JP5268626B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5268626B2
JP5268626B2 JP2008331822A JP2008331822A JP5268626B2 JP 5268626 B2 JP5268626 B2 JP 5268626B2 JP 2008331822 A JP2008331822 A JP 2008331822A JP 2008331822 A JP2008331822 A JP 2008331822A JP 5268626 B2 JP5268626 B2 JP 5268626B2
Authority
JP
Japan
Prior art keywords
sample
gas
processed
diameter
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008331822A
Other languages
Japanese (ja)
Other versions
JP2010153680A (en
JP2010153680A5 (en
Inventor
賢悦 横川
貴雅 一野
一幸 廣實
任光 金清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008331822A priority Critical patent/JP5268626B2/en
Priority to KR1020090006817A priority patent/KR101039087B1/en
Priority to US12/392,237 priority patent/US20100163187A1/en
Publication of JP2010153680A publication Critical patent/JP2010153680A/en
Publication of JP2010153680A5 publication Critical patent/JP2010153680A5/ja
Application granted granted Critical
Publication of JP5268626B2 publication Critical patent/JP5268626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

本発明は、半導体デバイスを製造するプラズマ処理装置にかかり、特に、レジスト材料等で形成されたマスクパタン形状どおりにシリコンやシリコン酸化膜等の半導体材料をエッチングするドライエッチング技術に関する。   The present invention relates to a plasma processing apparatus for manufacturing a semiconductor device, and more particularly to a dry etching technique for etching a semiconductor material such as silicon or a silicon oxide film according to a mask pattern shape formed of a resist material or the like.

ドライエッチングは、真空排気手段を有する真空容器内に原料ガスを導入し、該原料ガスを電磁波によりプラズマ化して被加工試料にさらし、被加工試料表面のマスク部以外をエッチングすることで所望の形状を得る半導体微細加工方法である。被加工試料面内での加工均一性にはプラズマの分布,被加工試料面内の温度分布,供給ガスの組成および流量分布等が影響する。   In dry etching, a raw material gas is introduced into a vacuum vessel having a vacuum exhaust means, the raw material gas is converted into plasma by electromagnetic waves, exposed to a sample to be processed, and a portion other than the mask portion on the surface of the sample to be processed is etched. Is a semiconductor microfabrication method. The processing uniformity within the surface of the sample to be processed is influenced by the plasma distribution, the temperature distribution within the surface of the sample to be processed, the composition of the supply gas, the flow rate distribution, and the like.

特に平行平板型のプラズマ装置では、被加工試料の対面に配置されるシャワープレートから原料ガスが供給され、かつ被加工試料とシャワープレート間の距離も比較的短いことからシャワープレートから供給されるガス供給分布が、加工速度や加工形状等に影響する。   In particular, in a parallel plate type plasma apparatus, the source gas is supplied from a shower plate arranged on the opposite side of the sample to be processed, and the distance between the sample to be processed and the shower plate is relatively short, so the gas supplied from the shower plate Supply distribution affects the processing speed, processing shape, and the like.

この特性を活用して、シャワープレートの中心部と周辺部で独立にガス組成や流量を制御することで加工形状等の被加工面内均一性を向上させているプラズマ処理装置が、例えば、特許文献1により提案されている。   A plasma processing apparatus that uses this characteristic to improve the in-plane uniformity of the processed shape, for example, by controlling the gas composition and flow rate independently at the center and the peripheral part of the shower plate is, for example, a patent Proposed by reference 1.

図7に従来のシャワープレートを示す。   FIG. 7 shows a conventional shower plate.

通常、シャワープレートガス供給面5上には複数のガス噴出し孔2を全て均等に配置し、かつ基本的に微細孔1個当たりから噴出するガスの組成や流量は同様であり被加工試料の単位面積あたりのガス供給状態が均等になるよう設計されている。   Usually, all of the plurality of gas ejection holes 2 are evenly arranged on the shower plate gas supply surface 5, and the composition and flow rate of the gas ejected from one minute hole are basically the same. The gas supply state per unit area is designed to be uniform.

また、被加工試料面内の中心部と周辺部で大まかにガスの供給量を制御し、反応生成物等の影響を相殺して加工形状の均一化を実現している。   In addition, the gas supply amount is roughly controlled at the center and the periphery in the sample surface to be processed, and the influence of reaction products and the like is offset to achieve uniform processing shape.

特許文献1に示されるガス供給分布構造においては、中心領域と周辺領域の2領域間では孔1個当たりから噴出するガス組成や流量は異なるが、それぞれの領域内の孔では同様な組成および流量のガスが噴出する構造となっている。   In the gas supply distribution structure shown in Patent Document 1, the gas composition and flow rate ejected from one hole are different between the central region and the peripheral region, but the same composition and flow rate are obtained in the holes in each region. The gas is jetted out.

特開2006−41088号公報JP 2006-41088 A

シャワープレートに形成されるガス供給孔は、基本的に均等に配置されているため、被加工試料の外周部でガスの供給量が中心付近に比べ相対的に少なくなる傾向にある。   Since the gas supply holes formed in the shower plate are basically arranged uniformly, the gas supply amount tends to be relatively small at the outer peripheral portion of the sample to be processed compared to the vicinity of the center.

特に、狭ギャップ型の装置では、シャワープレートと被加工試料間の距離が短いため、このガス供給量の不均一に伴う被加工試料外周部での形状不均一が問題となる場合がある。   In particular, in the narrow gap type apparatus, since the distance between the shower plate and the sample to be processed is short, there is a case where the shape non-uniformity in the outer peripheral portion of the sample to be processed due to the nonuniformity of the gas supply amount becomes a problem.

図3に、ウエハ(被加工試料)直径をD(300mm),ウエハからシャワープレートまでの距離をLとした時、アスペクト比(D/L)と相対ガス分子到達量との関係を示す。これは、シャワープレートの各ガス噴出し孔から均等に噴出したガス分子が等方拡散した場合を仮定し、また、ウエハに対面するガス噴出し孔がウエハ直径と同一径でかつ単位面積あたりの孔数が均一な場合を仮定して、対面するウエハに到達するガス分子の相対量を一次元で計算した結果である。   FIG. 3 shows the relationship between the aspect ratio (D / L) and the amount of relative gas molecules when the diameter of the wafer (sample to be processed) is D (300 mm) and the distance from the wafer to the shower plate is L. This is based on the assumption that gas molecules ejected uniformly from each gas ejection hole of the shower plate diffuse isotropically, and the gas ejection holes facing the wafer have the same diameter as the wafer diameter and per unit area. This is a result of one-dimensional calculation of the relative amount of gas molecules that reach the facing wafer, assuming that the number of holes is uniform.

図3に示すように、ウエハ面に到達するガス分子の相対量はアスペクト比が大きくなるとウエハ外周部で不足気味となることが分かる。つまり、アスペクト比1以上、即ちウエハ直径がφ300mmの場合、ウエハとシャワープレートの距離が300mm以下の場合からウエハ端部でのガス供給量の相対的な不足が生じることが判った。実質的には、アスペクト比が2以上となると、供給量の差を許容できなくなることが判った。   As shown in FIG. 3, it can be seen that the relative amount of gas molecules reaching the wafer surface becomes deficient at the outer periphery of the wafer as the aspect ratio increases. That is, it was found that when the aspect ratio is 1 or more, that is, the wafer diameter is 300 mm, a relative shortage of the gas supply amount at the wafer edge occurs when the distance between the wafer and the shower plate is 300 mm or less. In practice, it has been found that when the aspect ratio is 2 or more, the difference in supply amount cannot be allowed.

図3で示した課題の解決方法として、シャワープレートに形成するガス噴出し孔の領域を被加工試料直径に対して拡大する方法が考えられる。   As a method for solving the problem shown in FIG. 3, a method of enlarging the region of the gas ejection hole formed in the shower plate with respect to the diameter of the sample to be processed can be considered.

図4に、ガス噴出し領域径と相対ガス分子到達量との関係を示す。   FIG. 4 shows the relationship between the gas ejection region diameter and the relative gas molecule arrival amount.

これは、ウエハ直径を300mm、シャワープレートには均等にガス噴出し孔が配置されており、ウエハとシャワープレート間の距離Lを24mm(アスペクト比D/L=12.5)とした場合について計算した結果である。   This is calculated when the wafer diameter is 300 mm, the gas ejection holes are evenly arranged in the shower plate, and the distance L between the wafer and the shower plate is 24 mm (aspect ratio D / L = 12.5). It is the result.

図4に示すように、ガス噴出し孔領域の径を拡大する方法において、十分なガス供給均一性を得るためには、実質的に、ウエハ直径Dの約1.5倍以上、つまり、ガス噴出し孔領域径をφ450mm以上とする必要があることが判った。   As shown in FIG. 4, in the method of enlarging the diameter of the gas ejection hole region, in order to obtain sufficient gas supply uniformity, the wafer diameter D is substantially 1.5 times or more, that is, the gas. It was found that the diameter of the ejection hole area should be φ450 mm or more.

つまり、ガス噴出し領域径の拡大では、シャワープレートの大型化に伴う装置の大型化を招くと共に、シャワープレートは一般的に消耗部品として定期的に交換される部品であるため、大型化による消耗品コストの増大が問題となり、現実的な解決策とはならない。   In other words, the expansion of the gas ejection area diameter leads to an increase in the size of the apparatus accompanying an increase in the size of the shower plate, and since the shower plate is generally a part that is regularly replaced as a consumable part, the exhaustion due to the increase in size is required. Increasing product costs is a problem and is not a realistic solution.

本発明の目的は、被加工試料の外周部で生じるシャワープレートからのガス供給不足を解決し、被加工試料での加工精度の面内均一性を向上させるプラズマ処理装置を提供することにある。   An object of the present invention is to provide a plasma processing apparatus that solves the shortage of gas supply from a shower plate that occurs at the outer peripheral portion of a sample to be processed, and improves in-plane uniformity of processing accuracy on the sample to be processed.

特に、シャワープレート直径の拡大を最小限に抑制し、被加工試料面内へのガス供給均一性を改善することで加工特性の被加工試料面内均一性の向上と消耗品コストの低減を両立するプラズマ処理装置を提供することにある。   In particular, the expansion of the shower plate diameter is minimized, and the uniformity of gas supply into the sample surface to be processed is improved to improve the uniformity of the processing sample surface within the sample and reduce the cost of consumables. An object of the present invention is to provide a plasma processing apparatus.

上記課題を解決するために、本発明のプラズマ処理装置は、真空容器と、前記真空容器内に設けられ被加工試料を載置する試料台と、前記試料台に対向し前記被加工試料直径よりも大きな直径のガス供給面を有するガス供給手段とを有し、前記被加工試料の表面処理を行うプラズマ処理装置において、前記ガス供給手段のガス供給面の前記被加工試料に面する領域には複数の同一直径のガス噴出し孔が配置されており、前記ガス噴出し孔は、前記被加工試料直径よりも内側である内側領域内においてその孔数密度が全体で均等に配置され、前記被加工試料直径の1倍から1.1倍の範囲であって前記内側領域に隣接した外側領域内において前記内側領域内における前記ガス噴出し孔の孔数密度の1.5倍から4倍の範囲内の孔数密度で配置されたことを特徴とする。

In order to solve the above-described problems, a plasma processing apparatus of the present invention includes a vacuum vessel, a sample stage provided in the vacuum vessel on which a sample to be processed is placed, and a diameter of the sample to be processed facing the sample table. And a gas supply means having a gas supply surface having a large diameter, and in a plasma processing apparatus for performing a surface treatment of the sample to be processed, a region of the gas supply surface of the gas supply means facing the sample to be processed is provided. A plurality of gas ejection holes having the same diameter are arranged, and the gas ejection holes are uniformly arranged throughout the inside area, which is inside the workpiece sample diameter, and the gas ejection holes are arranged uniformly. A range of 1 to 1.1 times the diameter of the processed sample and a range of 1.5 to 4 times the number density of the gas ejection holes in the inner region in the outer region adjacent to the inner region. Arranged with the pore number density in It is characterized in.

また、真空容器と、前記真空容器内に設けられ被加工試料を載置する試料台と、前記試料台に対向し前記被加工試料直径よりも大きな直径のガス供給面を有するガス供給手段とを有し、前記被加工試料の表面処理を行うプラズマ処理装置において、前記ガス供給手段のガス供給面の前記被加工試料に面する領域には複数の同一直径のガス噴出し孔が配置されており、前記被加工試料直径の1倍から1.1倍の範囲内に前記被加工試料直径よりも内側にあるガス噴出し孔直径の1.1倍から1.5倍の範囲内の直径の値で複数の前記ガス噴出し孔を配置した特徴とする。

A vacuum vessel; a sample stage provided in the vacuum vessel on which a sample to be processed is placed; and a gas supply unit having a gas supply surface facing the sample table and having a diameter larger than the diameter of the sample to be processed. And a plasma processing apparatus for performing a surface treatment of the sample to be processed, wherein a plurality of gas ejection holes having the same diameter are arranged in a region of the gas supply surface of the gas supply means facing the sample to be processed. The value of the diameter within the range of 1.1 to 1.5 times the diameter of the gas ejection hole inside the sample diameter within the range of 1 to 1.1 times the sample diameter. And a plurality of the gas ejection holes are arranged.

本発明によれば、装置の大型化や交換部品であるシャワープレートの大型化を伴わずに被加工試料全面で均等なガス供給分布が得られ、被加工試料の加工速度および加工形状の均一化が達成できる。   According to the present invention, a uniform gas supply distribution can be obtained over the entire surface of the sample without increasing the size of the apparatus and the size of the shower plate as a replacement part, and the processing speed and shape of the sample to be processed are made uniform. Can be achieved.

以下、本発明の実施の形態を用いて説明する。   Hereinafter, description will be made using embodiments of the present invention.

本発明の第一の実施例を図1及び図2を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施例になるプラズマ処理装置の断面図を示す。プラズマ処理装置は、真空容器24内に被加工試料7を載置する静電吸着機能付の電極15(試料台)と試料台に対向して設けられたシャワープレート1(ガス供給手段)を有している。また、プレート8および分散プレート11を組み込んだ導体製のアンテナ12に放電用高周波電源13から200MHzの高周波電力を供給し、シャワープレート1から供給したガスを放電空間14でプラズマ化する。また被加工試料7には静電吸着機能付の電極15を介して、高周波電源16から4MHzの高周波電圧が印加されており、被加工試料7表面にプラズマからイオンを加速して入射する構造となっている。また、アンテナ12には、放電用の200MHzの高周波電力に重畳して独立に高周波電源17から4MHzの高周波電圧が印加されており、シャワープレート1表面にプラズマから入射するイオンのエネルギーをプラズマ生成および被加工試料のバイアス状態とは独立に制御している。また、アンテナ12および静電吸着機能付の電極15は、絶縁性の液体冷却循環機能21および22によりそれぞれ独立に温度制御されている。   FIG. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention. The plasma processing apparatus has an electrode 15 (sample stage) with an electrostatic adsorption function for placing the sample 7 to be processed in a vacuum vessel 24 and a shower plate 1 (gas supply means) provided facing the sample stage. doing. Further, a high frequency power of 200 MHz is supplied from a discharge high frequency power supply 13 to a conductor antenna 12 incorporating the plate 8 and the dispersion plate 11, and the gas supplied from the shower plate 1 is converted into plasma in the discharge space 14. Further, a high frequency voltage of 4 MHz is applied to the sample 7 to be processed from the high frequency power supply 16 via the electrode 15 having an electrostatic adsorption function, and ions are accelerated and incident on the surface of the sample 7 to be processed. It has become. Further, a high frequency voltage of 4 MHz is independently applied to the antenna 12 from the high frequency power supply 17 so as to be superimposed on the high frequency power of 200 MHz for discharge, and the energy of ions incident on the surface of the shower plate 1 from the plasma is generated and generated. Control is performed independently of the bias state of the workpiece. In addition, the antenna 12 and the electrode 15 with an electrostatic adsorption function are independently temperature controlled by insulating liquid cooling circulation functions 21 and 22, respectively.

シャワープレート1はシリコンで形成されている。シャワープレートの上段には、シャワープレートと同様な位置でかつシャワープレート1に形成されているガス噴出し孔2より若干大きい孔が形成されたプレート8が配置されている。さらにその上段にはガス供給部9からのガスを分散させるガス分散層10を形成する分散プレート11が配置されている。ガス供給部9は、被加工試料7の内側領域用と外側領域用にそれぞれ独立にもうけられており、流量およびガス組成を被加工試料7の内外で独立に制御できる構造となっている。また該内側領域と外側領域は、それぞれのガス噴出し孔2の形成領域面積がほぼ等しくなる位置を境界としている。なお、本実施例では、内側領域と外側領域の2つの領域に分けた装置で説明するが、領域を分けなくても良いし、3つ以上に分けても良い。   The shower plate 1 is made of silicon. On the upper stage of the shower plate, a plate 8 having a hole slightly larger than the gas ejection hole 2 formed in the shower plate 1 at the same position as the shower plate is disposed. Furthermore, a dispersion plate 11 for forming a gas dispersion layer 10 for dispersing the gas from the gas supply unit 9 is disposed on the upper stage. The gas supply unit 9 is provided independently for the inner region and the outer region of the sample 7 to be processed, and has a structure in which the flow rate and gas composition can be controlled independently inside and outside the sample 7 to be processed. Further, the inner region and the outer region have a boundary at a position where the area of the formation region of each gas ejection hole 2 becomes substantially equal. In the present embodiment, the apparatus is described as being divided into two areas of an inner area and an outer area, but the area may not be divided, or may be divided into three or more.

図1では、直径300mmのシリコンウエハを被加工試料とした装置構成であり、シャワープレート1に形成されるガス噴出し孔の中心は、φ314mmの範囲内に形成されている。この314mmの内、内側のφ200mm領域が内側領域、それより外側が外側領域となっている。ガス分散層10も内外で独立しており、それぞれの領域で均一にガスが分散する構造となっている。   FIG. 1 shows an apparatus configuration in which a silicon wafer having a diameter of 300 mm is used as a sample to be processed, and the center of the gas ejection hole formed in the shower plate 1 is formed within a range of φ314 mm. Of the 314 mm, the inner φ200 mm region is the inner region, and the outer side is the outer region. The gas dispersion layer 10 is also independent inside and outside, and has a structure in which gas is uniformly dispersed in each region.

図2は、シャワープレート1の表面図で、ガス噴出し孔2の配置を示している。ガス噴出し孔2の直径は0.5mm、シャワープレート1のガス噴出し孔2が形成されている領域の厚さは10mmである。シャワープレートガス供給面5上に形成されるガス噴出し孔2の直径は全て等しい。シャワープレート中心3から等しい間隔(10mmピッチ)で同心円状にガス噴出し孔が形成されている。また各円周上のガス噴出し孔の数は、中心から外周付近までは、円周にほぼ比例する数の孔が形成されている。よって中心から外周付近までは、シャワープレートの単位面積当たりのガス噴出し孔数がほぼ等しい配置となっている。シャワープレートガス供給面5の直径は被加工試料7の直径よりも大きくしている。   FIG. 2 is a surface view of the shower plate 1 and shows the arrangement of the gas ejection holes 2. The diameter of the gas ejection hole 2 is 0.5 mm, and the thickness of the region of the shower plate 1 where the gas ejection hole 2 is formed is 10 mm. The diameters of the gas ejection holes 2 formed on the shower plate gas supply surface 5 are all equal. Gas ejection holes are formed concentrically at equal intervals (10 mm pitch) from the shower plate center 3. Further, the number of gas ejection holes on each circumference is formed so as to be approximately proportional to the circumference from the center to the vicinity of the outer circumference. Therefore, the number of gas ejection holes per unit area of the shower plate is substantially equal from the center to the vicinity of the outer periphery. The diameter of the shower plate gas supply surface 5 is larger than the diameter of the sample 7 to be processed.

図2の構成では、外側領域の外周部の総ガス噴出し孔数は内側領域の約2倍となっている。よって、外側領域に内側領域の約2倍の流量を流すことで、内側および外側領域両方のガス噴出し孔1個当たりから噴出するガス流量は等しくなる。   In the configuration of FIG. 2, the total number of gas ejection holes in the outer peripheral portion of the outer region is about twice that of the inner region. Therefore, by flowing a flow rate about twice that of the inner region through the outer region, the gas flow rate ejected from one gas ejection hole in both the inner and outer regions becomes equal.

以上の構成から、被加工試料7の内側および外側のそれぞれでは各ガス噴出し孔2から噴出するガスは、流量およびガス組成がほぼ等しく、被加工試料7表面に供給されるガス状態(流量および組成)分布はガス噴出し孔の密度で決まる構成となっている。なお、本実施例では、ガス噴出し孔1個当たりから噴出するガス流量を等しくした装置で説明するが、例えば、反応生成物起因によるデポ分布を補正する目的で、例えば、酸素流量を内側領域と外側領域で変える場合もあり、必ずしも、ガス噴出し孔1個当たりから噴出するガス流量を等しくする必要はない。   From the above configuration, the gas ejected from each gas ejection hole 2 on each of the inside and outside of the sample 7 to be processed has almost the same flow rate and gas composition, and the gas state (flow rate and gas flow) supplied to the surface of the sample 7 to be processed. The composition distribution is determined by the density of the gas ejection holes. In the present embodiment, the description will be made with an apparatus in which the gas flow rate ejected from one gas ejection hole is the same. For example, for the purpose of correcting the deposit distribution due to the reaction product, for example, the oxygen flow rate is changed to the inner region. However, it is not always necessary to equalize the flow rate of gas ejected from one gas ejection hole.

本実施例では、対向する被加工試料7の端部に相当する位置、つまり、ガス噴出し孔の最外周二周分の位置の円周上の単位長さに対する孔数密度を他の円周上の孔数密度に比べ約二倍としている。その他の位置に形成されたガス噴出し孔同士のピッチが10mmであるのに対し、最外周二周分の位置にあるガス噴出し孔同士のピッチは7mmとなっている。   In this embodiment, the hole number density with respect to the unit length on the circumference at the position corresponding to the end of the facing sample 7 to be processed, that is, the position corresponding to the two outermost circumferences of the gas ejection holes, is set to other circumferences. It is about twice the number density of holes above. While the pitch between the gas ejection holes formed at other positions is 10 mm, the pitch between the gas ejection holes at the position of the two outermost circumferences is 7 mm.

この結果、被加工試料端部に位置するガス噴出し孔の孔数密度は他の領域に比べ約2.85倍(円周方向の密度(2倍)×径方向の密度(10mm/7mm))多くなっている。   As a result, the number density of the gas ejection holes located at the end of the sample to be processed is about 2.85 times that of other regions (circumferential density (2 times) x radial density (10 mm / 7 mm). ) It is increasing.

即ち、被加工試料7の内側領域では、ガス噴出し孔2が均等に等しい密度で配置されているため均一なガス供給が行われるが、外側領域では、被加工試料7の端部に位置するガス噴出し孔密度が高いため他の領域より多いガスが被加工試料端部に供給されることになる。   That is, in the inner region of the sample 7 to be processed, the gas ejection holes 2 are arranged at an equal density, so that uniform gas supply is performed. However, in the outer region, the gas sample is located at the end of the sample 7 to be processed. Since the gas ejection hole density is high, more gas than other regions is supplied to the end of the sample to be processed.

図5に、本発明のシャワープレートと従来のシャワープレートにおけるウエハ端部での相対ガス分子到達量の計算結果を示す。   FIG. 5 shows the calculation results of the amount of relative gas molecules reached at the wafer edge in the shower plate of the present invention and the conventional shower plate.

図5では、ウエハ直径Dがφ300mm、ウエハとシャワープレート間の距離Lが24mm(アスペクト比D/L=12.5)とした。   In FIG. 5, the wafer diameter D is 300 mm, and the distance L between the wafer and the shower plate is 24 mm (aspect ratio D / L = 12.5).

図5に示すように、本発明のシャワープレートでは、ウエハ端部付近でのガス供給量不足が補われウエハ全面で均等なガス供給ができることが確認できる。一方、従来のシャワープレートでは、ウエハ端部付近でガス供給量が中心部に比べ相対的に少なくなっている。これは、シャワープレートから供給されたガスがウエハ周辺から排気され際、円周長の長いウエハ端部では、中心部に比べ排気速度が速くなることが原因と考えられる。また、中心領域では、外周部から噴出したガスも等方拡散により到達するが、ガス噴出し孔の最外周に位置する領域は、それより外側からのガス供給がないことが原因と考えられる。   As shown in FIG. 5, in the shower plate of the present invention, it can be confirmed that the shortage of gas supply near the edge of the wafer is compensated and the gas can be supplied uniformly over the entire surface of the wafer. On the other hand, in the conventional shower plate, the gas supply amount is relatively smaller in the vicinity of the wafer edge than in the central portion. This is considered to be due to the fact that when the gas supplied from the shower plate is exhausted from the periphery of the wafer, the exhaust speed is higher at the end of the wafer with a long circumferential length than at the center. Further, in the central region, the gas ejected from the outer peripheral portion also arrives by isotropic diffusion, but the region located at the outermost periphery of the gas ejection hole is considered to be caused by the absence of gas supply from the outside.

これにより、本発明のシャワープレートを用いれば、均等なガス供給が可能となり、エッチング特性の均一化に有効であることが判る。   Thus, it can be seen that the use of the shower plate of the present invention enables an even gas supply and is effective in making the etching characteristics uniform.

特に、狭ギャップの対向電極構造で、エッチング特性がガスの圧力よりも供給されるガス流量に大きく依存するエッチングメカニズム(フロロカーボン系ガスによるシリコン酸化膜エッチング等)では、エッチング速度やエッチング形状のウエハ面内での差を抑制できる。   In particular, an etching mechanism (such as silicon oxide film etching with a fluorocarbon-based gas) whose etching characteristics greatly depend on the gas flow rate supplied rather than the gas pressure in a counter electrode structure with a narrow gap, has an etching rate and an etched shape on the wafer surface. The difference in the inside can be suppressed.

図6に、本発明のシャワープレートと従来のシャワープレートにおける、TEOS膜のエッチングレート分布を示す。   FIG. 6 shows the etching rate distribution of the TEOS film in the shower plate of the present invention and the conventional shower plate.

本発明のシャワープレートを用いた場合は、内側領域及び外側領域の全てのガス噴出し孔一個当たりから噴出するガス供給量を等しくするため、ガス噴出し孔数比(約2倍)に従って、外側領域のガス流量を内側領域に比べ約2倍の流量(内側流量はAr=500sccm,C48=15sccm,O2=15sccm,外側流量はAr=1000sccm,C48=30sccm,O2=30sccm)とした。 In the case of using the shower plate of the present invention, in order to equalize the gas supply amount ejected from all the gas ejection holes in the inner region and the outer region, the outer side according to the gas ejection hole number ratio (about twice) The gas flow rate in the region is about twice that in the inner region (the inner flow rate is Ar = 500 sccm, C 4 F 8 = 15 sccm, O 2 = 15 sccm, the outer flow rate is Ar = 1000 sccm, C 4 F 8 = 30 sccm, O 2 = 30 sccm).

一方、従来のシャワープレートを用いた場合は、内側領域と外側領域でほぼガス噴出し孔数が等しいため、同様なガス流量を供給(内側及び外側流量はAr/C48/O2の混合ガスで、Ar=500sccm,C48=15sccm,O2=15sccm)している。 On the other hand, when the conventional shower plate is used, since the number of gas ejection holes is almost equal in the inner region and the outer region, the same gas flow rate is supplied (the inner and outer flow rates are Ar / C 4 F 8 / O 2 . The mixed gas is Ar = 500 sccm, C 4 F 8 = 15 sccm, O 2 = 15 sccm).

図6に示すように、従来のシャワープレートを用いた場合では、ウエハ端部のエッチング速度が低下しており、エッチングレート均一性が8%程度であったが、本発明のシャワープレートを用いた場合は、ウエハ中心領域のエッチング速度には影響を与えず、ウエハ端部のエッチング速度は増加しており、エッチングレート均一性は3%程度と改善されていた。   As shown in FIG. 6, in the case of using the conventional shower plate, the etching rate at the wafer edge was reduced and the etching rate uniformity was about 8%, but the shower plate of the present invention was used. In this case, the etching rate in the wafer central region was not affected, the etching rate at the wafer edge was increased, and the etching rate uniformity was improved to about 3%.

本発明は、エッチング特性に合わせてガス噴出し孔密度を変えることで、加工対象やプロセス条件にとって最適なガス供給分布を選択することが可能である。   In the present invention, it is possible to select an optimum gas supply distribution for a processing object and process conditions by changing the gas ejection hole density according to the etching characteristics.

次に、本発明において、ガス噴出し孔の孔数密度の最適化と孔数密度を増加させる領域の最適化について説明する。   Next, in the present invention, optimization of the hole density of the gas ejection holes and optimization of the region where the hole density is increased will be described.

図8に、シャワープレートのφ280付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 8 shows the calculation result of the relative gas molecule arrival amount on the wafer surface when the gas ejection hole density is increased in the vicinity of φ280 of the shower plate.

図9に、シャワープレートのφ290付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 9 shows a calculation result of the amount of relative gas molecules reached on the wafer surface when the gas injection hole density is increased in the vicinity of φ290 of the shower plate.

図10に、シャワープレートのφ300付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 10 shows the calculation result of the relative gas molecule arrival amount on the wafer surface when the gas injection hole density is increased in the vicinity of φ300 of the shower plate.

図11に、シャワープレートのφ320付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 11 shows the calculation result of the relative gas molecule arrival amount on the wafer surface when the gas injection hole density is increased in the vicinity of φ320 of the shower plate.

図12に、シャワープレートのφ330付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 12 shows the calculation result of the relative gas molecule arrival amount on the wafer surface when the gas injection hole density is increased in the vicinity of φ330 of the shower plate.

図13に、シャワープレートのφ340付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 13 shows the calculation result of the relative gas molecule arrival amount on the wafer surface when the gas injection hole density is increased in the vicinity of φ340 of the shower plate.

図14に、シャワープレートのφ360付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量の計算結果を示す。   FIG. 14 shows the calculation result of the amount of relative gas molecules reached on the wafer surface when the gas injection hole density is increased in the vicinity of φ360 of the shower plate.

図8,図9に示すように、ウエハ直径よりも内側の領域で、ガス噴出し孔密度を増加させウエハ端部のガス供給量を増加させると、内側のガス供給量が増加するものの、若干、改善されることが判った。   As shown in FIG. 8 and FIG. 9, when the gas injection hole density is increased in the region inside the wafer diameter and the gas supply amount at the wafer edge is increased, the inner gas supply amount increases, , Found to be improved.

一方、図10〜図14に示すように、ウエハ直径またはそれよりも外側の領域で、ガス噴出し孔密度を増加させウエハ端部のガス供給量を増加させると、ウエハ領域内で均一なガス供給分布を得られることが判った。   On the other hand, as shown in FIGS. 10 to 14, when the gas ejection hole density is increased and the gas supply amount at the edge of the wafer is increased in the wafer diameter or an area outside the wafer diameter, a uniform gas is produced in the wafer area. It was found that a supply distribution could be obtained.

しかし、図13,図14に示すように、φ340mm以上の領域に追加する場合には、その追加位置のガス噴出し孔密度の必要増加倍数が4倍以上となるため、ガス供給量も増加させる必要がある。よって、ガス消費量の増加や装置の排気能力に余分な負担をかけることになる。   However, as shown in FIGS. 13 and 14, when adding to a region of φ340 mm or more, the required increase multiple of the gas ejection hole density at the additional position is four times or more, so the gas supply amount is also increased. There is a need. Therefore, an extra burden is imposed on the increase in gas consumption and the exhaust capacity of the apparatus.

このことから、図10〜図12に示すように、φ300からφ330mm程度、即ち、ウエハ直径の1倍から1.1倍程度の範囲でのガス噴出し孔数密度増加が望ましい。   Therefore, as shown in FIGS. 10 to 12, it is desirable to increase the gas ejection hole number density in the range of about φ300 to φ330 mm, that is, about 1 to 1.1 times the wafer diameter.

また、ガス噴出し孔密度の増加は、加工対象やプロセス条件により変わるが、1.5倍から4倍の範囲で増加させると、エッチング特性の均一性を最適化すると共に、ガスの消費量を抑えることができる。   In addition, the increase in gas ejection hole density varies depending on the object to be processed and the process conditions, but increasing it in the range of 1.5 to 4 times optimizes the uniformity of etching characteristics and reduces gas consumption. Can be suppressed.

本発明の第2の実施例を図15を用いて説明する。   A second embodiment of the present invention will be described with reference to FIG.

図15は、本発明の実施例2となるシャワープレート1の表面図である。   FIG. 15 is a surface view of the shower plate 1 according to the second embodiment of the present invention.

本実施例では、対向するウエハ端部に相当する位置のガス噴出し孔27を、他の部分に位置する孔径に対して1.3倍(中心部の孔径を0.5mmとすると外周部の孔径は0.65mm)とし、孔数密度は均等とした。実施例1では、同一径のガス噴出し孔4の孔数密度でウエハ端部へのガス供給量を調整したが、実施例2では、孔径で調整することとした。   In this embodiment, the gas ejection hole 27 at a position corresponding to the opposite edge of the wafer is 1.3 times as large as the hole diameter at the other part (if the hole diameter at the center is 0.5 mm), The hole diameter was 0.65 mm), and the hole number density was uniform. In the first embodiment, the gas supply amount to the wafer edge is adjusted by the hole density of the gas ejection holes 4 having the same diameter, but in the second embodiment, the adjustment is made by the hole diameter.

シャワープレートのガス噴出し孔をガスが通過する際のコンダクタンスは孔径の3〜4乗に比例して増加する(分子流の場合は3乗、粘性流の場合は4乗)。実際には、分子流と粘性流の中間的な値(中間流は3.5乗)になる。   The conductance when gas passes through the gas ejection holes of the shower plate increases in proportion to the third to fourth power of the hole diameter (third power for molecular flow and fourth power for viscous flow). Actually, it is an intermediate value between the molecular flow and the viscous flow (the intermediate flow is the power of 3.5).

よって、同じ孔数密度でも孔径を拡大することで孔数密度を増加させたのと同様の効果が得られる。   Therefore, the same effect as increasing the hole number density by expanding the hole diameter can be obtained even with the same hole number density.

実施例2では、孔数密度は等しく外周部の孔径を他の領域の1.3倍とすることで、外周部のガス供給量を約2.85倍に向上することができる。   In Example 2, the hole number density is equal, and the hole diameter in the outer peripheral portion is 1.3 times that in other regions, so that the gas supply amount in the outer peripheral portion can be improved to about 2.85 times.

実施例1と同様に孔径の拡大量は加工対象やプロセス条件により変えることができる。ガス噴出し孔密度を1.5倍から4倍の範囲に増加、即ち、ガス供給量を1.5倍から4倍に増加させるためには、孔径を1.1倍(1.5の(1/3.5)乗=1.123)から1.5倍(4の(1/3.5)乗=1.486)の範囲とすることで、エッチング特性の均一性を最適化することができる。   As in the first embodiment, the amount of expansion of the hole diameter can be changed depending on the object to be processed and the process conditions. In order to increase the gas injection hole density from 1.5 times to 4 times, that is, to increase the gas supply amount from 1.5 times to 4 times, the hole diameter is increased by a factor of 1.1 (1.5 ( The uniformity of the etching characteristics is optimized by setting the range from 1 / 3.5) power = 1.123) to 1.5 times (4 (1 / 3.5) power = 1.486). Can do.

また、ガス噴出し孔径を拡大する領域は、実施例1同様にウエハ直径の1倍から1.1倍程度の範囲が好適となる。   Further, the region in which the gas ejection hole diameter is enlarged is preferably in the range of about 1 to 1.1 times the wafer diameter as in the first embodiment.

本発明は、半導体装置の製造装置、特にリソグラフィー技術によって描かれたパタンをマスクに半導体材料のエッチング処理を行うプラズマエッチング装置に関する。本発明により、被加工試料であるシリコンウエハ端部での加工特性,特に加工速度の均一性および加工形状の均一性を向上させることが可能となる。以上の本発明の効果により、シリコンウエハ端部での良品取得率が高まり、エッチング装置の歩留まり向上が図れる。   The present invention relates to a semiconductor device manufacturing apparatus, and more particularly to a plasma etching apparatus that performs an etching process of a semiconductor material using a pattern drawn by a lithography technique as a mask. According to the present invention, it is possible to improve the processing characteristics, particularly the processing speed uniformity and the processing shape uniformity at the edge of the silicon wafer that is the sample to be processed. Due to the effects of the present invention described above, the non-defective product acquisition rate at the edge of the silicon wafer is increased, and the yield of the etching apparatus can be improved.

本発明を適用したプラズマ処理装置の断面図である。It is sectional drawing of the plasma processing apparatus to which this invention is applied. 本発明の第1の実施例にかかるシャワープレートの概略図である。It is the schematic of the shower plate concerning the 1st Example of the present invention. ウエハ直径Dと、ウエハとシャワープレート間距離Lの比(D/L)によるウエハ表面での相対ガス分子到達量分布の説明図である。It is explanatory drawing of relative gas molecule arrival amount distribution on the wafer surface by ratio (D / L) of wafer diameter D and the distance L between a wafer and a shower plate. ウエハ直径に対するガス噴出し領域径の効果を示す図である。It is a figure which shows the effect of the gas ejection area | region diameter with respect to a wafer diameter. 本発明における効果を説明する図である。It is a figure explaining the effect in this invention. 本発明における効果を説明する図である。It is a figure explaining the effect in this invention. 従来のシャワープレートの概略図である。It is the schematic of the conventional shower plate. シャワープレートのφ280付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival on the wafer surface when the gas ejection hole density is increased in the vicinity of φ280 of the shower plate. シャワープレートのφ290付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival on the wafer surface when the gas ejection hole density is increased in the vicinity of φ290 of the shower plate. シャワープレートのφ300付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival on the wafer surface when the gas ejection hole density is increased in the vicinity of φ300 of the shower plate. シャワープレートのφ320付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival at the wafer surface when the gas ejection hole density is increased in the vicinity of φ320 of the shower plate. シャワープレートのφ330付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival at the wafer surface when the gas ejection hole density is increased in the vicinity of φ330 of the shower plate. シャワープレートのφ340付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative amount of gas molecules arrival on the wafer surface when the gas ejection hole density is increased in the vicinity of φ340 of the shower plate. シャワープレートのφ360付近にガス噴出し孔密度を増加させた場合のウエハ表面での相対ガス分子到達量を示す図である。It is a figure which shows the relative gas molecule reach | attainment amount on the wafer surface at the time of making gas ejection hole density increase to (phi) 360 vicinity of a shower plate. 本発明の第2の実施例にかかるシャワープレートの概略図である。It is the schematic of the shower plate concerning the 2nd Example of this invention.

符号の説明Explanation of symbols

1 シャワープレート
2 ガス噴出し孔
3 シャワープレート中心
4,27 シャワープレート外周部位置のガス噴出し孔
5 シャワープレートガス供給面
6 シャワープレート固定用ネジ孔部
7 被加工試料
8 プレート
9 ガス供給部
10 ガス分散層
11 分散プレート
12 アンテナ
13 放電用高周波電源
14 放電空間
15 静電吸着機能付の電極
16,17 高周波電源
18,19,20 自動整合器
21,22 絶縁性の液体冷却循環機能
23 シリコン製フォーカスリング
24 真空容器
25 絶縁材
26 アース板
DESCRIPTION OF SYMBOLS 1 Shower plate 2 Gas ejection hole 3 Shower plate center 4,27 Gas ejection hole 5 of shower plate outer peripheral part position Shower plate gas supply surface 6 Screw hole part for shower plate fixing 7 Processed sample 8 Plate 9 Gas supply part 10 Gas dispersion layer 11 Dispersion plate 12 Antenna 13 Discharge high frequency power source 14 Discharge space 15 Electrodes 16 and 17 with electrostatic adsorption function High frequency power sources 18, 19, and 20 Automatic matching units 21 and 22 Insulating liquid cooling and circulation function 23 Made of silicon Focus ring 24 Vacuum vessel 25 Insulating material 26 Ground plate

Claims (4)

真空容器と、前記真空容器内に設けられ被加工試料を載置する試料台と、前記試料台に対向し前記被加工試料直径よりも大きな直径のガス供給面を有するガス供給手段とを有し、前記被加工試料の表面処理を行うプラズマ処理装置において、
前記ガス供給手段のガス供給面の前記被加工試料に対向する領域には複数の同一直径のガス噴出し孔が配置されており、
前記ガス噴出し孔は、前記被加工試料直径よりも内側である内側領域内においてその孔数密度が全体で均等に配置され、前記被加工試料直径の1倍から1.1倍の範囲であって前記内側領域に隣接した外側領域内において前記内側領域内における前記ガス噴出し孔の孔数密度の1.5倍から4倍の範囲内の孔数密度で配置されたことを特徴とするプラズマ処理装置。
A vacuum vessel, a sample stage provided in the vacuum vessel on which a sample to be processed is placed, and a gas supply unit having a gas supply surface facing the sample table and having a diameter larger than the diameter of the sample to be processed In the plasma processing apparatus for performing the surface treatment of the sample to be processed,
A plurality of gas ejection holes of the same diameter are arranged in a region facing the sample to be processed on the gas supply surface of the gas supply means,
The gas injection holes, the evenly spaced throughout its pore density in the inner region is an inner than the sample to be processed diameter, met 1.1 times the range of 1 times the sample to be processed in diameter The plasma is arranged in the outer region adjacent to the inner region at a hole density in the range of 1.5 to 4 times the hole density of the gas ejection holes in the inner region. Processing equipment.
真空容器と、前記真空容器内に設けられ被加工試料を載置する試料台と、前記試料台に対向し前記被加工試料直径よりも大きな直径のガス供給面を有するガス供給手段とを有し、前記被加工試料の表面処理を行うプラズマ処理装置において、
前記ガス供給手段のガス供給面の前記被加工試料に面する領域には複数の同一直径のガス噴出し孔が配置されており、
前記ガス噴出し孔は、前記被加工試料直径の1倍から1.1倍の範囲の外側領域内において、前記被加工試料直径よりも内側であって前記外側領域に隣接した内側領域内にける同じ値にされたガス噴出し孔直径の1.1倍から1.5倍の範囲内の直径の値で複数配置されたことを特徴とするプラズマ処理装置。
A vacuum vessel, a sample stage provided in the vacuum vessel on which a sample to be processed is placed, and a gas supply unit having a gas supply surface facing the sample table and having a diameter larger than the diameter of the sample to be processed In the plasma processing apparatus for performing the surface treatment of the sample to be processed,
A plurality of gas ejection holes having the same diameter are arranged in a region facing the sample to be processed on the gas supply surface of the gas supply means,
The gas ejection hole is formed in an inner region adjacent to the outer region and inside the workpiece sample diameter in an outer region in a range of 1 to 1.1 times the workpiece sample diameter. A plasma processing apparatus, wherein a plurality of gas ejection holes having the same value and a diameter within a range of 1.1 to 1.5 times the diameter of the gas ejection hole are arranged .
請求項1または2に記載のプラズマ処理装置において、
前記ガス供給面と前記試料台の前記試料が載置される面との間の距離が24mmされたことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1 or 2,
The plasma processing apparatus characterized by distance between the surface of the sample of the sample stage and the gas supply surface is placed is a 24 mm.
請求項1乃至3のいずれかに記載のプラズマ処理装置において、
前記被加工試料直径をD、前記被加工試料から前記ガス供給面までの距離をLとした時、アスペクト比(D/L)が2以上であることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 3,
A plasma processing apparatus, wherein an aspect ratio (D / L) is 2 or more, where D is a diameter of the sample to be processed and L is a distance from the sample to be processed to the gas supply surface.
JP2008331822A 2008-12-26 2008-12-26 Plasma processing equipment Expired - Fee Related JP5268626B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008331822A JP5268626B2 (en) 2008-12-26 2008-12-26 Plasma processing equipment
KR1020090006817A KR101039087B1 (en) 2008-12-26 2009-01-29 Plasma processing apparatus
US12/392,237 US20100163187A1 (en) 2008-12-26 2009-02-25 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331822A JP5268626B2 (en) 2008-12-26 2008-12-26 Plasma processing equipment

Publications (3)

Publication Number Publication Date
JP2010153680A JP2010153680A (en) 2010-07-08
JP2010153680A5 JP2010153680A5 (en) 2012-02-16
JP5268626B2 true JP5268626B2 (en) 2013-08-21

Family

ID=42283459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331822A Expired - Fee Related JP5268626B2 (en) 2008-12-26 2008-12-26 Plasma processing equipment

Country Status (3)

Country Link
US (1) US20100163187A1 (en)
JP (1) JP5268626B2 (en)
KR (1) KR101039087B1 (en)

Families Citing this family (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
JP5792563B2 (en) 2011-08-31 2015-10-14 東京エレクトロン株式会社 Plasma etching method and plasma etching apparatus
JP2014082354A (en) * 2012-10-17 2014-05-08 Hitachi High-Technologies Corp Plasma processing apparatus
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
KR101530949B1 (en) * 2013-11-15 2015-06-25 하나머티리얼즈(주) Cooling plate for plasma chamber
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
CN104681402B (en) * 2015-03-16 2018-03-16 京东方科技集团股份有限公司 Substrate heating equipment and substrate heating method
US10378107B2 (en) * 2015-05-22 2019-08-13 Lam Research Corporation Low volume showerhead with faceplate holes for improved flow uniformity
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
JP2017162901A (en) * 2016-03-08 2017-09-14 株式会社ディスコ Wafer dividing method
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
WO2019103610A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
JP7124098B2 (en) 2018-02-14 2022-08-23 エーエスエム・アイピー・ホールディング・ベー・フェー Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US20190348261A1 (en) * 2018-05-09 2019-11-14 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
TW202409324A (en) 2018-06-27 2024-03-01 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition processes for forming metal-containing material
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102707956B1 (en) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
TWI844567B (en) 2018-10-01 2024-06-11 荷蘭商Asm Ip私人控股有限公司 Substrate retaining apparatus, system including the apparatus, and method of using same
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP7504584B2 (en) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method and system for forming device structures using selective deposition of gallium nitride - Patents.com
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
TWI845607B (en) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TWI842826B (en) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188254A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
KR20210010817A (en) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Method of Forming Topology-Controlled Amorphous Carbon Polymer Film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN118422165A (en) 2019-08-05 2024-08-02 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11859284B2 (en) * 2019-08-23 2024-01-02 Taiwan Semiconductor Manufacturing Company Ltd. Shower head structure and plasma processing apparatus using the same
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
KR20210042810A (en) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. Reactor system including a gas distribution assembly for use with activated species and method of using same
TWI846953B (en) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210050453A (en) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP7527928B2 (en) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
TW202125596A (en) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
TW202140135A (en) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Gas supply assembly and valve plate assembly
KR20210089079A (en) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. Channeled lift pin
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102675856B1 (en) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
CN113394086A (en) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 Method for producing a layer structure having a target topological profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
KR20210127620A (en) 2020-04-13 2021-10-22 에이에스엠 아이피 홀딩 비.브이. method of forming a nitrogen-containing carbon film and system for performing the method
KR20210128343A (en) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
JP2021172884A (en) 2020-04-24 2021-11-01 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
TW202147543A (en) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Semiconductor processing system
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202146699A (en) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
KR102702526B1 (en) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202212620A (en) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR102707957B1 (en) 2020-07-08 2024-09-19 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
TW202229601A (en) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) * 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (en) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. Deposition method and an apparatus for depositing a silicon-containing material
CN114293174A (en) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 Gas supply unit and substrate processing apparatus including the same
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235649A (en) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Methods for filling a gap and related systems and devices
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US4872947A (en) * 1986-12-19 1989-10-10 Applied Materials, Inc. CVD of silicon oxide using TEOS decomposition and in-situ planarization process
US4892753A (en) * 1986-12-19 1990-01-09 Applied Materials, Inc. Process for PECVD of silicon oxide using TEOS decomposition
US5871811A (en) * 1986-12-19 1999-02-16 Applied Materials, Inc. Method for protecting against deposition on a selected region of a substrate
US6079356A (en) * 1997-12-02 2000-06-27 Applied Materials, Inc. Reactor optimized for chemical vapor deposition of titanium
US6106625A (en) * 1997-12-02 2000-08-22 Applied Materials, Inc. Reactor useful for chemical vapor deposition of titanium nitride
US6050506A (en) * 1998-02-13 2000-04-18 Applied Materials, Inc. Pattern of apertures in a showerhead for chemical vapor deposition
KR20020080014A (en) * 2001-04-10 2002-10-23 주식회사 에이티씨 plasma processing apparatus
JP4502639B2 (en) * 2003-06-19 2010-07-14 財団法人国際科学振興財団 Shower plate, plasma processing apparatus, and product manufacturing method
US20050284573A1 (en) * 2004-06-24 2005-12-29 Egley Fred D Bare aluminum baffles for resist stripping chambers
JP4550507B2 (en) * 2004-07-26 2010-09-22 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP2007042951A (en) * 2005-08-04 2007-02-15 Tokyo Electron Ltd Plasma processing device
JP2008235611A (en) * 2007-03-21 2008-10-02 Tohoku Univ Plasma processing equipment and method for processing plasma

Also Published As

Publication number Publication date
KR20100076848A (en) 2010-07-06
US20100163187A1 (en) 2010-07-01
JP2010153680A (en) 2010-07-08
KR101039087B1 (en) 2011-06-07

Similar Documents

Publication Publication Date Title
JP5268626B2 (en) Plasma processing equipment
US11482418B2 (en) Substrate processing method and apparatus
JP5371466B2 (en) Plasma processing method
TWI670783B (en) Methods and systems to enhance process uniformity
JP5457037B2 (en) Inert gas injection into the edge of the substrate
US20090218317A1 (en) Method to control uniformity using tri-zone showerhead
US7832354B2 (en) Cathode liner with wafer edge gas injection in a plasma reactor chamber
US20090057269A1 (en) Method of processing a workpiece in a plasma reactor with independent wafer edge process gas injection
TWI430395B (en) Cathode liner with wafer edge gas injection in a plasma reactor chamber
US20110203735A1 (en) Gas injection system for etching profile control
JP6050944B2 (en) Plasma etching method and plasma processing apparatus
US11309165B2 (en) Gas showerhead, manufacturing method, and plasma apparatus including the gas showerhead
CN111095498B (en) Mounting table, substrate processing apparatus, and edge ring
KR20120094980A (en) Plazma treatment apparatus
JP2014082354A (en) Plasma processing apparatus
JP2007067037A (en) Vacuum processing device
JP2002217171A (en) Etching equipment
JP3913244B2 (en) Substrate processing method
JP2018121051A (en) Plasma processing device
JP2000294538A (en) Vacuum treatment apparatus
WO2015016980A1 (en) Gas diffuser hole design for improving edge uniformity
JP2006120872A (en) Gaseous diffusion plate
KR101197020B1 (en) Substrate processing apparatus for uniform plasma discharge and method of adjusting strength of plasma discharge
JP2006344701A (en) Etching device and etching method
JP4642358B2 (en) Wafer mounting electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees