JP2003031555A - Surface treatment apparatus - Google Patents

Surface treatment apparatus

Info

Publication number
JP2003031555A
JP2003031555A JP2001213113A JP2001213113A JP2003031555A JP 2003031555 A JP2003031555 A JP 2003031555A JP 2001213113 A JP2001213113 A JP 2001213113A JP 2001213113 A JP2001213113 A JP 2001213113A JP 2003031555 A JP2003031555 A JP 2003031555A
Authority
JP
Japan
Prior art keywords
gas
magnets
magnetic field
gas plate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001213113A
Other languages
Japanese (ja)
Other versions
JP4554117B2 (en
Inventor
Yuki Komura
由紀 香村
Yasumi Sago
康実 佐護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2001213113A priority Critical patent/JP4554117B2/en
Publication of JP2003031555A publication Critical patent/JP2003031555A/en
Application granted granted Critical
Publication of JP4554117B2 publication Critical patent/JP4554117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent abnormal discharges in a gas hole, by strengthening a magnetic field of a surface treating apparatus, utilizing a plasma near a gas plate and weakening the field near a substrate and to prevent damages from affecting magnets, even if abnormal discharges occur. SOLUTION: The surface treatment apparatus comprises the gas hole 11a of the gas plate 11 at a position of a zero magnetic field, by deviating the shifting the hole 11a and the magnets (a), (b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体等の製造装置
に係わり、特にプラズマ利用平行平板表面処理装置に設
けられるポイントカスプ磁場とガス孔の構成に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing semiconductors and the like, and more particularly to a structure of a point cusp magnetic field and a gas hole provided in a parallel plate surface treatment apparatus using plasma.

【0002】[0002]

【従来の技術】従来から半導体製造プロセス等において
は、エッチング、プラズマCVD(chemical vapor depo
sition)、アッシング等の表面処理に際して、真空容器
内にプラズマを発生させ、被処理基板あるいはウェハの
表面に所定の処理を行うように構成された表面処理装置
が用いられてきた。
2. Description of the Related Art Conventionally, in semiconductor manufacturing processes, etching and plasma CVD (chemical vapor depo
In the case of surface treatment such as sition) and ashing, a surface treatment apparatus configured to generate plasma in a vacuum container and perform a predetermined treatment on the surface of a substrate to be processed or a wafer has been used.

【0003】今日ではデバイスの集積度がますます高く
なり、またスループットの向上も極めて重要であるた
め、これらの表面処理装置においては歩留まりの向上は
もちろんのこと、微細な処理を高速に実施することがと
りわけ重要視されている。更に、アスペクト比の高いコ
ンタクトホールをエッチングする場合、プラズマ密度を
上げると後で示す様にシース幅が短くなりシースで中性
ガスと衝突して散乱されるイオンの量が減る。そのた
め、イオンがコンタクトホールの側壁に斜め方向に衝突
してコンタクトホールが中膨れのボーイング形状になっ
たり、垂直なホール形状が得られないといった問題が解
消出来、垂直な形状のコンタクトホールをエッチング出
来る。また、プラズマ密度が高いと高速エッチングが可
能になる。
Nowadays, the degree of integration of devices is getting higher and the improvement of throughput is also very important. Therefore, in these surface treatment apparatuses, not only the yield is improved, but also fine processing is performed at high speed. Is especially emphasized. Further, when etching a contact hole having a high aspect ratio, increasing the plasma density reduces the sheath width as will be described later, and reduces the amount of ions scattered by colliding with the neutral gas in the sheath. Therefore, the problem that ions collide with the side wall of the contact hole in an oblique direction and the contact hole has a swollen bowing shape, or the vertical hole shape cannot be obtained, and the vertical shape contact hole can be etched. . Further, high plasma density enables high speed etching.

【0004】この為、プラズマ密度を上げて基板の高速
処理を可能とするとともに、圧力を下げてイオンが加速
されるシース中での散乱を防ぐのがエッチングプロセス
における近年の技術趨勢である。また、アッシングする
場合でも圧力が低いと蒸気圧の低い物質が残渣として残
ることはなく、プラズマ密度が高いと高速処理が可能に
なる。プラズマCVDを行う場合には、圧力が低いと気
相反応が抑えられ、ダストが発生しない。
Therefore, it is a recent technical trend in the etching process to increase the plasma density to enable high-speed processing of the substrate and reduce the pressure to prevent the scattering of ions in the sheath where the ions are accelerated. Further, even in the case of ashing, when the pressure is low, a substance having a low vapor pressure does not remain as a residue, and when the plasma density is high, high-speed processing becomes possible. When performing plasma CVD, when the pressure is low, the gas phase reaction is suppressed and dust is not generated.

【0005】以上の説明の根拠の一つとなる前述の、プ
ラズマ密度とシース幅について説明する。
The plasma density and the sheath width, which are one of the grounds for the above explanation, will be described.

【0006】プラズマのデバイ長は次式で与えられる。The Debye length of plasma is given by the following equation.

【0007】λDe=743(T/n0.5 ここにλDeはcm表記のデバイ長で、Tはvol
tで表した電子温度、n はcm当たりの電子密
度である。このデバイス長を使うとプラズマのシース長
Sは、チャイルドの式より次の様になる。
ΛDe= 743 (Te/ Ne)0.5 Where λDeIs the Debye length in cm, TeIs vol
electron temperature represented by t, n eIs cmThreeElectronic density per hit
It is degree. With this device length, the plasma sheath length
From the Child formula, S is as follows.

