US3647387A - Detection device - Google Patents
Detection device Download PDFInfo
- Publication number
- US3647387A US3647387A US3647387DA US3647387A US 3647387 A US3647387 A US 3647387A US 3647387D A US3647387D A US 3647387DA US 3647387 A US3647387 A US 3647387A
- Authority
- US
- United States
- Prior art keywords
- oxygen
- nitrogen
- reactor
- supply
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001874 nitric oxide Inorganic materials 0.000 claims abstract description 59
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitric oxide Chemical compound   O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N oxygen atom Chemical compound   [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N nitrogen group Chemical group   [N] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000005070 sampling Methods 0.000 claims abstract description 9
- 238000006243 chemical reactions Methods 0.000 claims description 43
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound   O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 36
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000007789 gases Substances 0.000 claims description 19
- 239000000203 mixtures Substances 0.000 claims description 14
- 239000001308 nitrogen Substances 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound   N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- 239000003054 catalysts Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000034 methods Methods 0.000 claims description 8
- 229910052813 nitrogen oxides Inorganic materials 0.000 claims description 8
- 229910001882 dioxygen Inorganic materials 0.000 claims description 5
- -1 nitrogen containing compound Chemical class 0.000 claims description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous Oxide Chemical compound   [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metals Inorganic materials 0.000 claims description 4
- 239000002184 metals Substances 0.000 claims description 4
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound   [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 claims description 4
- 230000001808 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reactions Methods 0.000 claims description 2
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 2
- 239000003570 air Substances 0.000 description 13
- 238000000197 pyrolysis Methods 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 8
- 239000000126 substances Substances 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 230000001603 reducing Effects 0.000 description 6
- 0 [C]1([C])[C][C][C][C]([C]1)C* Chemical compound [C]1([C])[C][C][C][C]([C]1)C* 0.000 description 5
- 238000004458 analytical methods Methods 0.000 description 5
- 150000002823 nitrates Chemical class 0.000 description 5
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 5
- 229910001875 nitrogen dioxide Inorganic materials 0.000 description 5
- 280000624391 Chain Reaction companies 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound   [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 125000004430 oxygen atoms Chemical group   O* 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000001105 regulatory Effects 0.000 description 4
- 239000011901 water Substances 0.000 description 4
- ZJRXSAYFZMGQFP-UHFFFAOYSA-N Barium peroxide Chemical compound   [Ba+2].[O-][O-] ZJRXSAYFZMGQFP-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 244000171263 Ribes grossularia Species 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000010494 dissociation reactions Methods 0.000 description 3
- 239000007788 liquids Substances 0.000 description 3
- 150000002826 nitrites Chemical class 0.000 description 3
- 150000002828 nitro derivatives Chemical class 0.000 description 3
- 239000000376 reactants Substances 0.000 description 3
- LQNUZADURLCDLV-UHFFFAOYSA-N Nitrobenzene Chemical compound   [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound   O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxides Inorganic materials 0.000 description 2
- 230000003197 catalytic Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000002485 combustion reactions Methods 0.000 description 2
- 238000000354 decomposition reactions Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound   [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910001120 nichromes Inorganic materials 0.000 description 2
- 125000000449 nitro group Chemical group   [O-][N+](*)=O 0.000 description 2
- 239000011919 nitrobenzene Substances 0.000 description 2
- 125000000018 nitroso group Chemical group   N(=O)* 0.000 description 2
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound   [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010932 platinum Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229910052904 quartz Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910001885 silicon dioxide Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001890 sulfur dioxide Inorganic materials 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulphur dioxide Chemical compound   O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 281000134247 Air Do companies 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N Barium oxide Chemical compound   [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- NLTZEHSUOAPATL-UHFFFAOYSA-N C(=C)C1CC(CCC1)C Chemical compound C(=C)C1CC(CCC1)C NLTZEHSUOAPATL-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZTQADAPGLVMBSC-UHFFFAOYSA-N N-nitrosonitramide Chemical compound   [O-][N+](=O)NN=O ZTQADAPGLVMBSC-UHFFFAOYSA-N 0.000 description 1
- 239000004152 Nitrogen oxides Substances 0.000 description 1
- VZJVWSHVAAUDKD-UHFFFAOYSA-N Potassium permanganate Chemical compound   [K+].[O-][Mn](=O)(=O)=O VZJVWSHVAAUDKD-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Chemical compound   O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reactions Methods 0.000 description 1
- 239000003463 adsorbents Substances 0.000 description 1
- 239000000809 air pollutants Substances 0.000 description 1
- 229910045601 alloys Inorganic materials 0.000 description 1
- 239000000956 alloys Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910000114 barium oxide Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N bromine atom Chemical compound   [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N carbon monoxide Chemical compound   [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxides Inorganic materials 0.000 description 1
- 239000012159 carrier gases Substances 0.000 description 1
- 239000011248 coating agents Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005868 electrolysis reactions Methods 0.000 description 1
- 238000002474 experimental methods Methods 0.000 description 1
- 238000005755 formation reactions Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton(0) Chemical compound   [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound   [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910000140 magnesium oxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 materials Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound   [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010950 nickel Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative Effects 0.000 description 1
- 125000001820 oxy group Chemical group   [*:1]O[*:2] 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000000053 physical methods Methods 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group   [H]N([H])* 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound   O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007787 solids Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reactions Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound   S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910001889 sulfur monoxide Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reactions Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon(0) Chemical compound   [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
- G01N21/766—Chemiluminescence; Bioluminescence of gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/170769—N-Nitroso containing [e.g., nitrosamine, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/173845—Amine and quaternary ammonium
Abstract
Description
United States Patent Benson et al.
[54] DETECTION DEVICE [72] inventors: Sidney W. Benson; Gilbert R. llaugen,
both of Palo Alto; Roland S. Jackson, San
[21] Appl. No.: 20,919
[ 1 Mar. 7, 1972 3,540,851 1 1/1970 Vree et al ..23/232 E OTHER PUBLICATIONS Kiess et al., 7th Symposium (international) on Combustion, London & Oxford, 28 Aug.-- 3 Sept. 1958, pp. 207- 209 relied Primary Examiner-Morris O. Wolk Assistant Examiner-R. M. Reese Attorney-Lindenberg, Freilich and Wasserrnan and Urban Faubion [52] U.S. Cl. ..23/232 R, 23/230 PC, 23/232 E,
23/254, 23/254 E, 250/217 R ABSTRACT [51] Int. Cl. ..G01n 27/68 The presence of nitrogen containing compounds is detected [58] F'eld Search by sampling vapor in the vicinity of the suspected compounds, reacting the vapor under conditions to convert the compound to nitric oxide. The nitric oxide is reacted with atomic oxygen [56] CM with the chemiluminescent emission of light. This light is de- UNlTED STATES PATENTS tected to determine the presence of the suspected compound.
3,528,779 9/1970 Fontijn ..23/254 E X 13 Claims, 6 Drawing Figures ATOMIC OX YG E N 35 26 SOURC E )0 4- i i u PATENTEDMAR 7 I972 I 3, 647. 387
sum 1 OF 2 ATOM IC OXYGEN 35 26 SOURCE FIG. 2 52 34 4x 64 FIG. 2B
- INVENTORS. SIDNEY W. BENSON F 3 GILBERT R. HAUGEN ROLAND S. JACKSON I'AIENIEDMIR 71912 FIG. 5
SHEET 2 [1F 2 RF e4 90 FIG. 4
IN VENTORS.
