JPH08335558A - Thin film vapor phase deposition apparatus - Google Patents

Thin film vapor phase deposition apparatus

Info

Publication number
JPH08335558A
JPH08335558A JP16451695A JP16451695A JPH08335558A JP H08335558 A JPH08335558 A JP H08335558A JP 16451695 A JP16451695 A JP 16451695A JP 16451695 A JP16451695 A JP 16451695A JP H08335558 A JPH08335558 A JP H08335558A
Authority
JP
Japan
Prior art keywords
nozzle
reaction vessel
target substrate
substrate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16451695A
Other languages
Japanese (ja)
Inventor
Toru Matsunami
徹 松浪
Original Assignee
Nissin Electric Co Ltd
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, 日新電機株式会社 filed Critical Nissin Electric Co Ltd
Priority to JP16451695A priority Critical patent/JPH08335558A/en
Publication of JPH08335558A publication Critical patent/JPH08335558A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To improve distribution of raw material gas flowing rate without any gradient of a substrate on which a film is formed.
CONSTITUTION: A raw material gas is supplied from a nozzle 4 to a film forming substrate 2 which is accommodated in a lateral type reaction vessel 1. The reaction vessel is formed in such a manner that the interval of the side walls 1a at the area where the film forming substrate is located becomes narrower as it goes to the rear end position from the front end position of the film forming substrate and thereby the cross-sectional area of the gas flowing path becomes small in the down-flowing side to raise the flowing rate of gas. Since it is not required to incline the film forming substrate, heating of the upper surface of the reactive vessel from the substrate can be controlled, adhesion and deposition of a byproduct can be prevented, and drop onto the substrate of a byproduct which interferes normal film formation can be prevented. A flowing path cross-sectional area adjusting member 7 which makes narrower the gap at the center of nozzle and marks large the gap as it goes to the both end portions is provided on the internal surface of upper wall of nozzle and at the internal surface of lower wall. Thereby, the gas can be applied to the substrate with sufficient divergence without deviation to the center area.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、気相中の化学反応を用いた半導体製造装置である有機金属気相成長装置等のエピタキシャル成長を行う薄膜気相成長装置に係り、原料ガスの流れを改善した装置に関する。 The present invention relates to relates to a thin film vapor deposition apparatus for performing epitaxial growth such as metal organic chemical vapor deposition apparatus is a semiconductor manufacturing apparatus using a chemical reaction in the gas phase, improving the flow of feed gas on the apparatus.

【0002】 [0002]

【従来の技術】気相中の化学反応を利用する化学的気相成長(CVD)装置、有機金属気相成長(MOCVD) BACKGROUND OF THE INVENTION Chemical vapor deposition utilizing a chemical reaction in the gas phase (CVD) apparatus, a metal organic chemical vapor deposition (MOCVD)
装置等の薄膜気相成長装置によりエピタキシャル成長を行う場合、エピタキシャル膜を均一に被成膜基板に堆積することは装置性能の良否を決める大きな要素である。 When epitaxial growth is performed by the thin film vapor deposition apparatus of the device, etc., is a major factor in determining the acceptability of the device performance is deposited uniformly target substrate an epitaxial film.
横型CVDあるいはMOCVD装置の場合、原料ガスの流れ方向の膜厚分布が特に問題となる。 For horizontal CVD or MOCVD apparatus, the film thickness distribution in the flow direction of the raw material gas is a particular problem. 通常、原料ガスの上流部で膜が厚く、下流部では薄くなる傾向が見られる。 Normally, film is thicker at the upstream portion of the feed gas, it tends to be thinner than the downstream portion seen. 原料ガス流速と膜厚とが相関関係を有することが知られていることから、従来、被成膜基板を傾け、反応容器(成長室)の上面と被成膜基板との間隔をガス上流部より下流部に向かうにつれて小さくすることで下流部の流速を大きくして膜厚分布を改善を図っていた。 Since the raw material gas flow rate and the film thickness is known to have a correlation, conventional, tilting the target substrate, the interval of the gas upstream portion of the upper surface and the deposition target substrate in the reaction vessel (deposition chamber) It had tried to improve the film thickness distribution by increasing the flow rate of the downstream part by reducing as more toward the downstream section.