【0008】 S=[(21/2)/3]λDe(2V/T3/4 ここで、Vはシースにかかる電圧である。例えば、
=3eV、n=1011個/cm、V
=600Vの場合について計算するとシース幅は0.1
7cm=1.7mmとなる。ガス圧4PaでAr:30
0sccm、C :10sccmの標準プロセ
スでは、Arの平均自由行程は3.5mmであるのでシ
ース中でのArの散乱は40%程度である。さらに、C
のAr中の平均自由行程はArの1/3.5倍
程度しかないため、イオン化されたCの平均
自由行程は1mm程度となりシース中での衝突散乱は無
視出来ない。実際、距離xを無衝突で走る粒子の割合は
Exp(−x/λ)で与えられ(ここで、λは平均自由
行程、xは飛行距離)、これを計算するとExp(−x
/λ)=0.18が得られる。従って、シースへ入射す
るイオン全体の82%が衝突散乱する事になる。C
のイオン化率はArよりはるかに大きいためこの
散乱率は無視出来ない値となる。これが側壁のエッチン
グを引き起こし中ぶくれのボーイング形状となる原因と
なる。プラズマ密度を2倍に上げれば、シース長さは
0.7倍程度になりボーイング形状を抑える事が出来
る。
[0008] S = [(21/2) / 3] λDe(2Vo/ Te)3/4 Where VoIs the voltage on the sheath. For example,
Te= 3 eV, ne= 1011Pieces / cmThree, Vo
= 600V, the sheath width is 0.1
7 cm = 1.7 mm. Ar: 30 at gas pressure 4Pa
0 sccm, C FourF8: 10 sccm standard process
In the case of Ar, the mean free path of Ar is 3.5 mm, so
The scattering of Ar in the source is about 40%. Furthermore, C
FourF8 Mean free path in Ar is 1 / 3.5 times that of Ar
Ionized C because there is only a degreeFourF8Average of
The free path is about 1 mm and there is no collision scattering in the sheath.
I can't see. In fact, the proportion of particles that run without collision at the distance x is
Exp (-x / λ), where λ is mean free
Stroke, x is the flight distance), Exp (-x
/Λ)=0.18 is obtained. Therefore, it is incident on the sheath.
82% of all the ions that are generated will collide and scatter. CFour
F8Since the ionization rate of is much larger than Ar
The scattering rate is a value that cannot be ignored. This is the side wall etch
And cause the blistering of the inside blisters.
Become. If the plasma density is doubled, the sheath length will be
It becomes about 0.7 times and can suppress the bowing shape
It

【0009】プラズマ密度を上げるには周波数を上げ高
周波電力を増やせばよいが、現在主に用いられているV
HF帯例えば60MHz以上に周波数を上げると、高周
波は伝送条件が厳しくなり、プラズマ負荷とうまく結合
しなくなる等の問題もあり、平行平板型の表面処理装置
に用いるには非常な努力が必要である。また、高周波電
力を増やすと異常放電を起こしやすいと言った問題もあ
る。
To increase the plasma density, the frequency may be increased and the high frequency power may be increased.
When the frequency is raised to the HF band, for example, 60 MHz or higher, the transmission condition of the high frequency becomes strict, and there is a problem that it cannot be coupled well with the plasma load. Therefore, great efforts are required to use it in the parallel plate type surface treatment device. . There is also a problem that abnormal discharge is likely to occur when the high frequency power is increased.

【0010】この問題を解決して、プラズマ密度を上
げ、圧力を下げるために磁場を使うマグネトロン型平行
平板表面処理装置が有望視されている。
A magnetron type parallel plate surface treatment apparatus which solves this problem and uses a magnetic field to raise the plasma density and lower the pressure is considered promising.

【0011】例えば、特開平11−283926号に
は、図5に示すプラズマ処理装置が開示されている。図
5に示したプラズマ処理装置は、ポイントカスプ磁場を
発生させるため、小さな柱状磁石Maを、基板載置電極
3に対向する対向電極2の裏側に極性を交互に変えて多
数配置した装置である。この場合の磁場構造と作用につ
いて説明する。磁石Maの極性が逆であるため、隣り合
う磁石Maの間に磁束が発生し、高周波により発生した
プラズマ中の電子がトラップされ中性粒子を効率よくイ
オン化し、プラズマ密度が上がる。こうして低いガス圧
でプラズマ密度を増加させ、精度良いエッチングが可能
になるとしている。
For example, Japanese Patent Laid-Open No. 11-283926 discloses a plasma processing apparatus shown in FIG. The plasma processing apparatus shown in FIG. 5 is an apparatus in which a large number of small columnar magnets Ma are arranged on the back side of the counter electrode 2 facing the substrate mounting electrode 3 with their polarities alternately changed in order to generate a point cusp magnetic field. . The magnetic field structure and action in this case will be described. Since the magnets Ma have opposite polarities, a magnetic flux is generated between the adjacent magnets Ma, electrons in the plasma generated by the high frequency are trapped, the neutral particles are efficiently ionized, and the plasma density is increased. In this way, it is said that the plasma density can be increased with a low gas pressure to enable accurate etching.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記従
来技術には次のような問題が認められる。
However, the following problems are recognized in the above-mentioned prior art.

【0013】すなわち、プラズマ密度が高くなるぶん対
向電極2のガス板に開けられたガス孔の中にプラズマが
入り込み異常放電し、ガス孔の内部がエッチングされて
ガス孔の径が広がりますます放電しやすくなり、ガス孔
内部のプラズマ密度が濃くなりガス孔の外部に拡散して
いくと共にその部分のガスの分解が他の部分に比べて進
み、エッチング装置ではガス板に対向する基板4の当該
部分のエッチング速度が速くなるといった問題がある。
またプラズマCVD装置では当該部分のデポジットの量
が多くなり過ぎたり、気相反応によりパーティクルが発
生すると言った問題がある。アッシングでも均一な処理
が難しいと言った問題がある。
That is, as the plasma density increases, the plasma enters the gas holes formed in the gas plate of the counter electrode 2 to cause abnormal discharge, the inside of the gas holes is etched, and the diameter of the gas holes expands. As the plasma density inside the gas holes becomes denser and diffuses to the outside of the gas holes, the decomposition of the gas in that part proceeds more than in other parts, and in the etching apparatus, the gas density of the substrate 4 facing the gas plate is increased. There is a problem that the etching rate of the portion becomes faster.
Further, in the plasma CVD apparatus, there are problems that the amount of deposit in the relevant portion becomes too large and particles are generated due to gas phase reaction. There is a problem that uniform processing is difficult even with ashing.

