JPH01123421A - Plasma etching apparatus - Google Patents

Plasma etching apparatus

Info

Publication number
JPH01123421A
JPH01123421A JP28100287A JP28100287A JPH01123421A JP H01123421 A JPH01123421 A JP H01123421A JP 28100287 A JP28100287 A JP 28100287A JP 28100287 A JP28100287 A JP 28100287A JP H01123421 A JPH01123421 A JP H01123421A
Authority
JP
Japan
Prior art keywords
wafer
magnetic field
plasma
magnetic
wafer stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28100287A
Other languages
Japanese (ja)
Inventor
Naoyoshi Fujiwara
藤原 直義
Kotaro Hamashima
浜島 高太郎
Takashi Hikichi
引地 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28100287A priority Critical patent/JPH01123421A/en
Publication of JPH01123421A publication Critical patent/JPH01123421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To perform high speed etching characterized by less damages to a pattern on a wafer, by attaching a diamagnetic material to a wafer stage, and enhancing a magnetic field required for ECR discharge by the magnetic shield effect of the diamagnetic material. CONSTITUTION:A diamagnetic material 13 comprising a ceramic based or oxide based high temperature superconductor and the like is attached in a wafer stage 5. A magnetic field coil 14 generates a magnetic field for ECR discharge. At the same time, generated magnetic lines of force are going to pass through the wafer stage 5. The magnetic lines of force M are extremely diverged on the wafer stage 5 by the diamagnetic action of the diamagnetic material 3, which is provided in the wafer stage 5. Plasma is drifted by the magnetic field formed by the magnetic lines of force M and an electric field E, which is generated by conventional high frequency discharge. The plasma acts on a wafer 5 effectively. Thus, high speed etching characterized by less damages of the pattern on the wafer 5 can be performed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体等の高速エツチングに適するプラズマエ
ツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a plasma etching apparatus suitable for high-speed etching of semiconductors and the like.

(従来の技術) 従来のプラズマエツチング装置を第4図に示す。(Conventional technology) A conventional plasma etching apparatus is shown in FIG.

真空容器1と真空排気又は封じ切り用のバルブ2とエツ
チングガス導入用バルブ3とで真空排気等を構成し、真
空容器1内で高周波放電を行なうための電極4及び反対
側の電極を兼ねるウェハ台5と、電極4とウェハ台5と
の間で放電を発生させ、かつウェハ台5に負の電圧を発
生させる高周波電源6と、コンデンサ7とで構成される
。他方エツチング対象のウェハ8はウェハ台5に取り付
ける。プラズマ放電における電離を良好にするためにウ
ェハ台5下部に永久磁石等を設置し、ウェハ台5を横切
る磁束Mを形成する様な構成となっている。
A vacuum container 1, a valve 2 for vacuum evacuation or sealing, and a valve 3 for introducing etching gas constitute a vacuum pump, etc., and a wafer that also serves as an electrode 4 for high-frequency discharge in the vacuum container 1 and an electrode on the opposite side. It is composed of a table 5, a high frequency power source 6 that generates discharge between the electrode 4 and the wafer table 5, and generates a negative voltage on the wafer table 5, and a capacitor 7. On the other hand, the wafer 8 to be etched is mounted on the wafer stand 5. In order to improve ionization in plasma discharge, a permanent magnet or the like is installed below the wafer table 5, and the configuration is such that a magnetic flux M that crosses the wafer table 5 is formed.

半導体のウェハをエツチングする場合は第4図の装置に
おいて、通常は真空容器内1に適当なエツチングガスを
導入し、高周波電源6から適切なパワーを供給し電極4
とウェハ台5間に放電を発生させプラズマを形成する。
When etching a semiconductor wafer, in the apparatus shown in FIG. 4, an appropriate etching gas is usually introduced into the vacuum chamber 1, and appropriate power is supplied from the high frequency power source 6 to the electrode 4.
A discharge is generated between the wafer table 5 and the wafer table 5 to form plasma.

この場合ウェハ8上のイオンの数及びイオンのエネルギ
ーがエツチングの速度に寄与する。
In this case, the number of ions on the wafer 8 and the energy of the ions contribute to the etching rate.

(発明が解決しようとする問題点) イオンの数及びイオンエネルギーを制御するために永久
磁石9とウェハ台5に負のバイアス電圧を発生させるコ
ンデンサ7の働きにより、ウェハ8の上に磁場Bと電場
Eが発生し、これらによりプラズマ内の電子及びイオン
がドリフトされ、ウェハ上に非常に高輝度のプラズマが
形成される。
(Problem to be Solved by the Invention) A magnetic field B is generated above the wafer 8 by the permanent magnet 9 and the capacitor 7 that generates a negative bias voltage on the wafer stage 5 in order to control the number of ions and ion energy. An electric field E is generated which causes electrons and ions in the plasma to drift, forming a very bright plasma on the wafer.

すなわちエツチング効果が大となる。また、ガスの封入
圧力が低くなると、プラズマの発生が困難となり、プラ
ズマを発生するために別の手段を併用しなくてはならな
いなど装置が複雑となってしまう。
In other words, the etching effect becomes greater. Furthermore, if the pressure of the gas sealed in is low, it becomes difficult to generate plasma, and the apparatus becomes complicated, such as having to use other means in combination to generate plasma.

なお、従来の平行平板形の装置においては永久磁石を取
付けるが適切な磁場を発生するには構造上複雑となる。
Note that in conventional parallel plate type devices, permanent magnets are attached, but the structure is complicated to generate an appropriate magnetic field.

また、エツチングの形状はプラズマのガス圧に大きく影
響され、ガス圧の低い方が異方性が高くなり、形状が良
好となる。エツチングの高速化のためにウェハ上の磁場
Bが非常に効果的である。
Further, the shape of the etching is greatly influenced by the gas pressure of the plasma, and the lower the gas pressure, the higher the anisotropy and the better the shape. The magnetic field B on the wafer is very effective for speeding up etching.

他方マイクロ波電力によるエレクトロンサイクロトロン
放電を用いた装置においては、永久磁石の代りに電磁石
を用いる場合もあるが、励磁電源等も必要とするため複
雑な構成となり、エツチングの均一性に工夫が必要とな
る。
On the other hand, in devices that use electron cyclotron discharge using microwave power, electromagnets may be used instead of permanent magnets, but this requires an excitation power source, etc., resulting in a complex configuration, and it is necessary to improve the uniformity of etching. Become.

本発明は広範囲のガス圧でプラズマを発生させると同時
に、ウェハ上に高磁場を発生させる手段により高速エツ
チング化を図ることを目的とする。
An object of the present invention is to achieve high-speed etching by means of generating plasma at a wide range of gas pressures and at the same time generating a high magnetic field on the wafer.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明においてはウェハ台内あるいはその近傍に超電導
導体等の反磁性体を設置する。
(Means for Solving the Problems) In the present invention, a diamagnetic material such as a superconducting conductor is installed in or near the wafer table.

(作用) 上記のような構成にすると、外部の磁場コイルによる磁
場がウェハ台で曲げられウェハ台と平行方向に磁場が形
成される。この磁場とウェハ台に加わるバイアス電圧に
よる電界との強調によりマグネトロン放電が生じる結果
、反応ガスの電離塵が増大し、エツチングに必要なイオ
ン数及びエネルギーが得られ高速エツチングが可能とな
る。
(Function) With the above configuration, the magnetic field generated by the external magnetic field coil is bent by the wafer stand, and a magnetic field is formed in a direction parallel to the wafer stand. Magnetron discharge is generated by the enhancement of this magnetic field and the electric field due to the bias voltage applied to the wafer stage, resulting in an increase in ionized dust in the reaction gas, and the number and energy of ions required for etching are obtained, making high-speed etching possible.

(実施例) 第1図に本発明のプラズマエツチング装置の実施例を示
す。
(Example) FIG. 1 shows an example of the plasma etching apparatus of the present invention.

プラズマ密度を増大させるためにマイクロ波導波管11
を誘電体12を介して真空容器1に取付ける。
Microwave waveguide 11 to increase plasma density
is attached to the vacuum vessel 1 via the dielectric 12.

ウェハ台5内にセラミック系又は酸化物系の高温超電導
体等の反磁性体13を取りつける。′mmココイル14
ウェハ台15に対して対向する方向に真空容器1の外側
に設置する。ウェハ台5の冷却のために冷却水配管を設
けその先に冷却水バルブ15をとりつける。
A diamagnetic material 13 such as a ceramic-based or oxide-based high-temperature superconductor is mounted inside the wafer table 5 . 'mm Cocoil 14
It is installed outside the vacuum chamber 1 in a direction opposite to the wafer table 15. A cooling water pipe is provided for cooling the wafer table 5, and a cooling water valve 15 is attached to the tip of the pipe.

エツチングを行う場合の作用は次の通りである。The effects of etching are as follows.

バルブ2を開放することにより真空容器1を図示してい
ない排気系により十分な高真空に引く。
By opening the valve 2, the vacuum container 1 is drawn to a sufficiently high vacuum by an exhaust system (not shown).

その後エツチングガスをバルブ3により適切なガス圧ま
で導入する。プラズマを形成するために従来と同様にウ
ェハ台5と真空容器1の空間に高周波電源6により高周
波電場Eを印加するが、より高密度のプラズマを得るた
めに磁場コイル14とマイクロ波導波管11と誘電体1
2を通して、他のマイクロ波発振器からの電磁波電力と
により、容器1内でエレクトロ・サイクロトロン放電(
ECR)を発生させる。
Thereafter, etching gas is introduced through valve 3 to an appropriate gas pressure. In order to form plasma, a high frequency electric field E is applied by a high frequency power source 6 to the space between the wafer table 5 and the vacuum container 1 as in the conventional case, but in order to obtain a higher density plasma, a magnetic field coil 14 and a microwave waveguide 11 are applied. and dielectric 1
2, an electrocyclotron discharge (
ECR).

磁場コイル14はECR放電の磁場を発生すると同時に
発生した磁力線はウェハ台5を通過しようとする。ウェ
ハ台5内に設置されている反磁性体13の反磁性作用に
より磁力線Mはウェハ台5上で極度に発散される。すな
わちウェハ8とほぼ平行な磁力線分布となる。この磁力
線Mで形成される磁場と従来の高周波放電で発生する電
界Eとでプラズマはドリフトされ、ウェハ5に効果的に
作用する。 。
The magnetic field coil 14 generates a magnetic field for ECR discharge, and at the same time the generated magnetic lines of force try to pass through the wafer table 5. Due to the diamagnetic effect of the diamagnetic material 13 installed in the wafer table 5, the lines of magnetic force M are extremely diverged on the wafer table 5. In other words, the magnetic field lines are distributed almost parallel to the wafer 8. The plasma is drifted by the magnetic field formed by the lines of magnetic force M and the electric field E generated by conventional high-frequency discharge, and effectively acts on the wafer 5. .

第2図は磁場Bと電界Eとによるプラズマ発生状況を説
明する図である。磁力線Mがウェハ台5を通過しようと
するとウェハ台5内の反磁性体13にその磁束を打消す
様に渦電流iが流れ結果的にウェハ台5を通過すること
が出来ない。そのためウェハ8と平行方向に磁界Bが発
生し、ウェハ台の電界Eとの間でプラズマ16はドリフ
トし、かつウェハ台上でマグネトロン放電しプラズマ1
6の電離が増大する。
FIG. 2 is a diagram illustrating the plasma generation situation due to the magnetic field B and the electric field E. When the magnetic lines of force M try to pass through the wafer stand 5, eddy currents i flow through the diamagnetic material 13 in the wafer stand 5 so as to cancel the magnetic flux, and as a result, they cannot pass through the wafer stand 5. Therefore, a magnetic field B is generated in a direction parallel to the wafer 8, and the plasma 16 drifts between it and the electric field E of the wafer table, and a magnetron discharges on the wafer table, causing the plasma 16 to drift.
The ionization of 6 increases.

すなわちECR放電で発生する高電離のプラズマは磁力
線に基づきウェハ台方向に輸送され、かつマグネトロン
放電との強調によりウェハ上にさらに密度の濃いプラズ
マが発生する。濃いプラズマが発生する結果、エツチン
グに寄与するイオンあるいは励起状態のガス分子が増大
し、高速エツチングが可能となる。
That is, the highly ionized plasma generated by the ECR discharge is transported toward the wafer table based on the magnetic lines of force, and due to the emphasis with the magnetron discharge, a denser plasma is generated on the wafer. As a result of the generation of dense plasma, the number of ions or excited gas molecules contributing to etching increases, making high-speed etching possible.

(他の実施例) 第3図は磁場コイル14に複数の駆動装置17を取付け
たものである。これによりコイル支持点をある時間間隔
で波状に上、下させる。支持点の上。
(Other Embodiments) FIG. 3 shows a magnetic field coil 14 with a plurality of drive devices 17 attached thereto. This causes the coil support point to move up and down in waves at certain time intervals. above the support point.

下駆動を適切にすることにより軸を前後、左右等あらゆ
る角度に対応させる。このようにすることにより、ウェ
ハ上のプラズマを広範囲に移動させエツチングを均一化
することができる。
By optimizing the lower drive, the shaft can be adjusted to any angle, including front and rear, left and right. By doing so, the plasma on the wafer can be moved over a wide range to make etching uniform.

〔発明の効果〕〔Effect of the invention〕

本発明のプラズマエツチング装置はウェハ台に反磁性体
を付設したので、ECR放電に必要とされる磁場を反磁
性体の磁気シールド効果によって高めることができ、E
CR放電とマグネトロン放電とにより密度の濃いプラズ
マをウェハ上に発生させて、ウェハ上のパターンの損傷
の少ない高速エツチングが出来る。
Since the plasma etching apparatus of the present invention has a diamagnetic material attached to the wafer table, the magnetic field required for ECR discharge can be increased by the magnetic shielding effect of the diamagnetic material, and the E
High-density plasma is generated on the wafer by CR discharge and magnetron discharge, making it possible to perform high-speed etching with little damage to patterns on the wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のプラズマエツチング装置の断
面図、第2図は上記実施例の作用を説明する図、第3図
は本発明の他の実施例を示す図、第4図は従来の装置の
図である。 1・・・真空容器     5・・・ウェハ台6・・・
高周波電源    11・・・マイクロ波導波管12・
・・プラズマ     13・・・反磁性体14・・・
磁場コイル 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 1八 第2図 第4図
FIG. 1 is a sectional view of a plasma etching apparatus according to an embodiment of the present invention, FIG. 2 is a diagram explaining the operation of the above embodiment, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 1 is a diagram of a conventional device; FIG. 1... Vacuum container 5... Wafer stand 6...
High frequency power supply 11...Microwave waveguide 12.
...Plasma 13...Diamagnetic material 14...
Magnetic field coil agent Patent attorney Nori Ken Yudo Chika Ken Daishimaru Figure 1, 18, Figure 2, Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器内にエッチングガスを導入し排気する装
置と、磁場発生用コイルとマイクロ波導入により前記容
器内でプラズマを形成させる装置と、容器内にウェハを
固定するウェハ台と、ウェハ台内あるいは近傍にセラミ
ックス系あるいは酸化物系の超電導体等の反磁性体とを
設置したことを特徴とするプラズマエッチング装置。
(1) A device for introducing and exhausting etching gas into a vacuum container, a device for forming plasma in the container by introducing a magnetic field generating coil and microwaves, a wafer stand for fixing a wafer in the container, and a wafer stand. A plasma etching apparatus characterized in that a diamagnetic material such as a ceramic-based or oxide-based superconductor is installed inside or near the plasma etching apparatus.
(2)磁場発生用コイルを回転又は移動させるコイル支
持装置を具えたことを特徴とする特許請求の範囲第1項
記載のプラズマエッチング装置。
(2) The plasma etching apparatus according to claim 1, further comprising a coil support device for rotating or moving the magnetic field generating coil.
JP28100287A 1987-11-09 1987-11-09 Plasma etching apparatus Pending JPH01123421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28100287A JPH01123421A (en) 1987-11-09 1987-11-09 Plasma etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28100287A JPH01123421A (en) 1987-11-09 1987-11-09 Plasma etching apparatus

Publications (1)

Publication Number Publication Date
JPH01123421A true JPH01123421A (en) 1989-05-16

Family

ID=17632901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28100287A Pending JPH01123421A (en) 1987-11-09 1987-11-09 Plasma etching apparatus

Country Status (1)

Country Link
JP (1) JPH01123421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661182A (en) * 1992-08-11 1994-03-04 Mitsubishi Electric Corp Plasma etching device
EP2056008A2 (en) 2007-11-01 2009-05-06 Kanaflex Corporation Inc. Metal-resin composite pipes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661182A (en) * 1992-08-11 1994-03-04 Mitsubishi Electric Corp Plasma etching device
EP2056008A2 (en) 2007-11-01 2009-05-06 Kanaflex Corporation Inc. Metal-resin composite pipes

Similar Documents

Publication Publication Date Title
US4960073A (en) Microwave plasma treatment apparatus
US4610770A (en) Method and apparatus for sputtering
JP2972477B2 (en) RF / ECR plasma etching equipment
US5451259A (en) ECR plasma source for remote processing
JPH02235332A (en) Plasma processor
JP2000269196A (en) Method and apparatus for plasma treatment
US5726412A (en) Linear microwave source for plasma surface treatment
JPH0362517A (en) Microwave plasma processor
JPS63155728A (en) Plasma processor
US5804027A (en) Apparatus for generating and utilizing magnetically neutral line discharge type plasma
JPH01123421A (en) Plasma etching apparatus
JPS5812346B2 (en) plasma etching equipment
JPH02312231A (en) Dryetching device
JPH02156526A (en) Microwave plasma treating system
JPH0715899B2 (en) Plasma processing method and apparatus
JPH0578849A (en) High magnetic field microwave plasma treating device
JPH025413A (en) Plasma processor
JPS6342707B2 (en)
KR0129195B1 (en) Electron shower system of/on implanter using low-energy high-velocity-atomic-beam
JPH0831443B2 (en) Plasma processing device
JPH0312924A (en) Plasma treatment device
JP2606551B2 (en) Neutral beam etching equipment
JP2909992B2 (en) Microwave discharge reactor
JPH09321030A (en) Microwave plasma treatment apparatus
JP3624986B2 (en) Beam processing method and apparatus