【0003】かかる従来例の概略構成図を図4に示し、 [0003] shows a schematic diagram of the conventional example in FIG. 4,
(a)は縦断面図であり、(b)は(a)のZ−Z線位置から見た上面図である。 (A) is a longitudinal sectional view, a top view seen from line Z-Z position of (b) is (a). 横型の反応容器1は、その下部に被成膜基板の配置開口部1'が設けられており、被成膜基板2はサセプタ3で支持されて反応容器内に位置する。 The reaction vessel 1 of a lateral, the is provided with placement opening 1 'of the target substrate on the lower, deposition substrate 2 is positioned in the reaction vessel is supported by the susceptor 3. 被成膜基板2の前方にノズル4が設けられている。 Nozzle 4 is provided in front of the deposition substrate 2. このノズルは仕切り壁4 1を挾んで上下2段に形成された第1ノズル5と第2ノズル6からなり、第1原料ガスA及び第2の原料ガスBを被成膜基板2に、その直前で混合して与えている。 The nozzle comprises a first nozzle 5 formed in upper and lower stages by sandwiching the partition wall 4 1 of the second nozzle 6, the first raw material gas A and the second raw material gas B to the target substrate 2, the It has given mixed in just before. 被成膜基板2は反応容器1内に傾けて配置されており、基板面と反応容器の上面との間隔は原料ガスの下流部に向かうにつれて減少し、ガス流速を増加させている。 Deposition substrate 2 are arranged to be inclined in a reaction vessel 1, the distance between the upper surface of the reaction vessel with the substrate surface decreases toward the downstream portion of the feed gas, thereby increasing the gas flow rate. 反応容器1にはノズル4とは別にパージガス導入口が設けられており、パージガスCはノズルの周囲を流れて原料ガスと共に排気することにより、ノズル付近にガス溜りが生ずるのを防止している。 The reaction vessel 1 is provided separately from the purge gas introduction port to the nozzle 4, the purge gas C is by venting with the raw material gas flows around the nozzle, thereby preventing the gas reservoir is produced in the vicinity of the nozzle.

【0004】 [0004]

【発明が解決しようとする課題】かかる従来装置によると、被成膜基板2の傾斜配置により、基板の後端に至るほど反応容器1の上面に近づくから、サセプタ3によって加熱されている被成膜基板からの放射熱で反応容器の上面が加熱され、生成物が付着、堆積しやすくなる。 According to the invention Problems to be Solved such conventional apparatus, the inclined arrangement of the deposition substrate 2, and from closer to the upper surface of the reaction vessel 1 as extending to the rear end of the substrate, it is heated by the susceptor 3 HiNaru the heated upper surface of a reaction vessel with a radiation heat from the film substrate, the product adheres easily deposited. この付着生成物が剥離して被成膜基板の上に落下すると正常な結晶成長を妨げ、最終的製品である半導体デバイスの不良を引き起こす原因の一つとなり、歩留まり率を低下させる。 When the deposition product falls to the top of the target substrate peeling interfere with the normal crystal growth, become one of the causes of the failure of the semiconductor devices is the final product, reducing yield rate.

【0005】また、ノズル4から供給される原料ガスの流れについて見ると、ノズル出口中央部から両端部に向かうにつれてノズル出口から流出するガスが減少する傾向がみられ、このことは、ノズルの基部からノズル出口にかけてノズル内流路が拡がる図4に示したノズルの場合についても言える。 [0005] Looking at the flow of the source gas supplied from the nozzle 4, a tendency is observed that the gas flowing out of the nozzle outlet toward the both end portions from the nozzle outlet central part is reduced, this is the base of the nozzle also true for the case of the nozzle shown in FIG. 4 which flow channel nozzle spreads toward the nozzle outlet from. これに対しては、ノズル4におけるガス流路の形状の選定により、ノズル出口から被成膜基板へのガスの流れの最適化を図るもの、すなわち、ノズルにおけるガス吹き出し口及びこの吹き出し口に至るガス流路の断面形状が、その幅方向に対し高さが変化し、幅方向の中央部での高さが最も小さくなるように形成したものが提案されている(特願平6−87255 For this, the selection of the shape of the gas passages in the nozzle 4, which optimize the flow of gas to the target substrate from a nozzle outlet, i.e., reaches the gas outlet and the outlet of the nozzle cross-sectional shape of the gas passage, the height change to the width direction, has been proposed which is formed so that the height at the center in the width direction is minimized (Japanese Patent Application No. 6-87255
号)。 issue). しかし、ノズル4は石英ガラス製であり、反応容器1の形状、反応容器内における被成膜基板2の配置位置も絡み、ノズル全体について最適な形状のものを作製することは容易ではない。 However, the nozzle 4 is made of quartz glass, the shape of the reaction vessel 1, also entangling positions of the target substrate 2 in the reaction vessel, it is not easy to produce those optimal shape for the entire nozzles.

