JPS61177728A - Apparatus for irradiation with low-energy ionized particle - Google Patents

Apparatus for irradiation with low-energy ionized particle

Info

Publication number
JPS61177728A
JPS61177728A JP1850585A JP1850585A JPS61177728A JP S61177728 A JPS61177728 A JP S61177728A JP 1850585 A JP1850585 A JP 1850585A JP 1850585 A JP1850585 A JP 1850585A JP S61177728 A JPS61177728 A JP S61177728A
Authority
JP
Japan
Prior art keywords
plasma
generation chamber
sample
sample substrate
plasma generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1850585A
Other languages
Japanese (ja)
Other versions
JPH0770512B2 (en
Inventor
Yasuhiro Torii
鳥居 康弘
Masaru Shimada
勝 嶋田
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60018505A priority Critical patent/JPH0770512B2/en
Publication of JPS61177728A publication Critical patent/JPS61177728A/en
Publication of JPH0770512B2 publication Critical patent/JPH0770512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To enable the sample substrate to be irradiated with ionized particles of high ion current density. by a method wherein ions particles are transported out of a plasma generation chamber as plasma flows of small spreading, and then the energy of the ionized particles is controlled in the neighborhood of the sample substrate. CONSTITUTION:An end of a plasma generation chamber 1 that is opposed to a microwave introduction window 4 is provided with a plasma lead-out port 8, and plasma is led out into a vacuum sample chamber 2. At this time, since the magnetic field caused by a magnetic coil 7 is in the form of a scattered field at the lead-out port 8, it is led out toward sample table 10 as a plasma flow 9 having kinetic energy. the plasma flow 9 has electrically neutral beams; therefore, the beam spreading reduces. Besides, the kinetic energy when ionized particles contained in the plasma flow 9 collide against the sample substrate 11 can be controlled by voltages A, B, and C impressed on the plasma generation chamber 1, an ion lead-out electrode 12, and the sample table 10, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造用のエツチング、膜形成などに用
いられる低エネルギイオン化粒子照射装置に関し、特に
イオン化粒子を低エネルギ領域で制御し、しかも試料に
効率良くイオン化粒子を照射するようにした低エネルギ
イオン化粒子照射装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a low-energy ionized particle irradiation device used for etching, film formation, etc. for semiconductor manufacturing, and in particular, to a low-energy ionized particle irradiation device that controls ionized particles in a low energy region, and The present invention relates to a low-energy ionized particle irradiation device that efficiently irradiates a sample with ionized particles.

〔従来の技術〕[Conventional technology]

半導体製造用のエツチング、膜形成技術としてプラズマ
、イオンなどを試試料基板に照射する方法が検討されて
いる。通常、この種の装置は、供給したガスをプラズマ
化するプラズマ生成室を有し、このプラズマ生成室から
イオンビーム、プラズマ流を引出して試料基板に照射し
ている。この、時、プラズマ生成室から試料基板にイオ
ン化粒子を効率良く輸送、照射し、しかもイオン化粒子
の運動エネルギ(イオンエネルギ)の制御方法が問題に
なっている。そして装置構成、操作性の点でプラズマ生
成室と試料基板との間を必要な距離に保って、所望のイ
オンエネルギを有する粒子が試料基板に大量に到達させ
る必要がある。
Methods of irradiating sample substrates with plasma, ions, etc. are being considered as etching and film forming techniques for semiconductor manufacturing. Typically, this type of apparatus has a plasma generation chamber that turns supplied gas into plasma, and an ion beam and a plasma stream are extracted from this plasma generation chamber and irradiated onto a sample substrate. At this time, the problem is how to efficiently transport and irradiate ionized particles from the plasma generation chamber to the sample substrate, and how to control the kinetic energy (ion energy) of the ionized particles. In terms of device configuration and operability, it is necessary to maintain a necessary distance between the plasma generation chamber and the sample substrate so that a large amount of particles having a desired ion energy can reach the sample substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記エツチング、膜形成に有用なO〜5
00・Vの低エネルギ領域で、しかも大量のイオン化粒
子を効率良く輸送するのは一般に困難である。とのよう
な低エネルギ領域のプラズマ生成室からイオンの引出し
Kは、単葉メツシュ電極系〔例えば、「Low Ens
rgy Ion B@am EtehlngJ(J、M
、L Harpor @t aj : J、 El@e
troeham、 Soc。
However, O~5 is useful for the etching and film formation.
It is generally difficult to efficiently transport a large amount of ionized particles in the low energy region of 00·V. The extraction of ions K from a plasma generation chamber in a low energy region such as
rgy Ion B@am EtehlngJ(J,M
, L Harper @t aj: J, El@e
troeham, Soc.

vol、 128. N15 、 PP、 1077〜
1083(1981):lが適していると云われている
が、イオン化粒子の輸送距離とともにビームが拡が9、
プラズマ生成室と試料基板との距離を大きくとれないと
いう問題点があった。このビームの拡がりを抑制する方
法としては、イオンビーム中に熱電子を発生させ、電荷
の中和化による方法が知られている。この方法は、熱フ
ィラメントr−りて熱電子を発生させているため、反応
性ガス粒子に対しては熱フィラメントが劣化するため、
実用的な方法とは云えず、よ〕実用的な方法が望まれて
いた。
vol, 128. N15, PP, 1077~
1083 (1981): 1 is said to be suitable, but the beam spreads with the transport distance of ionized particles9,
There was a problem in that it was not possible to maintain a large distance between the plasma generation chamber and the sample substrate. A known method for suppressing this beam spread is to generate thermoelectrons in the ion beam and neutralize the charges. This method uses a hot filament to generate thermoelectrons, so the hot filament deteriorates in response to reactive gas particles.
It could not be called a practical method, and a more practical method was desired.

本発明は、このような事情に鑑み、これらの欠点を解決
するためになされたもので、プラズマ生成室から拡がシ
の小さなプラズマビームとして輪、     送し、そ
のプラズマ流に含まれるイオン化粒子の運動エネルギを
試料基板近傍で制御することにより、低エネルギのイオ
ン化粒子を効率良く輸送。
In view of the above circumstances, the present invention has been made to solve these drawbacks.The present invention is designed to send a circular plasma beam with a small spread from a plasma generation chamber, and to eliminate the ionized particles contained in the plasma flow. By controlling the kinetic energy near the sample substrate, low-energy ionized particles are efficiently transported.

照射することができる低エネルギイオン化粒子照射装置
を提供するものである。
The present invention provides a low-energy ionized particle irradiation device that can irradiate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る低エネルギイオン化粒子照射装置は、プラ
ズマを発生させるプラズマ生成室と、このプラズマ生成
室に設けられたプラズマ引出し口と、このプラズマ引出
し口より放出されるブラズーf流に含まれるイオン化粒
子を試料基板に照射すべく該試料基板が試料台に載置さ
れかつ前記プラズマ生成室と電気的に給線された真空試
料室と、前記プラズマ引出し口から放出されるプラズマ
流を方向性をもつプラズマビームとして前記試料基板に
輸送するために磁界、電界あるいはガス差圧のいずれか
を単独かもしくは組合せたプラズマ輸送手段と、前記プ
ラズマ生成室と前記試料基板を支持する試料台とに各々
電圧を印加して両者の間の電位差によって前記プラズマ
引出し口より放出されるプラズマ流に含まれるイオン化
粒子の運動エネルギを制御する手段とを具備するもので
ある。
The low-energy ionized particle irradiation device according to the present invention includes a plasma generation chamber for generating plasma, a plasma extraction port provided in the plasma generation chamber, and ionized particles contained in the Blaze-F flow discharged from the plasma extraction port. a vacuum sample chamber in which the sample substrate is placed on a sample stage and electrically connected to the plasma generation chamber in order to irradiate the sample substrate with the plasma flow emitted from the plasma outlet; In order to transport the plasma beam to the sample substrate, a voltage is applied to each of a plasma transport means using a magnetic field, an electric field, or a gas differential pressure alone or in combination, and a sample stage that supports the plasma generation chamber and the sample substrate. and means for controlling the kinetic energy of ionized particles contained in the plasma flow discharged from the plasma extraction port by applying a potential difference therebetween.

また、本発明の別の発明に係る低エネルギイオン化粒子
照射装置は、上記のものにおいてプラズマ生成室のプラ
ズマ引出し口と試料基板との間の該試料基板の近傍にイ
オン引出し電極を配設して該イオン引出し電極により前
記プラズマ引出し口より放出されるプラズマ流に含まれ
るイオン化粒子を引出す手段を具備するものである。
Furthermore, in the low-energy ionized particle irradiation device according to another aspect of the present invention, an ion extraction electrode is disposed in the vicinity of the sample substrate between the plasma extraction port of the plasma generation chamber and the sample substrate. The apparatus includes means for extracting ionized particles contained in the plasma flow discharged from the plasma extraction port by the ion extraction electrode.

〔作用〕[Effect]

本発明においては、プラズマ生成室から拡がシの小さな
プラズマビームとして輸送した後、試料基板近傍でイオ
ン化粒子のエネルギを制御することによって、500・
■以下の低イオンエネルギ領域でプラダ1生成室と試料
基板との距離を離しても、試料基板上にイオン電流密度
の高いイオン化粒子を照射することが可能になる。
In the present invention, after transporting the plasma beam from the plasma generation chamber as a small-spread plasma beam, the energy of ionized particles is controlled near the sample substrate.
(2) Even if the distance between the Prada 1 generation chamber and the sample substrate is increased in the following low ion energy range, it is possible to irradiate the sample substrate with ionized particles with a high ion current density.

また、本発明の別の発明においては、プラズマ生成室か
らプラズマ流を輸送した後、試料基板近傍のイオン引出
し電極にてプラズマ流に含まれるイオン化粒子のみを引
出すことができる。この時、プラズマ流の周辺にプラズ
マ流の拡がりを制御するプラズマ流制御機構を設けるこ
とによって、さらにイオン電流密度を高めることができ
る。
In another aspect of the present invention, after the plasma flow is transported from the plasma generation chamber, only the ionized particles contained in the plasma flow can be extracted by an ion extraction electrode near the sample substrate. At this time, the ion current density can be further increased by providing a plasma flow control mechanism around the plasma flow to control the spread of the plasma flow.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基いて説明する。 The present invention will be explained below based on embodiments shown in the drawings.

第1図は本発明の一実施例による低エネルギイオン化粒
子照射装置を示す概略構成図であシ、プラズマ発生源と
してマイクロ波励起によるプラズマ生成室を用いた場合
を示す。第1図において、1はそのプラズマ生成室、2
は真空試料室、3は排気系、4はマイクロ波導入窓、5
はマイクロ波導波管、6はプラズマ生成室1に設けられ
たガス導入口、Tはプラズマ生成室1の外部に設けられ
た直流磁場を発生させる磁気コイル、8はプラズマ生成
室1に設けられたプラズマ引出し口、9はこの引出し口
8よシ放出されるプラズマ流、10は真空試料室2内に
配設される試料台、11はとの試料台10に載置される
試料基板、12は試料基板11の近傍に配設されるイオ
ン引出し電極である。なお、21はプラズマ生成室1と
マイクロ波導波管5を電気的に絶縁して結合するための
抑え部材である。
FIG. 1 is a schematic configuration diagram showing a low-energy ionized particle irradiation apparatus according to an embodiment of the present invention, and shows a case where a plasma generation chamber using microwave excitation is used as a plasma generation source. In FIG. 1, 1 is the plasma generation chamber, 2
is the vacuum sample chamber, 3 is the exhaust system, 4 is the microwave introduction window, 5
is a microwave waveguide, 6 is a gas inlet provided in the plasma generation chamber 1, T is a magnetic coil provided outside the plasma generation chamber 1 and generates a DC magnetic field, and 8 is provided in the plasma generation chamber 1. A plasma extraction port, 9 is a plasma flow emitted from this extraction port 8, 10 is a sample stage disposed in the vacuum sample chamber 2, 11 is a sample substrate placed on the sample stage 10, and 12 is a sample substrate placed on the sample stage 10. This is an ion extraction electrode arranged near the sample substrate 11. Note that 21 is a restraining member for electrically insulating and coupling the plasma generation chamber 1 and the microwave waveguide 5.

ここで、プラズマ生成室1は絶縁支持部材22を介して
試料室2と電気的に絶縁されている。そしてこのプラズ
マ生成室1に導入されるガス、残留ガスは排気系3によ
って排気されるものとなっている。プラズマ生成用のマ
イクロ波発振源としては例えば2.54GHzのマグネ
トロンが用いられ、これは、マイクロ波導入窓4から外
部方向に矩形導波管5.さらに図示していない整合器、
マイクロ波電力計、アイソレータを経た位置に接続され
る。プラズマ生成室1はステンレス鋼から成シ、プラズ
マ生成による温度上昇を防止するため、外部は水冷され
ている。しかして、このプラズマ生成室1にガス導入口
6よシガスを導入し、矩形導波管5を介して2.54G
Hzのマイクロ波を導入する。
Here, the plasma generation chamber 1 is electrically insulated from the sample chamber 2 via an insulating support member 22. The gas introduced into the plasma generation chamber 1 and the residual gas are exhausted by an exhaust system 3. For example, a 2.54 GHz magnetron is used as a microwave oscillation source for plasma generation, and a rectangular waveguide 5. Furthermore, a matching device (not shown),
Connected to the microwave power meter via the isolator. The plasma generation chamber 1 is made of stainless steel, and the outside is water-cooled to prevent temperature rise due to plasma generation. Then, a gas of 2.54G was introduced into the plasma generation chamber 1 through the gas inlet 6, and the gas was
Introduce Hz microwave.

これに磁気コイル7によって直流磁場がマイクロ波電界
に対して直角方向で電子サイクロトロン共鳴(ECR)
条件(875ガラス)を満足する磁界を生じさせると、
これらの相互作用(ECR)によって導入されたガスは
プラズマ化される。従って、プラズマ生成室1のマイク
ロ波導入窓4に対向する他端にはプラズマ引出し口8が
設けられておシ、プラズマが真空試料室2に引出される
。この時、前記引出し口8で磁気コイル1による磁界が
発散磁界−になっているため、この引出し口8からのプ
ラズマは真空試料室2に等方向に拡がるととなく、試料
台10の方向に運動エネルギを有するプラズマ流9とし
て引出される。このような磁界中の両極性拡散によるプ
ラズマはプラズマ流として輸送することかできる。しか
も、プラズマ流9はビームが電気的に中性なため、クー
ロン力によるビーム拡がシは原理的に小さく、低エネル
ギのイオンのみを輸送するのに比較して、ビーム拡がシ
は小さくなる。そしてプラズマ流9の中に含まれるイオ
ン化粒子が試料基板11に衝突する時の運動エネルギは
、第1図のプラズマ生成室1.イオン引出し電極12お
よび試料台10にそれぞれ印加する電圧A、BおよびC
によって制御することができる。例えば、イオン引出し
電極12を取シ外して、プラズマ生成室1を正電位(4
)、試料台10を負電位もしくは接地電位(C)として
、プラズマ生成室1と試料台10との間に電位差〔(4
)−(C)〕を与えると、試料基板11に衝突するイオ
ン化粒子の運動エネルギは制御できる。さらに、第1図
に示すごとくイオン引出し電極12の電位の)を負電位
もしくは接地電位にし、プラズマ生成室1とイオン引出
し電極(例えば単葉メツシュ電極)12との間に電圧〔
(4)−(0〕をかけることにより、イオン引出し電極
12からイオンが引出されるとともに、前記電位(4)
とC)との電位差によってそのイオンエネルギが制御さ
れる。このようにして、プラズマ生成室1よシ試料基板
11の近傍までプラズマ流9を輸送した後、そのイオン
化粒子のエネルギを制御するととにより、θ〜500e
Vの低エネルギのイオン化粒子でも輸送効率良くすなわ
ち試料基板11上のイオン電流密度を高くしてそのイオ
ン化粒子を試料基板11上に照射するととができる。
In addition, the magnetic coil 7 generates a direct current magnetic field in a direction perpendicular to the microwave electric field to generate electron cyclotron resonance (ECR).
When a magnetic field is generated that satisfies the conditions (875 glass),
The gas introduced by these interactions (ECR) is turned into plasma. Therefore, a plasma extraction port 8 is provided at the other end of the plasma generation chamber 1 facing the microwave introduction window 4, and plasma is extracted into the vacuum sample chamber 2. At this time, since the magnetic field generated by the magnetic coil 1 at the outlet 8 becomes a divergent magnetic field, the plasma from the outlet 8 does not spread uniformly into the vacuum sample chamber 2, but in the direction of the sample stage 10. It is extracted as a plasma stream 9 having kinetic energy. Plasma caused by bipolar diffusion in such a magnetic field can be transported as a plasma stream. Moreover, since the beam of the plasma flow 9 is electrically neutral, beam expansion due to Coulomb force is theoretically small, and the beam expansion is small compared to transporting only low-energy ions. . The kinetic energy when the ionized particles contained in the plasma flow 9 collide with the sample substrate 11 is determined by the plasma generation chamber 1 in FIG. Voltages A, B and C applied to the ion extraction electrode 12 and the sample stage 10, respectively
can be controlled by For example, the ion extraction electrode 12 is removed and the plasma generation chamber 1 is placed at a positive potential (4
), the sample table 10 is set to a negative potential or ground potential (C), and a potential difference [(4
)-(C)], the kinetic energy of the ionized particles colliding with the sample substrate 11 can be controlled. Furthermore, as shown in FIG. 1, the potential of the ion extraction electrode 12 is set to negative potential or ground potential, and the voltage [[
By multiplying (4) - (0), ions are extracted from the ion extraction electrode 12 and the potential (4) is
The ion energy is controlled by the potential difference between C) and C). In this way, after the plasma flow 9 is transported from the plasma generation chamber 1 to the vicinity of the sample substrate 11, the energy of the ionized particles is controlled.
Even with low energy ionized particles of V, the ionized particles can be irradiated onto the sample substrate 11 with high transport efficiency, that is, by increasing the ion current density on the sample substrate 11.

第2図は本発明の別の実施例を示す第1図相当の概略構
成図である。第2図において13はプラズマ生成室1よ
シ放出されるプラズマ流9の拡がりを制御するプラズマ
輸送手段としてのプラズマ流制御機構、14はこのプラ
ズマ流制御機構13の局面に設けられた排気用小開口で
あシ、その他は第1図と同様である。ことで、プラズマ
流制御機構13は、排気用小開口14を有する金属製の
中空円筒形状をしたもので、この中央をプラズマ流9が
通過するものとなっている。そしてこの円筒形状のプラ
ズマ流制御機構13は、他の構成部、特にプラズマ生成
室1.試料台1G、真空試料室2の外壁、イオン引出し
電極12からはそれぞれ絶縁支持部材23.24にて電
気的に絶縁されている。これによって、プラズマ流制御
機構13に電圧の)を印加することによりプラズマ流9
の周囲を任意の電位に制御することができる。すなわち
、第2図は第1図の装置にプラズマ流制御機構13を設
置し、プラズマ流9の周囲の電位を制御できるようにし
たものである。この電位の制御によってプラズマ流9の
拡がりの制御を可能にし、試料基板11上のイオン電流
密度の向上、イオンエネルギに対するイオン電流密度特
性の改善などを図ったものである。
FIG. 2 is a schematic configuration diagram corresponding to FIG. 1 showing another embodiment of the present invention. In FIG. 2, reference numeral 13 indicates a plasma flow control mechanism as a plasma transport means for controlling the spread of the plasma flow 9 emitted from the plasma generation chamber 1, and reference numeral 14 indicates an exhaust small part provided on the side of the plasma flow control mechanism 13. The opening and other features are the same as in FIG. Thus, the plasma flow control mechanism 13 has a hollow cylindrical shape made of metal and has a small exhaust opening 14, through which the plasma flow 9 passes. This cylindrical plasma flow control mechanism 13 is connected to other components, especially the plasma generation chamber 1. It is electrically insulated from the sample stage 1G, the outer wall of the vacuum sample chamber 2, and the ion extraction electrode 12 by insulating support members 23 and 24, respectively. As a result, by applying voltage ) to the plasma flow control mechanism 13, the plasma flow 9
The surrounding area can be controlled to any potential. That is, FIG. 2 shows an apparatus in which a plasma flow control mechanism 13 is installed in the apparatus shown in FIG. 1 so that the potential around the plasma flow 9 can be controlled. By controlling this potential, it is possible to control the spread of the plasma flow 9, thereby improving the ion current density on the sample substrate 11 and improving the ion current density characteristics with respect to ion energy.

以下、本発明の有効特性を第3図乃至第5図に示す具体
的なデータによって説明する。プラズマ生成室1の形状
としてはマイクロ波空胴共振器の構成とし、−例として
円形空胴共振モードTE 111を採用し、円のシ寸法
で直径90my高さ100flの円筒形状を用いてマイ
クロ波放電効率を高めるようにした。そしてこの電子サ
イク鴛トロン共鳴現象を用いるiイクロ波放電はイオン
化効率が高いので、真空試料室2のガス圧を低くし、5
×IP’ 〜2 X 10−’ Torrで実験を行な
った。第3図に第1図の実施例構成で、イオン引出し電
極(単葉メツシュ電極)12の電位Bを接地電位、プラ
ズマ生成室1に正の電圧入をかけた時の試料台すなわち
基板ホルダ10上のイオン電流密度を示した。なお、第
3図において特性Iはプラズマ生成室1と基板ホルダ1
0との距離が4crsの場合を。
The effective characteristics of the present invention will be explained below with reference to specific data shown in FIGS. 3 to 5. The shape of the plasma generation chamber 1 is a microwave cavity resonator, for example, a circular cavity resonance mode TE 111 is adopted, and a cylindrical shape with a circular dimension of 90 my diameter and a height of 100 fl is used to generate microwaves. Improved discharge efficiency. Since the i-microwave discharge using this electron cyclotron resonance phenomenon has high ionization efficiency, the gas pressure in the vacuum sample chamber 2 is lowered, and the
Experiments were conducted at xIP' ~2 x 10-' Torr. FIG. 3 shows the sample stage, that is, the substrate holder 10 when the potential B of the ion extraction electrode (single mesh electrode) 12 is the ground potential and a positive voltage is applied to the plasma generation chamber 1 in the embodiment configuration shown in FIG. showed an ionic current density of In addition, in FIG. 3, the characteristic I is the plasma generation chamber 1 and the substrate holder 1.
When the distance from 0 is 4 crs.

特性■はその距離が14cmの場合をそれぞれ示す。Characteristic ■ indicates the case where the distance is 14 cm.

このような構成で得られるイオン電流密度は、プラズマ
生成室1と基板ホルダ10との距離を同一にして、イオ
ン引出し電極として単葉メツシュ電極をプラズマ生成室
1の近傍に設置した場合よシもはるかに大きな値が得ら
れる。さらに、第1図および第2図の構成においてイオ
ン引出し電極12を取シ外して、プラズマ生成室1と基
板ホルダ10との間に電圧(A、C)をかけても同様の
特性が得られる。一方、第3図から明らかなように1プ
ラズマ生成室1の印加電圧入が2006V以上でイオン
電流密度が低下する傾向およびプラズマ生成室と基板ホ
ルダ間の距離に対するイオン電流密度の低下が電圧が高
い程大きくなる傾向がある。これは、プラズマ流90周
辺の電位分布の影響でプラズマ流9が拡がるためと考え
られる。すなわち、第2図に示すようなプラズマ流制御
機構13を設置することによって、このような問題点を
解決できる。
The ion current density obtained with such a configuration is much higher than that obtained when the distance between the plasma generation chamber 1 and the substrate holder 10 is the same and a monofilament mesh electrode is installed near the plasma generation chamber 1 as the ion extraction electrode. A large value is obtained. Furthermore, similar characteristics can be obtained by removing the ion extraction electrode 12 in the configurations shown in FIGS. 1 and 2 and applying voltages (A, C) between the plasma generation chamber 1 and the substrate holder 10. . On the other hand, as is clear from Fig. 3, the ion current density tends to decrease when the applied voltage input to the plasma generation chamber 1 is 2006 V or more, and the decrease in the ion current density with respect to the distance between the plasma generation chamber and the substrate holder increases as the voltage increases. It tends to get bigger. This is considered to be because the plasma flow 9 spreads due to the influence of the potential distribution around the plasma flow 90. That is, such problems can be solved by installing a plasma flow control mechanism 13 as shown in FIG.

第4図は、第2図の配置において、イオン引出し電極1
2(メツシュ電極:メツシュ100)に印加する電圧ω
)を−300vにしておき、プラズマ生成室1の電圧A
を100V 、 150V 、 200VK対して、プ
ラズマ流制御機構13に印加する電圧(2)を変化させ
た時の基板ホルダ10上でのイオン電流密度の変化の様
子を示している。ここで特性III、IVおよびVはプ
ラズマ生成室の印加電圧Aをそれぞれ100V 、 1
50Vおよび200vにしたときに対応しておシ、プラ
ズマ流制御機構13の長さは15〜20αである。第4
図は、プラズマ流制御機構13にかける電圧(2)が高
くなるにつれて、基板ホルダ10上でのイオン電流密度
は大きくなる。その電圧の上限はプラズマ生成室に印加
する電圧囚であシ、それ以上の電圧をかけると基板ホル
ダ10上のイオン電流(プラズマ流)が不安定になる。
FIG. 4 shows the ion extraction electrode 1 in the arrangement shown in FIG.
Voltage ω applied to 2 (mesh electrode: mesh 100)
) is set to -300V, and the voltage A of plasma generation chamber 1 is set to -300V.
It shows how the ion current density changes on the substrate holder 10 when the voltage (2) applied to the plasma flow control mechanism 13 is changed for 100V, 150V, and 200VK. Here, characteristics III, IV, and V are the applied voltage A of the plasma generation chamber of 100 V and 1, respectively.
Correspondingly, the length of the plasma flow control mechanism 13 is 15 to 20α when the voltage is 50V and 200V. Fourth
In the figure, as the voltage (2) applied to the plasma flow control mechanism 13 increases, the ion current density on the substrate holder 10 increases. The upper limit of the voltage is determined by the voltage applied to the plasma generation chamber, and if a voltage higher than that is applied, the ion current (plasma flow) on the substrate holder 10 becomes unstable.

また、プラズマ流制御機構13に電圧をかけず浮かして
おいても同様の特性が得られる。この場合には、プラズ
マ流制御機構13の材質として、金属のみならず絶縁物
を用いるととができる。これらはプラズマ流9の拡がシ
角度を制御するととによって、基板ホルダ10上のイオ
ン電流密度を制御しているものでちゃ、イオン引出し電
極12を取シ除き、プラズマ生成室1と基板ホルダ10
間に電圧(人、C)をかけても同様にイオン電流密度の
増大が図られる。第5図にプラズマ制御機構13に印加
する電圧をプラズマ生成室1と同電位にした場合(%性
■)とプラズマ制御機構13を電気的に浮かしておいた
場合(特性■)について、プラズマ生成室に印加する電
圧に対する基板ホルダ10上のイオン電流密度を示した
。との時、イオン引出し電極12への印加電圧’e−2
00V 、イオン引出し電極12として、単葉のメツシ
ュ電逼を用いた。また試料基板11を接地電位にしてお
けば、試料基板には、プラズマ室への印加電圧よシも数
十ev高いエネルギを有するイオン化粒子が試料基板を
照射する(イオン化粒子のエネルギ分析によって、実際
のイオンエネルギは印加電圧よシも数十・V高いことが
わかっている)。第5図は、イオン電流密度も従来のプ
ラズマ生成室近傍におけるイオン引出し方法に比較する
とはるかに高く、しかも0〜500・Vで単調に増加す
る制御性の良い特性を有している。
Further, similar characteristics can be obtained even if the plasma flow control mechanism 13 is left floating without applying a voltage. In this case, the material of the plasma flow control mechanism 13 may be not only metal but also an insulator. These control the ion current density on the substrate holder 10 by controlling the expansion angle of the plasma flow 9.The ion extraction electrode 12 is removed and the plasma generation chamber 1 and substrate holder 10 are
Similarly, the ion current density can be increased by applying a voltage (C) between the two. Figure 5 shows plasma generation when the voltage applied to the plasma control mechanism 13 is set to the same potential as the plasma generation chamber 1 (characteristic ■) and when the plasma control mechanism 13 is electrically floating (characteristic ■). The ion current density on the substrate holder 10 is shown versus the voltage applied to the chamber. When , the voltage applied to the ion extraction electrode 12 'e-2
00V, and a single leaf mesh electrode was used as the ion extraction electrode 12. Furthermore, if the sample substrate 11 is set to the ground potential, the sample substrate is irradiated with ionized particles having an energy several tens of EVs higher than the voltage applied to the plasma chamber. It is known that the ion energy of is several tens of V higher than the applied voltage). FIG. 5 shows that the ion current density is much higher than that of the conventional ion extraction method in the vicinity of the plasma generation chamber, and has good controllability in that it monotonically increases from 0 to 500·V.

以上の実施例では直流電圧を印加してイオン化粒子のエ
ネルギを制御する方法について述べたが、試料基板11
が絶縁物、さらには膜形成物が絶縁物で試料基板11に
電荷がたまシその影響を考慮する必要がある場合には、
交流の印加電圧、さらKは高周波電源を用いることKよ
シ、これら電荷のチャージの影響をなくすことができる
ことは云うまでもない。
In the above embodiment, a method was described in which the energy of ionized particles was controlled by applying a DC voltage.
If the sample substrate 11 is an insulator, or if the film-forming material is an insulator and the sample substrate 11 is charged, it is necessary to take into account its influence.
It goes without saying that the effects of these charges can be eliminated by applying an alternating current voltage and by using a high frequency power source.

また、上記実施例はECRイオン源について述べたが、
磁界、電界およびプラズマ生成室と試料室とのガス差圧
などの手段によって方向性をもつプラズマ流を放出する
ように構成したイオン源に対して、本発明は適用できる
ことは云うまでもない。
In addition, although the above embodiment described an ECR ion source,
It goes without saying that the present invention can be applied to an ion source configured to emit a directional plasma flow using means such as a magnetic field, an electric field, and a gas pressure difference between the plasma generation chamber and the sample chamber.

さらに、試料基板11が配設される真空試料室2のガス
圧は、高くなるとプラズマ生成室1と試料基板11との
間に電圧をかけることが難しくなることから2 X 1
0−’ Torr以下の低ガス圧であることが好ましい
Furthermore, as the gas pressure in the vacuum sample chamber 2 where the sample substrate 11 is disposed increases, it becomes difficult to apply voltage between the plasma generation chamber 1 and the sample substrate 11.
A low gas pressure of 0-' Torr or less is preferable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、プラズマ生成室か
ら拡がシの小さなプラズマ流としてイオン化粒子を輸送
した後、試料基板近傍でイオン化粒子のエネルギを制御
するようにしたので、500ev以下の低エネルギ領域
でプラズマ生成室と試料基板との距離を離しても、試料
基板上にイオン電流密度の高いイオン化粒子を照射でき
る利点がある。さらに、プラズマ流の周辺にプラズマ流
の拡がりを制御する機構を設けることによってイオン電
流密度を高めることができる。そのため、本発明を低エ
ネルギのイオン化粒子によるエツチング、付着(デポジ
ション)装置に用いれば、500・V以下の低エネルギ
を領域でイオン化粒子の運動エネルギを制御し、しかも
従来の装置よシも多くのイオン電流を取ることができる
ため、高性能(低損傷高速エツチング、高品質、高付着
速度の膜形成)な処理ができる効果がある。
As explained above, according to the present invention, after the ionized particles are transported from the plasma generation chamber as a plasma stream with a small spread, the energy of the ionized particles is controlled near the sample substrate. Even if the distance between the plasma generation chamber and the sample substrate is increased in the energy range, there is an advantage that the sample substrate can be irradiated with ionized particles having a high ion current density. Furthermore, the ion current density can be increased by providing a mechanism for controlling the spread of the plasma flow around the plasma flow. Therefore, if the present invention is used in an etching/deposition device using low-energy ionized particles, the kinetic energy of the ionized particles can be controlled in the low energy range of 500 V or less, and moreover, it can be used more easily than conventional devices. Since it is possible to take an ion current of 1,000 yen, it has the effect of enabling high-performance processing (low-damage, high-speed etching, high-quality, high-adhesion-speed film formation).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す概略構成図、第2
図は本発明装置の別の実施例を示す概略構成図、第3図
、第4図および第5図はそれぞれ本発明装置により得ら
れた特性図である。 1・・・・プラズマ生成室、2・・・・真空試料室、3
・・・・排気系、4・・・・マイクロ波導入窓、5・・
・・マイクロ波導波管、6・・・・ガス導入口、7e・
・・磁気コイル、8・・・−プラズマ引出し口、9・拳
・・プラズマ流、10・・・・試料台(基板ホルダ)1
1・・・・試料基板、12・・・・イオン引出し電極、
13・・0・プラズマ流制御機構、14・・・・排気用
小開口、22,23,24・・・・絶縁支持部材。 第1図 第2図 第3図 ”tX”マtkべi ldF yyo Y 3 V、c
 A (v)第4図
FIG. 1 is a schematic configuration diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a schematic configuration diagram showing another embodiment of the apparatus of the present invention, and FIGS. 3, 4, and 5 are characteristic diagrams obtained by the apparatus of the present invention, respectively. 1... Plasma generation chamber, 2... Vacuum sample chamber, 3
...Exhaust system, 4...Microwave introduction window, 5...
...Microwave waveguide, 6...Gas inlet, 7e.
...Magnetic coil, 8...-Plasma outlet, 9.Fist...Plasma flow, 10...Sample stand (substrate holder) 1
1... Sample substrate, 12... Ion extraction electrode,
13...0 Plasma flow control mechanism, 14... Small exhaust opening, 22, 23, 24... Insulating support member. Figure 1 Figure 2 Figure 3 "tX" matkbei ldF yyo Y 3 V, c
A (v) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)プラズマを発生させるプラズマ生成室と、該プラ
ズマ生成室に設けられたプラズマ引出し口と、該プラズ
マ引出し口より放出されるプラズマ流に含まれるイオン
化粒子を試料基板に照射すべく該試料基板が試料台に載
置されかつ前記プラズマ生成室と電気的に絶縁された真
空試料室と、前記プラズマ引出し口から放出されるプラ
ズマ流を方向性をもつプラズマビームとして前記試料基
板に輸送するために磁界、電界あるいはガス差圧のいず
れかを単独かもしくは組合せたプラズマ輸送手段と、前
記プラズマ生成室と前記試料基板を支持する試料台とに
各々電圧を印加して両者の間の電位差によつて前記プラ
ズマ引出し口より放出されるプラズマ流に含まれるイオ
ン化粒子の運動エネルギを制御する手段とを具備したこ
とを特徴とする低エネルギイオン化粒子照射装置。
(1) A plasma generation chamber for generating plasma, a plasma outlet provided in the plasma generation chamber, and a sample substrate for irradiating the sample substrate with ionized particles contained in the plasma flow emitted from the plasma outlet. a vacuum sample chamber placed on a sample stage and electrically insulated from the plasma generation chamber; and a vacuum sample chamber for transporting a plasma flow emitted from the plasma outlet as a directional plasma beam to the sample substrate. A voltage is applied to a plasma transport means using either a magnetic field, an electric field, or a gas differential pressure alone or in combination, and a voltage is applied to each of the plasma generation chamber and the sample stage supporting the sample substrate, and the potential difference between the two is applied. A low-energy ionized particle irradiation device comprising means for controlling the kinetic energy of ionized particles contained in the plasma flow discharged from the plasma extraction port.
(2)プラズマを発生させるプラズマ生成室と、このプ
ラズマ生成室に設けられたプラズマ引出し口と、このプ
ラズマ引出し口より放出されるプラズマ流に含まれるイ
オン化粒子を試料基板に照射すべく該試料基板が試料台
に載置されかつ前記プラズマ生成室と電気的に絶縁され
た真空試料室と、前記プラズマ引出し口から放出される
プラズマ流を方向性をもつプラズマビームとして前記試
料基板に輸送するために磁界、電界あるいはガス差圧の
いずれかを単独かもしくは組合せたプラズマ輸送手段と
、前記プラズマ生成室と前記試料基板を支持する試料台
とに各々電圧を印加して両者の間の電位差によつて前記
プラズマ引出し口より放出されるプラズマ流に含まれる
イオン化粒子の運動エネルギを制御する手段と、前記プ
ラズマ生成室のプラズマ引出し口と前記試料基板との間
の該試料基板の近傍にイオン引出し電極を配設して該イ
オン引出し電極により前記プラズマ流に含まれるイオン
化粒子を引出す手段を具備したことを特徴とする低エネ
ルギイオン化粒子照射装置。
(2) A plasma generation chamber for generating plasma, a plasma outlet provided in the plasma generation chamber, and a sample substrate for irradiating the sample substrate with ionized particles contained in the plasma flow emitted from the plasma outlet. a vacuum sample chamber placed on a sample stage and electrically insulated from the plasma generation chamber; and a vacuum sample chamber for transporting a plasma flow emitted from the plasma outlet as a directional plasma beam to the sample substrate. A voltage is applied to a plasma transport means using either a magnetic field, an electric field, or a gas differential pressure alone or in combination, and a voltage is applied to each of the plasma generation chamber and the sample stage supporting the sample substrate, and the potential difference between the two is applied. means for controlling the kinetic energy of ionized particles contained in the plasma flow emitted from the plasma extraction port; and an ion extraction electrode located near the sample substrate between the plasma extraction port of the plasma generation chamber and the sample substrate. A low-energy ionized particle irradiation device characterized by comprising means for extracting ionized particles contained in the plasma flow by means of the ion extraction electrode.
(3)プラズマ輸送手段としてはプラズマ流の拡がりを
電気的に制御するプラズマ流制御機構を有することを特
徴とする特許請求の範囲第2項記載の低エネルギイオン
化粒子照射装置。
(3) The low-energy ionized particle irradiation device according to claim 2, wherein the plasma transport means includes a plasma flow control mechanism that electrically controls the spread of the plasma flow.
JP60018505A 1985-02-04 1985-02-04 Low energy ionized particle irradiation device Expired - Lifetime JPH0770512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018505A JPH0770512B2 (en) 1985-02-04 1985-02-04 Low energy ionized particle irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018505A JPH0770512B2 (en) 1985-02-04 1985-02-04 Low energy ionized particle irradiation device

Publications (2)

Publication Number Publication Date
JPS61177728A true JPS61177728A (en) 1986-08-09
JPH0770512B2 JPH0770512B2 (en) 1995-07-31

Family

ID=11973477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018505A Expired - Lifetime JPH0770512B2 (en) 1985-02-04 1985-02-04 Low energy ionized particle irradiation device

Country Status (1)

Country Link
JP (1) JPH0770512B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195124A (en) * 1986-02-21 1987-08-27 Anelva Corp Ecr plasma device
JPS62271431A (en) * 1986-04-30 1987-11-25 Mitsubishi Electric Corp Manufacture apparatus for semiconductor
JPS63182822A (en) * 1987-01-26 1988-07-28 Hitachi Ltd Microwave plasma treatment device
JPS63216333A (en) * 1987-03-05 1988-09-08 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS644023A (en) * 1987-06-26 1989-01-09 Toppan Printing Co Ltd Dry etching device
US4973381A (en) * 1987-11-30 1990-11-27 Texas Instruments Incorporated Method and apparatus for etching surface with excited gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008577A1 (en) * 2007-07-07 2009-01-08 Varian Semiconductor Equipment Associates, Inc. Conformal Doping Using High Neutral Density Plasma Implant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225525A (en) * 1983-06-06 1984-12-18 Agency Of Ind Science & Technol Reactive ion beam etching apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225525A (en) * 1983-06-06 1984-12-18 Agency Of Ind Science & Technol Reactive ion beam etching apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195124A (en) * 1986-02-21 1987-08-27 Anelva Corp Ecr plasma device
JPS62271431A (en) * 1986-04-30 1987-11-25 Mitsubishi Electric Corp Manufacture apparatus for semiconductor
JPS63182822A (en) * 1987-01-26 1988-07-28 Hitachi Ltd Microwave plasma treatment device
JPS63216333A (en) * 1987-03-05 1988-09-08 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS644023A (en) * 1987-06-26 1989-01-09 Toppan Printing Co Ltd Dry etching device
US4973381A (en) * 1987-11-30 1990-11-27 Texas Instruments Incorporated Method and apparatus for etching surface with excited gas

Also Published As

Publication number Publication date
JPH0770512B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US7034285B2 (en) Beam source and beam processing apparatus
JP4073174B2 (en) Neutral particle beam processing equipment
JP2648235B2 (en) Ion gun
JP2006506521A (en) High deposition rate sputtering
KR20100126528A (en) Mono-energetic neutral beam activated chemical processing system and method of using
JPH09266096A (en) Plasma treatment device, and plasma treatment method using it
JP3561080B2 (en) Plasma processing apparatus and plasma processing method
WO2014197146A1 (en) Processing system for non-ambipolar electron plasma (nep) treatment of a substrate with sheath potential
CA1252581A (en) Electron beam-excited ion beam source
JP4073173B2 (en) Neutral particle beam processing equipment
JP2003073814A (en) Film forming apparatus
JPS61177728A (en) Apparatus for irradiation with low-energy ionized particle
JP2002289581A (en) Neutral particle beam treatment device
EP0789506B1 (en) Apparatus for generating magnetically neutral line discharge type plasma
JPS5813626B2 (en) ion shower device
JPH1083899A (en) Neutral particle beam source
JPH01302645A (en) Discharging device
JP4384295B2 (en) Plasma processing equipment
Lieberman et al. Plasma generation for materials processing
JPH0535537B2 (en)
JP2000323463A (en) Plasma processing method
JPH0488165A (en) Sputtering type ion source
JPH0578849A (en) High magnetic field microwave plasma treating device
KR20020004934A (en) Plasma source of linear beam ions
JPH0221296B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term