magnet, 10 is a counter electrode, 14 is an electromagnet, ¥-3 and 4- wJ

Claims (1)

【特許請求の範囲】 (11処、理すべき基板をプラズマ雰囲気にあてて気相
成長を行う際、該処理基板を透過する磁界を印加しつつ
該気相成長を施すことを特徴とする薄膜形成方法。 (2)前記の磁界が該処理基板から前記のプラズマ空間
を通り再び処理基板に向かうループ状磁力線により与え
られることを特徴とする特許請求の範囲第1項記載の薄
膜形成方法。 (3)前記の磁界が前記の処理基板を挟む一対の強磁性
の磁極により与えられることを特徴とする特許請求の範
囲第1項記載の薄膜形成方法。
[Claims] (11) A thin film characterized in that when a substrate to be treated is subjected to vapor phase growth by exposing it to a plasma atmosphere, the vapor phase growth is performed while applying a magnetic field that passes through the substrate to be treated. Formation method. (2) The thin film forming method according to claim 1, characterized in that the magnetic field is provided by loop-shaped lines of magnetic force from the processing substrate, passing through the plasma space and returning to the processing substrate. ( 3) The thin film forming method according to claim 1, wherein the magnetic field is provided by a pair of ferromagnetic magnetic poles sandwiching the processing substrate.
JP7432584A 1984-04-13 1984-04-13 Formation of thin film Pending JPS60218826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7432584A JPS60218826A (en) 1984-04-13 1984-04-13 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7432584A JPS60218826A (en) 1984-04-13 1984-04-13 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS60218826A true JPS60218826A (en) 1985-11-01

Family

ID=13543843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7432584A Pending JPS60218826A (en) 1984-04-13 1984-04-13 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS60218826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003587A1 (en) * 1987-10-14 1989-04-20 The Furukawa Electric Co., Ltd. Method and apparatus for thin film formation by plasma cvd
US5014420A (en) * 1989-07-11 1991-05-14 Xpc, Incorporated Fusing together metal particles using a high-frequency electromagnetic field
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016564A (en) * 1986-12-29 1991-05-21 Sumitomo Metal Industries Ltd. Plasma apparatus
US5019117A (en) * 1986-12-29 1991-05-28 Sumitomo Metal Industries Ltd. Plasma apparatus
WO1989003587A1 (en) * 1987-10-14 1989-04-20 The Furukawa Electric Co., Ltd. Method and apparatus for thin film formation by plasma cvd
US4991542A (en) * 1987-10-14 1991-02-12 The Furukawa Electric Co., Ltd. Method of forming a thin film by plasma CVD and apapratus for forming a thin film
US5014420A (en) * 1989-07-11 1991-05-14 Xpc, Incorporated Fusing together metal particles using a high-frequency electromagnetic field

Similar Documents

Publication Publication Date Title
KR100374993B1 (en) Ecr plasma generator and an ecr system using the generator
KR19980080686A (en) Plasma processing apparatus and plasma processing method
JP2001257199A (en) Plasma processing method and device thereof
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPH0421781A (en) Plasma cvd device
JPS60218826A (en) Formation of thin film
WO2001083852A1 (en) Method and apparatus for distributing gas within high density plasma process chamber to ensure uniform plasma
JPS61135126A (en) Equipment of plasma treatment
JPH10125665A (en) Plasma processing system
JP3160194B2 (en) Plasma processing method and plasma processing apparatus
JPS6267822A (en) Plasma processor
JPH10172793A (en) Plasma generator
JP2003031555A (en) Surface treatment apparatus
JPH0758027A (en) Plasma cvd apparatus
JPH0530500B2 (en)
JPH025413A (en) Plasma processor
JPH03253574A (en) Formation of thin film and thin film forming device
JP2956395B2 (en) Magnetic field plasma processing equipment
JPS62263236A (en) Formation of amorphous thin film and its system
JPS58177135A (en) Plasma vapor growth apparatus
JPS63253617A (en) Plasma treatment apparatus
JPS59133364A (en) Electric discharge chemical reaction device
JPS58157966A (en) Ion plating device
JPH0368764A (en) Plasma treating device for forming thin film
JPS63292625A (en) Controlling method for plasma