【0006】本発明は、被成膜基板を傾けずに、原料ガス流速分布を改善し、膜厚均一性を向上させ、結晶欠陥の少ないエピタキシャル膜が得られるようにした薄膜気相成長装置の提供を目的とするものである。 The present invention, without tilting the target substrate to improve the raw material gas flow velocity distribution, to improve the film thickness uniformity of the thin film vapor deposition apparatus less epitaxial film having crystal defects to be obtained it is an object of the present invention is to provide.

【0007】そして本発明は、被成膜基板に原料ガスを供給するノズルについて、ノズル本体部の形状を変えずに、原料ガスの流れを適切なものとすることができる薄膜気相成長装置の提供を目的とするものである。 [0007] The present invention is, for a nozzle for supplying a raw material gas to the target substrate, without changing the shape of the nozzle body, the flow of the material gas can be made suitable for thin film vapor deposition apparatus it is an object of the present invention is to provide.

【0008】 [0008]

【課題を解決するための手段、作用】本発明は、横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記反応容器における被成膜基板が位置している部分の側壁間隔が、原料ガスの流れに対する被成膜基板の先端位置部から後端位置部に向かうにつれて狭くなっていることを主たる特徴とするものである。 Means for Solving the Problems, effects of the present invention is to provide a horizontal thin-film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the horizontal reaction vessel, the reaction vessel sidewall spacing portion target substrate is located in is one that mainly characterized in that narrows toward the rear end position portion from the tip position of the target substrate to the flow of feed gas .

【0009】反応容器1の側壁間の幅、側壁間隔を変化させることで、ガス流速分布が制御され、被成膜基板部における原料ガス上流部の流路断面積より下流部の流路断面積が小さくなり、被成膜基板を傾けなくても下流部の流速を高めることができ、下流側の膜厚分布が改善される。 [0009] the width between the sidewalls of the reaction vessel 1, by changing the sidewall spacing, the gas flow rate distribution is controlled, the flow path cross-sectional area of ​​the downstream portion than the flow path cross-sectional area of ​​the feed gas upstream of the deposition target substrate portion It decreases, even without tilting the deposition target substrate can increase the flow rate of the downstream portion, the film thickness distribution on the downstream side is improved.

【0010】さらに本発明は、横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記ノズルの上壁内面ないし下壁内面に、ノズルの中央部の隙間を狭くしノズルの両側端部に向かうにつれて隙間を大きくする流路断面調節部材が取り付けられていることを特徴とするものである。 [0010] The present invention, in the horizontal thin-film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the horizontal reaction vessel, the upper wall inner surface to the lower wall inner surface of the nozzle to, and is characterized in that the channel cross section adjustment member to increase the gap and is attached as by narrowing the gap between the central portion of the nozzle toward the both ends of the nozzle.

【0011】ノズルの内部に流路断面調節部材を取り付けるようにしているから、同部材の形状を反応容器の形状、同容器内における被成膜基板の配置位置を考慮して選定することにより、ノズル本体の形状を変更せずに原料ガスの流れを最適化することができる。 [0011] because they to attach the interior channel cross-section adjustment member of the nozzle, the shape of the reaction vessel the shape of the member, by selected in consideration of positions of the target substrate in the same vessel, it is possible to optimize the flow of the source gas without changing the shape of the nozzle body.