【0014】本発明はこのような問題点を改善するもの
であり、ポイントカスプ磁場を発生させるN極とS極が
交代する様に配置されたN極2個とS極2個からなる4
個のマグネットの中間位置に生まれるゼロ磁場部分にガ
ス板のガス孔を設ける事でプラズマ密度の薄い部分にガ
ス孔を配置し、ガス孔が濃いプラズマに曝されない表面
処理装置を提供することを目的としている。
The present invention solves such a problem and is composed of two N-poles and two S-poles arranged so that the N-pole and the S-pole for generating a point cusp magnetic field alternate.
An object of the present invention is to provide a surface treatment device in which gas holes are arranged in a portion where the plasma density is low by providing gas holes in a gas plate in a zero magnetic field portion generated at an intermediate position of each magnet, and the gas holes are not exposed to dense plasma. I am trying.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明によれ
ば、基板が載置される基板載置面を有する基板載置電極
と、前記基板載置面に対向する対向面を有する対向電極
と、前記基板載置電極と前記対向電極との間にプラズマ
が生成されるべく、前記基板載置電極及び前記対向電極
の少なくとも一方に電力を供給する電力供給部とを有
し、前記プラズマを利用して前記基板の表面に所定の処
理を行う表面処理装置であって、前記対向電極の前記対
向面側に、該対向面との間に一定の距離を置いて配置さ
れたガス板と、前記対向電極の前記対向面と前記ガス板
との間に配置され、前記ガス板の前記基板載置面に対向
するガス板面側にポイントカスプ磁場を生成するポイン
トカスプ磁場生成部とを更に有し、前記ガス板は、前記
対向電極の前記対向面に実質的に垂直な方向に穿孔され
た複数のガス孔を有し、これら複数のガス孔は、前記ガ
ス板における、前記ポイントカスプ磁場の複数のゼロ磁
場位置に設けられていることを特徴とする表面処理装置
が得られる。
That is, according to the present invention, a substrate mounting electrode having a substrate mounting surface on which a substrate is mounted, and a counter electrode having a facing surface facing the substrate mounting surface. , A power supply unit that supplies power to at least one of the substrate mounting electrode and the counter electrode so that plasma is generated between the substrate mounting electrode and the counter electrode, and uses the plasma A surface treatment apparatus for performing a predetermined treatment on the surface of the substrate, wherein a gas plate disposed on the opposite surface side of the counter electrode with a constant distance from the counter surface; A point cusp magnetic field generation unit that is disposed between the facing surface of the counter electrode and the gas plate and that generates a point cusp magnetic field on the gas plate surface side of the gas plate facing the substrate mounting surface. , The gas plate faces the counter electrode And a plurality of gas holes perforated in a direction substantially perpendicular to the gas plate, the plurality of gas holes are provided at a plurality of zero magnetic field positions of the point cusp magnetic field in the gas plate. A surface treatment device for

【0016】更に本発明によれば、前記ポイントカスプ
磁場生成部は、前記対向電極の前記対向面と前記ガス板
との間に配置された複数の磁石を有し、前記複数の磁石
は、前記ガス板にN極及びS極のうちの一方の極が対面
した2個の第1の磁石と、前記ガス板にN極及びS極の
うちの他方が対面した2個の第2の磁石とを有し、前記
2個の第1の磁石のN極及びS極のうちの前記一方と、
前記2個の第2の磁石のN極及びS極のうちの前記他方
とは、方形の4角をなし、かつ、前記2個の第1の磁石
のN極及びS極のうちの前記一方は前記方形の一つの対
角をなし、前記2個の第2の磁石のN極及びS極のうち
の前記他方は前記方形のもう一つの対角をなしており、
前記方形の中心がゼロ磁場位置であることを特徴とする
表面処理装置が得られる。
Further, according to the present invention, the point cusp magnetic field generating section has a plurality of magnets arranged between the facing surface of the counter electrode and the gas plate, and the plurality of magnets are Two first magnets with one of N and S poles facing the gas plate, and two second magnets with the other of the N and S poles facing the gas plate. And one of the north and south poles of the two first magnets,
The other of the N and S poles of the two second magnets forms a square quadrangle, and the one of the N and S poles of the two first magnets. Forms one diagonal of the square, and the other of the north and south poles of the two second magnets forms another diagonal of the square,
A surface treatment apparatus is obtained in which the center of the square is the zero magnetic field position.

【0017】[0017]

【発明の実施の形態】次に本発明を表面処理装置の一例
であるエッチング装置に適用した場合について以下に説
明する。エッチング装置だけでなく、アッシング、P
(プラズマ)−CVD等の表面処理装置でも同様であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a case where the present invention is applied to an etching apparatus which is an example of a surface treatment apparatus will be described below. Not only etching equipment, ashing, P
The same applies to a surface treatment apparatus such as (plasma) -CVD.

【0018】図1を参照すると、本発明の第1の実施例
による表面処理装置(エッチング装置)が示されてい
る。図1において、1は処理室、2は対向電極、3は基
板載置電極、5は基板4を静電吸着する静電チャック、
6は水冷電極、6aは水冷電極冷却水入口、6bは水冷
電極冷却水路、6cは水冷電極冷却水出口、12は対向
電極用電源である。13は基板載置電極用電源、13a
はブロッキングキャパシター、15は静電チャック電極
用電源、15aは高周波フィルター、10は絶縁体、2
1はガス供給系、22は排気バルブ、31は基板着脱に
用いる突上げピンである。対向電極2にはガス孔11a
が多数開けられたガス板11とガス板11を水冷する水
冷ホルダー8が設置され、水冷ホルダー8に開けられた
空隙に磁石aと逆極性磁石bが交互に格子状に並べられ
ている。これらの磁石a及びbは磁石a及びbに接着さ
れたヨークに開けられたネジ穴により磁石支持板cにネ
ジで固定されている。磁石支持板cの裏にはガス分散孔
9aが開けられたガス分散板9があり、ガスを均一化す
る役目をになう。水冷ホルダー8には水冷管8bがあ
り、水冷管入口8aから冷却水が供給され、水冷管出口
8cから出て行く。なお磁石支持板cにも、ガス孔が多
数開けられガス分散の役目を一部になっている。
Referring to FIG. 1, there is shown a surface treatment apparatus (etching apparatus) according to a first embodiment of the present invention. In FIG. 1, 1 is a processing chamber, 2 is a counter electrode, 3 is a substrate mounting electrode, 5 is an electrostatic chuck that electrostatically adsorbs a substrate 4,
Reference numeral 6 is a water-cooled electrode, 6a is a water-cooled electrode cooling water inlet, 6b is a water-cooled electrode cooling water passage, 6c is a water-cooled electrode cooling water outlet, and 12 is a counter electrode power source. 13 is a power source for the substrate mounting electrode, 13a
Is a blocking capacitor, 15 is a power supply for the electrostatic chuck electrode, 15a is a high frequency filter, 10 is an insulator, 2
Reference numeral 1 is a gas supply system, 22 is an exhaust valve, and 31 is a push-up pin used for attaching and detaching the substrate. A gas hole 11a is formed in the counter electrode 2.
A large number of gas plates 11 and a water cooling holder 8 for cooling the gas plates 11 with water are installed, and magnets a and reverse polarity magnets b are alternately arranged in a lattice shape in the gaps formed in the water cooling holder 8. These magnets a and b are fixed to the magnet supporting plate c with screws by means of screw holes formed in the yoke bonded to the magnets a and b. On the back of the magnet support plate c, there is a gas dispersion plate 9 having a gas dispersion hole 9a formed therein, which serves to make the gas uniform. The water cooling holder 8 has a water cooling pipe 8b, cooling water is supplied from the water cooling pipe inlet 8a, and goes out from the water cooling pipe outlet 8c. The magnet support plate c is also provided with a large number of gas holes, and plays a part in gas dispersion.