SIDNEY W. BENSON GILBERT R4 HAUGEN ROLAND S. JACKSON DETECTION DEVICE BACKGROUND OF THE INVENTION l. Field of the Invention The present invention relates to the detection of nitrogen containing compounds and, more particularly, to the detection of these compounds by the chemiluminescent reaction of nitric oxide and atomic oxygen.
2. Description of the Prior Art The analysis and detection of nitrogen containing compounds has so far relied on nonspecific physical methods such as mass spectrometry, or the formation of particulate matter. The results have not been completely satisfactory. Analytical techniques and apparatus are needed which are specific to nitrogen containing compounds.
SUMMARY OF THE INVENTION The detection method in accordance with the invention relies on the chemiluminescent reaction of nitric oxide and atomic oxygen. This reaction yields light with a spectrum peaking in the violet. This light can be detected with high efficiency by a photomultiplier. The method of the invention may be utilized to determine the presence of nitrogen oxides in air, and also is useful in the detection of vapor of nitrogen containing compounds such as organic amines, nitroso, nitro, or nitrate compounds by thermally and/or catalytically converting the vapors to nitric oxide preliminary to the desired chemiluminescent reaction.
When gas containing nitric oxide (NO) or nitrogen dioxide (N is mixed with gas containing atomic oxygen, the following chain reaction takes place:
O+NO NO+O very fast) (1) O-l-NO NO +light 2 It is noted that the N0 which is a product of reaction 2 can again serve as reactant in reaction 1. Thus, a chain reaction occurs and more than one quantum of light can be produced per molecule of NO or N0 The characteristics of available multipliers are such that IO photons/second can be detected easily. The forementioned chemiluminescent chain is capable of emitting I0 photons/second for a liter of air containing one mole of nitric oxide (NO). Thus, the chemiluminescent method of the invention is capable of detecting l0 parts of vapor in the atmosphere. This corresponds to a vapor pressure of approximately mm. Hg., which is well below the vapor pressure of many nitrogen containing organic compounds.
The detector is, thus. capable of detecting trace amounts of nitrogen oxide vapors in an atmosphere or detecting the vapors being emitted from liquid or solid nitrogen containing organic compounds. The detection technique of the invention is also applicable to determining the integrity of containers by evacuating the container, filling the container with one of the reactants for the above chemiluminescent reaction and placing the container in an atmosphere of the other reactant. The contents of the container are then reacted under chemiluminescent conditions and the light emission detected by the invention to determine whether any gas has leaked into the container.
The apparatus of the invention is readily fabricated from available materials and can be compactly packaged into a portable instrument for use in airborne or land based craft. The instrument is very sensitive and reliable in the detection of compounds and the analysis of atmospheres for nitrogen oxide air pollutants. The apparatus may also be utilized as a security system to sense the suspicious entry or presence of people or animals or to detect leaks of organic nitrogen compounds from pipes or tanks.
These and other advantages of the invention will become readily apparent as the invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view partly in section, of a detection system according to the invention;
FIG. 2a and 2b are schematic illustrations of leak detection systems in accordance with the invention;
FIG. 3 is a schematic view of an atmosphere sampling detector in accordance with the invention.
FIG. 4 is a schematic view of a system for detecting the presence of vapors of nitrogen containing compounds in accordance with the invention; and
FIG. 5 is a more detailed view of a system for the detection of the presence of nitrogen containing compounds.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1 the nitric oxide detection system in accordance with the invention generally includes a reactor 10, a light detection assembly 12, and a gas inlet assembly 14. The reactor 10 may take many configurations. Preferably the reactor is a cylindrical tube which confines the gas flow along the axis of the photomultiplier tube 16. The interior surface 11 of the reactor 10 is preferably coated with a light-scattering substance such as magnesium oxide and the interior of the tube functions as a gaseous reaction chamber 13.
An aperture 15 is provided at one end of the reaction tube 10. The light detection assembly 12 comprises a photomultiplier tube housing 17 attached to the reactor opposite the aperture 15 for viewing the light emission from the reaction. The housing contains a photomultiplier tube 16 and a filter 22 disposed between the aperture 15 and the light sensitive face 19 of the photomultiplier tube 16. The high voltage lead 24 from the photomultiplier tube 16 is attached to a power supply 26. The signal lead 28 is attached to a microammeter 30. The output signal from the microammeater 30 is applied to a recording device such as a strip chart recorder 32.
The gas inlet assembly 14 includes an inlet branch 34. A first conduit 36 containing a valve 38 and a light baffle 40 communicates with inlet branch 34 and a source of atomic oxygen 35. A second conduit 42 containing a metering valve 44 and a light baffle 46, communicates with a source of gas 47 containing a suspected trace of nitric oxide or nitrogen dioxide and with the inlet branch 34. A vacuum pump 48 also communicates with the reactor 10 through a light baffle 50 and a throttling valve 52. The internal surfaces of the light baffles 40, 46 and 50 are blackened.
The apparatus is operated by reducing the pressure within reactor I0 to a level of about 1-10 mm. Hg., preferably 2-4 mm. Hg. Valves 38 and 44 are opened and the gas containing traces of nitrogen oxide and the supply of atomic oxygen enter chamber 10 and react with the emission of light. The vacuum pump 48 continually exhausts the reactor 10 and allows new samples to enter.
The energy of the chemiluminescent photons is distributed over the wavelength range of 4,000 to 8,000 A. There are two strong oxygen transitions occurring during the reaction that emit light in the near-infrared that are not coupled with the NO chemiluminescent chain. These emissions can be eliminated by utilizing a broad band pass filter having a broad band transmission in the range of 4,200-6,000 A, and a sharp cut off at each end of the range to exclude radiation not coupled with the chemiluminescent chain.
The light emitted by the reaction of atomic oxygen with nitric oxide is detected by a highly sensitive photomultiplier 16. These devices are commercially available with gains as high as 10 having a photocathode with a radiant sensitivity at the wavelength of maximum response of about 15 milliamps per watt.
The detection system in accordance with the invention provides amplification both by the chemical amplification associated with the chain reaction and the photoelectric amplification associated with the photomultiplier. The chemical gain depends on the rate constants of the chemical chain mechanism and the system parameters such as concentration of atomic oxygen in the detection chamber, volume of the detection chamber and light gathering efficiency of the detection chamber. The photoelectric gain depends on the quantum efficiency of the photoactive surface employed in the photomultiplier, the number of clynodes and their geometry, and on the system parameters such as overall voltage applied to the dynode chains and the energy of the chemiluminescent photons.
The detection system in accordance with the invention can detect trace amounts with commercially available photomultipliers. A typical photomultiplier has an overall sensitivity of about 5 l0 amp/watt. High gain electrometers permit easy detection of 10 amp which corresponds to a detectability of 2X10watts. This is equivalent to a flux of 5,000 A photons of 5X10 photons per second. The chemiluminescence of the nitric oxide reaction has a continuum between 4,000 and 8,000 A, peaking between 5,000 and 6,000 A. Since every molecule of nitric oxide can produce many quanta of light during the time typically spent in the reaction chamber, the chain reaction acts as a chemical amplifier. This is a consequence of the very fast rate of reaction.