【0012】また、本発明は、横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記反応容器における被成膜基板が位置している部分の側壁間隔が、原料ガスの流れに対する被成膜基板の先端位置部から後端位置部に向かうにつれて狭くなっていると共に、前記ノズルの上壁内面ないし下壁内面に、ノズルの中央部の隙間を狭くしノズルの両側端部に向かうにつれて隙間を大きくする流路断面調節部材が取り付けられていることを特徴とする。 Further, the present invention provides a lateral thin-film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the horizontal reaction vessel, the deposition substrate in the reaction vessel sidewall spacing in the portion provided in position, with narrows toward the rear end position portion from the tip position of the target substrate with respect to the flow of the raw material gas, the upper wall inner surface to the lower wall inner surface of the nozzle, the nozzle wherein the channel cross section adjustment member to increase the gap as narrow a gap in the central portion toward the both ends of the nozzles are mounted.

【0013】ノズルの内部に流路断面調節部材を取り付けるようにしているから、反応容器における被成膜基板が位置している部分の側壁間隔を基板の先端位置部から後端位置部に向かうにつれて狭くしても、原料ガスを基板に、その中央部に偏らずに供給し、原料ガス流速分布を最適化できる。 [0013] because they to attach the interior channel cross-section adjustment member of the nozzle, as the sidewall spacing of the portion where the target substrate in a reaction vessel is positioned toward the rear end position portion from the distal end position of the substrate It is narrow, the raw material gas to the substrate, supplying not biased in its central portion, to optimize the feed gas flow velocity distribution.

【0014】 [0014]

【実施例】本発明の実施例について図面を参照して説明する。 It will be described with reference to the accompanying drawings embodiments of EXAMPLES The invention. 図1は実施例の構成図であり、(a)は反応容器の水平断面位置からの内部上面図、(b)は(a)のZ Figure 1 is a block diagram of an embodiment, (a) shows the internal top view of the horizontal cross-sectional position of the reaction vessel, Z of (b) is (a)
−Z線位置での実施例の縦断面図であり、図4と同一符号は同等部分を示す。 Is a longitudinal sectional view of the embodiment in -Z line position, Figure 4 the same reference numerals indicate the same parts. 横型の反応容器1は、その下部に被成膜基板の配置開口部1'が設けられており、被成膜基板2はサセプタ3で支持されて反応容器内に水平に位置している。 The reaction vessel 1 of a lateral, the is provided with placement opening 1 'of the target substrate on the lower, deposition substrate 2 is positioned horizontally in the reaction vessel is supported by the susceptor 3. 被成膜基板2の前方にノズル4が設けられている。 Nozzle 4 is provided in front of the deposition substrate 2. このノズルは仕切り壁4 1を挾んで上下2段に形成された第1ノズル5と第2ノズル6からなり、第1 The nozzle comprises a first nozzle 5 formed in upper and lower stages by sandwiching the partition wall 4 1 of the second nozzle 6, first
及び第2の原料ガスを被成膜基板2に、その直前で混合して与えている。 And a second source gas to the deposition target substrate 2, has given mixed in just before.

【0015】反応容器1は、被成膜基板2が位置している部分の側壁1aの間隔が、原料ガスの流れに対する被成膜基板の先端位置部から後端位置部に向かうにつれて狭くなるように形成されている。 The reaction vessel 1, the distance of the side wall 1a of the portion deposition substrate 2 is positioned is such that narrows toward the rear end position portion from the tip position of the target substrate to the flow of feed gas It is formed in. このように、反応容器1の側壁間の幅を変化させることで、ガス流速分布を制御しており、上流の流路断面積より下流の流路断面積を小さくすることで、被成膜基板2を傾けずに水平に配置しても下流側の流速を高めることができ、下流側の膜厚分布均一性を向上させる。 Thus, by changing the width between the side walls of the reaction vessel 1, which controls the gas flow velocity distribution, by reducing the downstream of the flow path cross-sectional area than the upstream of the flow path cross-sectional area, the deposition target substrate it is arranged horizontally without tilting the 2 it is possible to increase the flow velocity of the downstream, to improve the film thickness distribution uniformity of the downstream side.

【0016】そして、被成膜基板2を傾けずにすむから、反応容器1の上面に被成膜基板2が近づかず、被成膜基板からの放射熱による反応容器1の上面の加熱が抑えられ、同上面における生成物の付着、堆積が抑制され、正常な成膜を阻害する付着生成物の被成膜基板への落下を抑えることができる。 [0016] Then, since it is not necessary to incline the target substrate 2, not approach the target substrate 2 on the upper surface of the reaction vessel 1, suppressing heating of the upper surface of the reaction vessel 1 by radiation heat from the deposition target substrate is, deposition of the product in the upper surface, the deposition is suppressed, it can be suppressed from falling into the deposition target substrate adhesion product that inhibits normal deposition. 被成膜基板2に成長させる膜種によっても異なるが、被成膜基板の先端位置部の側壁間隔l 1と後端位置部の側壁間隔l 2との比l 1 /l 2は2以上とするのが好ましい。 Varies depending membrane species grown on deposition substrate 2, the ratio l 1 / l 2 between the sidewall spacing l 2 of sidewall spacing l 1 and the rear end position of the tip position of the deposition target substrate is 2 or more and it is preferable to.

【0017】反応容器1は被成膜基板2の先端位置部から側壁1aの間隔が狭まるように構成されているから、 [0017] Since the reaction vessel 1 is configured to narrow the spacing of the side walls 1a from the tip position of the deposition target substrate 2,
被成膜基板に原料ガスを供給するノズル4についても基板の先端位置から充分な拡がりをもって所要量のガス流を与えるようにすると、膜厚分布の均一性をさらに向上させることができる。 If you provide the required amount of gas flow with sufficient expansion from the tip position of the substrate also nozzle 4 for supplying a source gas into the deposition target substrate, it is possible to further improve the uniformity of the film thickness distribution.

【0018】ノズル4は、原料ガスが被成膜基板2の中央部に偏らずに、基板の側端部にまで届くように、ノズル出口中央部の隙間を狭くし、両端部に近づくほど隙間が大きくなるように構成する。 The nozzle 4 is not biased material gas in the central portion of the target substrate 2, to reach up to the side edge portion of the substrate, the gap enough to narrow the gap between the nozzle outlet central part, closer to both end portions configured to increase. ノズル4の上壁内面ないし下壁内面に、ノズルの中央部の隙間を狭くしノズルの両側端部に向かうにつれて隙間を大きくする流路断面調節部材7が取り付けられている。 The upper wall inner surface to the lower wall inner surface of the nozzle 4, the flow path cross-section adjustment member 7 to increase the gap is mounted toward the side edge portions of narrowing the gap between the central portion nozzles of the nozzle.

【0019】図2はノズル部の斜視図であり、ノズル4 [0019] Figure 2 is a perspective view of the nozzle portion, the nozzle 4
における第1の原料ガスAを供給する第1ノズル5の上壁5 1の内面と、第2の原料ガスを供給する第2ノズル6の下壁6 1の内面に流路断面調節部材7が取り付けられており、図に示した同部材は平たい三角錐状をなしている。 First and upper wall 5 1 of the inner surface of the first nozzle 5 for supplying a raw material gas A, the channel cross-section adjustment member 7 in the lower wall 61 of the inner surface of the second nozzle 6 for supplying the second source gas in the attached and, the member shown in figure form a flat triangular pyramid. この流路断面調節部材7はノズル本体と同様に石英ガラス製であり、ノズルの上壁5 1 ,下壁6 1にガラス溶接により取り付けるか、あるいは着脱可能に取り付ける。 The channel cross section adjustment member 7 is made of quartz glass similarly to the nozzle body, the upper wall 5 1 a nozzle, or attached by glass welded to the underside wall 61, or removably attached.

【0020】着脱できるように取り付ける場合の具体例を図3に示す。 [0020] Specific examples of the case of attaching to allow detachable shown in FIG. 流路断面調節部材7の形状は反応容器の形状、同容器内の被成膜基板の配置位置等に応じて選定され、同図(a),(b)に示した流路断面調節部材7 The shape of the channel cross-section adjustment member 7 is selected according to the shape of the reaction vessel, such as positions of the deposition substrate in the same container, FIG. (A), the flow path cross-section adjustment member 7 shown in (b)
は三角錐形状ではなく、例えば、原料ガスと接する面が曲面状に形成されている。 Is not a triangular pyramid shape, for example, the surface in contact with the raw material gas is formed into a curved shape. かかる流路断面調節部材7に複数本のボルト8を表面をガラス9で封止して取付け、 Mounting seals the plurality of bolts 8 a surface of glass 9 in such a flow cross-section adjustment member 7,
このボルトをノズルの上壁5 1ないし下壁6 1に形成したボルト貫通孔を通してナット10で締結して、流路断面調節部材をノズル本体に取り付ける。 The bolt and fastened by a nut 10 through a bolt through hole formed in the upper wall 5 1 to the lower wall 61 of the nozzle, installing the flow path cross-section adjustment member to the nozzle body.

【0021】図3(c)に係止片により着脱可能とする一例を示す。 [0021] An example which can be removably mounted by the locking piece in Figure 3 (c). 流路断面調節部材7の周縁の複数個所を止める係止片11をノズルの上壁5 1 、下壁6 1にボルト1 The channel cross-section adjustment member 7 on the wall 5 1 a locking piece 11 of the nozzle to stop a plurality of places of the periphery of the bolt 1 to the lower wall 6 1
2,13用いて取り付けておき、流路断面調節部材7をノズルの開口部側から挿入し、同部材の周縁をノズルの上壁、下壁と係止片との間に入れて挾持する。 2,13 using advance attached, insert the channel cross-section adjustment member 7 from the opening side of the nozzle, the upper wall of the nozzle periphery of the member, placed between the lower wall and the locking piece is clamped.

【0022】このように、流路断面調節部材7をノズル4の本体に取り付けるようにしてあるから、ノズル本体の形状を変えずに、反応容器1の形状、反応容器内における被成膜基板2の配置位置等に適合させた形状の流路断面調節部材を簡単に選定使用することができ、被成膜基板2に与える原料ガスの流れ分布を容易に最適化することができる。 [0022] Thus, the channel cross-section adjusted from member 7 are to attach to the body of the nozzle 4, without changing the shape of the nozzle body, the shape of the reaction vessel 1, to be deposited in the reaction vessel film substrate 2 the can be easily selected using a flow cross-section adjustment member having a shape adapted to the arrangement position, etc., it can easily optimize the flow distribution of the raw material gas to be supplied to the deposition target substrate 2. なお、この流路断面調節部材7は被成膜基板2を反応容器1内に傾斜して配置する薄膜気相成長装置のノズルに対しても適用することができ、この場合のノズルはノズル本体の形状が、ノズル内流路が平角状に延びている形状のものに使用してもよい。 Incidentally, the flow path cross-section adjustment member 7 can also be applied to the nozzle of the thin-film vapor deposition apparatus arranged to be inclined to the deposition target substrate 2 in the reaction vessel 1, the nozzle in this case the nozzle body the shape, may be used in a shape of nozzle passage extends in rectangular shape.

【0023】 [0023]

【発明の効果】本発明は、以上説明したように、反応容器の側壁間の幅、側壁間隔を変化させることにより、下流部の流速を高めることができるから、被成膜基板2を傾けずにすみ、反応容器の上面に被成膜基板が近づかず、被成膜基板からの放射熱による反応容器1の上面の加熱を抑えることができ、同上面における生成物の付着、堆積を防ぎ、正常な成膜を阻害する付着生成物の被成膜基板への落下を防止することができる。 According to the present invention, as described above, the width between the sidewalls of the reaction vessel, by varying the sidewall spacing, because it is possible to increase the flow velocity of the downstream portion, without tilting the target substrate 2 a corner, without approach is the deposition target substrate on the upper surface of the reaction vessel, it is possible to suppress the heating of the upper surface of the reaction vessel 1 by radiation heat from the deposition target substrate to prevent deposition, deposition of the product in the upper surface, it can be prevented from falling to the deposition target substrate adhesion product that inhibits normal deposition.

【0024】ノズルの内部に流路断面調節部材を取り付けるようにしているから、同部材の形状を反応容器の形状、同容器内における被成膜基板の配置位置を考慮して選定することにより、ノズル本体の形状を変更せずに原料ガスの流れを最適化することができる。 [0024] because they to attach the interior channel cross-section adjustment member of the nozzle, the shape of the reaction vessel the shape of the member, by selected in consideration of positions of the target substrate in the same vessel, it is possible to optimize the flow of the source gas without changing the shape of the nozzle body.

【0025】ノズルの内部に流路断面調節部材を取り付けるようにしているから、反応容器における被成膜基板が位置している部分の側壁間隔を基板の先端位置部から後端位置部に向かうにつれて狭くしても、原料ガスを基板に、その中央部に偏らずに供給し、原料ガス流速分布を最適化することができる。 [0025] because they to attach the interior channel cross-section adjustment member of the nozzle, as the sidewall spacing of the portion where the target substrate in a reaction vessel is positioned toward the rear end position portion from the distal end position of the substrate be narrow, the raw material gas to the substrate, supplying not biased in its central portion, it is possible to optimize the feed gas flow velocity distribution.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例の構成図であり、(a)は反応容器の水平断面位置からの内部上面図、(b)は(a) [1] is a configuration diagram of an embodiment of the present invention, (a) shows the internal top view of the horizontal cross-sectional position of the reaction vessel, (b) is (a)
のZ−Z線位置での実施例の縦断面図である。 Of a longitudinal sectional view of an embodiment in the line Z-Z position.

【図2】ノズル部についての実施例の斜視図である。 2 is a perspective view of an embodiment of the nozzle portion.

【図3】(a)は流路断面調節部材の他の具体例の構成図であり、(b),(c)は流路断面調節部材をノズルに対し着脱可能とする取付け構造図である。 3 (a) is a block diagram of another embodiment of the flow path cross-section adjustment member is a mounting structure diagram which is detachably mountable relative to nozzle (b), (c) the cross section of the flow channel adjusting member .

【図4】従来の薄膜気相成長装置の概略構成図であり、 4 is a schematic diagram of a conventional thin film vapor deposition apparatus,
(a)は縦断面図であり、(b)は(a)のZ−Z線位置から見た上面図である。 (A) is a longitudinal sectional view, a top view seen from line Z-Z position of (b) is (a).

【符号の説明】 DESCRIPTION OF SYMBOLS

1 反応容器 1a 反応容器の側壁 2 被成膜基板 3 サセプタ 4 ノズル 5 第1ノズル 6 第2ノズル 7 流路断面調節部材 Side walls 2 deposition target substrate 1 reaction vessel 1a reaction vessel 3 susceptor 4 nozzle 5 first nozzle 6 second nozzle 7 channel cross section adjustment member

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記反応容器における被成膜基板が位置している部分の側壁間隔が、原料ガスの流れに対する被成膜基板の先端位置部から後端位置部に向かうにつれて狭くなっていることを特徴とする薄膜気相成長装置。 1. A horizontal thin film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the horizontal reaction vessel, the deposition target substrate in the reaction vessel is located sidewall spacing portions, the thin film vapor deposition apparatus characterized in that it narrows towards the rear end position portion from the tip position of the target substrate with respect to the flow of the raw material gas.
  2. 【請求項2】 横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記ノズルの上壁内面ないし下壁内面に、ノズルの中央部の隙間を狭くしノズルの両側端部に向かうにつれて隙間を大きくする流路断面調節部材が取り付けられていることを特徴とする薄膜気相成長装置。 2. A lateral horizontal thin film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the reaction vessel, the upper wall inner surface to the lower wall inner surface of the nozzle, the nozzle thin film vapor deposition apparatus, characterized in that it is mounted the channel cross-section adjustment member to increase the gap as narrow a gap in the central portion toward the both ends of the nozzles.
  3. 【請求項3】 横型の反応容器の中に収容される被成膜基板にノズルから原料ガスが供給される横型の薄膜気相成長装置において、前記反応容器における被成膜基板が位置している部分の側壁間隔が、原料ガスの流れに対する被成膜基板の先端位置部から後端位置部に向かうにつれて狭くなっていると共に、前記ノズルの上壁内面ないし下壁内面に、ノズルの中央部の隙間を狭くしノズルの両側端部に向かうにつれて隙間を大きくする流路断面調節部材が取り付けられていることを特徴とする薄膜気相成長装置。 3. A horizontal lateral thin film vapor deposition apparatus raw material gas is supplied from the nozzle to the target substrate accommodated in the reaction vessel, the deposition target substrate in the reaction vessel is located sidewall spacing portions, with narrows toward the rear end position portion from the tip position of the target substrate with respect to the flow of the raw material gas, the upper wall inner surface to the lower wall inner surface of the nozzle, the central portion of the nozzle thin film vapor deposition apparatus, characterized in that it is mounted the channel cross-section adjustment member to increase the gap as narrow the gap toward the both ends of the nozzle.
JP16451695A 1995-06-08 1995-06-08 Thin film vapor phase deposition apparatus Pending JPH08335558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16451695A JPH08335558A (en) 1995-06-08 1995-06-08 Thin film vapor phase deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16451695A JPH08335558A (en) 1995-06-08 1995-06-08 Thin film vapor phase deposition apparatus

