TW200903625A - Multi-station decoupled reactive ion etch chamber - Google Patents

Multi-station decoupled reactive ion etch chamber Download PDF

Info

Publication number
TW200903625A
TW200903625A TW96124228A TW96124228A TW200903625A TW 200903625 A TW200903625 A TW 200903625A TW 96124228 A TW96124228 A TW 96124228A TW 96124228 A TW96124228 A TW 96124228A TW 200903625 A TW200903625 A TW 200903625A
Authority
TW
Taiwan
Prior art keywords
plasma
chamber
processing
frequency
cathode
Prior art date
Application number
TW96124228A
Other languages
Chinese (zh)
Other versions
TWI337382B (en
Inventor
Tu-Qiang Ni
Jin-Yuan Chen
Xue-Yu Qian
Gerald-Zheyao Yin
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Priority to TW96124228A priority Critical patent/TW200903625A/en
Publication of TW200903625A publication Critical patent/TW200903625A/en
Application granted granted Critical
Publication of TWI337382B publication Critical patent/TWI337382B/zh

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

There is provided a processing chamber including two or more tandem processing zones, which can realize plasma isolation and radio frequency isolation. Each processing zone includes at least two radio frequencies fed into its cathode, wherein one of the radio frequencies is higher than the other one by at least two times, so as to provide the decoupled reactive ion etch capability. The chamber body of the processing chamber is connected to ground. By means of frequency isolation, multiple radio frequencies can be fed into the cathode without causing radio frequency crosstalk and beating. In addition, a plasma limiter is employed to prevent plasma crosstalk. A grounded common evacuation path is connected to the vacuum pump.

Description

200903625 九'發明說明: 【發明所屬之技術領域】 α本發明涉及等離子體處理室,尤其涉及—種具有—對或多個並行的處 理區域、可翔地胡時地加讀理兩片或更多4基片的雜子理 【先前技術】 在半導體晶片的製作過程中,通常會採用兩類半導體晶片處理系統。 第類系統通币被稱為批次處理(batch processing)系統。使用批次處理系統 的主要原因在多個晶片或基片能夠被同時加讀理,因而該系統可以提供 高的輸出產能。但是,隨著半導體科性能規範要求的日益嚴格,工業界 已經轉而使用第二類處理室’即,單基片處理室。開發單基域理系統的 主要原因在於它更便於湖基㈣卫難性和基#表面的卫藝均一性。 ^另一方面,在某些特定的應用場合,人們還嘗試提供一種可以同時並 行處理兩絲>1的單鑛理室。此種細,可以在保證單基#處理的優點 的_可以-次處理兩片基片。美國專利第5,811,似號揭露了—種兩個/ 並行(twin/tandem)的基片處理室系統,該發明是一種電感耦合型等離子室, 採用等離子體去除光娜’肋也被之為:光_灰化。光娜灰化是一 ,氧化反應,此過程使用氧去除有機光刻膠。光刻膠被氧化成氣體,如一 氧化碳、二氧化碳和水蒸氣’然後通過真空泵抽出處理室。因此,此類應 用在半導縣歧理過程巾並不要求具有與紐性減範更加嚴格的應用 (如半導體基片银刻)同樣的工藝均一性。 因為光刻膠灰化的處理要求不嚴格,專利5,811,〇22中提出的處理室包 括兩個分離的等離子體生成室(tWG sepamte plasma generatk)n ehambe^,每 個等離子體生成室的底部是開放的,並與—基丨處理室相連,該基片處理 至内容設有兩片基片。等離子體發生室和基片處理室之間設置有—個帶電 粒子篩檢程式,用於防止帶電粒子進入基片處理室,但允許電中性的活潑 粒子進入基片處理室,從而將光刻膠從基片上去除。由於該基片處理室的 結構被構置絲^絲>!之間沒有分隔並且轉子體無法在基壯被引燃 (ignite),進一步的,由於使用了篩檢程式防止帶電粒子進入基片處理室, 專利5,811,G22中提出的基片處理室並不能用於當今性能規範要求更嚴格的 200903625 •應用(如铸縣>}_),而觀祕簡單的灰化。 美國專利第5,855,681號還提出了另外一種並 ^刀立的讀分配讀錢射㈣麵以在每— 的等離枝°制地,補5,855,681憎釋了 ==肌022 =容)的不足之處是由在單個處理 處理千宜(祕lpiestatlons)中對多片基片断局部地工藝處理而 專利5,855,681教示到處理室應具有“相互隔離的處 ^二中同時進行隔離的工藝處理,這樣可以同時 儘管隔離處理區域的解決方案可以實現並行處理兩片基片, 出了為“室匹配,,(chamW 或“處理 matchmg)的困難。即,它使得控制處理室的兩個處理區域贿供200903625 九的发明说明: [Technical field to which the invention pertains] α The present invention relates to a plasma processing chamber, and more particularly to a processing area having one or more parallels, which can be read two times or more. Multi-substrate heterogeneous [Prior Art] In the fabrication of semiconductor wafers, two types of semiconductor wafer processing systems are typically employed. The first type of system currency is called a batch processing system. The main reason for using a batch processing system is that multiple wafers or substrates can be read simultaneously, so the system can provide high output throughput. However, as semiconductor system performance specifications become more stringent, the industry has switched to a second type of processing chamber, i.e., a single substrate processing chamber. The main reason for the development of the single-base domain system is that it is more convenient for the lake base (four) and the surface uniformity of the base. On the other hand, in some specific applications, attempts have also been made to provide a single-mine chamber that can process two wires simultaneously in parallel. With such fineness, it is possible to process two substrates in a time-supplied manner to ensure the advantages of the single-base treatment. U.S. Patent No. 5,811, the disclosure of which is incorporated herein incorporated herein by reference in its entirety in the in the the the the the the the the the the the the the the Light _ ashing. Gina ashing is an oxidation reaction that uses oxygen to remove organic photoresist. The photoresist is oxidized to a gas such as carbon monoxide, carbon dioxide and water vapor' and then pumped out of the processing chamber by a vacuum pump. Therefore, such applications in the semi-conducting county process papers do not require the same process uniformity as applications with more stringent metrology (such as semiconductor substrate silver engraving). Because the processing requirements for photoresist ashing are not critical, the processing chamber proposed in Patent No. 5,811, 〇22 includes two separate plasma generating chambers (tWG sepamte plasma generatk), the bottom of each plasma generating chamber is Open and connected to the processing chamber, the substrate is processed to provide two substrates. A charged particle screening program is provided between the plasma generating chamber and the substrate processing chamber to prevent charged particles from entering the substrate processing chamber, but allowing electrically neutral active particles to enter the substrate processing chamber, thereby lithography The glue is removed from the substrate. Since the structure of the substrate processing chamber is configured such that there is no separation between the filaments and the rotor body cannot be ignited, further, the use of a screening program prevents charged particles from entering the substrate. The processing chamber, the substrate processing chamber proposed in patents 5, 811, and G22 cannot be used in today's performance specifications with stricter requirements 200903625 • Applications (such as Casting County >}_), while viewing simple ashing. U.S. Patent No. 5,855,681 also proposes another deficiencies in the reading and distribution of readings (four) faces to make up for each of the equidistant branches, supplementing 5,855,681 and releasing == muscle 022 = volume. It is a process of local processing of a plurality of base segments in a single treatment process, and the patent 5,855,681 teaches that the processing chamber should have a process of "separating the two sides simultaneously, so that at the same time, The solution to isolate the processing area allows parallel processing of two substrates, which is difficult for "chamber matching, (chamW or "matchmg"). That is, it allows the two processing areas of the control room to bribe