The steady state rate of flux for the NO+O system is given by:
l (photons/sec)=10 "-[NO] V In a one liter chamber having a light gathering efficiency, ((b) of 0.1 and an atomic oxygen concentration of X10 mole/liter at a pressure of 5 torr, the chemical amplification factor is:
(photons/sec); 20A
(mole/liter) Thus, 10 moles of NO per liter of air at 5 mm. Hg in the detection chamber will produce an output current of 10 amp with the aforementioned photomultiplier. This corresponds to 10" moles of NO per liter of air at one atmosphere or one molecule of NO for every 1O of air sampled, that is about 10" molecules NO/cc. air STP. This represents a practical detectability. Higher sensitivity can be realized by increasing light gathering efficiency and detecting output currents of 10 amp or lower which are all quite possible.
Under these operating conditions, the 1 liter reaction chamber should be swept out about every one quarter to onefifth second. This corresponds to pumping speed of 4 to 5 liters per second at 5 mm. Hg. At this flushing rate, the concentration of oxygen atoms will have a steady state value only slightly over than the initial value.
Experiments indicate that the continuum emitted by the chemiluminescent chain increases proportionately with nitric oxide concentration, irrespective of the wavelength as long as the bands structure of the red region of the spectrum is filtered out. At a pressure of 2 to 3 mm. Hg., there is only a moderate quenching of the chemiluminescent emission between the exit and entrance to the reaction chamber. A chamber pressure of 5 mm. Hg. increases the recombination of atomic oxygen sufficiently to produce a noticeable reduction in emission. Increasing the volume of the chamber will increase the photomultiplier signal by increasing the photon flux impinging on the photomultiplier. However, a larger volume requires a corresponding larger pumping speed which increases the weight and power consumption of the vacuum system.
The sensitivity of the system was determined by observing photomultiplier signal as a function of the flows of 0.8 percent, 0.08 percent and 0.01 percent nitric oxide-nitrogen mixtures at constant oxygen flow. The oxygen supply was commercial high purity oxygen at 500 cc./min. Either resonance excitation, a far ultraviolet source (less than 1,850 A), or direct microwave excitation was used to dissociate the molecular oxygen. Detection at parts per million of nitric oxide was demonstrated. Sensitivity was dependent on the concentration of nitric oxide in the calibration mixture. Sensitivity also increased with increasing flow rate. Both of these effects are the consequence of the increase in the recombination rate of atomic oxygen via the chemiluminescent chain and of the increase in total pressure with increasing flow. The effective concentration of atomic oxygen in the reaction chamber is decreased by increasing nitric oxide concentration and by increasing residence time in the chamber. Maximum gain of the chemical amplifier is realized for low concentrations of nitric oxide and fast flow rates, that is, very little reduction of the effective concentration of atomic oxygen in the reaction chamber.
The photomultiplier signal with zero added nitric oxide indicates chemiluminescent flux produced from traces of nitrogen in the oxygen supply. This signal decreases the overall gain of the system by saturating the photomultiplier which prevents utilization of the full gain of the photomultiplier. The catalytic recombination of oxygen atoms by nitric oxide between the point of generation and entrance into the reaction chamber reduces the effective concentration within the chamber. High velocity flows can lessen the effects of recombination as discussed above as does utilization of chamber pressures of about 2 to 3 torr. increase in the photometric amplification and purification of the oxygen supply will allow at least another factor of 1,000 in the amplification and sensitivity of the system.
Veryv pure oxygen is commercially available in ultrahigh grade purities of 99.999 percent. This oxygen is produced by electrolytic dissociation of water and contains between l6p.p.m. of nitrogen. This is converted to nitric oxide by microwave discharge. The nitric oxide can be removed by selectively adsorbing the nitric oxide on silica gel, at low temperatures.
Another procedure for eliminating the traces of nitrogen is to prepurify the oxygen by one of the following methods:
1. Selectively absorbing the oxygen with heated barium oxide to form barium peroxide. The barium peroxide is cooled and evacuated to remove the residual gas. Heating the barium peroxide reverses the reaction producing chemically pure oxygen.
2. Pure oxygen can also be produced by the thermal decomposition of pure potassium permanganate at 240 C.
3. Reduction of nitrogen impurities in the electrolytically produced oxygen can be affected by degassing the water before electrolysis in a high vacuum system and storing and transferring the generated oxygen in the same system. Hydrogen impurities within the electrolytically produced oxygen can be removed by passing high-pressure oxygen through a heated bed of catalyst to convert the hydrogen to water. Water and hydrocarbon impurities can be removed through a series of liquid nitrogen traps containing adsorbents. This technique is a most reliable source of nitrogen-free oxygen.
Atomic oxygen is produced by the selective dissociation of oxygen. The dissociation can be effected by absorption of ultraviolet radiation in the 1,759-l ,950 A region by a low-pressure oxygen flow which produces predissociation into ground state oxygen atoms. This radiation can be produced by microwave excitation of medium pressure resonance lamps containing krypton, xenon, mercury or bromine. The high temperatures of l,900 C. attainable with a Nernst glow bar such as a zirconium oxide heater generate atomic oxygen thermally.
However, direct microwave excitation produces higher oxygen concentrations than either of the above techniques. Reduction of the power in the microwave cavity should reduce the rate of production of nitric oxide without reducing the oxygen atom generation rate an equivalent amount. When the current in the oscillator stage of the microwave generator was varied, the background signal could be reduced without appreciably affecting the sensitivity of the detection system to nitric oxide.
In FIGS. 2a and 2b the source of nitric oxide and monotomic oxygen is utilized as a leak detector for a container 50. In FIG. 2a the evacuated container 50 is fed a metered supply of chemically pure oxygen from tank 52 through a line 54 containing a metering valve 56. The output from container 50 is fed to a microwave cavity 58 through a line 60 containing a valve 62. The microwave cavity 58 is subjected to a radiofrequency discharge from discharge source 64. If container 50 contains any leaks, nitrogen from the air will enter the container 50 and contaminate the pure oxygen with nitrogen. When this mixed gas is passed through the radio frequency discharge, atomic oxygen and nitric oxide will be produced. This chemiluminescent gas will pass through a line 36 containing a valve 38 the light baffle 40 into reactor where the resulting light will be detected by photomultiplier l6.
ln the embodiment illustrated in FIG. 2b chemically pure oxygen flows from source 52 into the microwave cavity 58 before entering container 50. The container is disposed within a larger enclosure 66. Enclosure 66 is pressurized with nitric oxide from cylinder 67. If there are any leaks present in container 50, the atomic oxygen produced by the radiofrequency discharge from source 64 will be contaminated with nitric oxide. When these gasses are fed to the inlet assembly 14 to the reactor 10, the chemiluminescent emission will be detected by photomultiplier tube 16.
The oxygen supply illustrated in FIG. 3 can be utilized for direct determination of nitrogen dioxide vapors in air. The gas inlet assembly 14 in this case includes, a sampling nozzle 70 containing a pinhole aperture 71 for collecting the surrounding air. The air is delivered to the inlet branch 34 through conduit 42 containing a metering valve 44, a light baffle 46. Atomic oxygen enters the branch 34 through the conduit 36. Suitably, atomic oxygen is generated from an ultrapure supply container 72. The oxygen supply passes through a microwave cavity 58 and is subjected to an RF discharge from source 64. The two streams combine within the inlet branch 34 and react axially within reactor chamber 13, to form nitric oxide with chemiluminescent emission of characteristic light. The light emission is detected by photomultiplier tube 16.
Carbon dioxide or carbon monoxide or sulfur dioxide or sulfur monoxide impurities in the atmospheric air do not lead to chemical amplification. The reactions of carbon dioxide and sulfur dioxide are endothermic while that of nitrogen dioxide is exothermic. The slower rate of their oxidative combination reactions will not support chain reactions.
The gas inlet assembly illustrated in FIG. 4 is intended for use in the collection of vapors of nitrogen containing compounds. The vapor collection system of FIG. 4 includes a conversion unit 80 designed to convert organic nitrites, nitrates, or amines to nitric oxide. The unit 80 can affect decomposition by thermal and/or catalytic means. The unit 80 has an inlet port 82 communicating with a sampling nozzle 84, and an output port 86 communicating with conduit 42. The interior of unit 80 may be provided with a heating wire 88 which is connected to a power supply 90. The interior surfaces of the unit 80 or the surface of wire may be coated with a catalyst such as a metal, suitably nickel, platinum, copper or their alloys which participate in the conversion and decomposition of the nitrogen containing vapor compounds.
An oven temperature of 1,250 K. will decompose organic nitrites and nitrates within microseconds. Under these same conditions, an organic nitro compound will pyrolyze at a much slower rate but it still will take no more than 3 milliseconds to decompose 90 percent of the molecules. Therefore, pyrolysis of these compounds can be regarded to take place instantaneously since the residence time of a gas flowing with a convenient flow rate can be several orders of magnitude larger than the lifetime of the molecules. Traces of organic amine vapors in air when heated in a conversion unit to about l,800 F. in the presence of a noble metal catalyst such as platinum will be converted to nitric oxide. The output from the unit 80 is combined with a source of atomic oxygen within reactor 10. A chemiluminescent reaction proceeds which is detected by photomultiplier tube 16. The detection of animal vapors forms the basis of a detection unit for people or animals. The output from the ammeter may be connected to an alarm system or transmitted silently to remote stations to indicate presence of people or animals in the vicinity of the detector.
Nitrobenzene was introduced into pyrolysis unit by passing purified air over a liquid sample of nitrobenzene at room temperature. A quartz tube having a 25 mm. l.D., 33 cm. long and operated at a pressure of 1,020 mm. Hg produced 2 percent conversion at 1,000" K. When this unit was packed with copper gauze having a surface coating of oxide, conversion efficiency increased by a factor of 10. A third pyrolysis unit constructed of copper tubing having an ID. of 1.5 mm. and fashioned into a tight coil had a conversion efficiency of 70 percent which became essentially independent of airflow above 15 ml./min. percent conversion was obtained in a further pyrolysis unit comprising a small quartz tube containing an internal nichrome heater operated at red heat. The nichrome wire operated both as a catalyst and a source of thermal energy. The metal catalyst not only increases the combustion efficiency, but also reduces the pyrolysis temperature.
A problem which must be accommodated is that of background which might interfere with detection. There are two kinds of background: (1 oxides of nitrogen and (2) naturally or normally occuring organic nitroso, nitro, amine or nitrate compounds, which will necessarily give a false positive signal. The first type of signal may come from auto exhaust, though, there is no known wide spread source of false signals of the second type.
Referring now to FIG. 5, more detailed detection system is disclosed which includes provision for analysis of background and calibration of the system. The system includes a reactor 100 which includes a central cylindrical reaction chamber 102 joined at one end by a photomultiplier housing 104 and at the other end by an inlet chamber 106. A vacuum conduit 108 and pressure gauge 109 also communicate with chamber 102. The conduit 108 contains a throttling valve 110 and communicates with a mechanical vacuum pump 112 through a copper gauze reactor 114. The reactor 114 converts the residual oxygen and oxides to harmless products before entering the vacuum pump 112.
A high voltage lead 116 connects the photomultiplier tube to a photomultiplier power supply unit 118 and a signal lead 120 connects the photomultiplier tube to a picoammeter 122. The output from the ammeter 122 is applied to a strip chart recorder 124.
The inlet chamber 106 receives a supply of atomic oxygen through conduit 126 and a supply of nitric oxide vapor through conduit 128. The supply of atomic oxygen emanates from a regulated oxygen storage cylinder 130. The oxygen flows from cylinder 130 through a line 132 containing a toggle shutoff valve 134 and a double-pattemed, metering vernier valve 136, and an RF inductor or microwave cavity 138. The microwave cavity is powered by an RF oscillator and RF power supply 142 through a lead 144.
The nitric oxide supply conduit 128 is fed from three alternate sources through a 3-way rotary valve 146. One source comprises a conduit 148 terminating in a nozzle 150 which contains a shutoff valve 149 and a metering valve 147. The second source comprises a conduit 152 containing in sequence a sampling nozzle 150, a pyrolysis unit 154, a toggle shutoff valve 153 and a doublepatterned, vernier metering valve 155. The pyrolysis unit 154 contains a heating coil 156 powered by a power supply 158.
The third source of nitric oxide is a calibration source comprising a conduit 160 containing in sequence a regulated gas cylinder 162 containing nitric oxide and carrier gas, a toggle shutoff valve 161 and a double-pattemed vernier metering valve 163.
To conduct an analysis in accordance with the invention, the vacuum pump 112 is turned on to reduce the pressure in the reactor 100 to about 3 mm. of Hg. The system is first calibrated by turning rotary valve 146 toward conduit 160 and opening valves 161 and setting valve 163 while closing valves 153 and 149. Valve 134 is opened and valve 136 regulated to a desired flow rate. RF oscillator 140 and power supply 142 are turned on to create a supply of atomic oxygen. The chemiluminescent reaction output is utilized to calibrate ammeter 122 and recorder 124. Valve 161 is then closed, an the rotary valve 146 turn toward conduit 148 regulated by meansv of the metering valve 147. The photomultiplier output is again recorded to determine the presence of nitrogen dioxide (N to provide a background signal. This signal may be utilized to reset the zero level of the recorder 124 and ammeter 122.
Valve 149 is again closed and the rotary valve 146 turn toward conduit 152. Shutoff valve 153 is opened and metering valve 155 set to the desired level. The heater power supply 158 is adjusted to provide a temperature within the pyrolysis unit 154 of, at least about l,250 K. The pyrolysis unit 154 converts the mixture of vapor of organic nitrogen compounds, and air to nitric oxide which combines with the atomic oxygen within reactor 100 with the chemiluminescent emission of light. The characteristic light output is detected and measured by the photomultiplier tube and is recorded by the recorder 124.
The type of nitrogen-containing compounds being pyrolyzed in the furnace can be distinguished by varying the furnace temperature and using various catalysts. If the temperature is lowered to 700 K, the organic nitrites and nitrates should take about sec to decompose, while the organic nitro compounds will pass through the furnace unchanged. Thus, the signal of a pyrolysis temperature of l,250 K represents the total nitrogen-containing organic compounds, while the smaller signal at an oven temperature of 700 K gives an estimate of the amount of organic nitro compounds present.
It is to be realized that only preferred embodiments of the invention have been described and that numerous substitutions, alterations and modifications are all permissible without departing from the spirit and scope of the invention as defined in the following claims.
We claim:
1. A method of detecting the presence of nitrogen containing compounds selected from the group consisting of nitroso, nitro, nitric and amino compounds comprising the steps of:
sampling the atmosphere in the vicinity suspected of containing said compounds to obtain a vapor sample;
heating said sample to thermally convert the compound into an oxide of nitrogen;
adding a supply of atomic oxygen to the converted vapor to form a mixture;
reacting said mixture in a chemiluminescent reaction yielding nitric oxide with light emission characteristic thereof; and measuring said emitted light.
2. A method according to claim 1 in which said compounds are heated to a temperature of at least about l,800 F and said heating is conducted in the presence of oxygen and in the presence of a metal catalyst.
3. A process according to claim 1 in which said supply of atomic oxygen is formed by subjecting a very pure stream of oxygen to a radiofrequency discharge.
4. A process according to claim 1 in which the chemiluminescent reaction is conducted at a reduced pressure.
5. A method-according to claim 1 in which said mixture is removed from a closed container containing a first member selected from said vapor sample or said supply and said container is surrounded by a higher pressure atmosphere of said other member.
6. A method according to claim 5 in which said first member is oxygen, said atmosphere comprises nitrogen and the output from said chamber is subjected to a radiofrequency discharge to fonn a mixture of nitrogen oxide and atomic oxygen.
7. An apparatus for detecting the presence of nitrogen containing compounds comprising in combination:
means for sampling the atmosphere in the vicinity suspected of containing a nitrogen containing compound; thermolytic reactor means receiving said sample for converting said nitrogen compound into an oxide of nitrogen;
source means containing a supply of atomic oxy en; reactor means receiving said converted samp e and said supply for chemiluminescent reaction thereof to form nitric oxide and characteristic emission of light; and
photodetector means coupled to said reactor for detection of said characteristic emission.
8. An apparatus according to claim 7 in which said thermolytic reactor means includes a reactor chamber, means for heating the chamber and a nitrogen oxide conversion catalyst disposed within the chamber.
9. An apparatus according to claim 7 in which said source means comprises a supply of diatomic oxygen, a chamber for receiving said supply and a radiofrequency source coupled to said chamber for subjecting said diatomic oxygen to a radiofrequency discharge for conversion thereof to atomic oxygen.
10. An apparatus according to claim 7 further including closed container means for receiving a first gas selected from said sample or said source and means for applying said other gas to the exterior of said container whereby said chemiluminescent reactable mixture is formed only when said container contains a leak and chemiluminescent emission in said reactor detects said leak.
11. An apparatus according to claim 7 in which said reactor is a cylindrical tube having an internal light reflective surface, said reactor containing axial inlet means for receiving said sample and supply and an opposed axial light output aperture.
12. An apparatus according to claim 11 further including vacuum pump means coupled to said tube.
13. An apparatus according to claim 12 further including light baffle means disposed in said inlet means and in the line coupling said vacuum pump to said tube.
Claims (12)
- 2. A method according to claim 1 in which said compounds are heated to a temperature of at least about 1,800* F and said heating is conducted in the presence of oxygen and in the presence of a metal catalyst.
- 3. A process according to claim 1 in which said supply of atomic oxygen is formed by subjecting a very pure stream of oxygen to a radiofrequency discharge.
- 4. A process according to claim 1 in which the chemiluminescent reaction is conducted at a reduced pressure.
- 5. A method according to claim 1 in which said mixture is removed from a closed container containing a first member selected from said vapor sample or said supply and said container is surrounded by a higher pressure atmosphere of said other member.
- 6. A method according to claim 5 in which said first member is oxygen, said atmosphere comprises nitrogen and the output from said chamber is subjected to a radiofrequency discharge to form a mixture of nitrogen oxide and atomic oxygen.
- 7. An apparatus for detecting the presence of nitrogen containing compounds comprising in combination: means for sampling the atmosphere in the vicinity suspected of containing a nitrogen containing compound; thermolytic reactor means receiving said sample for converting said nitrogen compound into an oxide of nitrogen; source means containing a supply of atomic oxygen; reactor means receiving said converted sample and said supply for chemiluminescent reaction thereof to form nitric oxide and characteristic emission of light; and photodetector means coupled to said reactor for detection of said characteristic emission.
- 8. An apparatus according to claim 7 in which said thermolytic reactor means includes a reactor chamber, means for heating the chamber and a nitrogen oxide conversion catalyst disposed within the chamber.
- 9. An apparatus according to claim 7 in which said source means comprises a supply of diatomic oxygen, a chamber for receiving said supply and a radiofrequency source coupled to said chamber for subjecting said diatomic oxygen to a radiofrequency discharge for conversion thereof to atomic oxygen.
- 10. An apparatus according to claim 7 further including closed container means for receiving a first gas selected from said sample or said source and means for applying said other gas to the exterior of said container whereby said chemiluminescent reactable mixture is formed only when said container contains a leak and chemiluminescent emission in said reactor detects said leak.
- 11. An apparatus according to claim 7 in which said reactor is a cylindrical tube having an internal light reflective surface, said reactor containing axial inlet means for receiving said sample and supply and an opposed axial light output aperture.
- 12. An apparatus according to claim 11 further including vacuum pump means coupled to said tube.
- 13. An apparatus according to claim 12 further including light baffle means disposed in said inlet means and in the line coupling said vacuum pump to said tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2091970A true | 1970-03-19 | 1970-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3647387A true US3647387A (en) | 1972-03-07 |
Family
ID=21801286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3647387D Expired - Lifetime US3647387A (en) | 1970-03-19 | 1970-03-19 | Detection device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3647387A (en) |
Cited By (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3746514A (en) * | 1971-05-26 | 1973-07-17 | Ford Motor Co | Chemiluminescent instrument |
US3749929A (en) * | 1971-10-07 | 1973-07-31 | Monsanto Res Corp | Chemiluminescent method and apparatus |
US3795489A (en) * | 1971-09-15 | 1974-03-05 | Ford Motor Co | Chemiluminescence reaction chamber |
USRE28376E (en) * | 1971-05-26 | 1975-03-25 | Chemiluminesceht process | |
US3888630A (en) * | 1973-12-26 | 1975-06-10 | Borg Warner | Breath testing method |
US3904371A (en) * | 1974-03-04 | 1975-09-09 | Beckman Instruments Inc | Chemiluminescent ammonia detection |
US3919397A (en) * | 1973-11-30 | 1975-11-11 | Aerochem Research Labs Inc | Catalytic preparation of NO |
JPS50145187A (en) * | 1974-05-10 | 1975-11-21 | ||
DE2544928A1 (en) * | 1974-10-07 | 1976-04-08 | Thermo Electron Corp | Method and device for detecting the presence of certain compounds in a sample |
US3973910A (en) * | 1973-02-05 | 1976-08-10 | Thermo Electron Corporation | Method of measuring the N-nitrosoamine content of a sample |
US3977836A (en) * | 1974-11-13 | 1976-08-31 | Hitachi, Ltd. | Method and apparatus for determining ammonia concentration of gas |
US3996008A (en) * | 1975-09-17 | 1976-12-07 | Thermo Electron Corporation | Specific compound detection system with gas chromatograph |
US3996009A (en) * | 1975-09-17 | 1976-12-07 | Thermo Electron Corporation | Specific compound detection system |
US3996002A (en) * | 1973-02-05 | 1976-12-07 | Thermo Electron Corporation | Method and apparatus for measuring the n-nitroso compound content of a sample |
US4018562A (en) * | 1975-10-24 | 1977-04-19 | Antek Instruments, Inc. | Chemiluminescent nitrogen detection apparatus and method |
US4025309A (en) * | 1976-02-26 | 1977-05-24 | Hach Chemical Company | Carbon nitrogen test system |
US4073866A (en) * | 1975-11-15 | 1978-02-14 | Agency Of Industrial Science And Technology Of Japan | Process for converting nitrogen dioxide into nitrogen monoxide |
US4077774A (en) * | 1977-02-14 | 1978-03-07 | Beckman Instruments, Inc. | Interferent-free fluorescence detection of sulfur dioxide |
US4118193A (en) * | 1977-07-29 | 1978-10-03 | Beckman Instruments, Inc. | Catalytic reactor systems method and apparatus |
US4140487A (en) * | 1975-12-10 | 1979-02-20 | Commonwealth Scientific And Industiral Research Organization | Method and apparatus for analysis of water |
US4148612A (en) * | 1976-02-19 | 1979-04-10 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for detecting and measuring trace impurities in flowing gases |
US4256462A (en) * | 1979-12-28 | 1981-03-17 | University Of Iowa Research Foundation | Method and composition for determination of n-nitrosamines |
US4257777A (en) * | 1977-04-12 | 1981-03-24 | British-American Tobacco Company Limited | Gas detection |
US4261698A (en) * | 1980-01-23 | 1981-04-14 | International Business Machines Corporation | Trace oxygen detector |
US4333735A (en) * | 1981-03-16 | 1982-06-08 | Exxon Research & Engineering Co. | Process and apparatus for measuring gaseous fixed nitrogen species |
US4412006A (en) * | 1980-08-01 | 1983-10-25 | University Of Iowa Research Foundation | Method for determination of nitrate and/or nitrite |
US4843016A (en) * | 1974-10-07 | 1989-06-27 | Thermedics Inc. | Detection system and method |
US4947850A (en) * | 1988-03-11 | 1990-08-14 | Trustees Of The University Of Pennsylvania | Method and apparatus for imaging an internal body portion of a host animal |
US5092219A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Selective decomposition of nitrite esters and nitramines |
US5092220A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Nitric oxide detection with hydrogen and ozone |
US5300441A (en) * | 1989-02-11 | 1994-04-05 | Antek Instruments, Inc. | Method for measuring and determining nitrogen content in a sample and providing an output data of total nitrogen and selected constituent nitrogen compounds including nitrate and nitrite |
US5783828A (en) * | 1995-02-02 | 1998-07-21 | European Atomic Energy Community (Euratom) | Apparatus and method for tritium measurement by gas scintillation |
WO1998038508A1 (en) * | 1997-02-28 | 1998-09-03 | Extraction Systems, Inc. | System for detecting amine and other basic molecular contamination in a gas |
US6096267A (en) * | 1997-02-28 | 2000-08-01 | Extraction Systems, Inc. | System for detecting base contaminants in air |
US6207460B1 (en) | 1999-01-14 | 2001-03-27 | Extraction Systems, Inc. | Detection of base contaminants in gas samples |
WO2001047009A2 (en) * | 1999-12-21 | 2001-06-28 | Lam Research Corporation | Method and apparatus for detecting the endpoint of a photoresist stripping process |
US20020137227A1 (en) * | 2001-03-23 | 2002-09-26 | Kurt Weckstrom | Chemiluminescent gas analyzer |
US20060061225A1 (en) * | 2004-09-17 | 2006-03-23 | Beck Mark J | Method and apparatus for cavitation threshold characterization and control |
WO2009134647A3 (en) * | 2008-04-30 | 2010-01-07 | Waters Technologies Corporation | Apparatus and methods for performing photoreactions and analytical methods and devices to detect photo-reacting compounds |
US20110027899A1 (en) * | 2009-02-10 | 2011-02-03 | Hargrove James M | Hazardous chemicals detector & methods of use thereof |
US8846407B2 (en) | 2009-02-10 | 2014-09-30 | James M. Hargrove | Chemical explosive detector |
US20140346650A1 (en) * | 2009-08-14 | 2014-11-27 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
WO2015191843A1 (en) * | 2014-06-13 | 2015-12-17 | Advanced Plasma Therapies, Inc. | Veterinary methods for using nitric oxide in a plasma state to treat medical conditions and diseases in animals |
WO2017213894A1 (en) * | 2016-06-06 | 2017-12-14 | Honeywell International Inc. | Electrochemical gas sensor for use in ultra low oxygen storage environments |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10023960B2 (en) | 2012-09-12 | 2018-07-17 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10312129B2 (en) | 2015-09-29 | 2019-06-04 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US10340125B2 (en) | 2013-03-08 | 2019-07-02 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US10364493B2 (en) | 2016-08-25 | 2019-07-30 | Asm Ip Holding B.V. | Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line |
US10366864B2 (en) | 2013-03-08 | 2019-07-30 | Asm Ip Holding B.V. | Method and system for in-situ formation of intermediate reactive species |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10438965B2 (en) | 2014-12-22 | 2019-10-08 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US10480072B2 (en) | 2009-04-06 | 2019-11-19 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US10561975B2 (en) | 2014-10-07 | 2020-02-18 | Asm Ip Holdings B.V. | Variable conductance gas distribution apparatus and method |
US10566223B2 (en) | 2012-08-28 | 2020-02-18 | Asm Ip Holdings B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10604847B2 (en) | 2014-03-18 | 2020-03-31 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10665452B2 (en) | 2016-05-02 | 2020-05-26 | Asm Ip Holdings B.V. | Source/drain performance through conformal solid state doping |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3528779A (en) * | 1968-06-27 | 1970-09-15 | Aerochem Res Lab | Chemiluminescent method of detecting ozone |
US3540851A (en) * | 1967-08-25 | 1970-11-17 | Aerochem Res Lab | Method of determining trace amounts of gases |
-
1970
- 1970-03-19 US US3647387D patent/US3647387A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540851A (en) * | 1967-08-25 | 1970-11-17 | Aerochem Res Lab | Method of determining trace amounts of gases |
US3528779A (en) * | 1968-06-27 | 1970-09-15 | Aerochem Res Lab | Chemiluminescent method of detecting ozone |
Non-Patent Citations (1)
Title |
---|
Kiess et al., 7th Symposium (International) on Combustion, London & Oxford, 28 Aug. 3 Sept. 1958, pp. 207 209 relied on. * |
Cited By (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3746514A (en) * | 1971-05-26 | 1973-07-17 | Ford Motor Co | Chemiluminescent instrument |
US3746513A (en) * | 1971-05-26 | 1973-07-17 | Ford Motor Co | Chemiluminescent process |
USRE28374E (en) * | 1971-05-26 | 1975-03-25 | Chemiluminescent instrument | |
USRE28376E (en) * | 1971-05-26 | 1975-03-25 | Chemiluminesceht process | |
US3795489A (en) * | 1971-09-15 | 1974-03-05 | Ford Motor Co | Chemiluminescence reaction chamber |
US3749929A (en) * | 1971-10-07 | 1973-07-31 | Monsanto Res Corp | Chemiluminescent method and apparatus |
US3973910A (en) * | 1973-02-05 | 1976-08-10 | Thermo Electron Corporation | Method of measuring the N-nitrosoamine content of a sample |
US3996002A (en) * | 1973-02-05 | 1976-12-07 | Thermo Electron Corporation | Method and apparatus for measuring the n-nitroso compound content of a sample |
US3919397A (en) * | 1973-11-30 | 1975-11-11 | Aerochem Research Labs Inc | Catalytic preparation of NO |
US3888630A (en) * | 1973-12-26 | 1975-06-10 | Borg Warner | Breath testing method |
US3904371A (en) * | 1974-03-04 | 1975-09-09 | Beckman Instruments Inc | Chemiluminescent ammonia detection |
JPS50145187A (en) * | 1974-05-10 | 1975-11-21 | ||
DE2544928A1 (en) * | 1974-10-07 | 1976-04-08 | Thermo Electron Corp | Method and device for detecting the presence of certain compounds in a sample |
US4843016A (en) * | 1974-10-07 | 1989-06-27 | Thermedics Inc. | Detection system and method |
US3977836A (en) * | 1974-11-13 | 1976-08-31 | Hitachi, Ltd. | Method and apparatus for determining ammonia concentration of gas |
US3996008A (en) * | 1975-09-17 | 1976-12-07 | Thermo Electron Corporation | Specific compound detection system with gas chromatograph |
US3996009A (en) * | 1975-09-17 | 1976-12-07 | Thermo Electron Corporation | Specific compound detection system |
US4018562A (en) * | 1975-10-24 | 1977-04-19 | Antek Instruments, Inc. | Chemiluminescent nitrogen detection apparatus and method |
US4073866A (en) * | 1975-11-15 | 1978-02-14 | Agency Of Industrial Science And Technology Of Japan | Process for converting nitrogen dioxide into nitrogen monoxide |
US4140487A (en) * | 1975-12-10 | 1979-02-20 | Commonwealth Scientific And Industiral Research Organization | Method and apparatus for analysis of water |
US4148612A (en) * | 1976-02-19 | 1979-04-10 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for detecting and measuring trace impurities in flowing gases |
US4025309A (en) * | 1976-02-26 | 1977-05-24 | Hach Chemical Company | Carbon nitrogen test system |
US4077774A (en) * | 1977-02-14 | 1978-03-07 | Beckman Instruments, Inc. | Interferent-free fluorescence detection of sulfur dioxide |
US4257777A (en) * | 1977-04-12 | 1981-03-24 | British-American Tobacco Company Limited | Gas detection |
US4118193A (en) * | 1977-07-29 | 1978-10-03 | Beckman Instruments, Inc. | Catalytic reactor systems method and apparatus |
DE2833070A1 (en) * | 1977-07-29 | 1979-04-12 | Beckman Instruments Inc | CATALYTIC REACTOR SYSTEMS |
US4256462A (en) * | 1979-12-28 | 1981-03-17 | University Of Iowa Research Foundation | Method and composition for determination of n-nitrosamines |
US4261698A (en) * | 1980-01-23 | 1981-04-14 | International Business Machines Corporation | Trace oxygen detector |
US4412006A (en) * | 1980-08-01 | 1983-10-25 | University Of Iowa Research Foundation | Method for determination of nitrate and/or nitrite |
US4333735A (en) * | 1981-03-16 | 1982-06-08 | Exxon Research & Engineering Co. | Process and apparatus for measuring gaseous fixed nitrogen species |
US5123274A (en) * | 1987-07-08 | 1992-06-23 | Thermedics Inc. | Hand-held sample gun for vapor collection |
US5092219A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Selective decomposition of nitrite esters and nitramines |
US5092218A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Selective detection of explosives vapors |
US5092156A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Vapor collector/desorber with tube bundle and metal foil |
US5092157A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Vapor collector/desorber with metallic ribbon |
US5092220A (en) * | 1987-07-08 | 1992-03-03 | Thermedics Inc. | Nitric oxide detection with hydrogen and ozone |
US5551278A (en) * | 1987-07-08 | 1996-09-03 | Thermedics Inc. | Vapor collector/desorber with non-conductive tube bundle |
US4947850A (en) * | 1988-03-11 | 1990-08-14 | Trustees Of The University Of Pennsylvania | Method and apparatus for imaging an internal body portion of a host animal |
US5300441A (en) * | 1989-02-11 | 1994-04-05 | Antek Instruments, Inc. | Method for measuring and determining nitrogen content in a sample and providing an output data of total nitrogen and selected constituent nitrogen compounds including nitrate and nitrite |
US5783828A (en) * | 1995-02-02 | 1998-07-21 | European Atomic Energy Community (Euratom) | Apparatus and method for tritium measurement by gas scintillation |
US6096267A (en) * | 1997-02-28 | 2000-08-01 | Extraction Systems, Inc. | System for detecting base contaminants in air |
US6296806B1 (en) | 1997-02-28 | 2001-10-02 | Extraction Systems, Inc. | Protection of semiconductor fabrication and similar sensitive processes |
WO1998038508A1 (en) * | 1997-02-28 | 1998-09-03 | Extraction Systems, Inc. | System for detecting amine and other basic molecular contamination in a gas |
EP1365228A3 (en) * | 1997-02-28 | 2004-01-14 | Extraction Systems, Inc. | System for detecting amine and other basic molecular contamination in a gas |
EP1365228A2 (en) * | 1997-02-28 | 2003-11-26 | Extraction Systems, Inc. | System for detecting amine and other basic molecular contamination in a gas |
US6855557B2 (en) | 1999-01-14 | 2005-02-15 | Extraction Systems, Inc. | Detection of base contaminants in gas samples |
US6207460B1 (en) | 1999-01-14 | 2001-03-27 | Extraction Systems, Inc. | Detection of base contaminants in gas samples |
US6451158B1 (en) | 1999-12-21 | 2002-09-17 | Lam Research Corporation | Apparatus for detecting the endpoint of a photoresist stripping process |
WO2001047009A3 (en) * | 1999-12-21 | 2002-01-31 | Wenli Collison | Method and apparatus for detecting the endpoint of a photoresist stripping process |
WO2001047009A2 (en) * | 1999-12-21 | 2001-06-28 | Lam Research Corporation | Method and apparatus for detecting the endpoint of a photoresist stripping process |
US7077971B2 (en) | 1999-12-21 | 2006-07-18 | Lam Research Corporation | Methods for detecting the endpoint of a photoresist stripping process |
US20020137227A1 (en) * | 2001-03-23 | 2002-09-26 | Kurt Weckstrom | Chemiluminescent gas analyzer |
US20060061225A1 (en) * | 2004-09-17 | 2006-03-23 | Beck Mark J | Method and apparatus for cavitation threshold characterization and control |
US7443079B2 (en) | 2004-09-17 | 2008-10-28 | Product Systems Incorporated | Method and apparatus for cavitation threshold characterization and control |
WO2006034040A3 (en) * | 2004-09-17 | 2006-06-01 | Product Systems Inc | Method and apparatus for cavitation threshold characterization and control |
WO2009134647A3 (en) * | 2008-04-30 | 2010-01-07 | Waters Technologies Corporation | Apparatus and methods for performing photoreactions and analytical methods and devices to detect photo-reacting compounds |
US8524502B2 (en) | 2008-04-30 | 2013-09-03 | Waters Technologies Corporation | Apparatus and methods for performing photoreactions and analytical methods and devices to detect photo-reacting compounds |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US20110027899A1 (en) * | 2009-02-10 | 2011-02-03 | Hargrove James M | Hazardous chemicals detector & methods of use thereof |
US8846407B2 (en) | 2009-02-10 | 2014-09-30 | James M. Hargrove | Chemical explosive detector |
US10844486B2 (en) | 2009-04-06 | 2020-11-24 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10480072B2 (en) | 2009-04-06 | 2019-11-19 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US20140346650A1 (en) * | 2009-08-14 | 2014-11-27 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10804098B2 (en) * | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10707106B2 (en) | 2011-06-06 | 2020-07-07 | Asm Ip Holding B.V. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US10566223B2 (en) | 2012-08-28 | 2020-02-18 | Asm Ip Holdings B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10023960B2 (en) | 2012-09-12 | 2018-07-17 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US10340125B2 (en) | 2013-03-08 | 2019-07-02 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US10366864B2 (en) | 2013-03-08 | 2019-07-30 | Asm Ip Holding B.V. | Method and system for in-situ formation of intermediate reactive species |
US10361201B2 (en) | 2013-09-27 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor structure and device formed using selective epitaxial process |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10604847B2 (en) | 2014-03-18 | 2020-03-31 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
WO2015191843A1 (en) * | 2014-06-13 | 2015-12-17 | Advanced Plasma Therapies, Inc. | Veterinary methods for using nitric oxide in a plasma state to treat medical conditions and diseases in animals |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10561975B2 (en) | 2014-10-07 | 2020-02-18 | Asm Ip Holdings B.V. | Variable conductance gas distribution apparatus and method |
US10438965B2 (en) | 2014-12-22 | 2019-10-08 | Asm Ip Holding B.V. | Semiconductor device and manufacturing method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US10312129B2 (en) | 2015-09-29 | 2019-06-04 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10720322B2 (en) | 2016-02-19 | 2020-07-21 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top surface |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10262859B2 (en) | 2016-03-24 | 2019-04-16 | Asm Ip Holding B.V. | Process for forming a film on a substrate using multi-port injection assemblies |
US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10665452B2 (en) | 2016-05-02 | 2020-05-26 | Asm Ip Holdings B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US10249577B2 (en) | 2016-05-17 | 2019-04-02 | Asm Ip Holding B.V. | Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method |
WO2017213894A1 (en) * | 2016-06-06 | 2017-12-14 | Honeywell International Inc. | Electrochemical gas sensor for use in ultra low oxygen storage environments |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10541173B2 (en) | 2016-07-08 | 2020-01-21 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US10741385B2 (en) | 2016-07-28 | 2020-08-11 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10364493B2 (en) | 2016-08-25 | 2019-07-30 | Asm Ip Holding B.V. | Exhaust apparatus and substrate processing apparatus having an exhaust line with a first ring having at least one hole on a lateral side thereof placed in the exhaust line |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US10720331B2 (en) | 2016-11-01 | 2020-07-21 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10644025B2 (en) | 2016-11-07 | 2020-05-05 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10622375B2 (en) | 2016-11-07 | 2020-04-14 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10784102B2 (en) | 2016-12-22 | 2020-09-22 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10468262B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
US10714335B2 (en) | 2017-04-25 | 2020-07-14 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
US10734497B2 (en) | 2017-07-18 | 2020-08-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10672636B2 (en) | 2017-08-09 | 2020-06-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10734223B2 (en) | 2017-10-10 | 2020-08-04 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10734244B2 (en) | 2017-11-16 | 2020-08-04 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by the same |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10755923B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fahey et al. | Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NO y in the atmosphere | |
Welz et al. | Investigations on atomisation mechanisms of volatile hydride-forming elements in a heated quartz cell. Part 1. Gas-phase and surface effects; decomposition and atomisation of arsine | |
George et al. | Photoenhanced uptake of gaseous NO 2 on solid organic compounds: a photochemical source of HONO? | |
US6346419B1 (en) | Photolysis system for fast-response NO2 measurements and method therefor | |
Kistiakowsky et al. | Effects of pressure on fluorescence and intersystem crossing in benzene vapor | |
Fontijn et al. | Absolute quantum yield measurements of the NO–O reaction and its use as a standard for chemiluminescent reactions | |
Tabor et al. | Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature | |
DE69828569T2 (en) | Method for measuring the concentration of hydrogen peroxide vapor | |
Piper | State‐to‐state N2 (A 3Σ+ u) energy‐pooling reactions. I. The formation of N2 (C 3Π u) and the Herman infrared system | |
Clyne et al. | Mechanism of chemiluminescent reactions involving nitric oxide—–the H+ NO reaction | |
US3528779A (en) | Chemiluminescent method of detecting ozone | |
Bollinger et al. | Conversion of nitrogen dioxide, nitric acid, and n-propyl nitrate to nitric oxide by a gold-catalyzed reduction with carbon monoxide | |
Ravishankara et al. | Kinetic study of the reaction of hydroxyl with hydrogen and deuterium from 250 to 1050 K | |
McCormack et al. | Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds. | |
Metzger et al. | On the Continuous Absorption, Photoionization, and Fluorescence of H2O, NH3, CH4, C2H2, C2H4, and C2H6 in the 600‐to‐1000‐Å Region | |
US3746513A (en) | Chemiluminescent process | |
KR970007066B1 (en) | Method and apparatus isotopic analysis | |
US3947685A (en) | Method and arrangement for determining nitric oxide concentration | |
Anderson | The absolute concentration of OH (X²π) in the Earth's stratosphere | |
Schultz et al. | Calibration source for peroxy radicals with built‐in actinometry using H2O and O2 photolysis at 185 nm | |
Heidner et al. | Kinetic investigation of electronically excited oxygen atoms, O (2 1 D 2), by time-resolved attenuation of atomic resonance radiation in the vacuum ultra-violet. Part 2.—Collisional quenching by the atmospheric gases N 2, O 2, CO, CO 2, H 2 O and O 3. | |
US4018562A (en) | Chemiluminescent nitrogen detection apparatus and method | |
Parker et al. | Some experiments with spectrofluorimeters and filter fluorimeters | |
Drummond et al. | An optimized chemiluminescence detector for tropospheric NO measurements | |
Wayne | Singlet molecular oxygen |