Publications (1)

Publication Number Publication Date
JPH08335558A true JPH08335558A (en) 1996-12-17

Family

ID=15794656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16451695A Pending JPH08335558A (en) 1995-06-08 1995-06-08 Thin film vapor phase deposition apparatus

Country Status (1)

Country Link
JP (1) JPH08335558A (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
KR20110101556A (en) * 2010-03-09 2011-09-16 주식회사 엘지실트론 Apparatus for depositing epitaxial layer on wafer
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus
JP2014127667A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition device
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US8906162B2 (en) 2006-07-05 2014-12-09 Sumitomo Electric Industries, Ltd. Metal organic chemical vapor deposition equipment
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906162B2 (en) 2006-07-05 2014-12-09 Sumitomo Electric Industries, Ltd. Metal organic chemical vapor deposition equipment
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) * 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US10480072B2 (en) 2009-04-06 2019-11-19 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
KR20110101556A (en) * 2010-03-09 2011-09-16 주식회사 엘지실트론 Apparatus for depositing epitaxial layer on wafer
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9892908B2 (en) 2011-10-28 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9340874B2 (en) 2011-11-23 2016-05-17 Asm Ip Holding B.V. Chamber sealing member
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9299595B2 (en) 2012-06-27 2016-03-29 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10023960B2 (en) 2012-09-12 2018-07-17 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
JP2014127667A (en) * 2012-12-27 2014-07-07 Showa Denko Kk Deposition device
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US9228259B2 (en) 2013-02-01 2016-01-05 Asm Ip Holding B.V. Method for treatment of deposition reactor
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US10340125B2 (en) 2013-03-08 2019-07-02 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US10366864B2 (en) 2013-03-08 2019-07-30 Asm Ip Holding B.V. Method and system for in-situ formation of intermediate reactive species
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US10361201B2 (en) 2013-09-27 2019-07-23 Asm Ip Holding B.V. Semiconductor structure and device formed using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US10438965B2 (en) 2014-12-22 2019-10-08 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US10312129B2 (en) 2015-09-29 2019-06-04 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10262859B2 (en) 2016-03-24 2019-04-16 Asm Ip Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10249577B2 (en) 2016-05-17 2019-04-02 Asm Ip Holding B.V. Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10468262B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film

Similar Documents

Publication Publication Date Title
US6042652A (en) Atomic layer deposition apparatus for depositing atomic layer on multiple substrates
US6251187B1 (en) Gas distribution in deposition chambers
US5916369A (en) Gas inlets for wafer processing chamber
US8298370B2 (en) Apparatus for chemical vapor deposition (CVD) with showerhead
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
CN102174693B (en) Gas treatment system
CN101348902B (en) Diffuser plate with slit valve compensation
US4694778A (en) Chemical vapor deposition wafer boat
US6059885A (en) Vapor deposition apparatus and method for forming thin film
EP0870072B1 (en) Gas injection system for semiconductor processing
US6740367B2 (en) Plasma CVD film-forming device
US5766682A (en) Process for chemical vapor deposition of a liquid raw material
US6352594B2 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
US6884296B2 (en) Reactors having gas distributors and methods for depositing materials onto micro-device workpieces
CN101090998B (en) Multi-gas distribution injector for chemical vapor deposition reactors
EP0697376B1 (en) Single body injector and method for delivering gases to a surface
US5455069A (en) Method of improving layer uniformity in a CVD reactor
JP3901252B2 (en) Chemical vapor deposition equipment
JP3380091B2 (en) The reaction gas injection head and a thin-film vapor deposition apparatus
CN101517704B (en) Apparatus of chemical vapor deposition with a showerhead regulating injection velocity of reactive gases positively and method thereof
CN1122116C (en) Single body injector and deposition chamber
EP0254654B1 (en) Method of chemical vapor deposition
KR100530243B1 (en) Distribution plate for a reaction chamber with multiple gas inlets and separate mass flow control loops
TWI490366B (en) Flow control features of cvd chambers
KR100302609B1 (en) Temperature controllable gas distributor