離^處理條件/環境變得困難。例如,若一個處理區域的敍刻速率高於另一 個處理區域,則很難控制侧過程的結束點。換言之,若_工蔽的 點是根據較高钱刻速率區域確定的,將導致另一處理區域中的基U 完全侧。反之’絲私藝的結束點被延遲,則高 中 基片將會被過度蝕刻從而被損壞。 干妁 ,國專利第6,962,644號提出了上述並行處理室的改進版本,在該專利 中知出:r-個具有多個相互隔離的處理區域的處理室,、在專利6%綱 二採用―個:中_栗室”(central pumping pl咖)使得兩個處理打^ ;通,但疋這種設計又導致了在技術上被稱為“射頻串擾”⑽⑽讀) 的問題。在並行的處理系統中,射頻串擾具有極大的危害,因為一個處理 區域:條件的變化會對第二倾理區域切工藝處理產生負面影響。 則述並行處理室還存在一個由於“隔離” *導致的問題,它難以在兩個 理區域之贴配處理結果。另外,專利巾描述的並行處理室使用 了兩個射頻功率源’該兩個射頻功率源的相位和頻率被鎖定在一起,用來 防止兩個功率源造成射頻功率的脈衝波動…㈣)。這增加了處理室的結 構和配置的赫性。最後,前述並行處·中產生轉子體的方法不能禮 200903625 的嚴格性能規範要求。因此,半導體工 f有而抓供-種多基片處理室,它能確保高水準的工藝 還月匕^綠在處理室的每個處理區域中的工藝性能都相互 b · 【發明内容】 工處提供一種多基片處理室,其能夠單獨地或同時地加 ^或更夕片基片,它能確保高水準的工藝性能,同時還能證 在處理室的每贱繩域巾駐藝性目互匹配。 ” 個處實施例提供具有等離子體隔離和頻率隔離性能的包括兩 域或更多個並行在—起的處理區域的處理室,其可以從每個處理 的2部饋入多個射頻頻率。處理室壁(chamberwall)接地,且兩個相鄰 2理區域之間的隔離壁(partitionwall)也接地。使用頻率隔離使得從陰 ^饋入的多個射頻頻率不會產生射_擾和波動。等離子體限制裝置被用 ,止出現等離子體串擾(plasma crosstalk)。另外還提供一個接地的公共 排氣通道(grounded comm〇n evacuati〇n path)連接到—個單一的真空泵 (single vacuum pump )上。 在排氣通道入口處設置有微通道環結構(micr〇_channds Η% structure)’可以將等離子體限制在處理區域内,這樣等離子航不會進入排 乳通道從而不會在處理區域之間產生等離子體串擾。由於本發明採用單個 真空泵來純賊’因特導致精稱滅減,職通道财助於實現 處理區域_壓力分配。該環結構還可以防止兩個處理區域之間產生射頻 輕射拽露。該職構被配置紅較齡的,因而不會造成轉子體賤射 (no Plasma sputtering) ’但底部是導電的並接地,以防止射頻洩露肿 leakage)。 本發明處理室的等離子體限制可防止出現射頻波動,因而不需要如前 it現有技術中鎖疋射頻功率源的相位和頻率。並且,由於本發明配置有等 離子體限制以及射頻分離,每一個處理區域可以單獨進行工藝處理或多個 處理區域同時並行地進行工藝處理。 【實施方式】 本發明的實施例提供一個多用途的等離子室,它可以在高產量的情況 200903625 -下提供高精度的均-性加工處理。本發明可以實現每一個處理區域中的等 離子體的穩定性和一致性,所獲得的工藝處理結果滿足了先進半導體處理 . 中的高精度要求。本發明提供了具衫個處理平臺或處理區域的去耗合反 應離子蝕刻室(multi-station decoupled職tive ion etch ehamber),其中每“ 理區域均被施加多鋪頻功轉。本發明採用了多種躲和設計以防止相 鄰兩個並行的處理區域之間產生頻率波動和射頻串擾。特別的,迄今為止 還沒有人提出過在並行的處理室的每個處理區域的陰極饋入兩個或更多個 射頻頻率來實現去耦合反應離子蝕刻。 第1圖是根據本發明的一個實施例繪製的並行等離子體處理室1〇〇的 Γ 截面圖,而第2圖是第1圖中沿線c_c的截面圖。此處的描述會參考這兩 個圖。室體(chamberbody) 105通常由導電的金屬材料(如鋁)製成,室體 105包括兩個並行的處理區域110和115 ^處理區域11〇和ιΐ5通過隔離壁 122被物理性隔開;此外,還採用壓力均衡機制來平衡兩個處理區域I〗。和 115之間的壓力’具體設計將在下文中被詳細闞述。室體1〇5 (包括隔離壁 122)被接地’從而在兩個處理區域11〇和115之間提供電場隔離,有助於 避免射頻串擾。 在每一個處理區域110和115中各有一個固定的陰極(flxedcath〇de) 12〇 和125 ’可以用於放置基片130、135以便進行工藝處理。本實施例中,陰 ( 極120和125是固定的,因為其相對於可移動的陰極12〇和125能夠更好 地接地。由於本實施例中,兩個頻率是通過陰極12〇和125饋入的,因此 有效的接地顯得非常重要。由此可知,對於本實施例使用固定陰極比現有 技術具有更大的優勢。 陰極120和125包括一夾持裝置(chuckmechanism),可以將基片固定在 指定位置。該夾持裝置可以是任何傳統的夾持裝置,如傳統的靜電卡盤。 另外,陰極120和125還包含一個内置的電極,用於將射頻能量輻射進入 處理區域。射頻能量通過射頻導體(处conduct〇rs) 14〇和145傳送到陰極 120和125。每一個射頻導體140和145與兩個射頻功率源相耦接,如,射 頻功率源152和154耦接至射頻導體14〇,射頻功率源156和158耦接至射 頻導體145,二者分別經由匹配電路153和157實現耦接。在本實施例中, 200903625 射頻功率被均勻地耦接分佈至陰極120和125上,比如,在本實施例中, 由三又式耦合器(3-pronged coupler)實現功率輪送,每一個三叉式耦合器具 有3個連接器(截面圖中僅示出了兩個連接器15〇、155),三個連接器之 呈120角度分開。 本實施例中,去耦合反應離子触刻是通過在每一個陰極和125上 施加兩個射頻頻率實現的,其中這兩個頻率間隔 個射頻功率細和154 _功率是 與低頻率的頻率之比被設定為至少大於2,這樣可以確保兩個頻率之間的隔 離。例如,低頻率可以在500khz至2.2聰範圍内選擇。舉一個且體 子’低頻率設為約2MHZ,第二射頻頻率設為大約27贿。另一個例子中, 低頻率設為約2順,而第二射頻頻率約設為大約6QMhz或刚聰。 實施例中’兩個處理區域UG與115之間的干擾部分地是通過對 五'功。源152和154進行頻率調節(frequencyiuning)避免的。它可以實現 如’小於1秒伽應時間)’因而-個處理區域中的任何擾動 不會對其相舰域⑽工藝處理產生負面影響。在本實施射,採用$ tUrr麵匹配電路153和π,每一個射頻匹配電路15^ =將兩路射頻信號接入一個處理區域⑽,115内的陰極卿a。出於此 國專利申請2_133163中提出 峪仁疋專利申#2〇〇5/〇133163中提出的射頻匹配方法要 這會增加軸匹配構造賴職。_,採 設計避免,_2_W3_ +嶋触配的創新 離子本發明並行等 個射頻輸人,-個轉祕入却八v ㈣了讀施例具有兩 網路總共有‘;是頻匹配 射頻輪出埠。遠並射離子體處理室·的射頻匹配網 200903625 刀為—個低頻部分和—個高頻部分,此兩部分在輸出埠處通過同一 一遷接點合併。高頻部分包含一個接地電容器C1,、一個電容器C2,、以及 ^電感f L’。此外,低頻部分包含—個通過電容器α接地_子,以及 山Ϊ至電容器C2的另—個端子’該電容H C2與電感ϋ L並行後連接到輸 出ί旱。 ”刀’電感器L、電容器C1和電容器C2構成了一個低通滤波 南,分,電感器l’、接地電容器cr和電容器cr構成了 一個高 頻輸人的頻率遠遠高於低頻輸人的頻率時,即高頻輸入的 辦至少2倍(優勒,為至少ig倍)時,由於高猶波 等離子體處理室_在高頻輸入下的阻抗特性,高頻部 m—她小的錢便可實現整舰_路與並行㈣子體處理室 某些條件下,在高麟分使神物理電—(Ph响 將射祕只用傳導器件(如連接線)與—個料連接器一起 代接至並行等離子體處理室100的下電極。這樣傳導器件取 的作用。在此配置下,傳導器件和傳導連接器的自感可以基本 。此時,接地電容11 ci,可讀料科、傳導連接器 調節,古_”容器代替。由於寄生電容器⑽叶,的值較小且不易 電二電容11C2’可以採用可調電容器以便調整電路的阻抗。 感㈣值可輯過高頻和低頻部分的頻率估計得到。並 和過選擇電容11C1的值來獲得。眾所周知,由電容器 導ί=Γ些匹配網路本身具有複阻抗。所以,由於電路元器件‘ 、身電阻值,可以通過選擇並調整匹配網路巾元器件的值 。當低頻部分連接至低頻射頻發生器時,從輸出埠至低頻= 的在鋪下的阻抗讀上雜眺。當高頻部分連接至祕射伽 =時,從輸料至細部分測量時所得觸在高頻下的 :由返鳴至高頻部分測量時所得到的在高頻下的阻抗大= 在第5圖所示的射頻匹配網路中,低頻射頻能量通過包含電容器ο和 200903625 在纖__可以具有兩條支路或通 電感器L’經過設置,使得對於低頻射頻輪=而言= 2阻抗退遠大於並行等離子體處理室觸的阻抗。因此,低頻射頻發生 态的絕大部分能量都被輸入至並行等離子體處舍 值輸入到回頻部分的能量可以被降低到2%以下。σ 類似地,高頻射頻能量由高頻射頻源產生後, 組成的電關達輸料,這稿頻射賴出具有_支路電;^ S反ft者輸人低頻部分。低頻部分包含寄生電容、電容器C2和電感 Ϊ二H 以並行連接的。電容器C1的一端連接至 此電路配置,增加電容器和電感器的估計值, 並進電容ϋ的值,可以使得對於高頻射頻輸人而言,低頻部 彳=細树1GG崎,,細發生器的 都被輸入到並行等離子體處理室卿,而不會被輸入到低頻部 刀從而燒毁低頻射頻發生器。此外,通過合理選擇電容器ci的值,輸入到 低頻部分的能量可以被降低到2%以下。 請再參考第1圖和第2圖’處理氣體由—共用源16〇提供。來自丑用 源_的氣體通過氣體喷頭170和175分配到每個處理室中,在本實關 中’該兩個氣體喷頭採用雙區(dualz〇ne)或多區氣體噴頭。即,如第ι圖所 不,氣體喷頭no包含中心區域172和週邊區域176,中心區域172和週邊 區邮6通過密封174隔開、輸氣管m將氣體輸送到中心區域π,而輸 氣官Π3將氣體輸送到週邊區域176。令心區域與週邊區域之間的氣體輸送 比^⑽過共用源廳控制。另外,由輪氣管171和173輪送的氣體的 組成部分可以通過共用源控制。即,管道m和173可以輸送不同或 相同的氣體或氣體混合物。 氣體噴頭m和175還包含—個内置的導電電極,從而為與相應陰極 120和125輕合的射頻功率源構成接地通路。 200903625 第1圖還示出了一個中心真空泵180。中心真空泵180通過排氣室184 的排氣口 182可以排出處理區域110和115中的氣體。使用單個中心真空 泵180簡化了整個並行等離子體處理室100的構造,並可使並行等離子體 處理室100更加緊湊。另外,共用的排氣口 182還可以説明均衡兩個處理 區域110和115之間的壓力。但是,此設計也帶來了一些問題,下面將根 據本實施例進行說明。 以下解釋是關於處理區域110的,但是應當理解,同樣的解釋也可適 用於處理區域115。如第1圖所示,由於排氣口 182位於兩個處理區域11〇 和115之間,它為每個處理區域110和115製造了—個傾斜的排氣通路。例 如,箭頭A為粒子沿處理區域靠近排氣口 182經過的路徑,而箭頭b為粒 子沿處理區域遠離排氣口 182經過的路徑。容易理解,路徑b要長於路徑a, 這將導致處理區域110畴據力差。為了克服此不足,在本實施例中, 在每個處理區域内設置了限制裝置190、195(或稱微通道等離子體限制裝 置)。限制裝置190用於隔離處理區域110和排氣口 182,同時允許從處理 區域110内以沿著處理區域110均衡壓力的方式抽取氣體。限制裝置1 可以採用已公佈的美國專利申請2〇_〇85483令提出的任何環的社構。 第3圖和第4圖中示出了可以用於第!圖中處理室的限制裝置 稱等離子體限制裝置)的-個實施例,於此另外用序號%標出。儘 明 其·㈣轉子舰做置,筒3 _第4騎描述可 頃者提供更加完備的解釋。如第3圖和第4圖中所示 ^ 位於處理區域110和排氣室184之間。在第 ^ ^ \u 呵度。而在第3、4圖中,笪Μ 子體限制裝置70包括-個接地轉電部件71。該接地的導電部^ = 外部週邊邊緣72和娜_部週邊邊緣7 〜 的内壁⑻。另外,接地的導電部件71具有^二通吊環繞排氣室184 75。如圖所示,若干個通道76在接地的 4以及相對的底表面 置而成,並且延伸於底表面Μ和頂表 °内部按照預定方式設 了一個電埸屝瞳,其太!·女如7Α 之間。接地的導電部件71構成 :達通 ==自於等離子體的射_(〜。: 糊糾心通過此方式,等離子體不會在排氣〇⑻咖燃或形成。) 12 200903625It is difficult to deal with conditions/environment. For example, if the scribe rate of one processing area is higher than the other processing area, it is difficult to control the end point of the side process. In other words, if the point of the mask is determined based on the higher rate region, it will result in the base U in the other processing region. On the other hand, the end point of the silk art is delayed, and the high-altitude substrate will be over-etched and damaged. An improved version of the above parallel processing chamber is proposed in the Japanese Patent No. 6,962,644, in which it is known that r-a processing chamber having a plurality of mutually isolated processing regions is used in the patent 6% "Central pumping pl" makes two processes pass, but this design leads to the problem of what is technically called "RF crosstalk" (10) (10) read. In parallel processing systems Among them, RF crosstalk is extremely harmful because a processing area: the change of conditions will have a negative impact on the processing process of the second processing area. The parallel processing room also has a problem caused by "isolation" *, which is difficult The result of the processing in the two areas. In addition, the parallel processing chamber described in the patent towel uses two RF power sources. The phases and frequencies of the two RF power sources are locked together to prevent two power sources. Causes the fluctuation of the RF power pulse...(4)). This increases the structure and configuration of the processing chamber. Finally, the method of generating the rotor body in the parallel position can not be strict. Performance specification requirements. Therefore, semiconductor workers have a multi-substrate processing chamber that ensures a high level of process and process performance in each processing area of the processing chamber. SUMMARY OF THE INVENTION The present invention provides a multi-substrate processing chamber capable of separately or simultaneously adding a film or a substrate, which ensures a high level of process performance while also being proven in each of the processing chambers. The inventions are mutually compatible. The embodiments provide a processing chamber comprising two or more parallel processing zones with plasma isolation and frequency isolation performance, which can be processed from each of the two Feed multiple RF frequencies. The chamber wall is grounded and the partition wall between two adjacent areas is also grounded. The use of frequency isolation does not cause radio frequency interference and fluctuations from multiple RF frequencies fed from the cathode. A plasma confinement device is used to stop plasma crosstalk. A grounded comm〇n evacuati〇n path is also provided to connect to a single vacuum pump. A microchannel ring structure (micr〇_channds Η% structure) is provided at the inlet of the exhaust passage to limit the plasma in the treatment area so that the plasma flight does not enter the milk discharge passage and thus does not occur between the treatment regions. Plasma crosstalk. Since the present invention uses a single vacuum pump to purely thieves, the special channel is used to achieve the processing area _ pressure distribution. The ring structure also prevents RF light exposure between the two processing areas. The job is configured to be red-aged and thus does not cause no plasma sputtering' but the bottom is electrically conductive and grounded to prevent radio frequency leakage. The plasma confinement of the process chamber of the present invention prevents the occurrence of radio frequency fluctuations and thus does not require the phase and frequency of the locked RF power source as in the prior art. Moreover, since the present invention is configured with plasma confinement and radio frequency separation, each processing region can be individually processed or a plurality of processing regions can be simultaneously processed in parallel. [Embodiment] Embodiments of the present invention provide a versatile plasma chamber which can provide high-precision uniform processing in the case of high throughput. The present invention can achieve the stability and consistency of the plasma in each processing region, and the obtained process processing results meet the high precision requirements in advanced semiconductor processing. The present invention provides a multi-station decoupled reactive ion etch ehamber with a processing platform or processing region, wherein each "region is applied with multiple spread frequency work. The present invention employs Multiple hiding and design to prevent frequency fluctuations and radio frequency crosstalk between adjacent two parallel processing areas. In particular, no one has proposed to feed two cathodes in each processing area of a parallel processing chamber or More RF frequencies are used to achieve decoupling reactive ion etching. Figure 1 is a cross-sectional view of a parallel plasma processing chamber 1 绘制 according to one embodiment of the present invention, and Figure 2 is a cross-sectional line c_c in Figure 1. A cross-sectional view of the present invention will be referred to herein. The chamber body 105 is typically made of a conductive metallic material such as aluminum, and the chamber body 105 includes two parallel processing regions 110 and 115. 11〇 and ΐ5 are physically separated by the partition wall 122; in addition, a pressure equalization mechanism is used to balance the two processing areas I. The pressure between the 115 and the 'specific design will be detailed below As a detailed description, the chamber body 1〇5 (including the partition wall 122) is grounded to provide electric field isolation between the two processing regions 11A and 115, helping to avoid radio frequency crosstalk. In each of the processing regions 110 and 115 Each has a fixed cathode (12x and 125' that can be used to place the substrates 130, 135 for processing. In this embodiment, the cathodes (poles 120 and 125 are fixed because they are relative to each other) The moving cathodes 12A and 125 can be better grounded. Since the two frequencies are fed through the cathodes 12A and 125 in this embodiment, effective grounding is very important. It can be seen that this embodiment is used. Fixed cathodes have greater advantages over the prior art. Cathodes 120 and 125 include a chucking mechanism that holds the substrate in a designated position. The holding device can be any conventional clamping device, such as conventional static electricity. In addition, cathodes 120 and 125 also include a built-in electrode for radiating RF energy into the processing area. RF energy is transmitted to the cathode through RF conductors (conduct〇rs) 14〇 and 145. 120 and 125. Each of the RF conductors 140 and 145 is coupled to two RF power sources, for example, RF power sources 152 and 154 are coupled to the RF conductor 14A, and RF power sources 156 and 158 are coupled to the RF conductor 145. The two are coupled via matching circuits 153 and 157, respectively. In this embodiment, the RF power is uniformly coupled to the cathodes 120 and 125, for example, in the present embodiment, by a three-coupler ( 3-pronged coupler) implements power transfer, each three-pronged coupler has three connectors (only two connectors 15〇, 155 are shown in the cross-section), and the three connectors are separated by 120 degrees. In this embodiment, the decoupling reaction ion lithography is achieved by applying two RF frequencies on each of the cathodes and 125, wherein the two frequencies are separated by RF power and 154 _ power is the ratio of the frequencies to the low frequencies. It is set to at least greater than 2 to ensure isolation between the two frequencies. For example, low frequencies can be selected from 500 khz to 2.2 sm. One and the body 'low frequency is set to about 2 MHZ, and the second RF frequency is set to about 26 bribes. In another example, the low frequency is set to about 2 cis, and the second RF frequency is set to about 6QMhz or just Cong. The interference between the two processing regions UG and 115 in the embodiment is partly through the pair of 'work'. Sources 152 and 154 are avoided by frequency arbitration. It can achieve, for example, 'less than 1 second gamma time' and thus any disturbance in one processing region will not adversely affect its phase domain (10) process. In the present embodiment, the $tUrr surface matching circuit 153 and π are used, and each of the radio frequency matching circuits 15^=connects two radio frequency signals to a processing area (10), and a cathode a in the 115. The RF matching method proposed in 峪仁疋 Patent Application #2〇〇5/〇133163 is proposed in this patent application 2_133163. This will increase the axis matching structure. _, mining design avoids, _2_W3_ + 嶋 contact with the innovative ion of the present invention in parallel with a single RF input, a turn into the secret but eight v (four) read the case has two networks in total '; is the frequency matching RF round port. RF matching network for far-injection ion treatment chambers 200903625 The knife is a low-frequency part and a high-frequency part, and the two parts are merged at the output port by the same transfer point. The high frequency portion includes a grounding capacitor C1, a capacitor C2, and an inductance f L'. In addition, the low frequency portion includes a grounding_sub-passer through the capacitor α, and another terminal to the capacitor C2. The capacitor H C2 is connected in parallel with the inductor ϋ L to the output. The "knife" inductor L, capacitor C1 and capacitor C2 form a low-pass filter south, minute, inductor l', ground capacitor cr and capacitor cr constitute a high frequency input frequency is much higher than the low frequency input At the frequency, that is, the high-frequency input is at least 2 times (Ultra, at least ig times), due to the impedance characteristics of the high-yield plasma processing chamber _ at high-frequency input, the high-frequency part m-she is small It is possible to realize the whole ship_road and parallel (four) sub-body processing room under certain conditions, in the high-lining to make the physical power of the gods - (Ph ring will only use conductive devices (such as connecting lines) with the material connector Substituting to the lower electrode of the parallel plasma processing chamber 100. The conduction device takes the role of this. In this configuration, the self-inductance of the conductive device and the conductive connector can be substantially. At this time, the grounding capacitance 11 ci, the readable material, Conductive connector adjustment, ancient _" container instead. Due to the parasitic capacitor (10) leaf, the value is small and not easy to electrically two capacitors 11C2 ' can use adjustable capacitors to adjust the impedance of the circuit. Sense (four) value can be edited over the high and low frequency parts Frequency estimate And it is obtained by selecting the value of the capacitor 11C1. It is well known that the matching network itself has a complex impedance. Therefore, due to the circuit component's and body resistance values, the matching network towel element can be selected and adjusted. The value of the device. When the low frequency part is connected to the low frequency RF generator, the noise is read from the output 埠 to the low impedance = the buried impedance. When the high frequency part is connected to the secret gamma =, from the feed to the fine part The resulting measurement at high frequencies: the impedance at high frequencies obtained from the return to the high frequency portion is measured. = In the RF matching network shown in Figure 5, the low frequency RF energy passes through the included capacitor. And 200903625 in the fiber __ can have two branches or through inductor L' is set, so that for low frequency RF wheel = 2 impedance retreat is greater than the impedance of the parallel plasma processing chamber touch. Therefore, low frequency RF generation state The vast majority of the energy is input to the parallel plasma where the input value to the frequency-return portion of the energy can be reduced to less than 2%. σ Similarly, the high-frequency RF energy is generated by the high-frequency RF source. The electricity is connected to the material, and the current frequency of the draft has a _ branch circuit; the S sft is the low-frequency part of the input. The low-frequency part contains the parasitic capacitance, the capacitor C2 and the inductor Ϊ2H are connected in parallel. One end of the capacitor C1 Connected to this circuit configuration, increasing the estimated value of the capacitor and inductor, and entering the value of the capacitor ,, can make the low frequency part 彳 = fine tree 1 GG, for the high frequency RF input, the fine generator is input to the parallel The plasma processing chamber is not input to the low-frequency knife to burn the low-frequency RF generator. In addition, by properly selecting the value of the capacitor ci, the energy input to the low-frequency portion can be reduced to less than 2%. Fig. 1 and Fig. 2 'Process gas is supplied by a common source 16 。. Gas from ugly source _ is distributed to each processing chamber through gas nozzles 170 and 175, and in the actual case, the two gas jets The head uses a dual zone (dualz〇ne) or multi-zone gas jet. That is, as shown in FIG. 1, the gas nozzle no includes a central region 172 and a peripheral region 176, and the central region 172 and the peripheral region 6 are separated by a seal 174, and the gas pipe m transports gas to the central region π, and the gas is delivered. The bureaucracy 3 delivers gas to the peripheral region 176. The gas transmission ratio between the heart area and the surrounding area is controlled by the common source hall. In addition, the components of the gas that are rotated by the wheeled tubes 171 and 173 can be controlled by a common source. That is, conduits m and 173 can deliver different or the same gas or gas mixture. Gas nozzles m and 175 also include a built-in conductive electrode to form a ground path for the RF power source that is coupled to the respective cathodes 120 and 125. 200903625 Figure 1 also shows a central vacuum pump 180. The central vacuum pump 180 can exhaust the gases in the processing zones 110 and 115 through the exhaust port 182 of the exhaust chamber 184. The use of a single central vacuum pump 180 simplifies the construction of the entire parallel plasma processing chamber 100 and allows the parallel plasma processing chamber 100 to be more compact. Additionally, the shared vent 182 may also illustrate equalizing the pressure between the two processing zones 110 and 115. However, this design also brings about some problems, which will be explained below based on this embodiment. The following explanation relates to the processing area 110, but it should be understood that the same explanation is also applicable to the processing area 115. As shown in Fig. 1, since the exhaust port 182 is located between the two processing regions 11A and 115, it creates a slanted exhaust passage for each of the processing regions 110 and 115. For example, arrow A is the path that the particles pass along the processing region near the exhaust port 182, and arrow b is the path that the particles pass along the processing region away from the exhaust port 182. It is easy to understand that the path b is longer than the path a, which will result in a poor signal strength of the processing region 110. In order to overcome this deficiency, in the present embodiment, restriction means 190, 195 (or microchannel plasma limiting means) are provided in each processing area. Restriction device 190 is used to isolate processing region 110 and exhaust port 182 while allowing gas to be extracted from within processing region 110 in a manner that equalizes pressure along processing region 110. The restriction device 1 can be constructed using any of the rings proposed in the published U.S. Patent Application Serial No. 〇 〇 854 843. Figures 3 and 4 show that it can be used for the first! One embodiment of the restriction device of the processing chamber in the figure is referred to as a plasma limiting device, which is additionally indicated by the serial number %. Explain that (4) the rotor ship is set, and the tube 3 _ 4th ride description can provide a more complete explanation. As shown in FIGS. 3 and 4, ^ is located between the processing region 110 and the exhaust chamber 184. In the ^ ^ \u degree. In Figures 3 and 4, the forceps limiting device 70 includes a grounding electrical component 71. The grounded conductive portion ^ = the outer peripheral edge 72 and the inner wall (8) of the peripheral edge 7 to the bottom portion. In addition, the grounded conductive member 71 has a two-way suspension surrounding the exhaust chamber 184 75. As shown, a plurality of passages 76 are formed on the grounded 4 and the opposite bottom surface, and an electric raft is provided in a predetermined manner extending from the bottom surface and the top surface of the top surface, which is too! · Females are between 7Α. The grounded conductive member 71 is constructed: Datong == from the plasma of the plasma_(~.: Paste is corrected by this method, the plasma will not be burned or formed in the exhaust 〇 (8). 12 200903625

和155之間的射頻串擾(RF 另外,此配置還避免了兩個處理區域 crosstalk)。 於i 裝置7〇還包括—個電氣絕緣層80,該電氣絕緣層80位 ^接地的導電部件71的頂表面74。如第撕示,該電氣 靥、n、目、於外部週邊邊緣72大體上徑向地、向内延伸。該電氣絕緣 s 一舶:=層(如圖所不)或多層構成。位於電氣絕緣層80的上方的 孔、、電支樓環90。該電氣導電支撐環90有一個外部週邊邊緣91 邊邊緣72共面),並且還有—個_—定空間的内部週邊邊 ^導電支擇環9〇與該若干個電氣導電部件%集成在一起,使 付〜' 亂專導部件%按預定的間隔相互隔開,並與接地的導電部件π絕 :緣,因而料魏料料%在工祕料射献歧電氣浮地 (eleCtnCalIy floatmg fr〇m g_d)的。這些電氣傳導部件%此處表示為一组 間隔開_環96(或稱電氣導電同心_),並且圓環㈣目互之職成了一 組通道99 ’該通道的與接地的導電部件力上的通道%流體連通。因此, 通道76和99構成了-個流體通道,允許在處理區域ιι〇内用來產生等離 子體的反應氣體離開處理區域11G,並到達排氣口 182。在本發明的一種形 式中’電氣料部件95可以綱半導體獅材料製成。在此情況下,半 體材料摻雜增加了半導體材料的電導性。RF crosstalk between 155 and RF (in addition, this configuration also avoids crosstalk between the two processing areas). The i device 7A further includes an electrically insulating layer 80 which is located at the top surface 74 of the electrically conductive member 71 which is grounded. As indicated by the tearing, the electrical cymbals, n, and eyes extend generally radially and inwardly at the outer peripheral edge 72. The electrical insulation s is composed of a layer: a layer (as shown in the figure) or a plurality of layers. A hole above the electrical insulating layer 80 and an electrical branch ring 90. The electrical conductive support ring 90 has an outer peripheral edge 91 edge edge 72 coplanar, and there is also a _-spaced inner peripheral edge ^ conductive support ring 9 集成 integrated with the plurality of electrically conductive components % , so that ~% of the random component parts are separated from each other at a predetermined interval, and π with the grounded conductive parts: the edge, so the material is in the work of the secret material electric floating (eleCtnCalIy floatmg fr〇 m g_d). These electrically conductive components % are represented here as a set of spaced apart_rings 96 (or electrically conductive concentric _), and the circular (four) meshes serve as a set of channels 99 'the grounded conductive parts of the channel The channel is in fluid communication. Accordingly, passages 76 and 99 constitute a fluid passage that allows the reaction gas used to generate the plasma in the treatment zone to exit the treatment zone 11G and reach the exhaust port 182. In one form of the invention, the electrical component 95 can be made of a semiconductor lion material. In this case, the doping of the semiconductor material increases the electrical conductivity of the semiconductor material.

從第4圖中可以知道’每一條通道99的長度均大於任何帶電粒子的平 均自由程,這些帶電粒子存在於處理區域則内的等離子體中。因而,當 等離子體從處理區域110被抽吸到排氣室184的過程中,所有通過通道二 的帶電粒子均會撞擊該若干個電氣導制心_ %,因此帶電粒子在到達 並行等離子體處理室100的排氣室184之前就已經被中和了其所帶的電 荷。在本發明中,如第3圖和第4圖所示,應明白電氣傳導部件95 (此處 顯示為一組電氣導電同心圓環96)的表面可以被塗覆有或包裹有—種材 料,該材料可以抵抗來自於處理區域110中產生的等離子體對其的等離子 體腐蝕。在本發明的一個實施例中,塗覆於電氣導電部件95表面的材 含Y203。該塗覆層確保了電氣傳導部件95不會受到等離子體的钱刻 從而避免了由此而產生的微塵顆粒(particles)。在另一個實施例中,電氣傳 13 200903625 導=件95可以是—種—體形成的導電板(未圖示) 孔隙或孔洞,狭長孔隙或孔洞的構形同樣被設置成本等離^有狹長 子通^以使帶電粒子被中和,同時允許恤^通過 帶電粒 另外遇可輯祕織置的多種替代實 =_ 71 __ 雜·觸_6 _=== 等離子軸,同時在其上形成電氣= 曰 > ' 的包括在金屬表面形成堅硬的霜层今、水八AR! ^電氣絕緣性,並錢金屬抗雜。在本發^^屬 轉95、電氣導電支撐環%以及接地的導 ^雪,電 層8〇是一種銘陽極化層,其可以通過將導電支作由二^電祕緣 71的表面或電賴地元件71 = »電祕地7G件 得到。在本發明的另一實電支撐衣0的表面進行陽極化處理而 110 115戋接觸到耸雜;辦95中的右干個_ 96及通道76朝向處理區域 ; ::!; 除了前述實施方式’作為本發明的-種其它實施方式’ =====塊可以使電氣導電_和電 可類似地使電氣導電部件95處於浮地的狀態。 接地轉子邮Ε_㈣崎離補_置7〇包含 %。在此方;,楚以及位於其上的電氣導電的且可浮地的電氣導電部件 ^下離子體限制裝置70構成了等離子體遮罩(plasma shield) ^、’員遮罩(RF shield)。.即’可浮地的電氣導電部件%構成等離子體遮 Ϊ 活性粒子從中通過,而接地的導電部件71構成了射頻遮罩, Ρ防止射雛量從中通過。可浮動魏導電部件%定義了 一組通道99, 14 200903625 . 通過它們可以對處理區域110按照一種可控的方式進行抽吸處理。這些通 • 道99是有一定構形(dimension)的,以便猝滅(quench)帶電粒子,同時允 許中性粒子通過。以這種方式,限制裝置7〇可以對處理區域11〇的抽吸 (pumping)操作進行控制,以在整個處理區域11〇内產生均勻的壓力,防止 帶電粒子進入排氣口 182 ’防止射頻輕合至排氣口 182,從而防止等離子體 在排氣口 182處激發產生,而且還避免處理區域11〇和115之間出現射頻 串擾。 本實施例的另一個特性在於第2圖中所示的隔離環132。隔離環132在 賢直方向上是可移動的,如箭頭〇所示。為了將基片13G移入或移出處理 r 區域110,需要將該隔離環132移至較高位置,從而暴露出裝卸槽⑼。當 基片130置於陰極120上之後,將該隔轉132移至如第2圖中所示的較 低位置。私亥位置上’由該隔離環Π2所界定出的處理區域11〇呈對稱的 圓形(symmetricaity circular) ’並且裝卸槽134被“隱藏,,在隔離環132後面因 而不會與等離子體有接觸,等離子體所能接觸到的區域是由該隔離環说 所界定出的圓形邊界(circular b_daiy)。即,在較低位置上,每一個隔離環 I32為每一個處理區域11〇 U5定義了一個週邊邊界㈣細^匕晴^^ eachp騰ssingregion)。另外,在本實施例中,隔離環i32是由介電材料製 成的並n &厚度丁,可以將接地的室體壁面(或簡稱室壁)與等離 ( 子體相互隔離_ate)開來。即,厚度τ可以被合理計算和取值,從^可以 防止射頻返回路徑(RFretumpath)從等離子體經過接地的室壁。以此方式, 射頻返回路徑被控制魅氣體噴頭17G,該氣體喷頭作為上電極實^ 頻返回。 隔離% 132還可以被用於遷力均衡㈣麵叫㈣ ,的-個例子。第6圖中的處理室6。。與第】圖和第2丄= ^不再抽說明’而僅特別說明第6圖中所示出的另外的發明特徵。第6 。不出的實施例顯示了在兩個處理區域之間設置有屢力均衡機制 meChaniSm)。在此例中,動均衡機制通過隔離環632 632移至牆682上設置有一通道⑽咖e_。當隔離環 砂主,、較π位置時’如箭頭D所示,通道684允許氣體在處理區域_ 15 200903625 和615之間自由地通過。另外,在隔離環632中還設置有壓力均衡通路 (pressure equalizing passage)634、636。當隔離環置於較低位置時,如第6 圖所示,壓力均衡通路634、636與通道684共同組成一條路徑^咖够)。 通過此方式,處理區域610和615内的壓力可以通過相互流體連通的路徑 634、684 和 636 達到均衡(be equalized)。 可以理解’由於本發明配置有等離子體限制以及射頻分離,每一個處 理區域610和615可以單獨進行工藝處理或多個處理區域61〇和615同時 並行地進行工藝處理,並且多個處理區域61〇和615可以具有相同的等離 子處理條件/環境。因而解決了現有技術中的“處理平臺匹配,,(stati〇n matching)的不足。 第7圖提供本發明的另一個實施例,其中兩個陰極均被施加多個射頻 功率。第7圖中給出的實細可以通過修改本專利、給出的其它實施例來實 現:或與此處未給㈣其它實現方式制實現。第7财給出的具體實施 例採用了第1圖所給出的實施例,並且對相似的部件採用了相似的數位標 號,差別在於它們是按照7〇〇系列而不是1〇〇系列來標注部件的。 β如第7圖所不’每個陰極72〇和725均接收3個射頻頻率。此舉的目 的是為了通過獨立控制等離子體密度和離子能量來控制钱刻工藝。即,一 個或兩個鮮可以被絲鋪_子_子能量。等離子讎子能量頻率 應選擇在較低的範圍内,如,一個頻率選擇在5〇〇khz_2MHz範圍内,而另 個選擇13MHZ (更精確的說是13 56MHZ)(>這些頻率通常被稱為偏置頻 率(bms frequency)。等離子體的密度可以通過較高的頻率進行控制,如 6〇MHZ、1〇〇MHZ或I60MHZ ’這通常被稱為源頻率(source equency)。另-方面,也可以採用單個偏置頻率和一對源頻率。例如,單 個偏置頻率的取值可以選擇在5GGkhz_2聰顧内或者選擇η聰。而 廷對源頻率的取值可以是27聰、6〇聰、獅龐或卿臟。 赤一個具體^子中’採用了—個偏置頻率754、756,並被設為2MHZ ^ 並採用了兩個源頻率:用於陰極72〇的源頻率752,751以及用 =陰極^2、5的源頻率7S8和砂。源射頻頻率中的一個被設為27聰,另 固被β又為60MHZ。雜配置可以對等離子體粒子的解離提供更好的控制。 16 200903625 第7圖中給出的實施例的另—鱗徵是切制 763和767使得本實施例可以在多個可 和767°切換開關 制等離子體的解離。通過使用切換開關763和 述以進一步控 被用來在歸等軒體處_ 7QQ巾 1财實_都可以 藝操作。在第-階段作•階段工 752,75^,759的第-組合,在第二階段 =756和源頻率 和源頻率752,751,758,759的第二組合。例如,m用偏置頻率754,756 以使用低偏置頻率(如,約2_進行主钱刻階段=里^= 時為了實現“軟著陸,,,系統將被切換到工作在 然置4 ΠΜΗΖ。另-方面,並行等離子體處理室7〇〇 =頻率下’如 752,751,758,759 , ^ ; ^ 片將被移出並行等離子體處理室7〇〇,對並 疋』後土 密产的諸存* — 雜子體處理室採用更高 在度的專離子體進盯清洗。更南密度的等離子體可 頻率獲得,如60ΜΗΖ、卿贿或16贿ζ。 頻的源 敍圖示出了根據本發明的實施例實現的-個採用_偏置頻率進行 工*處理的例子。此玉藝可以是,比如,侧 .中,源麵源被激勵以轟擊等離子體。源射 在步驟800 60ΜΗΖ、卿ΜΗΖ、16瞻等。在步纖、 被施加至處理室以產生解離離子去轟擊基片(第中—工第_偏置頻率被激勵並 〆楚一丫《止挪 事土乃1弟工藝步驟’步驟820)。 i在牛驟後,第—偏置辨在步驟㈣憎斷_傭_冲, 下Ϊ偏偏置功率被激勵’以進行第二工藝步驟850。在此情況 二:Γ 約2聰’第二偏置頻率為大約13龐。在此 為2廳時,源鮮至少應比其高2倍,優選的實施為 间乂倍以上。另一方面’當偏置鮮為13Μηζ時,源頻率可 2兩’當偏置頻率為13臟時,源頻率可以為其兩倍 27,)’或為其五倍(即⑼臟),或更高(卿贿ζ或⑽臟)。 第9圖4 了根據本發_實施敏韻―個__賴率進行工 '處主理的例子。例如,此工藝可以是,比如,#刻半導體基料及此後的“原 位》月洗工藝。在步驟_中,第一源射頻功率源被激勵以絲等離子體。 17 200903625 該源射頻功率源的頻率可以為27MHZ。在步驟810中,偏置頻率被激勵並 被施加至處理室以產生用於轟擊基片的解離離子,用於蝕刻工藝步驟(步 驟920)。當蚀刻工藝過程完成後,在步驟93〇中偏置功率被斷開,並在步 驟935中將基片移出處理室。然後在步驟94〇中啟動第二源功率以進行清 洗步驟(步驟950)。在此情況下,第二源功率的頻率可以是6〇MHZ、丨〇〇MHZ 或 160MHZ。 最後,應當理解,此處所述的工藝和技術並不與任何特定的裝置直接 相關,它可以用任何合適的元件組合來實現。此外,可以根據本發明所教 =的内容,各種類型的通縣件均可以被應用。也可以製造專門的器材來 實,本專利所述的方法及步驟’並且具有—定的優勢。本發明是參照具體 的實施方式來描翻,其所有方面都應為示意性的糖而雜定性的。本 領域的技術人时意識到,不_硬體、軟體和固件的組合都可適用于實 施本發明。比如,所述的軟體可以用很多種程式或指令碼語言來描述,比 如彙編、C/C++、perl、SHELL、PHP、JAVA 等等。 ^明=照具體實财式描述的,但其所有方轉應為示意性而非 == 研究本專利所揭露的發明特徵和實施,熟悉本發明 雜^轉.述實施方 發月7真正範圍和精神則是由下列申請專利細 本 【圖式簡單綱】 夂賴 ^圖綱本細—個實施例鍋並行等離子體處理室的截面示: 第2圖是第1圖中沿線C-C的截面示意圖。 第3圖是本發财轉子體限繼朗—個實 第4圖是如第3圖所示等離子體限健置的局、^ : 第5圖是本發财射頻⑽網路的結構示音圖。、…的剖面W。 第6圖示出了-個實施例,射兩個處繩域 第7圖示出了棒編—峨例,射_崎的每-=加 18 200903625 多個射頻頻率。 ,置頻率進行工藝 第8圖示出了根據本發明的實施例實現的一個採用兩個偏 處理的例子。 藝處 第9圖示出了根據本發明的實施例實現的一個採用兩個源頻率進行工 理的例子。 【主要元件符號說明】 並行等離子體處理室. 室體........ .....105,705 處理區域...... ....... 110,115,710,715 陰極.······· .....120,125,720,725 隔離壁....... ......122,722 基片.......· .....130,135,730,735 隔離環. ......132 裂卸槽....... ......134 射頻導體...... .......140,145,740,745 連接器......· ......150,155,750,755 射頻功率源....· ........152,154 匹配電路.....· .......153,157,753,757 射頻功率源..... ........156,158 共用源....... ......160,760 氣體噴頭.....· .......170,175,770,775 輸氣管....... ......171,771 中心區域· . · . · · .......172,772 輪氣管...... · ......173,773 密封.......· .....174,774 週邊區域·..... .......176,776 中心真空泵....· ........180,780 排氣口....... ......182,782 内壁........ 19 200903625 排氣室.............184,784 限制裝置.............70,190,195,790,795 源頻率.............751,752, 758,759 偏置頻率.............754,756 切換開關.............763,767 導電部件.............71 外部週邊邊緣··...........72 内部週邊邊緣.............73 頂表面.............74 底表面........... · · 75 通道.............76 電氣絕緣層.............80 電氣導電支撐環.............90 外部週邊邊緣.............91 内部週邊邊界.............92 電氣導電部件.............95 電氣傳導環.............96 通道··...........98,99 處理區域.............610,615 隔離環.............632 壓力均衡通路.............634、636 分隔牆....... 682 通道.............684As can be seen from Fig. 4, the length of each channel 99 is greater than the average free path of any charged particles present in the plasma within the processing region. Thus, as the plasma is drawn from the processing zone 110 into the exhaust chamber 184, all of the charged particles passing through the channel 2 will strike the plurality of electrical conduction cores _%, so the charged particles arrive at the parallel plasma processing. The exhaust chamber 184 of the chamber 100 has previously been neutralized with the charge it carries. In the present invention, as shown in Figures 3 and 4, it will be appreciated that the surface of the electrically conductive component 95 (shown herein as a set of electrically conductive concentric rings 96) may be coated or wrapped with a material, The material resists plasma corrosion from the plasma generated in the processing region 110. In one embodiment of the invention, the material applied to the surface of the electrically conductive member 95 contains Y203. The coating ensures that the electrically conductive component 95 is not subject to the plasma and thus avoids the resulting fine particles. In another embodiment, the electrical transmission 13 200903625 guide 95 can be a type of conductive plate (not shown) formed by holes or holes, and the configuration of the elongated pores or holes is also set to be equidistant and narrow. The sub-pass is used to neutralize the charged particles, while allowing the shirt to pass through the charged particles and additionally encounter various alternatives of the actual =_ 71 __ hetero-contact _6 _=== plasma axis, while forming thereon Electrical = 曰 > 'includes a hard frost layer on the metal surface, water eight AR! ^ Electrical insulation, and money metal anti-hybrid. In the present invention, the electrical conductor support ring and the grounding guide, the electric layer 8 is an anodized layer, which can be made by the surface of the electric conductor 71 or the electric The grounding component 71 = » is obtained in 7G pieces. The surface of another electric support garment 0 of the present invention is anodized to 110 115 戋 contact to the tower; the right stem _ 96 and the passage 76 in the 95 are oriented toward the treatment area; ::!; 'As another embodiment of the present invention' ===== The block can cause electrical conduction and electrical power to similarly place the electrically conductive component 95 in a floating state. Grounded rotor postal _ (four) Kawasaki _ _ 7 〇 contains %. Here, the electrically conductive and floatable electrical conductive member located thereon is provided with a plasma shield, and an RF shield. That is, the 'floating electrical conductive member % constitutes a plasma concealing active particle passing therethrough, and the grounded conductive member 71 constitutes a radio frequency mask to prevent the ejection amount from passing therethrough. The floatable Wei conductive part % defines a set of channels 99, 14 200903625. By means of which the processing area 110 can be subjected to a suction process in a controlled manner. These channels 99 have a dimension to quench charged particles while allowing neutral particles to pass. In this manner, the restriction device 7 can control the pumping operation of the processing region 11 to generate a uniform pressure throughout the processing region 11 to prevent charged particles from entering the exhaust port 182 'to prevent radio frequency light The vent 182 is closed to prevent plasma from being excited at the vent 182, and radio frequency crosstalk between the processing regions 11 and 115 is also avoided. Another feature of this embodiment is the spacer ring 132 shown in FIG. The spacer ring 132 is movable in the direction of the sinus, as indicated by the arrow 〇. In order to move the substrate 13G into or out of the process r region 110, the spacer ring 132 needs to be moved to a higher position to expose the loading and unloading groove (9). After the substrate 130 is placed on the cathode 120, the partition 132 is moved to a lower position as shown in Fig. 2. At the private position, the processing area 11 defined by the isolating ring 2 is symmetrically circular and the loading and unloading groove 134 is "hidden" behind the spacer ring 132 so that it does not come into contact with the plasma. The area that the plasma can contact is the circular b_daiy defined by the isolation ring. That is, at the lower position, each isolation ring I32 defines for each processing area 11〇U5. A peripheral boundary (4) is finely ^ 匕 ^ ^ ^ ^ ^ ^ each each ^ ^ ^ ^ ^ ^ ^ ^ ^ 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外Abbreviated as chamber wall) and plasmon (the daughter is isolated from each other _ate). That is, the thickness τ can be reasonably calculated and valued, and the RF return path (RFretumpath) can be prevented from passing through the grounded chamber wall. In this way, the RF return path is controlled by the charm gas nozzle 17G, which is returned as the upper electrode. The isolation % 132 can also be used for the migration equalization (four) surface called (four), an example. Processing room 6. The first diagram and the second 丄=^ are not drawn to illustrate 'and only the additional inventive features shown in Fig. 6 are specifically explained. The sixth embodiment shows that there is a setting between the two processing regions. In this case, the dynamic equalization mechanism is moved to the wall 682 through the isolation ring 632 632 to provide a channel (10) coffee e_. When the isolation ring is sand main, when compared to the π position, as indicated by the arrow D, Channel 684 allows gas to pass freely between treatment zones _ 15 200903625 and 615. Additionally, pressure equalizing passages 634, 636 are also disposed in isolation ring 632. When the isolation ring is placed in a lower position, As shown in Fig. 6, the pressure equalization passages 634, 636 and the passage 684 together form a path. In this manner, the pressure in the treatment regions 610 and 615 can be achieved by paths 634, 684 and 636 in fluid communication with each other. It is understood that 'because the present invention is configured with plasma confinement and radio frequency separation, each of the processing regions 610 and 615 can be processed separately or multiple processing regions 61 and 615 can be simultaneously paralleled. The process is performed, and the plurality of processing regions 61A and 615 can have the same plasma processing conditions/environment. Thus, the "processing platform matching" in the prior art is solved. Figure 7 provides another embodiment of the invention in which both cathodes are applied with a plurality of radio frequency powers. The actual details given in Figure 7 can be implemented by modifying other embodiments of the patent, or by other implementations not provided herein. The specific embodiment given in the seventh embodiment uses the embodiment given in Fig. 1 and similar reference numerals are used for similar components, except that they are labeled according to the 7〇〇 series instead of the 1〇〇 series. Parts of. β does not correspond to Figure 7. Each of the cathodes 72A and 725 receives three RF frequencies. The purpose of this is to control the engraving process by independently controlling the plasma density and ion energy. That is, one or two fresh can be laid out by the _ sub_ energy. The plasma dice energy frequency should be chosen to be in the lower range, for example, one frequency is selected in the range of 5 〇〇 khz_2 MHz, and the other is selected 13 MHZ (more precisely, 13 56 MHZ) (> these frequencies are often referred to as Bms frequency. The density of the plasma can be controlled by higher frequencies, such as 6 〇 MHZ, 1 〇〇 MHZ or I60 MHZ ' This is often referred to as source equency. A single offset frequency and a pair of source frequencies can be used. For example, the value of a single offset frequency can be selected within 5GGkhz_2 or choose η聪. The value of the source frequency can be 27 Cong, 6〇 Cong, Lion Pang or Qing Dirty. Red is a specific ^ used a bias frequency of 754, 756, and is set to 2MHZ ^ and uses two source frequencies: the source frequency of the cathode 72〇 752, 751 and with = The source frequency of the cathodes ^2, 5 is 7S8 and sand. One of the source RF frequencies is set to 27 Cong, and the other is β 60 KZ. The mismatch can provide better control of the dissociation of the plasma particles. 16 200903625 The other scale of the embodiment given in Figure 7 is The systems 763 and 767 enable the present embodiment to dissociate the plasma in a plurality of switches that can be switched from 767°. By using the switch 763 and the further control is used at the returning body _ 7QQ towel 1 _ It can be operated in the first stage. In the first stage, the first combination of stage 752, 75^, 759, in the second stage = 756 and the second combination of the source frequency and the source frequency 752, 751, 758, 759. For example, m is biased. The frequency is 754,756 to use the low offset frequency (for example, about 2_ for the main money phase = the ^^ = in order to achieve a "soft landing," the system will be switched to work in the set 4 ΠΜΗΖ. Another aspect, parallel plasma The volume of the chamber is 7〇〇=frequency, such as 752, 751, 758, 759, ^; ^ The sheet will be removed from the parallel plasma processing chamber 7〇〇, which is higher for the 存 疋 后 后 后 后 * — — — — — In the degree of ionization, the plasma is cleaned up. The more dense plasma can be obtained in frequency, such as 60 ΜΗΖ, 卿, or 16 ζ. The frequency source diagram shows the implementation according to an embodiment of the present invention _ An example of the offset frequency for processing * This jade art can be, For example, in the side, the source source is excited to bombard the plasma. The source is shot at steps 800, 60, ΜΗΖ, 16, etc. in the step, applied to the processing chamber to generate dissociated ions to bombard the substrate (third - The work _ bias frequency is motivated and slammed "Step 820 of the process of stopping the move is a process". i After the cow, the first offset is determined in step (4) _ _ _ _ rush, The lower bias bias power is energized' to perform a second process step 850. In this case two: 约 about 2 Satoshi' second offset frequency is about 13 Pont. In the case of Hall 2, the source should be at least 2 times higher than the standard, and the preferred implementation is more than 乂. On the other hand, when the bias is rarely 13Μηζ, the source frequency can be 2's. When the bias frequency is 13 dirty, the source frequency can be twice its 27,) 'or five times (ie (9) dirty), or Higher (clear bribe or (10) dirty). Fig. 9 is an example of the principle of performing the work according to the present invention. For example, the process can be, for example, a semiconductor substrate and a "in situ" monthly wash process. In step _, the first source RF power source is excited to a wire plasma. 17 200903625 The source RF power source The frequency can be 27 MHz. In step 810, the bias frequency is energized and applied to the processing chamber to generate dissociated ions for bombarding the substrate for etching process steps (step 920). When the etching process is complete, The bias power is turned off in step 93, and the substrate is removed from the processing chamber in step 935. The second source power is then initiated in step 94 to perform the cleaning step (step 950). In this case, second The frequency of the source power can be 6 〇 MHZ, 丨〇〇 MHZ or 160 MHZ. Finally, it should be understood that the processes and techniques described herein are not directly related to any particular device, and that it can be implemented with any suitable combination of components. In addition, various types of Tongxian parts can be applied according to the content taught by the present invention. It is also possible to manufacture specialized equipment, and the method and the steps described in the patent 'and Advantages of the Invention The present invention has been described with reference to specific embodiments, all of which should be exemplary sugars and heterogeneous. Those skilled in the art will recognize that they are not hardware, software and firmware. Combinations are applicable to the implementation of the present invention. For example, the software can be described in a variety of programs or instruction code languages, such as assembly, C/C++, perl, SHELL, PHP, JAVA, etc. The description of the financial formula, but all of them are intended to be illustrative rather than == to study the features and implementation of the invention disclosed in this patent, familiar with the invention, and the true scope and spirit of the implementation of the present invention is Patent application details [schematic outline] ^ ^ ^ diagram outline - an embodiment of the pot parallel plasma processing chamber section showing: Figure 2 is a cross-sectional view of Figure 1 along the line CC. Figure 3 is this The fate of the rotor is the same as that of the lang--the real picture is the plasma limit of the figure shown in Figure 3, ^: Figure 5 is the structural sound map of the RF (10) network of the Fortune. Section W. Figure 6 shows an embodiment, shooting the two points of the rope field 7th Out of the bar----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fig. 9 shows an example of processing using two source frequencies according to an embodiment of the present invention. [Main element symbol description] Parallel plasma processing chamber. Room body.... .....105,705 Processing area...... ....... 110,115,710,715 Cathode.···································· ...122,722 Substrate.......·...130,135,730,735 Isolation Ring.......132 Cracker.............134 Radio Frequency Conductor. ..... .......140,145,740,745 Connector...·......150,155,750,755 RF Power Source.................152,154 Matching Circuit.. ...· .......153,157,753,757 RF power source.................156,158 Shared source..................160,760 gas nozzle... ..· .......170,175,770,775 Air pipe...................171,771 Central area · . · · · · .......172,772 wheel air pipe..... · ......173,773封.......· .....174,774 Peripheral area·.................176,776 Central vacuum pump.................180,780 Exhaust port ....... ......182,782 Inner wall........ 19 200903625 Exhaust chamber.............184,784 Restriction device... .......70,190,195,790,795 Source frequency..................751,752, 758,759 Offset frequency.............754,756 Switching switch..... ........763,767 Conductive parts..................71 External peripheral edges··.....72 Internal peripheral edges..... ........73 Top surface.............74 Bottom surface........... · · 75 channels........ .....76 Electrical insulation layer.............80 Electrically conductive support ring.............90 External peripheral edge... .......91 Internal Peripheral Boundary.............92 Electrically Conductive Parts.............95 Electrical Conduction Rings..... ........96 Channel··...........98,99 Processing area..................610,615 Isolation ring... .......632 Pressure equalization path.............634,636 Separate wall....... 682 Channel............ .684

厚度.............T 20Thickness.............T 20

Claims (1)

200903625 十、申請專利範圍: 1.二種包含至少兩個處理區域能夠單獨地或同時地處理至少兩片基片的 專離子體處理室,包括: 處理室體,包含至少兩辦離子體處顺域,每倾祕域在較低 位置處設有-個陰極且在處理區域的上部設有一個陽極 室體包 含排氣通道; 至少一個真空泵,與所述排氣通道相連接; 至v兩個射頻匹配電路’每—個軸匹配電路啊地將至少一第一 射麵率和—第二射麵輪合到其令的一個陰極上; 其中,第一射頻頻率高於第二射頻頻率。 2·如申請專利範圍第!項所述的等離子體處理室,還進一步包括至少兩 :等離子贿繼置,每轉離子齡繼置位於—個相應的陰極附 近,用於防止等離子體從處理區域進入排氣通道。 3·如申請專利範圍第2項所述的等離子體處理室,其中每一個等離子體 限制裝置包含等離子體遮罩和射頻遮罩。 5. 專利細第3項所述的等離子體處理室,所述等離子體遮軍包 3導電的但魏浮地的部件’所述麵遮罩包含接_導電部件。 ^申請專利侧第i項所述的等離子體處理室,還包含至少兩個可移 =的絕緣隔轉,每麵轉位於—鑛職_,麵離環位於其 較低位置時每個隔離環絲個處職域限定了週邊邊界。 ,申^專利範圍第5項所述的等離子體處理室,其中所述處理 ^處麵域設置有接地的㈣,每個隔離環的厚度被設計成能= 接地的至壁被射頻能量遮罩。 7. =晴專利範圍第6項所述的等離子體處理室,其中每個隔離環 括至少一個壓力均衡通路。 8,如申凊專利範圍第7項所述的等離子體處理室,還進一步包括 兩個處理區域分隔開,所述隔離壁包含—個壓力均衡通道,當 通。%位於其較餘i時所频力均猶道與所碰力觸通路相二 21 200903625 ίο.200903625 X. Patent Application Range: 1. Two kinds of special ion processing chambers comprising at least two processing regions capable of processing at least two substrates individually or simultaneously, comprising: a processing chamber body comprising at least two ionizing bodies a region, each of which has a cathode at a lower position and an anode chamber body at the upper portion of the treatment region including an exhaust passage; at least one vacuum pump connected to the exhaust passage; The RF matching circuit 'each axis matching circuit rotates at least one first face rate and the second face to one of its cathodes; wherein the first RF frequency is higher than the second RF frequency. 2. If you apply for a patent range! The plasma processing chamber of the present invention further includes at least two: plasma bridging relays, each ionic age being placed adjacent to a respective cathode for preventing plasma from entering the exhaust passage from the processing region. 3. The plasma processing chamber of claim 2, wherein each of the plasma confinement devices comprises a plasma mask and a radio frequency mask. 5. The plasma processing chamber of the third aspect of the invention, wherein the plasma shield comprises a conductive but Wei-floating component. ^The plasma processing chamber of the patent application of item i further comprises at least two movable insulation gaps, each of which is located at the position of the mine, and each of the spacers is located at a lower position of the ring. The line of divisions defines the perimeter boundaries. The plasma processing chamber of claim 5, wherein the processing area is provided with a ground (four), and the thickness of each isolation ring is designed to be grounded to the wall by RF energy masking . 7. The plasma processing chamber of clause 6, wherein each of the isolation rings comprises at least one pressure equalization passage. 8. The plasma processing chamber of claim 7, further comprising two processing regions spaced apart, the spacer wall comprising a pressure equalization channel. % is located in its excess i, the frequency is both the same as the touch of the contact phase. 21 200903625 ίο. 如申請專利範圍第!項所述的等離子體處理室,還包括 導體,每—個雌傳諸將射雜倾所述射舰配巾的2 =到減齡極,每個射頻料體包括若伟均勻分佈的又盘陰: 連接,以便以方式騎雜热合_應的陰極上^ 利範圍第9項所述的等離子體處理室,其中每—個射頻 電路包含-個高頻輸人端、—個低鱗人端、—個組合輪出端古 端和組合輸出端之_合有高祕配電路,在鋪輸入端和= :輪出端之_合有储匹配電路,其中,所述高頻匹配電路對於第 -和第四射麵率具有高阻抗,所述低航崎 頻頻率具有高阻抗。 子弟一射 U·如申請專利範圍第10項所述的等離子體處理室,其中所述第—射頻頻 率從約27MHZ、約60MHZ或約100MHZ中選取。 12.如申請專利範圍第1〇項所述的等離子體處理室,其中第二射頻頻率從 約500KHz至2.2MHZ範圍内選取。 K如申請專利翻第丨中的等離子體處理室,其中每—個射頻匹配電路 還將一第三射頻頻率耦合至一相應的陰極。 如申》月專利範圍第13種的等離子體處理室,還包括若干個切換開關,Such as the scope of patent application! The plasma processing chamber of the present invention further includes a conductor, each of the females will smash the 2nd to the age-receiving pole of the shooting ship, and each of the RF material bodies includes a uniform distribution of the sturdy阴: connection, in order to ride the hybrid heat _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , a combination of the end of the ancient end and the combined output end of the combination of a high secret circuit, at the input of the shop and =: the end of the wheel - a storage matching circuit, wherein the high frequency matching circuit for the - and the fourth face rate has a high impedance, and the low aeronautical frequency has a high impedance. The plasma processing chamber of claim 10, wherein the first radio frequency is selected from about 27 MHz, about 60 MHz, or about 100 MHz. 12. The plasma processing chamber of claim 1, wherein the second radio frequency is selected from the range of about 500 kHz to 2.2 MHZ. K. For example, in the plasma processing chamber of the patent application, wherein each of the RF matching circuits also couples a third RF frequency to a corresponding cathode. The plasma processing chamber of the thirteenth patent scope of the patent application also includes a plurality of switchers, 每一個切侧_於在第-、第二及第三麵頻抑進行選擇切換。 15·—種並行等離子體蝕刻室,包括: 導電室體,具有第一處理區域和第二處理區域,所述室體還具有隔 離壁用以將第—處规域和第二處繩域分隔開,所駐體還包括與 =述第一處理區域和所述第二處理區域流體連通的排氣室 ,所述排氣 至具有單排氣口,所述室體接地; 真空泵,與所述排氣口相連; 第一固定陰極,固定在第一處理區域的底部,並包含第一夾盤用於 支撐基片; 第一氣體喷頭’固定在第一處理區域的上部,並包含第一電極; 第二固定陰極,固定在第二處理區域的底部,並包含第二夾盤用於 支撐基片; 22 200903625 第二氣體噴頭,固定在第二處理區域的上部,並包含第二電極; 共用氣體源’為第-氣體喷頭和第二氣體噴頭提供工藝處理氣體,· 第-射頻匹配電路’同時將至少―個賴棚鮮和— 頻率耦合至第一陰極; 胃頻 第二射頻匹配電路,同時將至少—個低頻射頻頻率和—個高頻 頻率耗合至第二陰極; 其中,所i«㈣頻鮮的ΑλΙ、是所述低頻射麵率的大小至少兩 倍。 16.=申請專利範圍第15項所述的並行等離子體敍刻室,還包括位於第一 料織置,驗社轉子赌第—處理區 : 氣至’以及位於第二陰鋪近的第二轉子體限制裝置,用 於防止等離子體從第二處理區域進入排氣室。 制裝置用 H 16項所述的並行等離子體侧室,其 和第二等離子體限制裝置包含等個第 體遮罩包含導電辦電仃f離子體侧室,其中所述等離子 部件。 -電氣/予地的将,所述射頻遮罩包含接地的導電 1…圍第:5項所述的並行等離子_室,還包含: 位於第理11域巾的第-可移魏緣隔轉; 域中的第二可移動絕緣隔離環; 第二可移動絕緣隔離子體蝕刻室’其中所述第-、 頻能量遮罩。 /、有疋的厚度,可以使接地的室壁被射 21.如申請專利範圍第20 可移動絕緣隔離環分別^的並行等離子體侧室,其中第一和第二 22·如申請專利範圍第;^包含至少—個壓力均衡通路。 包含-個壓力均衡通道所^的並行等離子體敍刻室,其中所述隔離壁 备第一和第二可移動絕緣隔離環位於其較低 23 200903625 和第二可移動絕緣隔離環上的壓力 位置時,所述壓力均衡通道與第一 均衡通路相連通。 23.如申請專利範圍第15項所述的並行等離子體勉刻室 頻頻率的範圍為約500KHz至— i A 斤这低頻射 ^至2.2MHZ,而咼頻射頻頻率 27MHZ、60MHZ以及100MHZ中 千』以從J 24. 如申請專利範圍第15項所述的並行等離子體敍刻室,還包括盘第一射 躺關叹與第二射舰配雜的第二切換開 關’可以通谢呆作第-和第二切換開關中的每一個進行如下 從兩個低頻射頻頻率中選擇獲得所述低頻射頻鮮;或 從兩個高__率巾_獲得職冑雜麵率。 25. 如申請專利範圍第丨5項所述的並行等離子體钮刻室,其中所述广 理區域和第二處理區域中的每—個均可_立於另—侧立地進行= 26.- 種去耦合反應離子蝕刻室包括: 導電室體’包括多個處理區域及將多個處理區域相互分隔開的隔離 壁,所述隔_上設置有祕平财赠麵__力的 道;所述纽還包括至少—個與所述多做麵域流 室;所述室體接地; & 至少一個真空泵,與所述排氣室相連; P ’並包括一個 夕個陰極’每個陰極固定於其相應的處理區域的底苦 夾持裝置用於支撐基片; 多個氣體噴頭’每鑛财麵定贿相應處珊域的上部,並包 括一個電極; 共用氣體源,為所述多個氣體噴頭提供工藝處理氣體; 多個射頻隨’每歸頻随將至少-魏鱗麵率和—個 射頻頻率同時饋入其中一個相應的陰極。 27.如帽專職圍第26猶絲合反舰子_室,還包括多個等 離子體限制裝置’每個等.離子體關裝置位於其相應的陰極附近,用 於防止等離子體從處理區域進入排氣室。 24 200903625 離 月專矛】範圍第27項所述的去耗合反應離子钮刻室,其中每個箸 ^制裝置包括等離子體遮罩以及射頻遮罩。 Μ H ^利範圍第Μ項所述的去搞合反應離子_室,其中等離子體 、匕3導電的但電氣浮地的部件,射頻遮罩包含接地的導電部件 SI 利範圍第Μ項所述的去齡反應離子餘刻室,還包括^ 、、錄隔離環’每舰緣隔離難於—倾理區域内,當 離%位於其低位時限定了相應處理區域的週邊邊界。 A ^第3〇項所述的去輛合反應離子敍刻室,所述每個絕緣 衣”有一定厚度可以使接地的室壁被射頻能量遮罩。 A == 上圍第31項所述的去耦合反應離子蝕刻室,其中每個絕緣 所、少—個壓力均衡通路,當絕緣隔離環位於其低位時, 所述C力均衡通路與壓力均衡通道流體連通。 1,, 25Each of the cut sides _ is switched on the first, second and third sides. 15. A parallel plasma etching chamber, comprising: a conductive chamber body having a first processing region and a second processing region, the chamber body further having a partition wall for dividing the first regulatory domain and the second electrical domain Separating, the resident body further includes an exhaust chamber in fluid communication with the first processing region and the second processing region, the exhaust gas having a single exhaust port, the chamber body being grounded; a vacuum pump, The exhaust port is connected; the first fixed cathode is fixed at the bottom of the first processing region, and includes a first chuck for supporting the substrate; the first gas nozzle 'fixed to the upper portion of the first processing region, and includes the first An electrode; a second fixed cathode fixed to the bottom of the second processing region and including a second chuck for supporting the substrate; 22 200903625 a second gas nozzle fixed to the upper portion of the second processing region and including the second electrode The common gas source 'provides a process gas for the first gas nozzle and the second gas nozzle, and the first-radio matching circuit 'couples at least one of the shed and the frequency to the first cathode; A matching circuit, while at least - a low RF frequency and - a second radio frequency of consumption of a cathode bonded to; wherein the I «iv frequency fresh ΑλΙ, is at least two times the size of the exit surface low rate. 16. The parallel plasma reticle chamber of claim 15 of the patent application scope, further comprising: a first material woven, a test rotor gambling first processing zone: a gas to 'and a second smear second A rotor body restraining device for preventing plasma from entering the exhaust chamber from the second processing region. The device uses the parallel plasma side chamber of item H16, and the second plasma confinement device comprises a plurality of first body masks comprising electrically conductive 仃f ion side chambers, wherein the plasma component. - Electrical/pre-ground, the radio frequency mask comprising a grounded conductive 1...a parallel plasma chamber as described in item 5, further comprising: a first-movable Wei edge partition located in the 11th domain towel a second movable insulating spacer in the domain; a second movable insulating spacer etch chamber 'where the first- and first-frequency energy masks. /, the thickness of the crucible, the grounded chamber wall can be shot 21. As in the patent application scope 20th movable insulating spacer ring respectively, the parallel plasma side chamber, wherein the first and second 22 · as claimed in the scope of the patent; ^ Contains at least one pressure equalization path. a parallel plasma reticle including a pressure equalization channel, wherein the isolation wall is provided with first and second movable insulating spacers at pressure positions on the lower 23 200903625 and the second movable insulating spacer The pressure equalization channel is in communication with the first equalization path. 23. The parallel plasma etch chamber frequency as described in claim 15 is in the range of about 500 kHz to - i A jin, which is a low frequency shot to 2.2 MHZ, and the 咼 frequency RF frequency is 27 MHz, 60 MHz, and 100 MHz. According to J 24. The parallel plasma narration chamber as described in claim 15 of the patent application, the second switch including the first sigh of the disk and the second sigh of the second ship can be thankful Each of the first and second switching switches is selected to obtain the low frequency radio frequency from the two low frequency radio frequencies as follows; or obtain the duty ratio from the two high __ rate towels. 25. The parallel plasma button engraving chamber of claim 5, wherein each of the wide area and the second processing area is capable of standing on the other side = 26.- The decoupling reactive ion etching chamber comprises: the conductive chamber body' includes a plurality of processing regions and a partition wall separating the plurality of processing regions from each other, and the partition is provided with a road of secret money surface __ force; The button further includes at least one and the plurality of surface area flow chambers; the chamber body is grounded; & at least one vacuum pump is connected to the exhaust chamber; P 'and includes one night cathode 'each cathode a bottom biting device fixed to its corresponding processing area for supporting the substrate; a plurality of gas nozzles 'each of the money face to the upper portion of the corresponding field and including an electrode; a common gas source for the plurality A gas nozzle provides a process gas; a plurality of radio frequencies are fed to one of the respective cathodes simultaneously with each of the at least - Wei scale ratio and the RF frequency. 27. For example, the cap is full of the 26th Jewish anti-ship _ room, and also includes a plurality of plasma limiting devices. Each of the plasma-closing devices is located near its corresponding cathode for preventing plasma from entering the processing area. Exhaust chamber. 24 200903625 The decontamination reaction ion button chamber of the twenty-seventh item, wherein each of the 箸^ devices comprises a plasma mask and a radio frequency mask. Μ H ^ 利范围范围 The third paragraph to deal with the reactive ion chamber, wherein the plasma, 匕 3 conductive but electrically floating components, the RF mask contains grounded conductive components SI The age-reactive ion reverberation chamber also includes the ^, and the recording isolation ring 'is difficult to isolate in each ship edge--the inner boundary of the corresponding processing area when the % is at its low position. A ^3, the de-energized reactive ion refinement chamber of the third aspect, wherein each of the insulating garments has a thickness such that the grounded chamber wall is covered by radio frequency energy. A == The decoupling reactive ion etch chamber, wherein each of the insulations has a pressure equalization path, and the C-force equalization path is in fluid communication with the pressure equalization channel when the insulating isolation ring is at its lower position.
TW96124228A 2007-07-04 2007-07-04 Multi-station decoupled reactive ion etch chamber TW200903625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96124228A TW200903625A (en) 2007-07-04 2007-07-04 Multi-station decoupled reactive ion etch chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96124228A TW200903625A (en) 2007-07-04 2007-07-04 Multi-station decoupled reactive ion etch chamber

Publications (2)

Publication Number Publication Date
TW200903625A true TW200903625A (en) 2009-01-16
TWI337382B TWI337382B (en) 2011-02-11

Family

ID=44722170

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124228A TW200903625A (en) 2007-07-04 2007-07-04 Multi-station decoupled reactive ion etch chamber

Country Status (1)

Country Link
TW (1) TW200903625A (en)

Cited By (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385725B (en) * 2009-09-18 2013-02-11 Advanced Micro Fab Equip Inc A structure that reduces the deposition of polymer on the backside of the substrate
TWI484527B (en) * 2012-05-31 2015-05-11
TWI714282B (en) * 2018-10-08 2020-12-21 荷蘭商Asm Ip私人控股有限公司 Substrate support unit, thin film deposition apparatus and substrate processing apparatus
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12000042B2 (en) 2022-08-11 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385725B (en) * 2009-09-18 2013-02-11 Advanced Micro Fab Equip Inc A structure that reduces the deposition of polymer on the backside of the substrate
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
TWI484527B (en) * 2012-05-31 2015-05-11
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
TWI714282B (en) * 2018-10-08 2020-12-21 荷蘭商Asm Ip私人控股有限公司 Substrate support unit, thin film deposition apparatus and substrate processing apparatus
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12006572B2 (en) 2020-10-01 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009241B2 (en) 2020-10-05 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US12009224B2 (en) 2021-09-24 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12000042B2 (en) 2022-08-11 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure

Also Published As

Publication number Publication date
TWI337382B (en) 2011-02-11

Similar Documents

Publication Publication Date Title
TW200903625A (en) Multi-station decoupled reactive ion etch chamber
KR102467659B1 (en) Chamber with flow-through source
JP7044501B2 (en) Dual channel shower head with improved profile
US10325923B2 (en) Accommodating imperfectly aligned memory holes
US8366829B2 (en) Multi-station decoupled reactive ion etch chamber
KR100950116B1 (en) Multi-station decoupled reactive ion etch chamber
KR100868019B1 (en) Ion beam apparatus having plasma sheath controller
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JPH08107101A (en) Plasma processing device and plasma processing method
TWM547181U (en) Plasma etching systems with secondary plasma injection
JP3714924B2 (en) Plasma processing equipment
KR20170022902A (en) Application of powered electrostatic faraday shield to recondition dielectric window in icp plasmas
JPH02298024A (en) Reactive ion etching apparatus
JP2011175977A (en) Plasma treatment device and coupling window construction for producing uniform process rates
JPS5816078A (en) Plasma etching device
KR20110074912A (en) Plasma source for chamber cleaning and process
TW200301002A (en) Plasma chamber insert ring
JP2022500862A (en) High temperature RF heater pedestal
CN111354672B (en) Electrostatic chuck and plasma processing apparatus
TW201107511A (en) Film formation equipment and film formation method
US20110048927A1 (en) Sputtering apparatus and sputtering method
TWI308776B (en) A plasma confinement apparatus
JP2003229418A (en) Method of etching
KR102074323B1 (en) Plasma Generation Apparatus
JP2000012293A (en) Neutral beam generating device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees