US20090041952A1 - Method of depositing silicon oxide films - Google Patents

Method of depositing silicon oxide films Download PDF

Info

Publication number
US20090041952A1
US20090041952A1 US12/178,300 US17830008A US2009041952A1 US 20090041952 A1 US20090041952 A1 US 20090041952A1 US 17830008 A US17830008 A US 17830008A US 2009041952 A1 US2009041952 A1 US 2009041952A1
Authority
US
United States
Prior art keywords
method
gas
substrate
oxygen
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US12/178,300
Inventor
Tae Ho Yoon
Hyung Sang Park
Yong Min Yoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asm Korea Ltd
Original Assignee
Genitech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR10-2007-0080581 priority Critical
Priority to KR20070080581 priority
Application filed by Genitech Co Ltd filed Critical Genitech Co Ltd
Assigned to ASM GENITECH KOREA LTD. reassignment ASM GENITECH KOREA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, HYUNG SANG, YOO, YONG MIN, YOON, TAE HO
Publication of US20090041952A1 publication Critical patent/US20090041952A1/en
Assigned to ASM KOREA LTD. reassignment ASM KOREA LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ASM GENITECH KOREA LTD.
Application status is Pending legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions

Abstract

Methods of depositing a silicon oxide film are disclosed. One embodiment is a plasma enhanced atomic layer deposition (PEALD) process that includes supplying a vapor phase silicon precursor, such as a diaminosilane compound, to a substrate, and supplying oxygen plasma to the substrate. Another embodiment is a pulsed hybrid method between atomic layer deposition (ALD) and chemical vapor deposition (CVD). In the other embodiment, a vapor phase silicon precursor, such as a diaminosilane compound, is supplied to a substrate while ozone gas is continuously or discontinuously supplied to the substrate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(a) to and the benefit of Korean Patent Application No. 10-2007-0080581 filed in the Korean Intellectual Property Office on Aug. 10, 2007, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to deposition of thin films. More particularly, the present invention relates to a method of depositing silicon oxide films.
  • 2. Description of the Related Art
  • In depositing silicon oxide films for semiconductor devices, chemical vapor deposition (CVD) methods, such as low pressure CVD (LPCVD), atmospheric pressure CVD (APCVD), and plasma-enhanced CVD (PECVD), have been widely used. In LPCVD or APCVD, two or more source gases can be simultaneously supplied and deposited at a relatively high temperature (for example, about 500° C. to about 850° C.) to form a silicon oxide film over a substrate. In PECVD, a mixture of a vapor-phase precursor and a reactant gas can be activated by plasma to form a silicon oxide film.
  • Silicon oxide films deposited by a high temperature CVD process, such as LPCVD or APCVD, tend to have defects, such as interface oxidation and dopant diffusion. Such defects may degrade electrical characteristics of devices that include the silicon oxide films. Silicon oxide films deposited by a PECVD process may include about 2 atomic % to about 9 atomic % of hydrogen and nitrogen atoms. Such hydrogen and nitrogen atoms in the films may adversely affect the processing of the films, and result in a deviated refractive index (RI) and inconsistent etch selectivity.
  • Recently, the circuit density of semiconductor devices has been increased while the geometry of circuits has been decreased. In addition, aspect ratios of features in semiconductor devices have been increased. Accordingly, there is a need for a method of depositing silicon oxide films having enhanced step coverage over features of high aspect ratios, particularly for films that are thin and/or uniformly thick.
  • The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention, and does not constitute prior art.
  • SUMMARY OF THE INVENTION
  • According to one embodiment, a method of depositing a silicon oxide film over a substrate is provided. The method includes one or more of deposition cycles. Each of the cycles includes: supplying a plurality of pulses of silicon source gas of a compound represented by Formula 1 into a reactor in which a substrate is loaded.
  • Figure US20090041952A1-20090212-C00001
  • R is a straight or branched alkyl group having 1 to 4 carbons. The method also includes providing an oxygen-containing gas over the substrate in the reactor.
  • According to another embodiment, an apparatus includes a silicon oxide film made by the method described above. The silicon oxide film has an atomic ratio of silicon to oxygen of about 1:1, and the silicon oxide film has a refractive index between about 1.459 and about 1.483.
  • According to yet another embodiment, a method of forming a thin film over a substrate is provided. The method includes a first cycle which comprises: supplying a vapor phase silicon precursor comprising diaminosilane over a substrate; purging the vapor phase silicon precursor from the substrate; and supplying ozone gas to the substrate during supplying the vapor phase silicon precursor and after purging and before a subsequent cycle.
  • According to yet another embodiment, a method of depositing a thin film over a substrate is provided. The method includes supplying a silicon source gas to a substrate; and supplying an excited oxygen species to the substrate to form a film, such that the film has an atomic ratio of Si to O of about 0.5:1 to about 1.1:1.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flowchart illustrating a method of depositing a silicon oxide film according to a first embodiment.
  • FIG. 2 is a graph illustrating the atomic emission spectroscopy (AES) analysis results of a silicon oxide film deposited by a method according to the first embodiment.
  • FIG. 3 is a graph illustrating the refractive indices (RI) of silicon oxide films formed by deposition methods according to the first embodiment and other methods for comparison
  • FIG. 4 is a timing diagram illustrating a method of depositing a silicon oxide film according to a second embodiment.
  • FIG. 5 is a wafer map illustrating uniformity of a silicon oxide film deposited by a method according to the second embodiment.
  • FIG. 6 is a wafer map illustrating the thickness uniformity of a silicon oxide film deposited by a method according to the first embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the invention.
  • A method of depositing a silicon oxide film according to a first embodiment will be described with reference to FIG. 1. FIG. 1 is a flowchart illustrating a cyclical method of depositing a silicon oxide film.
  • First, a substrate on which a silicon oxide film is to be deposited is loaded into a reactor (step 100). In one embodiment, the substrate may be a wafer formed of silicon. In other embodiments, the substrate may be formed of any other suitable material. The substrate may include one or more layers or features (for example, lines, islands, trenches, etc.) formed thereon.
  • In one embodiment, the reactor may be a chemical vapor deposition (CVD) reactor. In another embodiment, the reactor may be an atomic layer deposition (ALD) reactor. Examples of reactors include, but are not limited to, those described in U.S. Pat. No. 6,539,891; U.S. Pat. No. 6,645,574; U.S. Patent Application Publication No. 2005/0034664; U.S. Patent Application Publication No. 2006/0249077; and U.S. Patent Application Publication No. 2007/0215036, the disclosures of which are incorporated herein by reference in their entireties. ALD reactors are optimized for fast switching among purge gases and reactant gases, and to keep mutually reactive reactants separate from one another in the gas phase. A skilled artisan will appreciate that any suitable reactor may be adapted for the method.
  • Next, a gas-phase precursor is supplied over the substrate (step 110) in the reactor. In one embodiment, the precursor may include a diaminosilane compound represented by Formula 1 below.
  • Figure US20090041952A1-20090212-C00002
  • In Formula 1, R is a straight or branched alkyl group having 1 to 4 carbons (R═CnH2n+1; n is an integer of 1 to 4). In one embodiment, the precursor may be N,N,N′,N′-tetraethyldiaminosilane which can be represented by the chemical formula, SiH2[N(C2H5)2]2. The precursor may be supplied at a vapor pressure of about 2 torr at room temperature.
  • Next, a purge gas, such as Ar, is supplied (step 120) into the reactor to purge the reactor. A skilled artisan will appreciate that any suitable inert gas can be supplied as a purge gas, and that the purge gas supply can be the continuous supply of the same inert gas used as a carrier gas in the previous precursor supply 110.
  • Subsequently, oxygen plasma is generated in-situ in the reactor (step 130). In one embodiment, oxygen gas may be supplied to the reactor substantially continuously throughout the process described herein. In another embodiment, oxygen gas may be supplied to the reactor only at the step 130. The plasma may be generated by applying plasma power (for example, radio frequency power) to a capacitive coupling electrode positioned in the reactor. The plasma power may have a frequency of about 13.56 MHz or about 27.12 MHz. In other embodiments, oxygen plasma may be generated remotely and products of the plasma (e.g., excited oxygen species or radicals) supplied to the reactor.
  • After generating the oxygen plasma (step 130), a purge gas, such as Ar, is supplied (step 140) into the reactor. The purge gas supplied at the step 140 may be the same as the purge gas supplied at the step 120, which may also serve as carrier gases during the reactant pulses 110, 130. A skilled artisan will appreciate that any suitable inert gas can be supplied as a purge gas. In certain embodiments, the step 140 may be omitted, particularly where the active oxygen species of step 130 quickly die off after stopping the plasma power supply.
  • The steps 110-140 described above may form a cycle, which may be repeated until a silicon oxide film having a desired thickness is deposited on the substrate (decision box 150). In one embodiment, this process can be performed at a process temperature between about 50° C. and about 450° C. and under a process pressure of about 0.1 torr to about 10 torr. In one embodiment, oxygen (O2) gas may have a gas flow rate between about 50 sccm and about 300 sccm. The plasma power applied to the reactor for in situ plasma generation may be between about 50 W and about 700 W, or between about 0.05 W/cm2 and about 2 W/cm2.
  • In Example 1, a silicon oxide film was deposited by a deposition method according to the first embodiment. The process temperature was about 350° C., and the process pressure was about 1.5 torr. The oxygen (O2) flow rate was about 50 sccm, and plasma power applied was about 200 W.
  • FIG. 2 is a depth profile graph representing atomic emission spectroscopy (AES) analysis results of the silicon oxide film. The silicon oxide film was found to have an atomic ratio of silicon (Si) to oxygen (O) of about 1:1. The silicon oxide film included less than 3 atomic % of impurities, such as carbon (C) atoms and nitrogen (N) atoms. In other words, a silicon-rich silicon oxide film was formed by the deposition method. The silicon-rich silicon oxide film according to embodiments described herein may have an atomic ratio of silicon (Si) to oxygen (O) of about 0.5:1 to about 1.1:1, or optionally about 0.55:1 to about 1.1:1.
  • Referring to FIG. 3, the refractive indices (RI) of silicon oxide films formed by deposition methods will be described below. In Examples 2-A and 2-B, silicon oxide films were formed by methods according to the first embodiment under different conditions. In Example 2-C, a silicon oxide film was formed by thermal ALD methods.
  • In Example 2-A, a first silicon oxide film was deposited using SiH2[N(C2H5)2]2 at a process temperature of about 250° C. and a process pressure of about 3 Torr with an oxygen (O2) flow rate of about 100 sccm and applied plasma power of about 100 W. In Example 2-B, a second silicon oxide film was deposited using SiH2[N(C2H5)2]2 at a process temperature of about 350° C. and a process pressure of about 1.5 torr with an oxygen (O2) flow rate of about 200 sccm and plasma power of about 200 W. The second silicon oxide film deposited in Example 2-B had substantially the same thickness as the first silicon oxide film deposited in Example 2-A. In addition, a third silicon oxide film having substantially the same thickness as the silicon oxide films of Examples 2-A and 2-B was deposited by thermal atomic layer deposition (ALD), using SiH2[N(C2H5)2]2 and ozone (O3) as reactants. The third silicon oxide film was deposited at a process temperature of about 300° C. and a process pressure of about 1.0 torr, while ozone was supplied at a flow rate of about 100 sccm.
  • The refractive indices (RI) of the first to third silicon oxide films were measured, and the results are shown in FIG. 3. The first silicon oxide film in Example 2-A was found to have an RI of about 1.459. The second silicon oxide film in Example 2-B was found to have an RI of about 1.483. The third silicon oxide film deposited by the thermal ALD method was found to have an RI of about 1.457. Thus, the silicon oxide films in Examples 2-A and 2-B had RI greater than the silicon oxide film deposited by the thermal ALD method.
  • The silicon oxide films may have various RI values, depending on the plasma process conditions. However, the greater RI value is, the slower is the etch rate of the silicon oxide film. In one embodiment, a silicon oxide film having a relatively high RI value may be used as a liner insulation film used for formation of a shallow trench isolation (STI) structure in a semiconductor device. In such an embodiment, the silicon oxide film having a high RI value may prevent a moat from being produced at the edge of the STI structure during a wet etching process, since silicon-rich silicon oxide film is not wet-etched well.
  • In the first embodiment described above, N,N,N′,N′-tetraethyldiaminosilane (SiH2[N(C2H5)2]2) may be used as a silicon precursor. N,N,N′,N′-tetraethyldiaminosilane (SiH2[N(C2H5)2]2) has good deposition characteristics at a temperature between about 50° C. and about 450° C. Thus, deposition can be performed in a relatively wide temperature range with a relatively small amount of the precursor. In addition, N,N,N′,N′-tetraethyldiaminosilane has good thermal stability at a high process temperature (for example, about 350° C.) when used in the plasma enhanced atomic deposition method (PEALD) according to the first embodiment. Good thermal stability is important for self-limited behavior (and thus thickness uniformity) in ALD methods, so that the precursor self-limitingly adsorbs rather than decomposing during the silicon precursor pulse. Furthermore, a silicon oxide film having a desired atomic ratio may be formed, using the precursor.
  • In addition, the deposition method according to the first embodiment forms a silicon oxide film having good step coverage while providing a thin and/or uniform thickness over features having a high aspect ratio.
  • Referring to FIG. 4, a method of depositing a silicon oxide film according to a second embodiment will be described below. FIG. 4 illustrates gas supply cycles for the method.
  • In the illustrated method, a substrate on which a silicon oxide film is to be deposited is loaded into a reactor. The details of the substrate can be as described above with respect to the substrate of FIG. 1. In one embodiment, the reactor may be a chemical vapor deposition (CVD) reactor. In another embodiment, the reactor may be an atomic layer deposition (ALD) reactor. Examples of reactors include, but are not limited to, those described in U.S. patent application Ser. No. 12/058,364, filed on Mar. 28, 2008, entitled LATERAL FLOW DEPOSITION APPARATUS AND METHOD OF DEPOSITING FILM BY USING THE APPARATUS, the disclosure of which is incorporated herein by reference in its entirety for purposes of describing a suitable reactor for implementing the second embodiment.
  • Then, a reactant gas R, such as ozone (O3), is substantially continuously supplied over the substrate in the reactor for a first time period t1 and a second time period t2 in a first direction relative to the orientation of the substrate. During the first time period t1, while supplying the reactant gas R, a silicon source gas S is also supplied over the substrate in the first direction. The silicon source gas S may include a diaminosilane compound represented by Formula 1 above. In one embodiment, the silicon source gas S may be N,N,N′,N′-tetraethyldiaminosilane (SiH2[N(C2H5)2]2).
  • During the second time period t2, the supply of the silicon source gas is stopped, the reactant R flow continues and a purge gas P is supplied to the reactor in the first direction. The second time period t2 may be shorter than the first time period t1. In certain embodiments, the second time period t2 may be omitted. The steps performed during the first and second time periods t1, t2 form a first cycle, which can be repeated one or more times.
  • The reactant gas R, such as ozone (O3), continues to be supplied to the reactor for a third time period t3 and a fourth time period t4. During these periods, the reactant gas R may be supplied over the substrate in a second direction relative to the orientation of the substrate. The second direction may be substantially different from the first direction. In one embodiment, the second direction is generally opposite from the first direction. In another embodiment, the first and second directions may be substantially perpendicular to each other. A skilled artisan will appreciate that an angle between the first and second directions can vary widely, depending on the deposition methods.
  • During the third time period t3, while supplying the reactant gas R, a silicon source gas S is supplied over the substrate in the second direction. Subsequently, during the fourth time period t4, a purge gas P is supplied to the reactor in the second direction. The steps performed during the third and fourth time periods t3, t4 form a second cycle, which can be repeated one or more times. One or more of first cycles and one or more of second cycles can form a super-cycle, which can be repeated until a silicon oxide film having a desired thickness is formed on the substrate.
  • In some embodiments, a super-cycle may include one or more of third cycles during which gases are supplied over the substrate in a third direction that is different from the first and second directions. In other embodiments, a super-cycle may include additional cycles during which gases are supplied over the substrate in directions that are different from the first to third directions. Changing directions of flow, relative to the substrate, in a regular manner, allows averaging out any spatial non-uniformities, such as depletion effects and by-product interference with downstream deposition, thus improving thickness and compositional non-uniformity. The different directions can be accomplished by incremental rotation of the substrate or moving the substrate among multiple deposition zones into different orientations relative to the gas flow directions. Examples of changing directions of flow are described in detail in U.S. patent application Ser. No. 12/058,364, the disclosure of which is incorporated herein by reference in its entirety.
  • In one embodiment, the method can be performed at a process temperature between room temperature and about 400° C., optionally between about 200° C. and about 350° C. The method can be performed under a process pressure between about 0.1 torr and about 10 torr, optionally between about 1.5 torr and about 3 torr. The reactant gas R, such as ozone (O3), may be supplied at a gas flow rate between about 50 sccm and about 1000 sccm, optionally between about 250 sccm and about 1000 sccm.
  • In the illustrated method, the reactant gas R is substantially continuously supplied to the reactor during one or more super-cycles. During the super-cycles, at least a portion of the reactant gas R is adsorbed on the surface of the substrate while additional reactant gas R may remain in the reactor. In addition, at least a portion of the source gas S supplied during the first time period t1 and the third time period t3 is adsorbed on the surface of the substrate while the remainder of the supplied source gas S may remain in the reactor in vapor phase.
  • During the first time period t1 and/or the third time period t3, the remainders of the source gas S and the reactant gas R react with each other to form a silicon oxide film by chemical vapor deposition reactions. Further, during the first time period t1 and the third time period t3, the source gas S adsorbed on the surface of the substrate reacts chemically with the reactant gas R on the heated surface of the substrate during the second time period t2 and the fourth time period t4, and forms a silicon oxide film by atomic layer deposition reactions. In the illustrated embodiment, either or both of reaction of simultaneously supplied vapor phase reactants (CVD) and a surface reaction of separately supplied reactants (ALD) may occur during each cycle to form a silicon oxide film, thereby increasing the deposition rate.
  • In addition, the deposition method includes supplying the source gas S and the reactant gas R in different directions relative to the orientation of the substrate. As described above, the deposition method includes the gas supplying time periods t1 and t2 during which the source gas S, the reactant gas R, purge gas P are supplied in the first direction, relative to the substrate. The method also includes the gas supplying time period t3 and t4 during which the source gas S, the reactant gas R, and purge gas P are supplied in the second direction different from the first direction, relative to the substrate. This configuration can increase the thickness uniformity of a silicon oxide film. In certain embodiments where a lateral flow deposition method is used, the embodiment can substantially improve the thickness uniformity of a silicon oxide film by averaging out any spatial non-uniformities due to the CVD component of the reactions.
  • Examples of deposition methods according to the embodiments described above will be described. In Example 3, deposition was conducted according to the second embodiment described above with reference to FIG. 4. In Example 3, a gas supplying method included repeating the first and second cycles described above with reference to FIG. 4. In Example 3, each gas supplying super-cycle t1 to t4 included flowing gases in a first gas flow direction during t1 and t2 and in a second gas flow direction during t3 and t4. The second gas flow direction was opposite to the first gas flow direction, relative to the substrate.
  • In Example 4, deposition was conducted according to the first embodiment described above with reference to FIG. 1. In Example 4, a gas supplying method included flowing gases only in a single flow direction relative to the orientation of a substrate.
  • In Example 5, deposition was conducted by repeating supplying a source gas, a purge gas, a reactant gas, and a purge gas alternately in separated pulses of a conventional ALD method. In Examples 3-5, deposition conditions were the same as one another except for the gas supplying methods.
  • In Examples 3 and 5, the deposition rates of the silicon oxide films were measured, and the results are shown in Table 1.
  • TABLE 1
    Deposition Rate (Å/cycle)
    Example 3 2.5
    Example 5 1.1
  • Table 1 shows that the silicon oxide film of Example 3 was deposited at a higher deposition rate than that of Example 5. The deposition rate of Example 3 was more than twice greater than that of Example 5.
  • In Examples 3 and 4, the thickness uniformities of the silicon oxide films were measured, and the results are shown in FIGS. 5 and 6, respectively. The thicknesses of the silicon oxide films were measured at 49 points on the top surfaces of the substrates by ellipsometry.
  • In Example 3, the average thickness of the silicon oxide film was about 228 Å and the deviation (high/low variance) of the thickness was about 5.76%. The standard deviation was 3.25%. In Example 4, the average thickness of the silicon oxide film was about 155 Å and the deviation (high/low variance) of the thickness was about 13.83%. The standard deviation was 6.93%. These results show that the silicon oxide film of Example 3 has a more uniform thickness and a higher deposition rate than that of the silicon oxide film of Example 4.
  • Although embodiments and examples have been described, the present invention is not limited to the embodiments and examples, but may be modified in various forms without departing from the scope of the appended claims, the detailed description, and the accompanying drawings of the present invention. Therefore, it is natural that such modifications belong to the scope of the present invention.

Claims (28)

1. A method of depositing a silicon oxide film over a substrate, the method comprising one or more of deposition cycles, each of the cycles comprising:
supplying a plurality of pulses of silicon source gas of a compound represented by Formula 1 into a reactor in which a substrate is loaded,
Figure US20090041952A1-20090212-C00003
wherein R is a straight or branched alkyl group having 1 to 4 carbons; and
providing an oxygen-containing gas over the substrate in the reactor.
2. The method of claim 1, wherein the compound comprises N, N, N′, N′-tetraethyldiaminosilane (SiH2 [N(C2H5)2]2).
3. The method of claim 1, wherein at least one of the cycles comprises providing the oxygen-containing gas after supplying the silicon source gas.
4. The method of claim 3, wherein the at least one of the cycles further comprises supplying a purge gas into the reactor after supplying the silicon source gas and before providing the oxygen-containing gas.
5. The method of claim 3, wherein the at least one of the cycles further comprises providing a purge gas into the reactor after providing the oxygen-containing gas.
6. The method of claim 1, wherein providing the oxygen-containing gas comprises providing oxygen plasma.
7. The method of claim 6, wherein providing the oxygen plasma comprises generating the oxygen plasma in-situ in the reactor.
8. The method of claim 7, wherein generating the oxygen plasma comprises supplying oxygen gas into the reactor, and applying plasma power to the reactor to activate the oxygen gas.
9. The method of claim 8, wherein applying the plasma power comprises applying plasma power between about 0.05 W/cm2 and about 2 W/cm2.
10. The method of claim 1, wherein the oxygen-containing gas comprises ozone.
11. The method of claim 1, wherein at least one of the cycles comprises, in sequence:
supplying the silicon source gas; and
supplying a purge gas into the reactor to purge the silicon source gas from the reactor.
12. The method of claim 11, wherein the at least one of the cycles comprises providing the oxygen-containing gas substantially continuously throughout the at least one cycle.
13. The method of claim 11, wherein the at least one of the cycles comprises: providing the oxygen-containing gas during supplying the silicon source gas; and providing the oxygen-containing gas during supplying the purge gas.
14. The method of claim 13, wherein the one or more of deposition cycles comprise a first cycle and a second cycle,
wherein the first cycle comprises flowing at least one of the silicon source gas or the oxygen-containing gas in a first direction relative to the orientation of the substrate, and
wherein the second cycle comprises flowing at least one of the silicon source gas or the oxygen-containing gas in a second direction relative to the orientation of the substrate, the second direction being different from the first direction.
15. The method of claim 1, wherein each of the cycles is conducted at a process temperature between room temperature and about 400° C.
16. The method of claim 1, wherein each of the cycles is conducted at a process pressure between about 0.1 torr and about 10 torr.
17. The method of claim 1, wherein providing the oxygen-containing gas comprises supplying the oxygen-containing gas at a gas flow rate between about 50 sccm and about 300 sccm.
18. The method of claim 1, wherein providing the oxygen-containing gas comprises supplying the oxygen-containing gas at a gas flow rate between about 50 sccm and about 1000 sccm.
19. An apparatus comprising:
a silicon oxide film made by the method of claim 1,
wherein the silieon oxide film has an atomic ratio of silicon to oxygen of about 1:1, and
wherein the silicon oxide film has a refractive index between about 1.459 and about 1.483.
20. A method of forming a thin film over a substrate, the method comprising a first cycle which comprises:
supplying a vapor phase silicon precursor comprising diaminosilane over a substrate;
purging the vapor phase silicon precursor from the substrate; and
supplying ozone gas to the substrate during supplying the vapor phase silicon precursor and after purging and before a subsequent cycle.
21. The method of claim 20, wherein supplying ozone gas is conducted substantially continuously during the first cycle.
22. The method of claim 20, wherein the silicon precursor is represented by Formula 1:
Figure US20090041952A1-20090212-C00004
wherein R is a straight or branched alkyl group having 1 to 4 carbons.
23. The method of claim 22, wherein the silicon precursor comprises N, N, N′,N′-tetraethyldiaminosilane (SiH2[N(C2H5)2]2).
24. The method of claim 20, wherein the first cycle comprises flowing the precursor and the ozone gas in a first direction relative to the orientation of the substrate.
25. The method of claim 20, further comprising a second cycle which comprises:
supplying the vapor phase silicon precursor over the substrate;
purging the vapor phase silicon precursor from the substrate; and
supplying ozone gas to the substrate during supplying the vapor phase silicon precursor, after purging and before a subsequent cycle,
wherein the second cycle comprises flowing the precursor and the ozone gas in a second direction relative to the orientation of the substrate, the second direction being different from the first direction.
26. The method of claim 25, wherein the first cycle comprises flowing purge gas in the first direction, and wherein the second cycle comprises flowing the purge gas in the second direction.
27. The method of claim 20, wherein the deposition rate of the silicon oxide film is more than about 1.1 Å/cycle.
28. A method of depositing a thin film over a substrate, the method comprising;
supplying a silicon source gas to a substrate; and
supplying an excited oxygen species to the substrate to form a film, such that the film has an atomic ratio of Si to O of about 0.5:1 to about 1.1:1.
US12/178,300 2007-08-10 2008-07-23 Method of depositing silicon oxide films Pending US20090041952A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2007-0080581 2007-08-10
KR20070080581 2007-08-10

Publications (1)

Publication Number Publication Date
US20090041952A1 true US20090041952A1 (en) 2009-02-12

Family

ID=40346811

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/178,300 Pending US20090041952A1 (en) 2007-08-10 2008-07-23 Method of depositing silicon oxide films

Country Status (2)

Country Link
US (1) US20090041952A1 (en)
KR (1) KR20090016403A (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100255218A1 (en) * 2009-04-01 2010-10-07 Asm Japan K.K. Method of Depositing Silicon Oxide Film by Plasma Enhanced Atomic Layer Deposition at Low Temperature
US20140030444A1 (en) * 2012-07-30 2014-01-30 Novellus Systems, Inc. High pressure, high power plasma activated conformal film deposition
US8828890B2 (en) 2010-08-02 2014-09-09 Eugene Technology Co., Ltd. Method for depositing cyclic thin film
US8900344B2 (en) 2010-03-22 2014-12-02 T3 Scientific Llc Hydrogen selective protective coating, coated article and method
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US8999859B2 (en) 2010-04-15 2015-04-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9070555B2 (en) 2012-01-20 2015-06-30 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
US20150187560A1 (en) * 2013-12-27 2015-07-02 Eugene Technology Co., Ltd. Cyclic Deposition Method for Thin Film Formation, Semiconductor Manufacturing Method, and Semiconductor Device
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9111897B2 (en) 2012-04-13 2015-08-18 Samsung Electronics Co., Ltd. Methods of forming a polysilicon layer and methods of manufacturing semiconductor devices
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
US9230800B2 (en) 2010-04-15 2016-01-05 Novellus Systems, Inc. Plasma activated conformal film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9287113B2 (en) 2012-11-08 2016-03-15 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9355886B2 (en) 2010-04-15 2016-05-31 Novellus Systems, Inc. Conformal film deposition for gapfill
US9355839B2 (en) 2012-10-23 2016-05-31 Lam Research Corporation Sub-saturated atomic layer deposition and conformal film deposition
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US20160284534A1 (en) * 2015-03-25 2016-09-29 Asm Ip Holding B.V. Method of forming thin film
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9892908B2 (en) 2011-10-28 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10361076B2 (en) 2017-07-19 2019-07-23 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147727B1 (en) * 2010-08-02 2012-05-25 주식회사 유진테크 Method of cyclic deposition thin film
KR101898161B1 (en) 2017-02-07 2018-09-12 연세대학교 산학협력단 Method of forming a metal oxide comprising buffer layer
KR101884555B1 (en) 2017-02-07 2018-08-01 연세대학교 산학협력단 Method of forming a metal oxide by plasma enhanced atomic layer deposition

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424661A (en) * 1966-09-01 1969-01-28 Bell Telephone Labor Inc Method of conducting chemical reactions in a glow discharge
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US6539891B1 (en) * 1999-06-19 2003-04-01 Genitech, Inc. Chemical deposition reactor and method of forming a thin film using the same
US6542277B2 (en) * 2000-12-11 2003-04-01 Harris Corporation Optically amplified back-up receiver
US20030188682A1 (en) * 1999-12-03 2003-10-09 Asm Microchemistry Oy Method of growing oxide films
US6645574B1 (en) * 1999-04-06 2003-11-11 Genitech, Inc. Method of forming a thin film
US20040115898A1 (en) * 2002-12-13 2004-06-17 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US20050034664A1 (en) * 2001-11-08 2005-02-17 Koh Won Yong Apparatus for depositing
US6861334B2 (en) * 2001-06-21 2005-03-01 Asm International, N.V. Method of fabricating trench isolation structures for integrated circuits using atomic layer deposition
US20050223982A1 (en) * 2002-04-19 2005-10-13 Park Young H Apparatus and method for depositing thin film on wafer using remote plasma
WO2006097525A2 (en) * 2005-03-17 2006-09-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming silicon oxide containing films
US20060249077A1 (en) * 2005-05-09 2006-11-09 Kim Daeyoun Multiple inlet atomic layer deposition reactor
US20070026540A1 (en) * 2005-03-15 2007-02-01 Nooten Sebastian E V Method of forming non-conformal layers
US20070215036A1 (en) * 2006-03-15 2007-09-20 Hyung-Sang Park Method and apparatus of time and space co-divided atomic layer deposition
US20080081104A1 (en) * 2006-09-28 2008-04-03 Kazuhide Hasebe Film formation method and apparatus for forming silicon oxide film
US7410671B2 (en) * 1996-08-16 2008-08-12 Asm International N.V. Sequential chemical vapor deposition
US20080241384A1 (en) * 2007-04-02 2008-10-02 Asm Genitech Korea Ltd. Lateral flow deposition apparatus and method of depositing film by using the apparatus

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424661A (en) * 1966-09-01 1969-01-28 Bell Telephone Labor Inc Method of conducting chemical reactions in a glow discharge
US7410671B2 (en) * 1996-08-16 2008-08-12 Asm International N.V. Sequential chemical vapor deposition
US6645574B1 (en) * 1999-04-06 2003-11-11 Genitech, Inc. Method of forming a thin film
US6539891B1 (en) * 1999-06-19 2003-04-01 Genitech, Inc. Chemical deposition reactor and method of forming a thin film using the same
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US20070163488A1 (en) * 1999-12-03 2007-07-19 Eva Tois Method of growing oxide thin films
US20040065253A1 (en) * 1999-12-03 2004-04-08 Eva Tois Method of growing oxide thin films
US20030188682A1 (en) * 1999-12-03 2003-10-09 Asm Microchemistry Oy Method of growing oxide films
US6542277B2 (en) * 2000-12-11 2003-04-01 Harris Corporation Optically amplified back-up receiver
US6861334B2 (en) * 2001-06-21 2005-03-01 Asm International, N.V. Method of fabricating trench isolation structures for integrated circuits using atomic layer deposition
US20070287261A1 (en) * 2001-06-21 2007-12-13 Asm International N.V. Trench isolation structures for integrated circuits
US20050034664A1 (en) * 2001-11-08 2005-02-17 Koh Won Yong Apparatus for depositing
US20050223982A1 (en) * 2002-04-19 2005-10-13 Park Young H Apparatus and method for depositing thin film on wafer using remote plasma
US20040115898A1 (en) * 2002-12-13 2004-06-17 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US20070026540A1 (en) * 2005-03-15 2007-02-01 Nooten Sebastian E V Method of forming non-conformal layers
WO2006097525A2 (en) * 2005-03-17 2006-09-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming silicon oxide containing films
US20060249077A1 (en) * 2005-05-09 2006-11-09 Kim Daeyoun Multiple inlet atomic layer deposition reactor
US20070215036A1 (en) * 2006-03-15 2007-09-20 Hyung-Sang Park Method and apparatus of time and space co-divided atomic layer deposition
US20080081104A1 (en) * 2006-09-28 2008-04-03 Kazuhide Hasebe Film formation method and apparatus for forming silicon oxide film
US20080241384A1 (en) * 2007-04-02 2008-10-02 Asm Genitech Korea Ltd. Lateral flow deposition apparatus and method of depositing film by using the apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
http://www.filmetrics.com/refractive-index-database/SiO2/Fused-Silica-Silica-Silicon-Dioxide-Thermal-Oxide-ThermalOxide, referred to as Filmetrics, accessed online 02 MAR 2015 *

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197915B2 (en) * 2009-04-01 2012-06-12 Asm Japan K.K. Method of depositing silicon oxide film by plasma enhanced atomic layer deposition at low temperature
US20100255218A1 (en) * 2009-04-01 2010-10-07 Asm Japan K.K. Method of Depositing Silicon Oxide Film by Plasma Enhanced Atomic Layer Deposition at Low Temperature
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8900344B2 (en) 2010-03-22 2014-12-02 T3 Scientific Llc Hydrogen selective protective coating, coated article and method
US9355886B2 (en) 2010-04-15 2016-05-31 Novellus Systems, Inc. Conformal film deposition for gapfill
US10043655B2 (en) 2010-04-15 2018-08-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8956983B2 (en) 2010-04-15 2015-02-17 Novellus Systems, Inc. Conformal doping via plasma activated atomic layer deposition and conformal film deposition
US8999859B2 (en) 2010-04-15 2015-04-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US10043657B2 (en) 2010-04-15 2018-08-07 Lam Research Corporation Plasma assisted atomic layer deposition metal oxide for patterning applications
US9793110B2 (en) 2010-04-15 2017-10-17 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9076646B2 (en) 2010-04-15 2015-07-07 Lam Research Corporation Plasma enhanced atomic layer deposition with pulsed plasma exposure
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9230800B2 (en) 2010-04-15 2016-01-05 Novellus Systems, Inc. Plasma activated conformal film deposition
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9570274B2 (en) 2010-04-15 2017-02-14 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9570290B2 (en) 2010-04-15 2017-02-14 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9673041B2 (en) 2010-04-15 2017-06-06 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for patterning applications
US8912353B2 (en) 2010-06-02 2014-12-16 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for depositing films comprising same
US8828890B2 (en) 2010-08-02 2014-09-09 Eugene Technology Co., Ltd. Method for depositing cyclic thin film
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US9892908B2 (en) 2011-10-28 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9670579B2 (en) 2012-01-20 2017-06-06 Novellus Systems, Inc. Method for depositing a chlorine-free conformal SiN film
US9070555B2 (en) 2012-01-20 2015-06-30 Novellus Systems, Inc. Method for depositing a chlorine-free conformal sin film
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9111897B2 (en) 2012-04-13 2015-08-18 Samsung Electronics Co., Ltd. Methods of forming a polysilicon layer and methods of manufacturing semiconductor devices
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US20140030444A1 (en) * 2012-07-30 2014-01-30 Novellus Systems, Inc. High pressure, high power plasma activated conformal film deposition
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10023960B2 (en) 2012-09-12 2018-07-17 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9355839B2 (en) 2012-10-23 2016-05-31 Lam Research Corporation Sub-saturated atomic layer deposition and conformal film deposition
US10008428B2 (en) 2012-11-08 2018-06-26 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9287113B2 (en) 2012-11-08 2016-03-15 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9786570B2 (en) 2012-11-08 2017-10-10 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US10192742B2 (en) 2013-11-07 2019-01-29 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9905423B2 (en) 2013-11-07 2018-02-27 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US9312125B2 (en) * 2013-12-27 2016-04-12 Eugene Technology Co., Ltd. Cyclic deposition method for thin film formation, semiconductor manufacturing method, and semiconductor device
US20150187560A1 (en) * 2013-12-27 2015-07-02 Eugene Technology Co., Ltd. Cyclic Deposition Method for Thin Film Formation, Semiconductor Manufacturing Method, and Semiconductor Device
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9875891B2 (en) 2014-11-24 2018-01-23 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US20160284534A1 (en) * 2015-03-25 2016-09-29 Asm Ip Holding B.V. Method of forming thin film
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US10361201B2 (en) 2016-01-18 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10366864B2 (en) 2017-02-09 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10361076B2 (en) 2017-07-19 2019-07-23 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning

Also Published As

Publication number Publication date
KR20090016403A (en) 2009-02-13

Similar Documents

Publication Publication Date Title
US8049304B2 (en) Constructions comprising hafnium oxide and/or zirconium oxide
US6936549B2 (en) Chemical vapor deposition using organometallic precursors
US9153441B2 (en) Methods for forming doped silicon oxide thin films
JP4935687B2 (en) Film forming method and a film forming apparatus
US7297641B2 (en) Method to form ultra high quality silicon-containing compound layers
US7037574B2 (en) Atomic layer deposition for fabricating thin films
US6544900B2 (en) In situ dielectric stacks
US6305314B1 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US7910491B2 (en) Gapfill improvement with low etch rate dielectric liners
US6846745B1 (en) High-density plasma process for filling high aspect ratio structures
US8722546B2 (en) Method for forming silicon-containing dielectric film by cyclic deposition with side wall coverage control
US9570274B2 (en) Plasma activated conformal dielectric film deposition
US7077902B2 (en) Atomic layer deposition methods
US6540838B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
JP5190307B2 (en) Film forming method, the film forming apparatus and a storage medium
US6991959B2 (en) Method of manufacturing silicon carbide film
US6197705B1 (en) Method of silicon oxide and silicon glass films deposition
KR100448714B1 (en) Insulating layer in Semiconductor Device with Multi-nanolaminate Structure of SiNx and BN and Method for Forming the Same
US6958277B2 (en) Surface preparation prior to deposition
JP4929932B2 (en) Film forming method, the film forming apparatus and a storage medium
US8450191B2 (en) Polysilicon films by HDP-CVD
US7629227B1 (en) CVD flowable gap fill
US7097886B2 (en) Deposition process for high aspect ratio trenches
US8361910B2 (en) Pretreatment processes within a batch ALD reactor
US8383525B2 (en) Plasma-enhanced deposition process for forming a metal oxide thin film and related structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASM GENITECH KOREA LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, TAE HO;PARK, HYUNG SANG;YOO, YONG MIN;REEL/FRAME:021320/0920

Effective date: 20080723

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

AS Assignment

Owner name: ASM KOREA LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:ASM GENITECH KOREA LTD.;REEL/FRAME:048810/0370

Effective date: 20161004