JPH01238020A - Plasma processing device and processing system therefor - Google Patents

Plasma processing device and processing system therefor

Info

Publication number
JPH01238020A
JPH01238020A JP6332488A JP6332488A JPH01238020A JP H01238020 A JPH01238020 A JP H01238020A JP 6332488 A JP6332488 A JP 6332488A JP 6332488 A JP6332488 A JP 6332488A JP H01238020 A JPH01238020 A JP H01238020A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
plasma
chamber
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6332488A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
和夫 鈴木
Tadashi Sonobe
園部 正
Michio Ogami
大上 三千男
Takuya Fukuda
福田 琢也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP6332488A priority Critical patent/JPH01238020A/en
Publication of JPH01238020A publication Critical patent/JPH01238020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To realize a high efficiency, high quality radical processing by enabling a sample surface to be irradiated with a high density radical shielding any ion by disposing a mesh-like grid electrode between a sample and a boundary of produced plasma. CONSTITUTION:Microwaves 4 are introduced into a discharge tube 2 equipped with a coil 1 on the outside thereof through a waveguide 3, and a magnetic field from a magnetic field coil 1 and the microwaves 4 are applied to etching gas 5 introduced into the discharge tube 2 to produce plasma by electron cyclotron resonance. An enhancing magnetic field coil 9 is provided outside a sample chamber 8 which includes a sample table 7 for holding a sample 6. The sample chamber 8 is connected with the discharge tube 2. The direction of an enhancing magnetic field is opposite to the direction of the magnetic field generated by the magnetic field coil 1, both forming a cusp magnetic field orientation. Hereby, a boundary 11 of the plasma 12 on the side of the sample chamber 8 is formed. Further, a mesh-like grid electrode 10 having a positive potential is provided between the plasma boundary 11 and the sample table 7 to sharply reduce ions which can reach the sample 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理装置、及びその処理システムに係
り、特に、マイクロ波放電により生成したプラズマを利
用し、試料表面に薄膜生成、又はエツチング、スパッタ
リング、プラズマ酸化等を行うに好適なプラズマ処理装
置、及びその処理システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing apparatus and a processing system therefor, and in particular, uses plasma generated by microwave discharge to form a thin film on the surface of a sample, or perform etching. The present invention relates to a plasma processing apparatus suitable for sputtering, plasma oxidation, etc., and a processing system thereof.

〔従来の技術〕[Conventional technology]

従来の磁場中のマイクロ波放電によるプラズマを利用し
たプラズマ処理装置は、放電空間の一部である放電室か
ら試料台を備えた試料室方向に減少する磁場配位となっ
ているため、放電室にて生成されたプラズマは、磁力線
に沿って試料台の方向へ動く。一方、試料の種類により
、試料を直接プラズマ(イオン、電子)にさらさず、純
ラジカル処理を行なう要求より、試料台と放電室の間に
メツシュ状のグリッド電極を設け、これに正電位を加え
ることにより、プラズマ、特にイオンが試料台へ突入す
るのを避けて純ラジカル処理を行なうことが試みられて
いた(例えば特開昭58−125820号公報参照)。
Conventional plasma processing equipment that uses plasma generated by microwave discharge in a magnetic field has a magnetic field configuration that decreases from the discharge chamber, which is a part of the discharge space, toward the sample chamber equipped with the sample stage. The plasma generated in the sample moves along the magnetic lines of force toward the sample stage. On the other hand, depending on the type of sample, it is necessary to perform pure radical treatment without directly exposing the sample to plasma (ions, electrons), so a mesh-like grid electrode is installed between the sample stage and the discharge chamber, and a positive potential is applied to it. Therefore, attempts have been made to perform pure radical treatment while avoiding plasma, particularly ions, from entering the sample stage (see, for example, Japanese Patent Laid-Open No. 125820/1982).

しかし、この方法によると、イオンによりメツシュ状グ
リッド電極がスパッタされ、グリッド材料が試料表面に
混入するという問題があった。
However, according to this method, there is a problem that the mesh-like grid electrode is sputtered by the ions, and the grid material mixes into the sample surface.

又、他の方法として、−放電室と試料室を分け、細い配
管で接続することにより、プラズマ消滅後のラジカルを
用いることが試みられたが(例えば特開昭58−408
33号公報参照)、ラジカル自体の寿命が短いため、試
料へ到達するラジカル密度が低下し、処理速度が小さい
という問題があった。
As another method, an attempt was made to separate the discharge chamber and the sample chamber and connect them with thin piping to use the radicals after plasma extinction (for example, in Japanese Patent Application Laid-Open No. 58-408
(Refer to Publication No. 33), the lifetime of the radicals themselves is short, so there is a problem that the density of radicals reaching the sample decreases and the processing speed is low.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、プラズマ、特にイオンと電気的には中
性なラジカルとの分離法について配慮されておらず、効
率的な純ラジカル処理、及び不純物原子の混入防止を可
能とする高品質ラジカル処理を同時にできないという問
題があった。
The above-mentioned conventional technology does not take into account plasma, especially the separation method between ions and electrically neutral radicals, and requires high-quality radical treatment that enables efficient pure radical treatment and prevention of contamination of impurity atoms. There was a problem that it was not possible to do both at the same time.

本発明の目的は、処理速度を低下させることなく、高品
質なラジカル処理を行なうことができるプラズマ処理装
置、及びその処理システムを提供することにある。
An object of the present invention is to provide a plasma processing apparatus and a processing system thereof that can perform high-quality radical processing without reducing processing speed.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、放電室内、又は放電室と試料台の間に、前
記放電室にて生成したプラズマの境界を作り得る磁場配
位を有し、かつ、前記プラズマ境界と前記試料台の間に
前記グリッド電極を配置したプラズマ処理装置、放電室
と試料室の中間、又は試料室側に、前記放電室にて生成
したプラズマの境界を作る磁場を発生する補助磁場発生
手段を備えているプラズマ処理装置、放電室と試料室の
中間、又は試料室側に、前記放電室にて生成したプラズ
マの境界を作る磁場を発生する場合には磁場発生手段と
逆方向の電流が流れ、前記プラズマの境界を作らない場
合には前記磁場発生手段と同方向の電流が流れる補助磁
場発生手段を設けたプラズマ処理装置、放電室と試料室
の中間、又は試料室側に、試料方向へ向う磁力線を試料
前面にて直角に曲げる手段を備えているプラズマ処理装
置、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室に磁場を印加してプラズマを生成し、
このプラズマが試料室内の試料に直接照射されて処理さ
れる工程と、前記試料前面に磁場によってプラズマの境
界を作り、前記試料がプラズマにさらされない状態で処
理される工程とを組合せたことを特徴とするプラズマ処
理システム、とすることにより達成される。
The above object is to have a magnetic field configuration in the discharge chamber or between the discharge chamber and the sample stage that can create a boundary of the plasma generated in the discharge chamber, and between the plasma boundary and the sample stage. A plasma processing apparatus equipped with a grid electrode, and an auxiliary magnetic field generating means that generates a magnetic field that creates a boundary of plasma generated in the discharge chamber, located between the discharge chamber and the sample chamber, or on the side of the sample chamber. When a magnetic field is generated between the discharge chamber and the sample chamber, or on the side of the sample chamber, to create a boundary of the plasma generated in the discharge chamber, a current flows in the opposite direction to the magnetic field generating means, and the boundary of the plasma is generated. If not, use a plasma processing apparatus equipped with an auxiliary magnetic field generating means through which a current flows in the same direction as the magnetic field generating means, or between the discharge chamber and the sample chamber, or on the sample chamber side, with lines of magnetic force directed toward the sample in front of the sample. A plasma processing apparatus comprising a means for bending at right angles, a microwave and a discharge gas are introduced, and a magnetic field is applied to a discharge chamber forming part of the discharge space to generate plasma;
It is characterized by a combination of a process in which the plasma is directly irradiated onto the sample in the sample chamber and processed, and a process in which a plasma boundary is created in front of the sample by a magnetic field and the sample is processed in a state where it is not exposed to the plasma. This can be achieved by using a plasma processing system.

〔作用〕[Effect]

一般に、磁場中のプラズマの運動は、電子、及びイオン
が磁力線を中心にサイクロトロン運動を行なうため、磁
力線の方向への拡散に比べ、磁力線を横ぎる拡散は、数
パーセント以下となる。特に、電子は、その質量が小さ
いため、磁力線の大きさと方向にその運動を支配される
。その結果、イオンも、電子とのクーロン力により振動
を繰り返しながら、その大部分□が磁力線方向に両極性
拡散を起こし拡散する。本発明は、上記プラズマの性質
を利用し、放電室から試料、及び試料台方向へ向う磁力
線を試料台前面にて直角に曲げることにより、放電室か
ら試料台方向へ向うプラズマの境界を試料台前面につく
り、試料へ突入するイオン、電子を大幅に低下させると
ともに、さらに拡散してくるイオンに対する電気的障壁
として前記プラズマ境界と試料台の間の空間に、正電位
を持つメツシュ状グリッド電極を設け、プラズマ中で生
成された電気的に中性なラジカルのみ試料へ到達する様
にしたもので、グリッド電極がスパッタされる量は非常
に小さくなる。
Generally, in the motion of plasma in a magnetic field, electrons and ions perform cyclotron motion around magnetic lines of force, so that diffusion across the lines of magnetic force is less than a few percent compared to diffusion in the direction of the lines of magnetic force. In particular, since the mass of electrons is small, their motion is controlled by the magnitude and direction of magnetic lines of force. As a result, the ions also repeat vibrations due to the Coulomb force with the electrons, and most of the ions undergo bipolar diffusion in the direction of the lines of magnetic force. The present invention makes use of the above-mentioned properties of plasma and bends the magnetic field lines from the discharge chamber toward the sample and the sample stand at right angles in front of the sample stand, thereby making the boundary of the plasma from the discharge chamber toward the sample stand A mesh-like grid electrode with a positive potential is placed in the space between the plasma boundary and the sample stage to significantly reduce the number of ions and electrons that enter the sample, and to act as an electrical barrier against ions that diffuse further. This method allows only electrically neutral radicals generated in the plasma to reach the sample, and the amount of sputtering on the grid electrode is extremely small.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図及び第2図により説明す
る6 ゛ 第1図は、有磁場マイクロ波放電により試料表面処
理(エツチング)を行うプラズマ処理装置に本発明を適
用した例である。該図に示す如く磁場コイル1を外側に
備えた放電管(室)2に導波管3を通してマイクロ波4
が導入され、前記放電管2内に導入されたエツチング用
ガス5を、前記放電室磁場コイル1にて発生する磁場と
、前記マイクロ波4による電子サイクロトロン共鳴によ
り励起、または電離しプラズマ12を生成する。一方、
前記放電管2と連結され試料6を保持する試料台7を備
える試料室8の外側には補助磁場コイル9があり、この
コイルによる磁場の方向は、前記磁場コイル1による磁
場の方向と反対方向とし、カスプ磁場配位を形成してい
るにれにより、前記放電管2内に生成されるプラズマ1
2の試料室8側の境界11が発生し、プラズマは、試料
室8側へ出てこなくなる。さらに、前記プラズマ境界1
1を横ぎって試料室8側へ拡散するイオンを遮蔽するた
めに、前記プラズマ境界11と試料台7の間に、直流電
源14により正電位を与えたメツシュ状グリッド電極1
0が設けられている。これにより、試料6へ到達できる
イオンは大幅に低減することができ、前記放電管2内で
励起されたラジカルのみが、試料6へ到達し、純ラジカ
ル処理が可能となる。
Embodiments of the present invention will be explained below with reference to Figs. 1 and 2.6 Figure 1 shows an example in which the present invention is applied to a plasma processing apparatus that performs sample surface treatment (etching) using magnetic field microwave discharge. be. As shown in the figure, a microwave 4 is passed through a waveguide 3 into a discharge tube (chamber) 2 equipped with a magnetic field coil 1 on the outside.
is introduced, and the etching gas 5 introduced into the discharge tube 2 is excited or ionized by the magnetic field generated by the discharge chamber magnetic field coil 1 and electron cyclotron resonance by the microwave 4 to generate plasma 12. do. on the other hand,
There is an auxiliary magnetic field coil 9 outside the sample chamber 8 which is connected to the discharge tube 2 and includes a sample stage 7 that holds the sample 6, and the direction of the magnetic field produced by this coil is opposite to the direction of the magnetic field produced by the magnetic field coil 1. The plasma 1 generated in the discharge tube 2 by the slit forming the cusp magnetic field configuration.
A boundary 11 on the sample chamber 8 side of No. 2 is generated, and the plasma no longer comes out to the sample chamber 8 side. Furthermore, the plasma boundary 1
A mesh-like grid electrode 1 is provided between the plasma boundary 11 and the sample stage 7 to which a positive potential is applied by a DC power supply 14 in order to shield ions that cross the plasma boundary 11 and diffuse toward the sample chamber 8 side.
0 is set. Thereby, the number of ions that can reach the sample 6 can be significantly reduced, and only the radicals excited within the discharge tube 2 can reach the sample 6, making it possible to perform pure radical treatment.

第2図は、本発明の実施例による第1図の磁場形状、及
び、原理についての説明図であり、前記磁場コイル1に
よる磁場方向(磁力線15)と、前記補助磁場コイル9
による磁場方向(磁力線16)を反対方向としたカスプ
磁場配位を示しており、導入されたマイクロ波4により
生成されるプラズマ12は、前記磁場コイルによる磁場
方向が反転する手前部分にプラズマ境界11をつくる。
FIG. 2 is an explanatory diagram of the magnetic field shape and principle of FIG. 1 according to an embodiment of the present invention, and shows the magnetic field direction (magnetic field lines 15) due to the magnetic field coil 1 and the auxiliary magnetic field coil 9.
The plasma 12 generated by the introduced microwave 4 has a plasma boundary 11 in the front part where the magnetic field direction by the magnetic field coil is reversed. Create.

一方、試料6を保持する試料台7とこのプラズマ境界1
1の間に設けられたメツシュ状グリッド電極10a、1
0bは、正電位を与えられ、プラズマ12(特に中心部
)から拡散してくる少量のイオンを遮蔽することになる
。これにより、試料6へ到達し得るプラズマ12中の粒
子は電気的に中性な高密度ラジカル又は中性原子2分子
のみとなる。また、前記グリッド電極10a、10bは
、プラズマ12中にさらされていないので、スパッタさ
れることもなく、試料6中への不純物の混入も防止でき
る。
On the other hand, the sample stage 7 holding the sample 6 and this plasma boundary 1
A mesh-like grid electrode 10a provided between 1 and 1
0b is given a positive potential and will screen out a small amount of ions diffusing from the plasma 12 (particularly from the center). As a result, the only particles in the plasma 12 that can reach the sample 6 are electrically neutral high-density radicals or two molecules of neutral atoms. In addition, since the grid electrodes 10a and 10b are not exposed to the plasma 12, they are not sputtered and contamination of the sample 6 with impurities can be prevented.

以上、本実施例によれば、高密度ラジカルを試料に照射
するとともにイオン及び不純物粒子の混入を防止できる
ため、高速、高品質なラジカル処理(エツチング)が可
能となるという効果がある。
As described above, according to this embodiment, since it is possible to irradiate a sample with high-density radicals and prevent the incorporation of ions and impurity particles, it is possible to perform high-speed, high-quality radical processing (etching).

第3図は本発明の他の実施例を示したもので、前記プラ
ズマ境界を作るために、磁場コイルla。
FIG. 3 shows another embodiment of the present invention, in which a magnetic field coil la is used to create the plasma boundary.

1bの2個のコイルによる磁場方向を同一とし、ミラー
磁場配位を形成した場合の有磁場マイクロ波放電プラズ
マ処理(エツチング)装置であり、試料6を保持する試
料台7、及び正電位を与えたメツシュ状グリッド電極1
0は、プラズマ境界に相当する最外周の磁界線15aよ
りも外側に複数個配置されている。これにより、本実例
においては、前記本発明の実施例の効果の他に、複数個
同時処理が可能となる効果がある。
This is a magnetic field microwave discharge plasma processing (etching) apparatus in which the magnetic field directions of the two coils 1b are the same and a mirror magnetic field configuration is formed. mesh-like grid electrode 1
A plurality of 0s are arranged outside the outermost magnetic field line 15a corresponding to the plasma boundary. As a result, in this example, in addition to the effects of the embodiments of the present invention, there is an effect that a plurality of devices can be processed simultaneously.

第4図は、本発明の更に他の実施例を示したもので、前
記プラズマ境界を作り、純ラジカル処理を行う処理工程
と、プラズマ境界を作らずにプラズマを試料に直接照射
しプラズマ処理を行う工程を組み合わせた処理方法を示
す。第4図(a)は、磁場コイル1と補助磁場コイル9
の磁力線15b方向を同一とした場合であり、放電管2
内に生成されたプラズマ12は、磁力線に沿って試料室
8に拡散し、試料6に照射され、試料6はプラズマ12
中のイオン、電子を積極的に利用したプラズマ処理が行
なわれる。このとき、グリッド電極10は、プラズマに
よるスパッタ等を避けるためにプラズマに接触しない位
置へ移動しており、同時に電源スィッチ19も開として
いる。第4図(b)は、前記第4図(、)に引き続きラ
ジカル処理を行う場合を示したもので、前記第4図(a
)の状態に対し、補助磁場コイル9の電流方向を反転す
ることにより簡単にカスプ磁場配位が得られ、プラズマ
境界11を生成するとともに、試料6中へのイオンの流
入防止を確実にするためにグリシ 4ド電極10に電源
14につながる電源スィッチ19を閉とすることにより
正電位を与える構造としている。又、この時、第4図(
a)に対し、グリッド電極10は、外部操作あるいは、
補助磁場コイル9の反転と同時に試料6前面に移動する
ものとしている。
FIG. 4 shows still another embodiment of the present invention, which includes a treatment step in which the plasma boundary is created and pure radical treatment is performed, and a plasma treatment in which the sample is directly irradiated with plasma without creating a plasma boundary. A processing method that combines the following steps is shown. FIG. 4(a) shows the magnetic field coil 1 and the auxiliary magnetic field coil 9.
This is the case where the directions of the magnetic lines of force 15b are the same, and the discharge tube 2
The plasma 12 generated within the chamber diffuses into the sample chamber 8 along magnetic lines of force and is irradiated onto the sample 6, which is exposed to the plasma 12.
Plasma processing is performed that actively utilizes the ions and electrons inside. At this time, the grid electrode 10 is moved to a position where it does not come into contact with the plasma in order to avoid sputtering caused by the plasma, and at the same time, the power switch 19 is also opened. FIG. 4(b) shows the case where radical treatment is performed following FIG. 4(a).
), by reversing the current direction of the auxiliary magnetic field coil 9, a cusp magnetic field configuration can be easily obtained to generate a plasma boundary 11 and to ensure that ions are prevented from flowing into the sample 6. The structure is such that a positive potential is applied to the glycide electrode 10 by closing a power switch 19 connected to a power source 14. Also, at this time, Figure 4 (
For a), the grid electrode 10 can be operated externally or
It is assumed that the sample 6 moves to the front side simultaneously with the reversal of the auxiliary magnetic field coil 9.

以上、本実施例によれば、試料を試料台から移動させる
ことなしにプラズマ処理からラジカル処理まで自由な組
み合せで行うことができ、特に2種以上の異なる材質で
構成される試料を処理する場合、時間的にプラズマ処理
とラジカル処理を選択した処理が可能になるという効果
がある。
As described above, according to this embodiment, it is possible to perform any combination of plasma processing and radical processing without moving the sample from the sample stage, especially when processing a sample composed of two or more different materials. This has the effect of making it possible to selectively perform plasma treatment and radical treatment in terms of time.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、プラズマ境界を生成し、
かつ試料とプラズマ境界の間に、メツシュ状グリッド電
極を配置することにより、高密度ラジカルを、イオンを
遮蔽しながら試料面に照射することが可能になり、高効
率、高品質ラジカル処理ができるという効果がある。
According to the present invention described above, a plasma boundary is generated,
In addition, by placing a mesh-like grid electrode between the sample and the plasma boundary, it is possible to irradiate the sample surface with high-density radicals while shielding ions, resulting in highly efficient and high-quality radical treatment. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラズマ処理装置の一実施例を示した
有磁場マイクロ波放電プラズマ処理(エツチング)装置
の断面図、第2図は第1図における本発明の原理を示す
カスプ磁場配位形状とプラズマ境界を示す図、第3図は
本発明の他の実施例を示し、磁場配位をミラー磁場配位
とした有磁場マイクロ波放電プラズマ処理装置を示す断
面図、第4図(a)は本発明のプラズマ処理システムに
おけるプラズマを試料に直接照射しプラズマ処理を行う
工程を示す図、第4図(b)は純ラジカル処理を行う処
理工程を示す図である。 1、la、lb・・・磁場コイル、2,2a・・・放電
管(室)、3・・・導波管、4・・・マイクロ波、5・
・・エツチング用ガス、6・・・試料、7・・・試料台
、8・・・試料室、9・・・補助磁場コイル、10,1
0a、10b・・・メツシュ状グリッド電極、11・・
・プラズマ境界、12・・・プラズマ、13・・・真空
排気、14・・・直流電源、15 、15 a 、 1
6−・−磁力線、17a、17b・・冷却水、18・・
・放電用配管、19・・・電源スィッチ。
Fig. 1 is a sectional view of a magnetic field microwave discharge plasma processing (etching) apparatus showing an embodiment of the plasma processing apparatus of the present invention, and Fig. 2 is a cusp magnetic field configuration showing the principle of the present invention in Fig. 1. FIG. 3, a diagram showing the shape and plasma boundary, shows another embodiment of the present invention, and FIG. ) is a diagram showing a step of directly irradiating a sample with plasma to perform plasma treatment in the plasma processing system of the present invention, and FIG. 4(b) is a diagram showing a treatment step of performing pure radical treatment. 1, la, lb... magnetic field coil, 2, 2a... discharge tube (chamber), 3... waveguide, 4... microwave, 5...
... Etching gas, 6... Sample, 7... Sample stage, 8... Sample chamber, 9... Auxiliary magnetic field coil, 10, 1
0a, 10b...mesh-like grid electrodes, 11...
・Plasma boundary, 12... Plasma, 13... Vacuum exhaust, 14... DC power supply, 15, 15 a, 1
6--Magnetic field lines, 17a, 17b...Cooling water, 18...
・Discharge piping, 19...Power switch.

Claims (1)

【特許請求の範囲】 1、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室と、該放電室に磁場を発生する磁場発
生手段と、前記放電室に連結され処理されるべき試料を
保持する試料台を有する試料室と、前記放電室から前記
試料台方向へ向うイオンエネルギーを制御するグリッド
電極とを備えたプラズマ処理装置において、前記放電室
内、又は前記放電室と前記試料台の間に、前記放電室に
て生成したプラズマの境界を作り得る磁場配位を有し、
かつ、前記プラズマ境界と前記試料台の間に前記グリッ
ド電極を配置したことを特徴とするプラズマ処理装置。 2、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室と、該放電室に磁場を発生する磁場発
生手段と、前記放電室に連結され処理されるべき試料を
保持する試料台を有する試料室とを備えたプラズマ処理
装置において、前記放電室と試料室の中間、又は試料室
側に、前記放電室にて生成したプラズマの境界を作る磁
場を発生する補助磁場発生手段を備えていることを特徴
とするプラズマ処理装置。 3、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室と、該放電室に磁場を発生する磁場発
生手段と、前記放電室に連結され処理されるべき試料を
保持する試料台を有する試料室とを備えたプラズマ処理
装置において、前記放電室と試料室の中間、又は試料室
側に、前記放電室にて生成したプラズマの境界を作る磁
場を発生する場合には前記磁場発生手段と逆方向の電流
が流れ、前記プラズマの境界を作らない場合には前記磁
場発生手段と同方向の電流が流れる補助磁場発生手段を
設けたことを特徴とするプラズマ処理装置。 4、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室と、該放電室に磁場を発生する磁場発
生手段と、前記放電室に連結され処理されるべき試料を
保持する試料台を有する試料室と、前記放電室から前記
試料台方向へ向うイオンエネルギーを制御するグリッド
電極とを備えたプラズマ処理装置において、前記グリッ
ド電極は、前記放電室にて生成したプラズマの境界を作
る場合には前記試料前面に位置し、プラズマの境界を作
らない場合には前記試料前面に位置しないように移動可
能に設置されていることを特徴とするプラズマ処理装置
。 5、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室と、該放電室に磁場を発生する磁場発
生手段と、前記放電室に連結され処理されるべき試料を
保持する試料台を有する試料室とを備えたプラズマ処理
装置において、前記放電室と試料室の中間、又は試料室
側に、前記試料方向へ向う磁力線を試料前面にて直角に
曲げる手段を備えていることを特徴とするプラズマ処理
装置。 6、マイクロ波と放電ガスが導入され、放電空間の一部
を形成する放電室に磁場を印加してプラズマを生成し、
このプラズマが試料室内の試料に直接照射されて処理さ
れる工程と、前記試料前面に磁場によつてプラズマの境
界を作り、前記試料がプラズマにさらされない状態で処
理される工程とを組合せたことを特徴とするプラズマ処
理システム。 7、前記処理工程は、前記放電室にプラズマを生成する
ために印加される磁場、及び前記試料前面にプラズマ境
界を作るための磁場は、それぞれ発生する磁場の大きさ
、方向、形状を処理時間内で制御して行なわれることを
特徴とする特許請求の範囲第6項記載のプラズマ処理シ
ステム。
[Claims] 1. A discharge chamber into which microwaves and discharge gas are introduced and which forms part of a discharge space; a magnetic field generating means for generating a magnetic field in the discharge chamber; A plasma processing apparatus comprising a sample chamber having a sample stage for holding a sample to be processed, and a grid electrode for controlling ion energy directed from the discharge chamber toward the sample stage. A magnetic field configuration is provided between the sample stages that can create a boundary of the plasma generated in the discharge chamber,
A plasma processing apparatus characterized in that the grid electrode is disposed between the plasma boundary and the sample stage. 2. A discharge chamber into which microwaves and discharge gas are introduced and forms part of a discharge space, a magnetic field generating means for generating a magnetic field in the discharge chamber, and a sample to be processed connected to the discharge chamber for holding the sample. In a plasma processing apparatus equipped with a sample chamber having a sample stage, auxiliary magnetic field generating means generates a magnetic field that creates a boundary of plasma generated in the discharge chamber, at an intermediate point between the discharge chamber and the sample chamber, or on the side of the sample chamber. A plasma processing apparatus characterized by comprising: 3. A discharge chamber into which microwaves and discharge gas are introduced and forms part of a discharge space, a magnetic field generating means for generating a magnetic field in the discharge chamber, and a sample connected to the discharge chamber to be processed. In a plasma processing apparatus equipped with a sample chamber having a sample stage, when a magnetic field is generated between the discharge chamber and the sample chamber or on the sample chamber side to create a boundary of the plasma generated in the discharge chamber, the above-mentioned method is used. A plasma processing apparatus characterized in that an auxiliary magnetic field generating means is provided, through which a current flows in the opposite direction to the magnetic field generating means, and through which a current flows in the same direction as the magnetic field generating means when the plasma boundary is not created. 4. A discharge chamber into which microwaves and discharge gas are introduced and which forms part of a discharge space, a magnetic field generating means for generating a magnetic field in the discharge chamber, and a sample connected to the discharge chamber to be processed. In a plasma processing apparatus that includes a sample chamber having a sample stage and a grid electrode that controls ion energy directed from the discharge chamber toward the sample stage, the grid electrode defines a boundary between plasma generated in the discharge chamber. A plasma processing apparatus characterized in that it is movably installed so as to be located in front of the sample when plasma boundaries are to be created, and not to be located in front of the sample when plasma boundaries are not to be created. 5. A discharge chamber into which microwaves and discharge gas are introduced and which forms a part of the discharge space, a magnetic field generating means for generating a magnetic field in the discharge chamber, and a discharge chamber connected to the discharge chamber to hold the sample to be processed. In a plasma processing apparatus equipped with a sample chamber having a sample stage, a means is provided between the discharge chamber and the sample chamber, or on the sample chamber side, for bending the lines of magnetic force directed toward the sample at right angles in front of the sample. A plasma processing device featuring: 6. Microwaves and discharge gas are introduced and a magnetic field is applied to the discharge chamber forming part of the discharge space to generate plasma;
A process in which this plasma is directly irradiated onto a sample in a sample chamber for processing, and a process in which a plasma boundary is created in front of the sample by a magnetic field and the sample is processed in a state where it is not exposed to the plasma. A plasma processing system featuring: 7. In the processing step, the magnetic field applied to the discharge chamber to generate plasma and the magnetic field to create a plasma boundary in front of the sample are determined by adjusting the magnitude, direction, and shape of the generated magnetic fields over the processing time. 7. The plasma processing system according to claim 6, wherein the plasma processing system is controlled within the plasma processing system.
JP6332488A 1988-03-18 1988-03-18 Plasma processing device and processing system therefor Pending JPH01238020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6332488A JPH01238020A (en) 1988-03-18 1988-03-18 Plasma processing device and processing system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332488A JPH01238020A (en) 1988-03-18 1988-03-18 Plasma processing device and processing system therefor

Publications (1)

Publication Number Publication Date
JPH01238020A true JPH01238020A (en) 1989-09-22

Family

ID=13225968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332488A Pending JPH01238020A (en) 1988-03-18 1988-03-18 Plasma processing device and processing system therefor

Country Status (1)

Country Link
JP (1) JPH01238020A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483339A (en) * 1990-07-25 1992-03-17 Oki Electric Ind Co Ltd Plasma processor and formation of its magnetic field
EP0513634A2 (en) * 1991-05-14 1992-11-19 Yuzo Mori High-speed film-forming processes by plasma CVD and Radical CVD under high pressure
JPH05160073A (en) * 1991-12-03 1993-06-25 Tokyo Ohka Kogyo Co Ltd Plasma treatment device and method
WO2000036631A1 (en) * 1998-12-11 2000-06-22 Surface Technology Systems Limited Plasma processing apparatus
WO2015145486A1 (en) * 2014-03-28 2015-10-01 国立大学法人東北大学 Plasma processing device and plasma processing method
WO2016186143A1 (en) * 2015-05-20 2016-11-24 国立大学法人東北大学 Plasma processing device, plasma processing method, and semiconductor production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483339A (en) * 1990-07-25 1992-03-17 Oki Electric Ind Co Ltd Plasma processor and formation of its magnetic field
EP0513634A2 (en) * 1991-05-14 1992-11-19 Yuzo Mori High-speed film-forming processes by plasma CVD and Radical CVD under high pressure
EP0513634A3 (en) * 1991-05-14 1994-08-31 Yuzo Mori
JPH05160073A (en) * 1991-12-03 1993-06-25 Tokyo Ohka Kogyo Co Ltd Plasma treatment device and method
WO2000036631A1 (en) * 1998-12-11 2000-06-22 Surface Technology Systems Limited Plasma processing apparatus
WO2015145486A1 (en) * 2014-03-28 2015-10-01 国立大学法人東北大学 Plasma processing device and plasma processing method
JP5909807B2 (en) * 2014-03-28 2016-04-27 国立大学法人東北大学 Plasma processing apparatus and plasma processing method
WO2016186143A1 (en) * 2015-05-20 2016-11-24 国立大学法人東北大学 Plasma processing device, plasma processing method, and semiconductor production method
JPWO2016186143A1 (en) * 2015-05-20 2018-03-29 国立大学法人東北大学 Plasma processing apparatus, plasma processing method, and semiconductor manufacturing method

Similar Documents

Publication Publication Date Title
JPH04326725A (en) Plasma apparatus
JPH0227718A (en) Plasma treating method and plasma treater using the same method
JPS62195122A (en) Plasma processing apparatus with magnified magnetic field
JPH02132827A (en) Device and method of plasma treatment
JPH04129133A (en) Ion source and plasma device
JPH04253328A (en) Surface treatment device
JPH01238020A (en) Plasma processing device and processing system therefor
US5804027A (en) Apparatus for generating and utilizing magnetically neutral line discharge type plasma
JP2006203134A (en) Neutral particle beam treatment device
JPS61177728A (en) Apparatus for irradiation with low-energy ionized particle
JP3172788B2 (en) Neutral particle processing method and device
JPH02312231A (en) Dryetching device
JP3223287B2 (en) Neutral particle processing method and device
JP3229987B2 (en) Neutral particle processing method and device
JPH0270063A (en) Plasma/ion forming source and plasma/ion treating device
JPH01309963A (en) Sputtering device
JPH01293521A (en) Method and apparatus for plasma treatment
JPH0578849A (en) High magnetic field microwave plasma treating device
JPS63207131A (en) Plasma processor
JPH0222486A (en) Microwave plasma treating equipment
JP3898318B2 (en) Sputtering equipment
JP3236928B2 (en) Dry etching equipment
JPH0270062A (en) Plasma/ion forming source and plasma/ion treating device
JPH0638391B2 (en) X-ray exposure device
JPH01123421A (en) Plasma etching apparatus