【0019】このエッチング装置を動作させるには、先
ず、排気系に繋がるバルブ22を通して処理室1内部を
排気した後、静電チャック電源15より電極に電圧を印
加して基板4を吸着固定して、ガス供給系21から対向
電極2に処理ガスを送り処理室1の内部を一定圧力とす
る。
In order to operate this etching apparatus, first, the inside of the processing chamber 1 is evacuated through the valve 22 connected to the exhaust system, and then a voltage is applied to the electrode from the electrostatic chuck power supply 15 to adsorb and fix the substrate 4. The processing gas is sent from the gas supply system 21 to the counter electrode 2 so that the inside of the processing chamber 1 has a constant pressure.

【0020】その後、対向電極用電源12からVHF帯
(例えば60MHz)の高周波電力を対向電極2に供給
し、基板載置電極3に基板載置電極用電源13からHF
帯(例えば1.6MHz)の高周波電力を供給する。そ
うすると、VHF帯の高周波電力によって比較的高密度
のプラズマ及びエッチャントが生成され、HF帯の高周
波電力によってイオン衝撃エネルギがプラズマ密度とは
独立に制御される。ここで、格子状に極性が逆に置かれ
た磁石a,bにより生じる磁束111により、プラズマ
中の電子はトラップされ、電子が中性粒子と何度も衝突
して中性粒子をイオン化し、高密度プラズマを生む。
Thereafter, the counter electrode power supply 12 supplies high frequency power in the VHF band (eg, 60 MHz) to the counter electrode 2, and the substrate mounting electrode 3 is supplied from the substrate mounting electrode power supply 13 to HF.
A high frequency power of a band (for example, 1.6 MHz) is supplied. Then, the high frequency power in the VHF band generates relatively high density plasma and etchant, and the high frequency power in the HF band controls the ion bombardment energy independently of the plasma density. Here, the electrons in the plasma are trapped by the magnetic flux 111 generated by the magnets a and b having polarities opposite to each other, and the electrons collide with the neutral particles many times to ionize the neutral particles. Produces high-density plasma.

【0021】この様にして、目的とする低い圧力で、高
密度プラズマが得られ、均一なエッチング処理が実行さ
れる。なおガス圧などの条件は従来技術で示したものと
同じである。酸化膜エッチの場合、さらに酸素を5sc
cm程度加えるのが普通である。この場合、基板温度は
60℃、対向電極温度は90℃に保たれている。
In this way, a high density plasma can be obtained at a target low pressure and a uniform etching process can be performed. The conditions such as gas pressure are the same as those shown in the prior art. In the case of oxide film etching, add 5 sc of oxygen
It is usual to add about cm. In this case, the substrate temperature is kept at 60 ° C and the counter electrode temperature is kept at 90 ° C.

【0022】高密度プラズマは、磁場に閉じ込められて
いるが、ExBドリフトにより電子がサイクロイド運動
しポイントカスプの磁場の弱い所に達し磁場から逃れて
磁場の無いバルクプラズマに拡散していく。イオンは本
実施例のような数百ガウスの磁場にトラップされる事は
ない。この様にして高密度プラズマ中の電子の拡散によ
りイオンも電子に引きずられて拡散し、基板4周辺のプ
ラズマ密度も高くなり、かつ拡散中にプラズマ密度は均
一化する。また、プロセスガスの解離やイオン化も進む
ためエッチングレートが向上する。これがポイントカス
プ磁場を用いたエッチングの特徴となる。
Although the high-density plasma is confined in the magnetic field, the electrons are cycloidally moved by ExB drift to reach a weak point magnetic field at the point cusp, escape from the magnetic field, and diffuse into bulk plasma having no magnetic field. Ions are not trapped in a magnetic field of several hundred Gauss as in this embodiment. In this way, due to the diffusion of electrons in the high-density plasma, the ions are also dragged by the electrons and diffuse, the plasma density around the substrate 4 also increases, and the plasma density becomes uniform during the diffusion. Further, since the dissociation and ionization of the process gas also progress, the etching rate is improved. This is a feature of etching using a point cusp magnetic field.

【0023】次に、本願発明の主要部分である磁石a及
びbとガス孔11aの位置関係を、図2を用いて説明す
る。図2において、aは磁石、bは逆極性磁石でガス板
11(図1)の裏にほぼ1cm間隔で交互に全面に設置
されている。100は磁石aと逆極性磁石bによりつく
られた磁束を表し、ポイントカスプ磁場を形成する。こ
の様な、磁石a及びbの配置では、互いに隣接する2個
の磁石aと2個の逆極性磁石bとでつくられる正方形の
中心では磁場が打ち消されてゼロになる。本実施例で
は、このゼロ磁場の点にガス孔11aをガス板11に設
けて、ゼロ磁場の点にてガス孔11aがガス板11を貫
通するようにする。この様にすると、ガス孔11a付近
の磁場強度がほとんどゼロであるため他の箇所に比べて
ガス板11のエッチングが進まず、またガス孔11aの
内部もエッチングされない。この為、ガス孔11aの長
さが短くなる事も、ガス孔11aの内径が大きくなる量
も減るためガス孔11のコンダクタンスはあまり変化せ
ず、基板処理を長い間続けても処理条件が変化する事は
ない。
Next, the positional relationship between the magnets a and b and the gas hole 11a, which is the main part of the present invention, will be described with reference to FIG. In FIG. 2, a is a magnet and b is a reverse polarity magnet, which are alternately installed on the back surface of the gas plate 11 (FIG. 1) at intervals of about 1 cm. Reference numeral 100 represents a magnetic flux created by the magnet a and the opposite polarity magnet b, and forms a point cusp magnetic field. In such an arrangement of the magnets a and b, the magnetic field is canceled and becomes zero at the center of the square formed by the two magnets a and the two opposite polarity magnets b which are adjacent to each other. In the present embodiment, the gas hole 11a is provided in the gas plate 11 at this zero magnetic field point so that the gas hole 11a penetrates the gas plate 11 at the zero magnetic field point. In this case, since the magnetic field strength near the gas hole 11a is almost zero, the etching of the gas plate 11 does not proceed as compared with other places, and the inside of the gas hole 11a is not etched either. Therefore, the length of the gas hole 11a is shortened, and the amount of increase in the inner diameter of the gas hole 11a is also reduced, so that the conductance of the gas hole 11 does not change so much, and the processing conditions change even if the substrate processing is continued for a long time. There is nothing to do.

