JPS587337B2 - Oxide reduction method - Google Patents

Oxide reduction method

Info

Publication number
JPS587337B2
JPS587337B2 JP54055966A JP5596679A JPS587337B2 JP S587337 B2 JPS587337 B2 JP S587337B2 JP 54055966 A JP54055966 A JP 54055966A JP 5596679 A JP5596679 A JP 5596679A JP S587337 B2 JPS587337 B2 JP S587337B2
Authority
JP
Japan
Prior art keywords
plasma
hydrogen
oxide
reduction
reduction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54055966A
Other languages
Japanese (ja)
Other versions
JPS55149642A (en
Inventor
坂本雄一
石部行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP54055966A priority Critical patent/JPS587337B2/en
Publication of JPS55149642A publication Critical patent/JPS55149642A/en
Publication of JPS587337B2 publication Critical patent/JPS587337B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は電子サイクロトロン共鳴法にて生成された水素
プラズマを使用する酸化物の還元法に係わるものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing oxides using hydrogen plasma generated by electron cyclotron resonance.

先ず、電子サイクロトロン共鳴法にて水素プラズマを生
成する方法について述べる。
First, a method for generating hydrogen plasma using electron cyclotron resonance method will be described.

真空中に静磁界(大きさをBテスラとする。A static magnetic field in a vacuum (the magnitude is B tesla).

)を作り、その中に水素ガスを導き水素の低気圧ガス雰
囲気を作る。
) and introduce hydrogen gas into it to create a low-pressure hydrogen gas atmosphere.

そしてf=eB/2πmeで与えられる周波数f(ヘル
ツ)の強い電磁波を与えると,宇宙線のためにできてい
る自由電子が磁界の回りのサイクロトロン運動の周期と
電磁波の周期とが一致して電子は、電磁波の電界により
共鳴的に加速され電磁波のエネルギーを吸収する。
When a strong electromagnetic wave with a frequency f (hertz) given by f = eB/2πme is applied, the free electrons created due to cosmic rays become electrons because the period of the cyclotron motion around the magnetic field matches the period of the electromagnetic wave. is resonantly accelerated by the electric field of the electromagnetic wave and absorbs the energy of the electromagnetic wave.

この電子は周囲の中性ガスを電離し、ここで発生した電
子が又共鳴加速され次々とガス原子を電離しプラズマを
発生する。
These electrons ionize the surrounding neutral gas, and the electrons generated here are also resonantly accelerated and ionize gas atoms one after another, generating plasma.

このプラズマは電子サイクロトロン共鳴(ECR)プラ
ズマと呼ばれる。
This plasma is called electron cyclotron resonance (ECR) plasma.

ECRプラズマの特徴は、その発生に陽陰極を必要とせ
ず、発生装置の寿命が非常に長く、又その電子温度(T
e)はガス圧力と電磁波の電力密度を変えて0.1ev
〜1kevの広範囲にわたって変える事ができる。
The characteristics of ECR plasma are that it does not require an anode or cathode to generate it, the lifetime of the generator is extremely long, and its electron temperature (T
e) is 0.1ev by changing the gas pressure and electromagnetic wave power density.
It can be varied over a wide range of ~1 kev.

本発明はこの様にして生成された水素プラズマを金属表
面の金属酸化物に照射し、金属酸化物を還元する安価で
、しかも取扱いが容易な金属酸化物の還元法を提供する
事を目的とする。
The purpose of the present invention is to provide an inexpensive and easy-to-handle method for reducing metal oxides by irradiating hydrogen plasma generated in this manner onto metal oxides on the metal surface. do.

以下添付図によって本発明を詳述する。The present invention will be explained in detail below with reference to the accompanying drawings.

第1図は本発明による金属酸化物還元装置の原理図で、
直流磁界発生用コイル1中に金属製放電管2を挿入し、
真空ポンプにて放電管2を排気する。
FIG. 1 is a diagram showing the principle of the metal oxide reduction apparatus according to the present invention.
A metal discharge tube 2 is inserted into a DC magnetic field generation coil 1,
The discharge tube 2 is evacuated using a vacuum pump.

その後放電管2を排気しつつ水素ガスを導入口3より導
入し、放電管2の管内圧力を10−5〜10−2Tor
rの間の必要な圧力に保つ。
After that, while evacuating the discharge tube 2, hydrogen gas is introduced from the inlet 3, and the pressure inside the discharge tube 2 is set to 10-5 to 10-2 Torr.
Maintain the required pressure between r.

コイル1に直流電流を流し電子サイクロトロン共鳴磁界
を発生させ、導波管5より真空気密用窓6を通して高電
力のマイクロ波を送り、水素のBCRプラズマ7を発生
させる。
A direct current is passed through the coil 1 to generate an electron cyclotron resonance magnetic field, and high-power microwaves are sent from the waveguide 5 through the vacuum-tight window 6 to generate hydrogen BCR plasma 7.

還元しようとする金属酸化物9を架台8に装着し水素プ
ラズマをこれに照射する。
A metal oxide 9 to be reduced is mounted on a pedestal 8, and hydrogen plasma is irradiated onto it.

還元反応にあづかる粒子は二種類あり、それらはプラズ
マ中にある水素原子H゜と水素イオンH+である。
There are two types of particles that participate in the reduction reaction: hydrogen atoms H° and hydrogen ions H+ in the plasma.

H゜はプラズマ中の電子により水素分子H2が解離され
H2+e→2 H°+eの過程で発生し、H+はH゜を
イオン化されH°+e→H++2 eの過程で発生する
H° is generated when hydrogen molecules H2 are dissociated by electrons in the plasma in the process H2+e→2 H°+e, and H+ is generated in the process H°+e→H++2e when H° is ionized.

H゜は電気的に中性であるから電界の作用を受けずに金
属酸化物に達する。
Since H° is electrically neutral, it reaches the metal oxide without being affected by an electric field.

化学的にH゜は極めて高い活性を持っているから金属酸
化物MOxをMOX+2XH゜=M+2XH20の反応
で還元し結合エネルギーが大きく容易に脱離し得ない金
属酸化物中の酸素を母金属から容易に脱離し得る水に変
換する。
Chemically, H゜ has extremely high activity, so it reduces metal oxide MOx with the reaction MOX + 2XH゜ = M + 2XH20, and easily removes oxygen in metal oxides, which cannot be easily released due to its large binding energy, from the base metal. Converts to water that can be eliminated.

他方H+は、プラズマ電荷をもっているから、第2図で
示すプラズマ7と金属酸化物9の間にできるイオン鞘1
0中に存在する電界で加速され金属酸化物表面に達し電
子と再結合しH°となり上記の還元反応と同じ反応にあ
ずかる。
On the other hand, since H+ has a plasma charge, the ion sheath 1 formed between the plasma 7 and the metal oxide 9 shown in FIG.
It is accelerated by the electric field that exists in zero, reaches the surface of the metal oxide, recombines with electrons, becomes H°, and participates in the same reaction as the reduction reaction described above.

ここでイオン鞘にかかる電位差φ5はプラズマの電子温
度を電子ボルトで表しTe電子ボルトとすればφs=T
eである。
Here, the potential difference φ5 applied to the ion sheath is the electron temperature of the plasma in electron volts, and if Te electron volts is used, φs=T
It is e.

H+の場合はイオン鞘で加速されるから還元によって生
じたH20分子に衝突してそのエネルギーをH2O分子
に与えこれの酸化物9表面からの脱離を促進するのに役
立つ。
In the case of H+, since it is accelerated by the ion sheath, it collides with the H20 molecules generated by the reduction and gives its energy to the H2O molecules, which helps to promote their desorption from the surface of the oxide 9.

脱離したH2O分子は真空ポンプ4に達して排気される
The desorbed H2O molecules reach the vacuum pump 4 and are exhausted.

還元が進行すると、前記のH°はこの還元層内を拡散し
て内部酸化層に達し上記の還元反応を起す。
As the reduction progresses, the above-mentioned H° diffuses within this reduction layer and reaches the internal oxidation layer, causing the above-mentioned reduction reaction.

生成した水分子は還元層内を拡散して表面に達し、離脱
排気される。
The generated water molecules diffuse within the reduced layer, reach the surface, and are released and exhausted.

従って還元速度を高めるには、架台8を通して9を加熱
し、還元層内の水素原子及び水の拡散速度を高める必要
がある。
Therefore, in order to increase the reduction rate, it is necessary to heat 9 through the pedestal 8 to increase the diffusion rate of hydrogen atoms and water in the reduction layer.

試料に亜酸化銅を用い加熱しないで還元を行った場合の
実験結果を第3図に示す。
FIG. 3 shows the experimental results when reduction was performed without heating using cuprous oxide as the sample.

ここでプラズマは4.4GHzのマイクロ波(共鳴磁界
1.57KG)200Wを使用し水素圧力2×10−4
Torrのもとで発生させた。
Here, the plasma uses 4.4 GHz microwave (resonance magnetic field 1.57 KG) 200 W and hydrogen pressure is 2 x 10-4.
Generated under Torr.

プラズマの電子温度及びイオン密度は夫々12ev及び
4×1010cm−3である。
The electron temperature and ion density of the plasma are 12 ev and 4 x 1010 cm-3, respectively.

横軸にプラズマ照射時間、縦軸に還元の厚みをとってあ
る。
The horizontal axis represents plasma irradiation time, and the vertical axis represents reduction thickness.

銅に比べはるかに還元し難い金属酸化物(酸化との結合
エネルギーの大きい)に関する還元実験結果を第1表に
示す。
Table 1 shows the results of reduction experiments regarding metal oxides that are much more difficult to reduce than copper (having a large bonding energy with oxidation).

なお、ここで試料の金属酸化物は金属板を空気中で加熱
してその表面に形成した。
Note that the metal oxide sample was formed on the surface of a metal plate by heating it in air.

酸化層の厚みは光の干渉色が2次の青(酸化層の厚の増
加と共に干渉色は紫から赤へと変化し第1回目の変化が
完了すると再び紫から赤への変化が起る。
The thickness of the oxide layer causes the interference color of light to be a secondary blue (as the thickness of the oxide layer increases, the interference color changes from violet to red, and once the first change is completed, the color changes from violet to red again) .

2次の青とは第2回目の変化において干渉色が青を示す
ことを意味する。
Secondary blue means that the interference color exhibits blue in the second change.

)を示す厚みである。空気中酸化では酸化物の同定が難
しく従って屈折率も不明で、酸化層の厚みを定量的に与
えることはできないが、屈折率を2と仮定すると厚みは
大略230nmとなる。
). In air oxidation, it is difficult to identify the oxide, and therefore the refractive index is unknown, and the thickness of the oxide layer cannot be given quantitatively, but assuming the refractive index is 2, the thickness is approximately 230 nm.

この結果によれば通常水素炉で還元不可能なチタニウム
等の還元が可能となる。
According to this result, it becomes possible to reduce titanium, etc., which cannot normally be reduced in a hydrogen furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用するECRプラズマ発生装
置の略図。 第2図は本発明による酸化物還元法の説明図。 第3図は本発明による亜酸化銅の還元の進行速度に関す
る実験結果である。 図中、1・・・・・・真空容器、2・・・・・・磁界発
生用電磁石、3・・・・・・水素ガス導入管、5・・・
・・・マイクロ波導波管、6・・・・・・真空シール用
誘電体窓、7・・・・・・水素プラズマ、8・・・・・
・架台、9・・・・・・被還元金属酸化物、10・・・
・・・イオン鞘。
FIG. 1 is a schematic diagram of an ECR plasma generator used in carrying out the present invention. FIG. 2 is an explanatory diagram of the oxide reduction method according to the present invention. FIG. 3 shows experimental results regarding the progress rate of reduction of cuprous oxide according to the present invention. In the figure, 1... vacuum container, 2... electromagnet for magnetic field generation, 3... hydrogen gas introduction tube, 5...
...Microwave waveguide, 6...Dielectric window for vacuum sealing, 7...Hydrogen plasma, 8...
- Frame, 9... Metal oxide to be reduced, 10...
...Ion sheath.

Claims (1)

【特許請求の範囲】[Claims] 1 水素の電子サイクロトロン共鳴プラズマを酸化物に
照射して酸化物を還元することを特徴とする酸化物還元
法。
1. An oxide reduction method characterized by reducing the oxide by irradiating the oxide with electron cyclotron resonance plasma of hydrogen.
JP54055966A 1979-05-08 1979-05-08 Oxide reduction method Expired JPS587337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54055966A JPS587337B2 (en) 1979-05-08 1979-05-08 Oxide reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54055966A JPS587337B2 (en) 1979-05-08 1979-05-08 Oxide reduction method

Publications (2)

Publication Number Publication Date
JPS55149642A JPS55149642A (en) 1980-11-21
JPS587337B2 true JPS587337B2 (en) 1983-02-09

Family

ID=13013808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54055966A Expired JPS587337B2 (en) 1979-05-08 1979-05-08 Oxide reduction method

Country Status (1)

Country Link
JP (1) JPS587337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199359A (en) * 1984-10-19 1986-05-17 Mitsubishi Electric Corp Hybrid integrated circuit device
JPS62157139U (en) * 1986-03-28 1987-10-06

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080283A (en) * 1997-11-25 2000-06-27 Eveready Battery Company, Inc. Plasma treatment for metal oxide electrodes
AU2002220358B2 (en) * 2000-12-04 2007-11-29 Plasma Technologies Pty Ltd Plasma reduction processing of materials
AUPR186200A0 (en) 2000-12-04 2001-01-04 Tesla Group Holdings Pty Limited Plasma reduction processing of materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107876A (en) * 1978-02-14 1979-08-24 Toshiba Corp Method and apparatus for reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107876A (en) * 1978-02-14 1979-08-24 Toshiba Corp Method and apparatus for reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199359A (en) * 1984-10-19 1986-05-17 Mitsubishi Electric Corp Hybrid integrated circuit device
JPS62157139U (en) * 1986-03-28 1987-10-06

Also Published As

Publication number Publication date
JPS55149642A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
JPS5816078A (en) Plasma etching device
De La Cal et al. Review of radio frequency conditioning discharges with magnetic fields in superconducting fusion reactors
JPH01149965A (en) Plasma reactor
JPH04253328A (en) Surface treatment device
JPS587337B2 (en) Oxide reduction method
US5168197A (en) Ion beam generating apparatus, film-forming apparatus, and method for formation of film
JPS61135126A (en) Equipment of plasma treatment
JPS6338585A (en) Plasma device
JP2849771B2 (en) Sputter type ion source
JP2588172B2 (en) Surface treatment equipment
JPH01238020A (en) Plasma processing device and processing system therefor
JPS59121747A (en) Method of ion milling
JP3010059B2 (en) Ion source
JPH0252855B2 (en)
JPH07300395A (en) Method for reducing amount of hydrogen adsorbed to diamond surface
JPS6364247A (en) Plasma device
GB2269785A (en) Etching a surface of a semiconductor
JPH07263184A (en) Microwave plasma generating device
JPH06151090A (en) Plasma generating device
JPS63213664A (en) Ion plating device
JPS6177233A (en) Manufacture of cathode-ray tube
JPH03275594A (en) Method and device for sputtering with reactive gas utilized therefor
JPH0695501B2 (en) Etching method
JPH01120826A (en) Method and equipment for surface treatment
JPH01127668A (en) Focused charging beam apparatus