US5979506A - Arrangement in a pipe bundle - Google Patents

Arrangement in a pipe bundle Download PDF

Info

Publication number
US5979506A
US5979506A US08/698,090 US69809096A US5979506A US 5979506 A US5979506 A US 5979506A US 69809096 A US69809096 A US 69809096A US 5979506 A US5979506 A US 5979506A
Authority
US
United States
Prior art keywords
characterized
carrier pipe
pipelines
pipe
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/698,090
Inventor
Finn Aarseth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINN AARSETH
Original Assignee
Aker Engineering and Technology AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NO953217 priority Critical
Priority to NO953217A priority patent/NO953217L/en
Application filed by Aker Engineering and Technology AS filed Critical Aker Engineering and Technology AS
Assigned to AKER ENGINEERING AS reassignment AKER ENGINEERING AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AARSETH, FINN
Application granted granted Critical
Publication of US5979506A publication Critical patent/US5979506A/en
Assigned to FINN AARSETH reassignment FINN AARSETH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKER ENGINEERING AS
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • F16L9/19Multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/34Heating of pipes or pipe systems using electric, magnetic or electromagnetic fields, e.g. using induction, dielectric or microwave heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/38Ohmic-resistance heating using elongate electric heating elements, e.g. wires or ribbons

Abstract

The present invention relates to an arrangement in a pipe bundle, more specifically to a method and a system for heating subsea or on-shore pipelines, especially pipelines for transportation of substantially oil, gas and water, said pipelines (8, 108, 208) being arranged in a substantially cylindrical outer carrier pipe (1, 101, 201), and for the purpose of providing an arrangement wherein the quantity of heating cable can be reduced, and wherein the manufacturing of such arrangement can be simplified, at the same time as the finished arrangement will provide appropriate heating of the pipelines and the contents thereof, it is according to the invention suggested an arrangement comprising:
a carrier pipe (1, 101) having an outer and/or inner thermal insulation (2, 102),
one or more longitudinally extending energy carriers (3, 4, 5; 103, 104, 105) extending in the longitudinal direction of said carrier pipe (1, 101) for the dissipation/transfer of heat directly and/or indirectly to said pipelines (8, 108), respectively said pipe bundle or bundles, and thereby to the contents of said pipelines.

Description

FIELD OF THE INVENTION

The present invention relates to pipe bundles, and more specifically to a method for heating subsea or on-shore pipelines, and a pipeline system related thereto.

BACKGROUND OF THE INVENTION

Subsea transportation of oil, gas and water will generally be carried out by means of separate pipes for different media. In connection with multiphase production from a subsea well to a platform or land based installation, the flow from the well may comprise oil, gas and water in a mixture.

During subsea transportation the pipes and the contents thereof may be cooled to a subsea temperature of 3° C.

In connection with the transportation of unstabilized oil, this cooling may involve increased viscosity and/or deposits of wax on the cooled pipe surface that can lead to blocking of the flow.

Correspondingly, a super-cooled multiphase flow can during high pressure develop hydrate formations which may block the pipeline and cause time consuming and costly cleaning work.

Due to this reason temperature sensitive pipes will be insulated and are often supplied with chemicals which hampers the deposit and the formation of hydrates. An alternative is to employ electrical heating of thermally insulated pipes, such that the temperature is usually kept above 20° C.

The laying of separate process pipes for production as well as gas and water injection, etc., represents a substantial expenditure as regards the laying, burying and installation in the proximity of the platform.

A simplified method for such work is to collect the process pipes in a so-called pipe or pipeline bundle, wherein the pipelines are kept at a mutual spacing.

In order to, inter alia, strengthen the supporting properties of the structure, render protection to the process pipes, simplify the laying, etc., the pipe bundle is often mounted in a surrounding outer carrier pipe with appropriate properties.

In connection with temperature sensitive process pipes it is known that process pipes having preheated injection water, alternatively a dedicated pipe loop carrying preheated medium, can be used for heating such pipe bundles. The pipe bundle must then have an outer thermal insulation and be filled with liquid and/or gas for the distribution and transfer of heat.

Such heating is clearly limited as regards the transportation in long pipes of liquid require a sufficiently high temperature along the overall length of said pipes.

PRIOR ART

From EP 0 521 582 (Colemann-Kammula/Shell Int.) there is known an insulated flowline system comprising at least one flowline mounted within a carrier pipe, there being used spacers between said flowlines and carrier pipe for keeping the flowlines in place. In FIG. 3 of EP 0 521 582 there is illustrated at least one electric cable for electric heating of at least one flowline, as this is also expressed in patent claim 8 of said publication.

However, from the illustrated embodiment according to FIG. 3 there are suggested three electrical cables for heating one individual flowline, which flowline is surrounded by an insulation comprising three separate chambers containing particles and air in the pores between said particles, said chambers leaving a space therebetween for holding said electric cables, respectively.

According to EP 0 521 582 and specifically patent claim 9 thereof, it appears that any of the electric cables are arranged between a first and a second of said chambers being provided around a part of the circumference of the flowline itself and extending in the longitudinal direction of the flowline system. Consequently, it is here not a question of any heating of the carrier pipe, but a so to say direct heating of an individual flowline.

The prior art solution according to EP 0 521 582 can be compared as a variant of what appears from NO 170 695 (Gr.o slashed.svik et al./Aker Engineering/Alcatel STK), corresponding to U.S. Pat. No. 5, 256, 844, in which publications there are suggested electrical cables for heating one single pipe, and wherein room is given for the electric cables in the insulation around said individual pipe.

Prior art technique wherein electrical conductors are used for inductive heating of an individual pipe by integrating electrical conductors in the pipe insulation around the circumference of the pipe is also known from NO 174 068 (Ahlen/Den norske stats oljeselskap) corresponding to WO 90/05266, which publication is hereby included as reference.

The present invention may be regarded as a further development of the techniques described in NO 170 695 and NO 174 068 as regards inductive and resistive utilisation of electric energy for heating purposes. However, the present invention paves the way for heating, not individual pipelines, but heating the complete bundle of pipelines, and then by utilising the outer and/or inner thermally insulated carrier pipe for the transfer and distribution of heat, as this is further specified in the appending patent claims.

U.S. Pat. No. 4,789,230 (Hopperdietzel) relates to a heatable plastic hose having a cross sectional centre point and a hose wall which defines, along the inner surface thereof, a longitudinal cavity having a cross sectional centre point which is laterally offset from the cross sectional centre point of the tubular hose. However, no suggestion for heating pipe bundles is to be found in this patent specification, let alone a carrier pipe encircling a plurality of individual pipelines.

U.S. Pat. No. 4,653,541 (Oehlschlaeger) relates to a dual wall safety tube assembly comprising a plurality of fluid pipes arranged in an outer carrier pipe, but neither here is there any token about heating an insulated carrier pipe, but rather a thermal heating cable which is twisted around the inner fluid pipes, which is completely different from the present invention.

U.S. Pat. No. 3,315,703 (Matthews et al.) relates to a composite tubing product comprising a central fluid transporting core around which are arranged a plurality of heat transporting pipe elements for heating the fluid carrying core, which system deviates from the field of application to which the present invention relates, namely heating of pipe bundles arranged in a carrier pipe.

Further publications related to heating of pipelines and hoses are GB 2 084 284-a (Hoshira), NO 164 942 (Bilstad/Den norske stats oljeselskap) and U.S. Pat. No. 5,381,511 (Baker et al.).

OBJECTS OF THE INVENTION

An object of the present invention is to devise a new field of application as regards inductive, capacitive and resistive utilisation of electrical energy for heating pipe bundles.

Another object of the present invention is to devise a combined heating of a pipe bundle and transmission of electric power to consumers along the carrier pipe or at the end of the carrier pipe or pipe bundle.

Still another object of the present invention is to provide a heating system wherein the number of cables are considerably reduced compared with electric heating individual lines.

Another object of the present invention is to provide a heating system wherein the installation of cables in connection with pipe bundles involves a simplification, since the production of such a system can be carried out on shore and be associated with only one pipe length.

SUMMARY OF THE INVENTION

The above objects are achieved in an arrangement in a pipe bundle according to the present invention, which is characterized by the features as stated in the appending patent claims.

In a method for heating subsea or on-shore pipelines, especially pipelines for transportation of substantially oil, gas and water, said pipelines being arranged in one or more bundles which preferably are arranged in a cylindrical outer carrier pipe, such method is in accordance with the present invention characterized by:

providing for said carrier pipe an outer and/or inner thermal insulation,

providing in the longitudinal direction of said carrier pipe one or more longitudinally extending energy carriers for the supply of heat directly and/or indirectly to said pipelines, respectively said pipe bundle or bundles, and thereby to the contents of said pipelines.

In a system for heating subsea or on-shore pipelines, especially pipelines for transportation of substantially oil, gas and water, said pipelines being arranged in one or more bundles which preferably are arranged in a cylindrical outer carrier pipe, such a system is in accordance with the present invention characterized in that

said carrier pipe comprising an outer and/or inner thermal insulation,

said carrier pipe being provided in the longitudinal direction thereof with one or more longitudinally extending energy carriers for the transfer of heat directly and/or indirectly to said pipelines, respectively said pipe bundle or bundles, and thereby to the contents of said pipelines.

Further features and advantages of the present invention will appear from the following description of embodiments taken in conjunction with the appended drawings, as well as from the enclosed patent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematical cross section of a pipe bundle in a carrier pipe, illustrating how electrical cables can be installed in a first embodiment, according to the invention, when the carrier pipe is provided with outer insulation.

FIG. 2 is a schematical cross section of a pipe bundle illustrating how electrical cables can be installed in a second embodiment of the invention, the carrier pipe here being provided with inner insulation.

FIG. 3 is a schematical longitudinal section through a pipe bundle illustrating how electrical cables can be installed and connected and utilized for electrical heating and power supply according to the present invention.

FIG. 4 a schematical longitudinal section illustrating a specific electric connection wherein the carrier pipe of the pipe bundle is used as return conductor.

FIG. 5 is a schematical longitudinal section through an embodiment of a pipe bundle in a carrier pipe, wherein the electric connection is utilising a pipe in the bundle as an electrical return conductor.

FIG. 6 is a cross section through a further embodiment of an arrangement in a pipe bundle, comprising two process pipes included in a carrier pipe which is carrying an outer thermal insulation, the heating cables here being arranged as a 50/60 Hz three phase system.

FIG. 7 is a cross section through still another embodiment of an arrangement in a pipe bundle according to the invention, the heating cables here being arranged as a three phase induction system of 200 Hz.

FIG. 8 is a cross section through yet another embodiment of an arrangement in a pipe bundle according to the present invention, wherein one heating cable carrying 50/60 Hz current is used for direct heating.

DETAILED DESCRIPTION OF EMBODIMENTS

In FIG. 1 which is a cross section through a first arrangement in a pipe bundle according to the present invention, there is illustrated an outer carrier pipe 1 being of substantially cylindrical shape, and being manufactured preferably from a ferromagnetic steel material.

The carrier pipe 1 has been provided with an outer thermal insulation 2, i.e. on the outer surface of said carrier pipe 1. Three electrical conductors 3, 4 and 5 are mounted appropriately on the inner wall of said carrier pipe 1 and inside of the insulation 2 thereof, said conductors 3, 4 and 5 extending substantially along the full length of said carrier pipe 1. The electrical conductors 3, 4 and 5 are kept in place in relation to the carrier pipe 1 by means of substantially ring-shaped spacer and guiding means 6, which spacer and guiding means 6 also keep a plurality of process pipes 8 as well as an umbilical 7 in place in relation to said outer insulated carrier pipe 1. Appropriately, said umbilical 7 may be contained in a conduit 7'. The dashed line 6' illustrates a nylon liner.

The process pipes 8 which are to be heated through the dissipation or transfer of electric energy from said electric conductors 3, 4 and 5, can be used for conducting water, gas and oil, etc. In a multiphase transportation of said components the mixture will most often be under high pressure and will easily develop hydrates and wax deposits at low temperatures.

The umbilical 7 may comprise low voltage power and data cables, as well as one or more pipes for hydraulic oil, and may be screened for inductive fields by being contained in said separate pipe or conduit 7'.

Alternatively, one or more of the process pipes 8 can be insulated so as to be excluded from thermal influence.

In the embodiment illustrated in FIG. 1 there is suggested an arrangement including three electrical conductors 3, 4 and 5, which appropriately may be included in a three phase alternating current system. However, it is to be understood that also other numbers of conductors may be used, for example two conductors in a one phase system, or alternatively DC current. In order to increase the capacity for heating the pipelines arranged in the carrier pipe, at least one supplementary electrical conductor can be contemplated, such supplementary conductors being appropriately distributed around the circumference of the carrier pipe. The electrical conductors 3, 4 and 5 can, of course, be used for low frequency and high frequency alternating current. Higher frequencies than 50 Hz must usually be used for an effective inductive generation of larger quantities of energy for said heating.

Further, it is to be understood that the carrier pipe 1 can be filled with any type of liquid which is used to distribute heat from the electrical cables and to the inner pipelines and the contents thereof.

Depending on the electrical system to be used in connection with the electrical conductors, the heating of the pipe bundles can be based on inductive or resistive heating or a combination of both. In the embodiment illustrated in FIG. 1, wherein the insulation 2 is arranged on the outer surface of the carrier pipe 1, it may be appropriate to let the electrical cables 3, 4 and 5 have direct contact with said carrier pipe 1.

Consequently, the heating may be achieved by ohmic losses in one or more parallel conductors as well as from inductive losses which are generated in the metallic material of the carrier pipe, when any alternating current is supplied to the conductors. The basis of calculating such generation of heat which is to be used for heating the pipe bundle, will follow the equations of Ohm and Maxwell as regards electrical and magnetic relations.

The power losses dissipated or transferred from the electrical conductors to the carrier pipe will be further distributed to the inner pipelines since the carrier pipe is filled with liquid when being used in subsea surroundings. In on-shore installations the carrier pipe may alternatively be filled with liquid and/or gas.

In the illustrated embodiment in FIG. 1, as well as in other embodiments to be discussed in the following, the pipelines are very well protected from outer mechanical damages, and there is achieved a substantially better heat dissipating effect since no power losses or generated electric energy dissipate to the surrounding media, but are utilised in full internally within the carrier pipe for heating purposes.

FIG. 2 is a cross section through a second embodiment of an arrangement according to the present invention, illustrating a carrier pipe 101 of an appropriate ferromagnetic steel material, but here supplied with a thermal insulation 102 on the inner surface thereof. Also here, three electrical conductors 103, 104 and 105 are arranged along the longitudinal extension of the carrier pipe 101, said electrical conductors 103, 104 and 105 being kept in place by a spacer and guiding means 106 which also keep inner process pipes 108 as well as an umbilical 107 in place in relation to the inner insulated carrier pipe 101. Also here, a dashed line 106' illustrates a nylon liner.

The electrical conductors 103, 104 and 105 can here be appropriately located in or on the surface of the thermal insulation 102, but will also here have the function of dissipating or transferring heat directly and/or indirectly to said pipelines 108, respectively the pipe bundle as herein defined, and thereby to the contents of said pipelines or pipe bundle.

In FIG. 3 there is illustrated a longitudinal section through an embodiment of an arrangement in a pipe bundle, similar to the embodiment as illustrated in FIG. 2, wherein is also illustrated a distribution box 10 as well as an electrical supply box 9 for the electrical connection of said electrical cables 103, 104 and 105. For offshore installation the distribution box 10 and the supply box 9 may be of water tight type, specifically for larger depths, and being specifically designed for insulated electrical connectors. When electrical equipment is not to be used, the conductors 103, 104 and 105 may, in connection with a multiphase system, be connected in a endstar connection for thereby providing a loop which possibly can be used only for heating of the pipelines 108 and the contents thereof.

In FIG. 3 there is also illustrated a power supply unit 12, the function thereof being for regulating simultaneous heating of said carrier pipe 101 and electric supply to the distribution box 10 and the associated electric equipment 9. The regulation may involve a frequency regulation from 0 Hz to 500 Hz. At 0 Hz the arrangement will operate as a direct current arrangement, involving marginal ohmic heating, but no induction heating at all.

The level of voltage may be chosen as appropriate, and the frequency may normally be varied from 0 to 500 Hz depending on the degree of induction losses being calculated, and the frequency utilised by the possibly connected equipment.

It should be understood that intermittent operation may be contemplate. A first mode of operation may then be inductive heating at an appropriate high frequency. When heating is not required the same electrical cables may be switched to a second operating mode for low frequency supply. The resistive heat due to transmission losses will then as a side effect contribute to the heating of the pipelines and the contents thereof.

Consequently, the electrical conductors may at the one end be connected to a power supply 12 and the other end be connected to a distribution means 10 for switching to different modes of operation.

Alternatively, one or two or more conductors may be connected to different power supplies and screened cables, which do no develop any inductive heat.

In FIG. 4 there is illustrated an arrangement in a pipe bundle, comprising at least one electric cable 203 in a one or two phase heating system, wherein the metallic carrier pipe 201 is used as electric return conductor.

In FIG. 4 it is also illustrated how two phases of the power supply 212 may be connected to two conductors 203 and 204 for regular inductive heating, whereas the third phase is connected to the carrier pipe 201 through a connection 211 at the supply end and to a connection 210 at the opposite end.

FIG. 5 illustrates a corresponding electric connection as described in connection with FIG. 4, but here one of the process pipes 308 is used as return conductor by being provided with a front connection 314 as well as an end connection 313, whereas a regular electric conductor 303 completes the current path.

In practice the electric cables will as regards the dissipation or transfer of electric power or power losses for heating function, operate in a mixture of modes related to resistive and inductive effect. When the frequency is equal to zero, i.e. direct current, the heat generation will be based on purely resistive dissipation or transfer of energy, whereas at any frequency or any alternating current the inductive losses will also contribute to the intended heating of the pipe bundle or bundles in question.

FIG. 6-8 are a schematical cross sections illustrating variants of the functional principle underlying the present invention, i.e. the method and arrangement for heating pipe bundles by means of heating cables, induction cables and direct heating, or a combination thereof.

In the FIG. 6 embodiment there may appropriately be used two 10" process pipes 408 in a 28" carrier pipe 401 which is insulated with 60 mm thermal insulation 402 having a conductivity K=0,15 W/m° C. If internal temperature is calculated to 30° C. related to an outer ambient temperature of 5° C., this will require a heating effect of 150 W/m. There may be used three electrical cables 403, 404, 405 with a copper cross section of 240 mm2, included in a 50/60 Hz three phase electrical system. A practical application for a 10 km bundle length will for example involve a power transmission of Ptot =1,7 MW, at a voltage of U=3,7 kW and a rated current If =850 A.

FIG. 7 is a cross section through another embodiment of a pipe bundle an arrangement according to the present invention, wherein is suggested a three phase induction system of for example 200 Hz. Transmission capacity will be Ttot =1,55 MW at a voltage level of U=8 kW with a nominal current of If =410 A.

FIG. 8 is a cross section of still another embodiment of an arrangement in a cable bundle according to the invention, wherein direct heating can take place with one electric conductor at a frequency of 50/60 Hz. Transmission capacity will be Ptot =1,58 MW, at a voltage of U=4,5 kV and a current of If =600 A.

Compared with previously known technology for heating production pipelines the present invention will represent a substantial advantage and progress of practical, economic and ecologic nature. Compared with the prior art according to NO 174 068 and NO 170 695, there is achieved a substantial saving in electric cable, because only one set of parallel cables is used for heating a plurality of pipelines. Further, the arrangement according to the present invention will involve a substantial simplification in the installation of electrical cables in the carrier pipe, since the manufacturing thereof may take place on shore and only be related to one single running length of carrier pipe.

It is also to be understood that although the use of capacitive currents has not been discussed in detail, such currents may be used in order to control the electrical parameters involved in the overall system, depending on the voltage, frequency and load to be used.

Further, it is to be understood that the definition of pipe bundle should cover any number of pipes, i.e. one or more pipes included in a carrier pipe.

Claims (36)

What is claimed is:
1. Method for heating subsea or on-shore pipelines, especially pipelines for transportation of substantially oil, gas and water, said pipelines (8, 108, 208) being arranged in a substantially cylindrical outer carrier pipe (1, 101, 201), characterized in that for the heating of said pipelines (8, 108, 208):
providing for said carrier pipe (1, 101) an outer (2) and/or inner (102) thermal insulation (2; 102),
providing in the longitudinal direction of and associated in close proximity with said carrier pipe (1, 101) one or more longitudinally extending energy carriers (3, 4, 5; 103, 104, 105) for the dissipation/transfer of heat indirectly to said pipelines (8, 108), respectively said pipe bundle or bundles, and thereby to the contents of said pipe bundles, said energy carriers not contacting the pipelines or the insulation thereon.
2. Method as claimed in claim 1, characterized in utilising a carrier pipe (8, 108) which is filled with a fluid, preferably liquid or gas, for the transfer of heat from the energy carrier (3, 4, 5; 103, 104, 105) to said pipelines (8, 108), respectively said pipe bundle in said pipe carrier (1, 101) and thereby to the contents of said transporting pipelines (8, 108).
3. Method as claimed in claim 2, characterized by using as energy carriers one or more electrical conductors (3, 4, 5; 103, 104, 105) which extend in the longitudinal direction of said carrier pipe (1, 101) in close proximity along the insulated (2, 102) wall of said carrier pipe (1, 101).
4. Method as claimed in claim 3, characterized by using energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) of the carrier pipe (101).
5. Method as claimed in claim 3, characterized by using energy carrying electric conductors (3, 4, 5) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
6. Method as claimed in claim 3, characterized by using a heat insulated carrier pipe (1, 101) of current conducting material, and by using energy carrying conductors (3, 4, 5; 103, 104, 105) used for inductive and resistive heating.
7. Method as claimed in claim 6, characterized by using energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) of the carrier pipe (101).
8. Method as claimed in claim 6, characterized by using energy carrying electric conductors (3, 4, 5) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
9. Method as claimed in claim 1, characterized by supplying the energy carriers (3, 4, 5; 103, 104, 105) with a current having a frequency from 0 to approx. 500 Hz or more, depending on the degree of resistive and/or inductive heating.
10. Method as claimed in claim 1, characterized by heating by said energy carriers (3, 4, 5; 103, 104, 105) in intermittent operation, said energy carriers in different mode of operation being used for different energy supplies, for example current supply, in which transmission losses will contribute to preceding heating mode.
11. Method as claimed in claim 1, characterized in using energy carriers, specifically electrical conductors (103, 104, 105) which at the one end are connected to a power supply (12), and which at the other end are connected to a switching means (10) for switching in and out various modes of operation (9).
12. Method as claimed in claim 1, characterized by using one or more individual pipelines and/or the carrier pipe as electrical return conductor and heat dissipating element.
13. Method as claimed in claim 1, characterized by using single phase or two phase power supply for connection to a corresponding number of heat carriers, especially a connection of screened cables having small inductive heat development.
14. Method as claimed in claim 1, characterized by using an on-shore manufactured assembly of pipelines, carrier pipe and energy carriers for heating of production pipelines (3, 4, 5; 103, 104, 105).
15. Method as claimed in claim 1, characterized by using as energy carriers one or more electrical conductors (3, 4, 5; 103, 104, 105) which extend in the longitudinal direction of said carrier pipe (1, 101) in close proximity along the insulated (2, 102) wall of said carrier pipe (1, 101).
16. Method as claimed in claim 15, characterized by using a heat insulated carrier pipe (1, 101) of current conducting material, and by using energy carrying conductors (3, 4, 5; 103, 104, 105) used for inductive and resistive heating.
17. Method as claimed in claim 15, characterized by using energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) of the carrier pipe (101).
18. Method as claimed in claim 15, characterized by using energy carrying electric conductors (3, 4, 5) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
19. System for heating subsea or on-shore pipelines, especially pipelines for transportation of substantially oil, gas and water, said pipelines (8, 108, 208) being arranged in a substantially cylindrical outer carrier pipe (1, 101, 201), characterized in that the system comprises:
a carrier pipe (1, 101) having an outer and/or inner thermal insulation (2, 102),
one or more longitudinally extending energy carriers (3, 4, 5; 103, 104, 105) extending in the longitudinal direction of and associated in close proximity with said carrier pipe (1, 101) for the dissipation/transfer of heat indirectly to said pipelines (8, 108), respectively said pipe bundle or bundles, and thereby to the contents of said pipelines, said energy carriers not contacting the pipelines or the insulation thereon.
20. System as claimed in claim 19, characterized by comprising a carrier pipe (8, 108) which is filled with a fluid, preferably liquid or gas, for the transfer of heat from the energy carrier (3, 4, 5; 103, 104, 105) to said pipelines (8, 108), respectively said pipe bundle in said pipe carrier (1, 101) and thereby to the contents of said transporting pipelines (8, 108).
21. System as claimed in claim 20, characterized by comprising as energy carriers, one, two or several electrical conductors (3, 4, 5; 103, 104, 105) which extend in the longitudinal direction of said carrier pipe (1, 101) in close proximity along the insulated (2, 102) wall of said carrier pipe (1, 101).
22. System as claimed in claim 21, characterized by comprising energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) or the carrier pipe (101).
23. System as claimed in claim 21, characterized by comprising energy carrying electric conductors (103, 104, 105) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
24. System as claimed in claim 21, characterized by comprising a heat insulated carrier pipe (1, 101) of current conducting material, and by using energy carrying conductors (3, 4, 5; 103, 104, 105) used for inductive and resistive heating.
25. System as claimed in claim 24, characterized by comprising energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) or the carrier pipe (101).
26. System as claimed in claim 24, characterized by comprising energy carrying electric conductors (103, 104, 105) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
27. System as claimed in claim 19, characterized by a power supply unit (12) supplying the energy carriers (3, 4, 5; 103, 104, 105) with a current having a frequency from 0 to approximately 500 Hz or more, depending on the degree of resistive and/or inductive heating.
28. System as claimed in claim 19, characterized by a regulating and switching means (9) for regulating the heating by said energy carriers (3, 4, 5; 103, 104, 105) in intermittent operation, said energy carriers in different mode of operation being used for different energy supplies, for example current supply, in which transmission losses will contribute to preceding heating mode.
29. System as claimed in claim 19, characterized in comprising energy carriers, specifically electrical conductors (3, 4, 5) which at the one end are connected to a power supply (12), and which at the other end are connected to a switching means (10) for switching in an out various modes of operation (9).
30. System as claimed in claim 19, characterized by comprising one or more individual pipelines and/or the carrier pipe as electrical return conductor and heat dissipating element.
31. System as claimed in claim 19, characterized by a single phase or two phase power supply for connection to a corresponding number of heat carriers, especially a connection of screen cables having small inductive heat development.
32. System as claimed in claim 19, characterized by comprising an on-shore manufactured assembly of pipelines, carrier pipe and energy carriers for heating of production pipelines (3, 4, 5; 103, 104, 105).
33. System as claimed in claim 19, characterized by comprising as energy carriers one, two or several electrical conductors (3, 4, 5; 103, 104, 105) which extend in the longitudinal direction of said carrier pipe (1, 101) in close proximity along the insulated (2, 102) wall of said carrier pipe (1, 101).
34. System as claimed in claim 33, characterized by comprising a heat insulated carrier pipe (1, 101) of current conducting material, and by using energy carrying conductors (3, 4, 5; 103, 104, 105) used for inductive and resistive heating.
35. System as claimed in claim 33, characterized by comprising energy carrying electric conductors (103, 104, 105) which are provided in or on an inner thermal insulation (102) or the carrier pipe (101).
36. System as claimed in claim 33, characterized by comprising energy carrying electric conductors (103, 104, 105) which are arranged directly against the inner surface of a carrier pipe (1) which is provided with an outer thermal insulation (2).
US08/698,090 1995-08-16 1996-08-15 Arrangement in a pipe bundle Expired - Lifetime US5979506A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO953217 1995-08-16
NO953217A NO953217L (en) 1995-08-16 1995-08-16 Method and apparatus with tube bundles

Publications (1)

Publication Number Publication Date
US5979506A true US5979506A (en) 1999-11-09

Family

ID=19898484

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/698,090 Expired - Lifetime US5979506A (en) 1995-08-16 1996-08-15 Arrangement in a pipe bundle

Country Status (3)

Country Link
US (1) US5979506A (en)
GB (1) GB2304392B (en)
NO (1) NO953217L (en)

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066993A1 (en) * 2000-03-08 2001-09-13 Petro Technik Limited Improved containment system
US6564011B1 (en) 2000-08-23 2003-05-13 Fmc Technologies, Inc. Self-regulating heat source for subsea equipment
US6617556B1 (en) * 2002-04-18 2003-09-09 Conocophillips Company Method and apparatus for heating a submarine pipeline
DE10208008A1 (en) * 2002-02-26 2003-09-11 Klaus Winkler A method for testing motor vehicle exhaust gases has an elongated housing containing an insulated duct and heating system.
US20040040716A1 (en) * 2002-05-31 2004-03-04 Bursaux Gabriel Andre Active heating of thermally insulated flowlines
US6717118B2 (en) 2001-06-26 2004-04-06 Husky Injection Molding Systems, Ltd Apparatus for inductive and resistive heating of an object
US20040076476A1 (en) * 2001-03-09 2004-04-22 Raymond Hallot Thermal insulation device for at least one underwater pipe compressing sealed partitions
US6781100B2 (en) 2001-06-26 2004-08-24 Husky Injection Molding Systems, Ltd. Method for inductive and resistive heating of an object
US20050232703A1 (en) * 2002-05-31 2005-10-20 Jean-Francois Saint-Marcoux Flowline insulation system
US6979776B1 (en) 2004-10-14 2005-12-27 Entergy Louisiana, Inc. Pipe bundle for underground installation
US20060243471A1 (en) * 2005-01-31 2006-11-02 Karlsen Jan E Protection profile for subsea cables
US20080185042A1 (en) * 2007-02-02 2008-08-07 Michael Feechan Multi-cell spoolable composite pipe
US20080210329A1 (en) * 2007-02-15 2008-09-04 Quigley Peter A Weighted Spoolable Pipe
US7823643B2 (en) 2006-06-05 2010-11-02 Fmc Technologies Inc. Insulation shroud with internal support structure
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
US20120205137A1 (en) * 2009-10-30 2012-08-16 Aker Subsea As Integrated high power umbilical
US20120292039A1 (en) * 2006-11-08 2012-11-22 Jean-Francois Saint-Marcoux Hybrid riser tower and methods of installing same
US20130104988A1 (en) * 2011-10-27 2013-05-02 Asm America, Inc. Heater jacket for a fluid line
US8678042B2 (en) 1995-09-28 2014-03-25 Fiberspar Corporation Composite spoolable tube
US8678041B2 (en) 2004-02-27 2014-03-25 Fiberspar Corporation Fiber reinforced spoolable pipe
US8763647B2 (en) 2001-04-27 2014-07-01 Fiberspar Corporation Composite tubing
US8839822B2 (en) 2006-03-22 2014-09-23 National Oilwell Varco, L.P. Dual containment systems, methods and kits
WO2014165575A1 (en) * 2013-04-02 2014-10-09 Dekoron Unitherm Inc. Thermally regulated fluid transport system and methods thereof
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US20140373954A1 (en) * 2013-06-24 2014-12-25 Strom W. Smith Pipe Insulation System and Method
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US20150041171A1 (en) * 2012-02-20 2015-02-12 Aker Subsea As Arrangement for cooling power cables, power umbilicals and cables
US8955599B2 (en) 2009-12-15 2015-02-17 Fiberspar Corporation System and methods for removing fluids from a subterranean well
US8985154B2 (en) 2007-10-23 2015-03-24 Fiberspar Corporation Heated pipe and methods of transporting viscous fluid
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9127546B2 (en) 2009-01-23 2015-09-08 Fiberspar Coproation Downhole fluid separation
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US9206676B2 (en) 2009-12-15 2015-12-08 Fiberspar Corporation System and methods for removing fluids from a subterranean well
US20150362120A1 (en) * 2014-06-12 2015-12-17 Strom W. Smith Pipe Insulation System and Method
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
CN106523911A (en) * 2016-09-12 2017-03-22 成都创慧科达科技有限公司 Natural gas transportation pipeline system and natural gas transportation method
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9605496B2 (en) * 2015-03-13 2017-03-28 Technology Commercialization Corp. Devices and methods for controlling a multi-channel system in a petroleum well
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US20170276894A1 (en) * 2014-11-25 2017-09-28 Halliburton Energy Services, Inc. Smart subsea pipeline with conduits
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9890880B2 (en) 2012-08-10 2018-02-13 National Oilwell Varco, L.P. Composite coiled tubing connectors
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10197212B2 (en) 2014-11-25 2019-02-05 Halliburton Energy Services, Inc. Smart subsea pipeline
US10197197B2 (en) 2014-11-25 2019-02-05 Halliburton Energy Services, Inc. Smart subsea pipeline
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730220A (en) 1996-11-25 1998-03-24 Technology Commercialization Corp. Method of and device for production of hydrocarbons
US5950651A (en) * 1997-11-10 1999-09-14 Technology Commercialization Corp. Method and device for transporting a multi-phase flow
DE19802926A1 (en) * 1998-01-27 1999-07-29 Schwelmer Eisenwerk Vertriebs A process for the establishment of a supply unit and sheath elements for implementing the method
AT241106T (en) * 1999-03-03 2003-06-15 Uponor Innovation Ab district heating pipe
NO318001B1 (en) 2002-09-02 2005-01-17 Nexans The process feed for the preparation of an electrical cable system
FR2900192B1 (en) * 2006-04-19 2009-01-30 Emc3 Soc Par Actions Simplifie heating system for flowline to a subsea installation for hydrocarbon exploitation.
GB0704670D0 (en) * 2006-11-08 2007-04-18 Acergy France Sa Hybrid tower and methods of installing same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773513A (en) * 1953-12-22 1956-12-11 Alexander H Isenberg Subterranean insulated conduit unit having spacer channel between pipes
US3315703A (en) * 1967-04-25 Matthews etal composite tubing product
US3400737A (en) * 1966-07-07 1968-09-10 Moore & Co Samuel Composite tubing product and apparatus for manufacturing the same
US3522413A (en) * 1964-07-01 1970-08-04 Moore & Co Samuel Composite electrically heated tubing product
US3526086A (en) * 1968-04-12 1970-09-01 North American Rockwell Multiconduit underwater line
US3727029A (en) * 1964-07-01 1973-04-10 Moore & Co Samuel Composite electrically heated tubing product
US3975617A (en) * 1971-01-18 1976-08-17 Othmer Donald F Pipe heating by AC in steel
US4194536A (en) * 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4303826A (en) * 1979-02-21 1981-12-01 Chisso Corporation Shielded skin-effect current heated pipeline
GB2084284A (en) * 1980-09-22 1982-04-07 Showa Denki Kogyo Co Ltd Heated pipeline
US4653541A (en) * 1985-06-26 1987-03-31 Parker Hannifin Corporation Dual wall safety tube
US4798230A (en) * 1986-08-22 1989-01-17 Rehau Ag + Co. Heatable plastic hose
EP0485220A1 (en) * 1990-11-07 1992-05-13 Petroleo Brasileiro S.A. - Petrobras Electrical heating system for subsea flexible pipelines
EP0521582A1 (en) * 1991-07-05 1993-01-07 Shell Internationale Research Maatschappij B.V. Insulated flowline system
US5381511A (en) * 1993-06-02 1995-01-10 W. L. Gore & Associates, Inc. Flexible electrically heatable hose
US5390961A (en) * 1993-04-28 1995-02-21 Thermon Manufacturing Company Dual wall thermally insulated conduit including skin effect heat tracing pipes
US5692545A (en) * 1995-12-05 1997-12-02 Rodrigue; Wayne Fiber optic cable duct

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315703A (en) * 1967-04-25 Matthews etal composite tubing product
US2773513A (en) * 1953-12-22 1956-12-11 Alexander H Isenberg Subterranean insulated conduit unit having spacer channel between pipes
US3522413A (en) * 1964-07-01 1970-08-04 Moore & Co Samuel Composite electrically heated tubing product
US3727029A (en) * 1964-07-01 1973-04-10 Moore & Co Samuel Composite electrically heated tubing product
US3400737A (en) * 1966-07-07 1968-09-10 Moore & Co Samuel Composite tubing product and apparatus for manufacturing the same
US3526086A (en) * 1968-04-12 1970-09-01 North American Rockwell Multiconduit underwater line
US3975617A (en) * 1971-01-18 1976-08-17 Othmer Donald F Pipe heating by AC in steel
US4194536A (en) * 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4303826A (en) * 1979-02-21 1981-12-01 Chisso Corporation Shielded skin-effect current heated pipeline
GB2084284A (en) * 1980-09-22 1982-04-07 Showa Denki Kogyo Co Ltd Heated pipeline
US4653541A (en) * 1985-06-26 1987-03-31 Parker Hannifin Corporation Dual wall safety tube
US4798230A (en) * 1986-08-22 1989-01-17 Rehau Ag + Co. Heatable plastic hose
EP0485220A1 (en) * 1990-11-07 1992-05-13 Petroleo Brasileiro S.A. - Petrobras Electrical heating system for subsea flexible pipelines
EP0521582A1 (en) * 1991-07-05 1993-01-07 Shell Internationale Research Maatschappij B.V. Insulated flowline system
US5390961A (en) * 1993-04-28 1995-02-21 Thermon Manufacturing Company Dual wall thermally insulated conduit including skin effect heat tracing pipes
US5381511A (en) * 1993-06-02 1995-01-10 W. L. Gore & Associates, Inc. Flexible electrically heatable hose
US5692545A (en) * 1995-12-05 1997-12-02 Rodrigue; Wayne Fiber optic cable duct

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8678042B2 (en) 1995-09-28 2014-03-25 Fiberspar Corporation Composite spoolable tube
WO2001066993A1 (en) * 2000-03-08 2001-09-13 Petro Technik Limited Improved containment system
US6564011B1 (en) 2000-08-23 2003-05-13 Fmc Technologies, Inc. Self-regulating heat source for subsea equipment
US7069957B2 (en) * 2001-03-09 2006-07-04 Saipem S.A. Thermal insulation device for at least one underwater pipe compressing sealed partitions
US20040076476A1 (en) * 2001-03-09 2004-04-22 Raymond Hallot Thermal insulation device for at least one underwater pipe compressing sealed partitions
US8763647B2 (en) 2001-04-27 2014-07-01 Fiberspar Corporation Composite tubing
US7041944B2 (en) 2001-06-26 2006-05-09 Husky Injection Molding Systems, Ltd. Apparatus for inductive and resistive heating of an object
US20040256382A1 (en) * 2001-06-26 2004-12-23 Pilavdzic Jim Izudin Apparatus for inductive and resistive heating of an object
US6717118B2 (en) 2001-06-26 2004-04-06 Husky Injection Molding Systems, Ltd Apparatus for inductive and resistive heating of an object
US6781100B2 (en) 2001-06-26 2004-08-24 Husky Injection Molding Systems, Ltd. Method for inductive and resistive heating of an object
DE10208008A1 (en) * 2002-02-26 2003-09-11 Klaus Winkler A method for testing motor vehicle exhaust gases has an elongated housing containing an insulated duct and heating system.
DE10208008B4 (en) * 2002-02-26 2006-06-08 Klaus Winkler heating duct
WO2003090499A1 (en) * 2002-04-18 2003-10-30 Conocophillips Company Method and apparatus for heating a submarine pipeline
GB2405923B (en) * 2002-04-18 2005-10-26 Conocophillips Co Method and apparatus for heating a submarine pipeline
US6617556B1 (en) * 2002-04-18 2003-09-09 Conocophillips Company Method and apparatus for heating a submarine pipeline
GB2405923A (en) * 2002-04-18 2005-03-16 Conocophillips Co Method and apparatus for heating a submarine pipeline
US6955221B2 (en) * 2002-05-31 2005-10-18 Stolt Offshore Inc. Active heating of thermally insulated flowlines
US20040040716A1 (en) * 2002-05-31 2004-03-04 Bursaux Gabriel Andre Active heating of thermally insulated flowlines
US7441602B2 (en) * 2002-05-31 2008-10-28 Acergy France S.A. Flowline insulation system
US20050232703A1 (en) * 2002-05-31 2005-10-20 Jean-Francois Saint-Marcoux Flowline insulation system
US8678041B2 (en) 2004-02-27 2014-03-25 Fiberspar Corporation Fiber reinforced spoolable pipe
US6979776B1 (en) 2004-10-14 2005-12-27 Entergy Louisiana, Inc. Pipe bundle for underground installation
US20060243471A1 (en) * 2005-01-31 2006-11-02 Karlsen Jan E Protection profile for subsea cables
US7282638B2 (en) * 2005-01-31 2007-10-16 Nexans Statoil Asa Protection profile for subsea cables
US8839822B2 (en) 2006-03-22 2014-09-23 National Oilwell Varco, L.P. Dual containment systems, methods and kits
US7823643B2 (en) 2006-06-05 2010-11-02 Fmc Technologies Inc. Insulation shroud with internal support structure
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US20120292039A1 (en) * 2006-11-08 2012-11-22 Jean-Francois Saint-Marcoux Hybrid riser tower and methods of installing same
US8998539B2 (en) * 2006-11-08 2015-04-07 Acergy France SAS Hybrid riser tower and methods of installing same
US20080185042A1 (en) * 2007-02-02 2008-08-07 Michael Feechan Multi-cell spoolable composite pipe
US8671992B2 (en) * 2007-02-02 2014-03-18 Fiberspar Corporation Multi-cell spoolable composite pipe
US8746289B2 (en) 2007-02-15 2014-06-10 Fiberspar Corporation Weighted spoolable pipe
US20080210329A1 (en) * 2007-02-15 2008-09-04 Quigley Peter A Weighted Spoolable Pipe
US8985154B2 (en) 2007-10-23 2015-03-24 Fiberspar Corporation Heated pipe and methods of transporting viscous fluid
US9127546B2 (en) 2009-01-23 2015-09-08 Fiberspar Coproation Downhole fluid separation
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US20120205137A1 (en) * 2009-10-30 2012-08-16 Aker Subsea As Integrated high power umbilical
US8955599B2 (en) 2009-12-15 2015-02-17 Fiberspar Corporation System and methods for removing fluids from a subterranean well
US9206676B2 (en) 2009-12-15 2015-12-08 Fiberspar Corporation System and methods for removing fluids from a subterranean well
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9341296B2 (en) * 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US20130104988A1 (en) * 2011-10-27 2013-05-02 Asm America, Inc. Heater jacket for a fluid line
US9892908B2 (en) 2011-10-28 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9340874B2 (en) 2011-11-23 2016-05-17 Asm Ip Holding B.V. Chamber sealing member
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US20150041171A1 (en) * 2012-02-20 2015-02-12 Aker Subsea As Arrangement for cooling power cables, power umbilicals and cables
US9779856B2 (en) * 2012-02-20 2017-10-03 Aker Solutions As Arrangement for cooling power cables, power umbilicals and cables
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9299595B2 (en) 2012-06-27 2016-03-29 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9890880B2 (en) 2012-08-10 2018-02-13 National Oilwell Varco, L.P. Composite coiled tubing connectors
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10023960B2 (en) 2012-09-12 2018-07-17 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9228259B2 (en) 2013-02-01 2016-01-05 Asm Ip Holding B.V. Method for treatment of deposition reactor
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
WO2014165575A1 (en) * 2013-04-02 2014-10-09 Dekoron Unitherm Inc. Thermally regulated fluid transport system and methods thereof
US20140373954A1 (en) * 2013-06-24 2014-12-25 Strom W. Smith Pipe Insulation System and Method
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US20150362120A1 (en) * 2014-06-12 2015-12-17 Strom W. Smith Pipe Insulation System and Method
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US10197197B2 (en) 2014-11-25 2019-02-05 Halliburton Energy Services, Inc. Smart subsea pipeline
US20170276894A1 (en) * 2014-11-25 2017-09-28 Halliburton Energy Services, Inc. Smart subsea pipeline with conduits
US10197212B2 (en) 2014-11-25 2019-02-05 Halliburton Energy Services, Inc. Smart subsea pipeline
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US9605496B2 (en) * 2015-03-13 2017-03-28 Technology Commercialization Corp. Devices and methods for controlling a multi-channel system in a petroleum well
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
CN106523911A (en) * 2016-09-12 2017-03-22 成都创慧科达科技有限公司 Natural gas transportation pipeline system and natural gas transportation method
CN106523911B (en) * 2016-09-12 2019-03-08 广东中农博涛科技有限公司 A kind of natural gas transportation pipeline system
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures

Also Published As

Publication number Publication date
NO953217L (en) 1997-02-17
NO953217D0 (en) 1995-08-16
GB2304392A (en) 1997-03-19
GB9617024D0 (en) 1996-09-25
GB2304392B (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US5126037A (en) Geopreater heating method and apparatus
US5065818A (en) Subterranean heaters
US4662437A (en) Electrically stimulated well production system with flexible tubing conductor
US6112808A (en) Method and apparatus for subterranean thermal conditioning
RU2473160C2 (en) Method and device for electrical energy transmission
CA2375565C (en) Wellhead heating apparatus and method
US2224403A (en) Electrical heating of storage and transportation system of a viscous fluid
CA2055053C (en) Robust electrical heating systems for mineral wells
US2757739A (en) Heating apparatus
US3975617A (en) Pipe heating by AC in steel
EP1117962B1 (en) System and method for transferring cryogenic fluids
EP0485220A1 (en) Electrical heating system for subsea flexible pipelines
US6171025B1 (en) Method for pipeline leak detection
US5621844A (en) Electrical heating of mineral well deposits using downhole impedance transformation networks
US10000999B2 (en) Apparatus for the inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors
US6000438A (en) Phase change insulation for subsea flowlines
US6739803B2 (en) Method of installation of electrically heated pipe-in-pipe subsea pipeline
CA2078872C (en) Thermal mineral extraction system
AU2007356497A1 (en) MP-T II machines
US4790375A (en) Mineral well heating systems
US3777117A (en) Electric heat generating system
GB1251095A (en)
CN101048571B (en) Subterranean electro-thermal heating system and method
US5782301A (en) Oil well heater cable
EP0063444B1 (en) Electrically driven submersible pump system

Legal Events

Date Code Title Description
AS Assignment

Owner name: AKER ENGINEERING AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AARSETH, FINN;REEL/FRAME:008169/0492

Effective date: 19960729

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FINN AARSETH, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AKER ENGINEERING AS;REEL/FRAME:014428/0951

Effective date: 20030807

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12