【0024】図1及び図2において、上述した本発明の
第1の実施例による表面処理装置をまとめると、第1の
実施例は、基板4が載置される基板載置面を有する基板
載置電極3と、基板載置面に対向する対向面を有する対
向電極2と、基板載置電極3と対向電極2との間にプラ
ズマが生成されるべく、基板載置電極3及び対向電極2
の少なくとも一方に電力を供給する電力供給部12或い
は13とを有し、前記プラズマを利用して基板4の表面
に所定の処理を行う表面処理装置であって、対向電極2
の前記対向面側に、該対向面との間に一定の距離を置い
て配置されたガス板11と、対向電極2の前記対向面と
ガス板11との間に配置され、ガス板11の前記基板載
置面に対向するガス板面側にポイントカスプ磁場(図1
の111或いは図2の100)を生成するポイントカス
プ磁場生成部(a、b、c)とを更に有し、ガス板11
は、対向電極2の前記対向面に実質的に垂直な方向に穿
孔された複数のガス孔11aを有し、これら複数のガス
孔11aは、ガス板11における、前記ポイントカスプ
磁場の複数のゼロ磁場位置に設けられていることを特徴
とする。
In FIGS. 1 and 2, the surface treatment apparatus according to the first embodiment of the present invention described above is summarized. In the first embodiment, a substrate mounting surface having a substrate mounting surface on which the substrate 4 is mounted is mounted. In order to generate plasma between the mounting electrode 3, the counter electrode 2 having a facing surface facing the substrate mounting surface, and the substrate mounting electrode 3 and the counter electrode 2, the substrate mounting electrode 3 and the counter electrode 2
And a power supply unit 12 or 13 for supplying power to at least one of the two, and is a surface treatment apparatus that performs a predetermined treatment on the surface of the substrate 4 by using the plasma.
Of the gas plate 11 on the opposite surface side of the gas plate 11 and a gas plate 11 arranged at a certain distance from the opposite surface, and between the opposite surface of the counter electrode 2 and the gas plate 11. A point cusp magnetic field (see FIG. 1) is formed on the gas plate surface side facing the substrate mounting surface.
No. 111 or 100 in FIG. 2), the point cusp magnetic field generator (a, b, c) is further provided, and the gas plate 11
Has a plurality of gas holes 11a bored in a direction substantially perpendicular to the facing surface of the counter electrode 2, and the plurality of gas holes 11a are a plurality of zero points of the point cusp magnetic field in the gas plate 11. It is characterized in that it is provided at a magnetic field position.

【0025】典型的には、前記ポイントカスプ磁場生成
部は、図2に示すように、対向電極2の前記対向面とガ
ス板11との間に配置された複数の磁石(a、b)を有
し、複数の磁石は、ガス板11にN極及びS極のうちの
一方の極が対面した2個の第1の磁石(a)と、前記ガ
ス板にN極及びS極のうちの他方が対面した2個の第2
の磁石(b)とを有し、前記2個の第1の磁石(a)の
N極及びS極のうちの前記一方と、前記2個の第2の磁
石(b)のN極及びS極のうちの前記他方とは、方形の
4角をなし、かつ、前記2個の第1の磁石(a)のN極
及びS極のうちの前記一方は前記方形の一つの対角をな
し、前記2個の第2の磁石(b)のN極及びS極のうち
の前記他方は前記方形のもう一つの対角をなしてなして
おり、前記方形の中心がゼロ磁場位置であることを特徴
とする。
Typically, the point cusp magnetic field generator includes a plurality of magnets (a, b) arranged between the facing surface of the counter electrode 2 and the gas plate 11, as shown in FIG. The plurality of magnets include two first magnets (a) in which one of the N pole and the S pole faces the gas plate 11, and the N pole and the S pole of the gas plate. Two second facing each other
Magnet (b) of the two first magnets (a) and one of the north and south poles of the two first magnets (a) and the north and south poles of the two second magnets (b). The other of the poles forms a square corner, and the one of the north and south poles of the two first magnets (a) forms one diagonal of the square. The other of the north and south poles of the two second magnets (b) forms another diagonal of the rectangle, and the center of the rectangle is at the zero magnetic field position. Is characterized by.

【0026】この第1の実施例以外の有力な案としては
次の様なものが考えられる。磁石の位置とガス孔を同じ
箇所にすると磁石の直上では発散磁場効果で電子密度ひ
いてはプラズマ密度が低下する。このため磁場ゼロにガ
ス孔を貫通させるのと同様の効果が見込める。しかし、
この様なガス孔と磁石の位置を同じにすると次の様な問
題が生じる。
The following are conceivable as promising proposals other than the first embodiment. If the position of the magnet and the gas hole are the same, the electron density and hence the plasma density will be reduced just above the magnet due to the divergent magnetic field effect. Therefore, the same effect as when the gas hole is penetrated to the zero magnetic field can be expected. But,
If the positions of the gas holes and the magnet are the same, the following problems will occur.

【0027】磁石はプラズマに近い方がプラズマを効率
よく生成出来る。特にポイントカスプの特徴は、ガス板
付近で強い磁場を作り、ガス板から離れると急速に磁場
が弱くなり、基板付近ではほとんどゼロになる。この様
に基板付近で磁場がゼロに近づくポイントカスプを使う
理由は次の通りである。基板付近で磁場が存在するとプ
ラズマ密度に差が出来、基板に流入する電流値が一様で
なくなり、基板に一様でないチャージが溜り、絶縁の破
壊などを引き起こしてデバイスに決定的なダメージを与
える。これをポイントカスプは防ぐ事が出来る。
The closer the magnet is to the plasma, the more efficiently the plasma can be generated. In particular, the characteristic of the point cusp is that a strong magnetic field is generated near the gas plate, and the magnetic field rapidly weakens when it is separated from the gas plate, and becomes almost zero near the substrate. The reason for using the point cusp where the magnetic field approaches zero near the substrate is as follows. When there is a magnetic field near the substrate, there is a difference in the plasma density, the current flowing into the substrate becomes uneven, and uneven charge accumulates on the substrate, causing breakdown of the insulation, etc., and causing definite damage to the device. . The point cusp can prevent this.

【0028】この様な問題を回避する為にはポイントカ
スプのように磁石から離れるに従って磁場が急速に減少
し基板付近では磁場がほとんどゼロになる事が好まし
い。しかし、ポイントカスプにおいて磁石とガス孔の位
置を同じにするとガス孔にガスを流す為ガス板と磁石の
距離を離しかつその距離を一定にする必要がある。この
距離が一定でないとコンダクタンスがガス孔ごとに変化
して個々のガス孔に流れ込むガス流量に差が出来ガス孔
付近のエッチング特性が不均一になってしまう。この距
離を決めるために磁石とガス板をネジ止めしたり、接着
剤で止めたりするが正確な値を出す事は難しい。さら
に、磁石とガス孔がオフセットした位置にある場合に比
べ、磁石とガス位置が同じ場合には、ガス流を確保する
必要上磁石からガス板のプラズマ側の表面までの距離が
遠くなる。磁力の強さは磁石からの距離の2乗(双極子
と見れば距離の3乗)で変化するため、ガス板付近の磁
力が小さくなるが、基板付近の磁場の強さはほとんど変
わらず、ポイントカスプの有利な特徴が減殺される。こ
の為、磁石とガス孔の位置は相互にずれていると磁石を
ガス板に近づける事が出来、好ましい。
In order to avoid such a problem, it is preferable that the magnetic field rapidly decreases as it moves away from the magnet like a point cusp, and the magnetic field becomes almost zero near the substrate. However, if the magnet and the gas hole are located at the same position in the point cusp, the gas flows into the gas hole, so that the distance between the gas plate and the magnet must be kept constant and the distance must be constant. If this distance is not constant, the conductance changes from gas hole to gas hole and there is a difference in the flow rate of gas flowing into each gas hole, resulting in non-uniform etching characteristics near the gas holes. In order to determine this distance, the magnet and gas plate are screwed or glued, but it is difficult to give an accurate value. Furthermore, when the magnet and the gas position are the same, the distance from the magnet to the surface of the gas plate on the plasma side becomes longer in order to secure the gas flow, as compared with the case where the magnet and the gas hole are at the offset positions. The strength of the magnetic force changes with the square of the distance from the magnet (three-distance cube when viewed as a dipole), so the magnetic force near the gas plate decreases, but the magnetic field strength near the substrate remains almost unchanged. The beneficial features of the point cusp are diminished. Therefore, it is preferable that the positions of the magnet and the gas hole are displaced from each other so that the magnet can be brought close to the gas plate.

【0029】さらに、この実施例以外の有力な案のよう
に、ガス孔と磁石が同じ位置にあると、ガス孔にプラズ
マが入り込みプラズマ密度が増大する事がある。これを
図3を用いて説明する。ガス板11のガス孔11aが磁
石aの直上にある場合、磁束は磁石aから垂直に出る
為、磁束はガス孔11aの側壁に平行に流れる。そうす
るとプラズマ中の電子はこのガス孔11aの側壁に平行
な磁束にトラップされ、ガス孔11aの側壁に衝突して
消えるまでの時間が長くなり、ガス孔11aの中でのプ
ラズマ生成の効率が上昇する。その結果、プラズマ密度
が上がり、ガス孔11aの内径が大きくなり、ますます
プラズマ密度が上昇し、ついにはホローカソード放電と
なってガス孔の径が急激に広がると共に、プラズマ密度
の不均一により基板のエッチレートのバラツキが大きく
なる。
Furthermore, if the gas hole and the magnet are located at the same position as in a promising plan other than this embodiment, plasma may enter the gas hole and the plasma density may increase. This will be described with reference to FIG. When the gas hole 11a of the gas plate 11 is directly above the magnet a, the magnetic flux emerges vertically from the magnet a, so that the magnetic flux flows parallel to the side wall of the gas hole 11a. Then, the electrons in the plasma are trapped in the magnetic flux parallel to the side wall of the gas hole 11a, the time until it collides with the side wall of the gas hole 11a and disappears becomes long, and the efficiency of plasma generation in the gas hole 11a increases. To do. As a result, the plasma density increases, the inner diameter of the gas holes 11a increases, and the plasma density further increases. Eventually, a hollow cathode discharge occurs, and the diameter of the gas holes rapidly expands. The variation of the etching rate becomes large.

【0030】また、この様な異常放電が拡大しない場合
でも磁石がプラズマに触れプラズマの加熱で磁石の温度
が上昇し、キューリー点を越え磁力が無くなったり、そ
こまで行かなくても磁石が減磁して初期の磁場特性を維
持出来なくなり、プラズマ状態が変化してエッチング特
性が変化してしまう。この様な一部のわずかなエッチン
グ特性の変化は見出す事が難しく、問題が見過ごされた
まま長期にわたりデバイスを生産し続けて不良品の山を
築く事になる。
Even when such an abnormal discharge does not spread, the magnet comes into contact with the plasma and the temperature of the magnet rises due to the heating of the plasma, and the magnetic force disappears beyond the Curie point. Then, the initial magnetic field characteristics cannot be maintained, the plasma state changes, and the etching characteristics change. It is difficult to find such a slight change in the etching characteristics, and it will continue to produce devices for a long period of time while the problems are overlooked, and build a pile of defective products.

【0031】この様な二つの理由から、ガス孔の位置は
磁石直下ではなく磁石からずれたゼロ磁場の位置に持っ
てくる事が好ましい。
For these two reasons, it is preferable that the position of the gas hole is not directly below the magnet but at the position of the zero magnetic field deviated from the magnet.

【0032】次に本発明の第2の実施例による表面処理
装置について図4を用いて説明する。
Next, a surface treatment apparatus according to a second embodiment of the present invention will be described with reference to FIG.

【0033】この第2の実施例は、磁石a(或いはb)
をプラズマに近づけ、かつガス孔11aと磁石a(或い
はb)との間のガスが存在するスペースをなくす事を目
的としている。図4において、ガス板11のガス孔11
aは、隣接する2個の磁石a及び2個の逆極性磁石b
(図1)からなる正方形の中心にあるゼロ磁場ポイント
に設けられている。磁石aはガス板11に穿たれた磁石
孔11bに一部が入り込む形で設置され、反対側(裏
側)は磁石支持板c(図1)で保持されている。磁石a
の周囲は万一プラズマがガス板11の裏側に回り込んで
も磁石aがプラズマに曝されないよう磁石保護筒11c
が設けられている。この様に磁石aの位置とガス孔11
aの位置をオフセットすると、設計の自由度が得られる
というメリットもある。
In the second embodiment, the magnet a (or b) is used.
Is close to the plasma, and the space where the gas exists between the gas hole 11a and the magnet a (or b) is eliminated. In FIG. 4, the gas holes 11 of the gas plate 11
a is two adjacent magnets a and two opposite polarity magnets b
It is located at the zero field point in the center of the square (Fig. 1). The magnet a is installed so that a part thereof enters the magnet hole 11b formed in the gas plate 11, and the opposite side (back side) is held by the magnet support plate c (FIG. 1). Magnet a
The circumference of the magnet protection cylinder 11c prevents the magnet a from being exposed to the plasma even if the plasma wraps around the back side of the gas plate 11.
Is provided. In this way, the position of the magnet a and the gas hole 11
Offsetting the position of “a” also has the advantage that flexibility in design can be obtained.

【0034】なお、ガス板11の裏にエッチング物質が
デポジットする場合ガス流量を増やしガス孔11aの径
を小さくすればデポジットを防げることは、特開平3−
175627号公報に記載されているのでこの方法を用
いることが出来る。
When the etching substance is deposited on the back side of the gas plate 11, the deposit can be prevented by increasing the gas flow rate and decreasing the diameter of the gas hole 11a.
Since it is described in Japanese Patent No. 175627, this method can be used.

【0035】なお、ガス板11付近で高密度プラズマが
発生するため、ガス板11をSiやSiO等のスカベ
ンジャー材で作る事が好ましい。また高周波の伝播とい
う点からは、ガス板11を絶縁物、ドーピングされた半導
体、金属にする事も可能である。
Since high-density plasma is generated near the gas plate 11, it is preferable that the gas plate 11 is made of a scavenger material such as Si or SiO 2 . Further, from the viewpoint of high frequency propagation, the gas plate 11 may be made of an insulator, a doped semiconductor or a metal.

【0036】[0036]

【発明の効果】以上述べたように、本発明を用いると、
各々のガス孔の流量を一定に制御出来、磁場をガス板付
近で高く基板付近で無視出来るほど小さく出来、高いプ
ラズマ密度と基板付近での均一なプラズマ密度を両立さ
せる事が出来る。そうすると、エッチングでは高速かつ
均一性も良くエッチング形状も均一な基板処理を実現出
来る。プラズマCVDでは高速でかつ膜質も膜厚も均一
な基板処理を実現出来る。
As described above, according to the present invention,
The flow rate of each gas hole can be controlled to be constant, the magnetic field can be made high near the gas plate and negligibly small near the substrate, and both high plasma density and uniform plasma density near the substrate can be achieved. By doing so, it is possible to realize substrate processing in which etching is performed at high speed and with good uniformity, and etching shape is uniform. Plasma CVD can realize substrate processing at high speed and with uniform film quality and film thickness.

【0037】また磁石とガス孔が相互にずれた位置に置
かれる為、ガス孔の中にプラズマが入り込んでも磁石に
プラズマが触れず、磁石の温度が上昇して減磁し磁場特
性が変化する事を防げる。この為プラズマ特性が変化し
エッチングやプラズマCVD特性が変わると言った問題
もない。
Further, since the magnet and the gas hole are placed at mutually deviated positions, even if the plasma enters the gas hole, the plasma does not come into contact with the magnet, the temperature of the magnet rises and demagnetizes, and the magnetic field characteristics change. Prevent things. Therefore, there is no problem that the plasma characteristics change and the etching and plasma CVD characteristics change.

【0038】また、アッシングではアッシングレートの
均一性や残渣の均一性を実現出来る。
Further, in the ashing, it is possible to realize the uniformity of the ashing rate and the uniformity of the residue.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による表面処理装置の断
面図である。
FIG. 1 is a sectional view of a surface treatment apparatus according to a first embodiment of the present invention.

【図2】図1の表面処理装置において、磁石と、ガス板
に設けられるガス孔との位置関係を説明するための図で
ある。
FIG. 2 is a diagram for explaining a positional relationship between a magnet and a gas hole provided in a gas plate in the surface treatment apparatus of FIG.

【図3】上記第1の実施例以外の有力な案を説明するた
めのガス板と磁石の断面図である。
FIG. 3 is a cross-sectional view of a gas plate and a magnet for explaining a promising plan other than the first embodiment.

【図4】本発明の第2の実施例による表面処理装置のガ
ス板と磁石の断面図である。
FIG. 4 is a sectional view of a gas plate and a magnet of a surface treatment apparatus according to a second embodiment of the present invention.

【図5】従来のプラズマ処理装置の斜視図である。FIG. 5 is a perspective view of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1 処理室 2 対向電極 3 基板載置電極 4 基板 8 水冷ホルダー 8b 水冷管 8a 水冷管入口 8c 水冷管出口 9 ガス分散板 9a ガス分散孔 11 ガス板 11a ガス孔 11b 磁石孔 11c 磁石保護筒 12 対向電極用電源 13 基板載置電極用電源 a 磁石 b 磁石(逆極性磁石) c 磁石支持板 1 processing room 2 Counter electrode 3 Substrate mounting electrode 4 substrates 8 water cooling holder 8b water cooling tube 8a Water cooling pipe inlet 8c Water cooling pipe outlet 9 gas dispersion plate 9a Gas dispersion hole 11 gas plate 11a gas hole 11b Magnet hole 11c Magnet protection tube 12 Counter electrode power supply 13 Power supply for substrate mounting electrodes a magnet b Magnet (reverse polarity magnet) c Magnet support plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 CA04 EA06 FA03 HA06 KA30 KA34 LA15 5F004 AA01 AA03 BA08 BB07 BB12 BB13 BB17 BB18 BB22 BB28   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K030 CA04 EA06 FA03 HA06 KA30                       KA34 LA15                 5F004 AA01 AA03 BA08 BB07 BB12                       BB13 BB17 BB18 BB22 BB28

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板が載置される基板載置面を有する基
板載置電極と、前記基板載置面に対向する対向面を有す
る対向電極と、前記基板載置電極と前記対向電極との間
にプラズマが生成されるべく、前記基板載置電極及び前
記対向電極の少なくとも一方に電力を供給する電力供給
部とを有し、前記プラズマを利用して前記基板の表面に
所定の処理を行う表面処理装置であって、前記対向電極
の前記対向面側に、該対向面との間に一定の距離を置い
て配置されたガス板と、前記対向電極の前記対向面と前
記ガス板との間に配置され、前記ガス板の前記基板載置
面に対向するガス板面側にポイントカスプ磁場を生成す
るポイントカスプ磁場生成部とを更に有し、前記ガス板
は、前記対向電極の前記対向面に実質的に垂直な方向に
穿孔された複数のガス孔を有し、これら複数のガス孔
は、前記ガス板における、前記ポイントカスプ磁場の複
数のゼロ磁場位置に設けられていることを特徴とする表
面処理装置。
1. A substrate mounting electrode having a substrate mounting surface on which a substrate is mounted, a counter electrode having a facing surface facing the substrate mounting surface, and the substrate mounting electrode and the counter electrode. A power supply unit that supplies power to at least one of the substrate mounting electrode and the counter electrode so as to generate plasma therebetween, and performs a predetermined process on the surface of the substrate using the plasma. A surface treatment apparatus, comprising: a gas plate disposed on the facing surface side of the counter electrode with a constant distance from the facing surface; and the facing surface of the counter electrode and the gas plate. And a point cusp magnetic field generation unit that generates a point cusp magnetic field on the side of the gas plate facing the substrate mounting surface of the gas plate, the gas plate facing the counter electrode. Multiple holes drilled in a direction substantially perpendicular to the plane A surface treatment apparatus having a plurality of gas holes, the plurality of gas holes being provided at a plurality of zero magnetic field positions of the point cusp magnetic field in the gas plate.
【請求項2】 請求項1に記載の表面処理装置におい
て、 前記ポイントカスプ磁場生成部は、前記対向電極の前記
対向面と前記ガス板との間に配置された複数の磁石を有
し、前記複数の磁石は、前記ガス板にN極及びS極のう
ちの一方の極が対面した2個の第1の磁石と、前記ガス
板にN極及びS極のうちの他方が対面した2個の第2の
磁石とを有し、前記2個の第1の磁石のN極及びS極の
うちの前記一方と、前記2個の第2の磁石のN極及びS
極のうちの前記他方とは、方形の4角をなし、かつ、前
記2個の第1の磁石のN極及びS極のうちの前記一方は
前記方形の一つの対角をなし、前記2個の第2の磁石の
N極及びS極のうちの前記他方は前記方形のもう一つの
対角をなしており、前記方形の中心がゼロ磁場位置であ
ることを特徴とする表面処理装置。
2. The surface treatment apparatus according to claim 1, wherein the point cusp magnetic field generation unit has a plurality of magnets arranged between the facing surface of the counter electrode and the gas plate, The plurality of magnets are two first magnets with one of N and S poles facing the gas plate, and two with the other of N and S poles facing the gas plate. Second magnet of the two first magnets, and the one of the north and south poles of the two first magnets, and the north and south poles of the two second magnets.
The other of the poles forms a square corner, and the one of the north and south poles of the two first magnets forms one diagonal of the square. The surface treatment apparatus characterized in that the other of the N and S poles of the second magnets forms another diagonal of the rectangle, and the center of the rectangle is at a zero magnetic field position.
JP2001213113A 2001-07-13 2001-07-13 Surface treatment equipment Expired - Fee Related JP4554117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213113A JP4554117B2 (en) 2001-07-13 2001-07-13 Surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213113A JP4554117B2 (en) 2001-07-13 2001-07-13 Surface treatment equipment

Publications (2)

Publication Number Publication Date
JP2003031555A true JP2003031555A (en) 2003-01-31
JP4554117B2 JP4554117B2 (en) 2010-09-29

Family

ID=19048154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213113A Expired - Fee Related JP4554117B2 (en) 2001-07-13 2001-07-13 Surface treatment equipment

Country Status (1)

Country Link
JP (1) JP4554117B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274624B2 (en) 2007-06-18 2012-09-25 Nitto Denko Corporation Liquid crystal panel and liquid crystal display
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device
US8679618B2 (en) 2006-11-10 2014-03-25 Lg Display Co., Ltd. Optical film, method of manufacturing optical film and liquid crystal display device having the same
US9117635B2 (en) 2010-09-27 2015-08-25 Tokyo Electron Limited Electrode plate for plasma etching and plasma etching apparatus
JP2015156376A (en) * 2007-02-15 2015-08-27 アッシュ・ウー・エフ Device for generating cold plasma in vacuum chamber and use of device for thermo-chemical processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280027A (en) * 1993-03-29 1994-10-04 Anelva Corp Plasma treatment method and device
JPH076998A (en) * 1990-11-30 1995-01-10 Ulvac Japan Ltd Microwave plasma processing equipment
JPH08213365A (en) * 1995-02-06 1996-08-20 Hitachi Ltd Plasma treating method and treating equipment
JP2000323463A (en) * 2000-01-01 2000-11-24 Hitachi Ltd Plasma processing method
JP2000331995A (en) * 1999-05-19 2000-11-30 Anelva Corp Flat plate gas introduction device of ccp reaction vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076998A (en) * 1990-11-30 1995-01-10 Ulvac Japan Ltd Microwave plasma processing equipment
JPH06280027A (en) * 1993-03-29 1994-10-04 Anelva Corp Plasma treatment method and device
JPH08213365A (en) * 1995-02-06 1996-08-20 Hitachi Ltd Plasma treating method and treating equipment
JP2000331995A (en) * 1999-05-19 2000-11-30 Anelva Corp Flat plate gas introduction device of ccp reaction vessel
JP2000323463A (en) * 2000-01-01 2000-11-24 Hitachi Ltd Plasma processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679618B2 (en) 2006-11-10 2014-03-25 Lg Display Co., Ltd. Optical film, method of manufacturing optical film and liquid crystal display device having the same
JP2015156376A (en) * 2007-02-15 2015-08-27 アッシュ・ウー・エフ Device for generating cold plasma in vacuum chamber and use of device for thermo-chemical processing
US8274624B2 (en) 2007-06-18 2012-09-25 Nitto Denko Corporation Liquid crystal panel and liquid crystal display
US9117635B2 (en) 2010-09-27 2015-08-25 Tokyo Electron Limited Electrode plate for plasma etching and plasma etching apparatus
US9818583B2 (en) 2010-09-27 2017-11-14 Tokyo Electron Limited Electrode plate for plasma etching and plasma etching apparatus
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device

Also Published As

Publication number Publication date
JP4554117B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
KR101689916B1 (en) Plasma generation controlled by gravity induced gas-diffusion separation(gigds) techniques
US6129806A (en) Plasma processing apparatus and plasma processing method
US5593539A (en) Plasma source for etching
JP4374487B2 (en) Ion source apparatus and cleaning optimization method thereof
US7138067B2 (en) Methods and apparatus for tuning a set of plasma processing steps
US9564297B2 (en) Electron beam plasma source with remote radical source
JP2001257199A (en) Plasma processing method and device thereof
KR20070091673A (en) Methods and apparatus for sequentially alternating among plasma processes in order to optimize a substrate
JPS60134423A (en) Microwave plasma etching device
JPH047827A (en) Plasma treatment method
KR970005035B1 (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JP2009124109A (en) Method of preventing etch profile bending and bowing in high aspect ratio openings by treating polymer formed on opening sidewalls
JP2001358129A (en) Method and apparatus for plasma processing
JPH10261498A (en) Plasma treatment apparatus and plasma treatment method
JP4340348B2 (en) Plasma generator
JPH0641739A (en) High-vacuum and high-speed ion treatment device
JP4554117B2 (en) Surface treatment equipment
JP4408987B2 (en) Plasma processing equipment for sputter processing
JP3663392B2 (en) Plasma etching processing equipment
JPH05102083A (en) Method and apparatus for dry etching
JP4450429B2 (en) Plasma generator
JP4388455B2 (en) Plasma etching processing equipment
JP4084335B2 (en) Plasma etching processing equipment
JP4243110B2 (en) Surface treatment equipment
JPH1154296A (en) Plasma generator and plasma device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees