JP4168775B2 - Thin film manufacturing method - Google Patents
Thin film manufacturing method Download PDFInfo
- Publication number
- JP4168775B2 JP4168775B2 JP2003033587A JP2003033587A JP4168775B2 JP 4168775 B2 JP4168775 B2 JP 4168775B2 JP 2003033587 A JP2003033587 A JP 2003033587A JP 2003033587 A JP2003033587 A JP 2003033587A JP 4168775 B2 JP4168775 B2 JP 4168775B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- supply
- raw material
- film
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法、いわゆる原子層成長法に関する。
【0002】
【従来の技術】
従来より、原子層成長法(Atomic Layer Epitaxy:ALE法)は、金属酸化物や金属硫化物の薄膜を形成する際に用いられ、結晶性が良く、膜厚制御性に優れた成膜方法として使用されている(例えば、特許文献1参照)。
【0003】
この方法は、金属元素を含む第1の原料物質(例えば金属塩化物や有機金属化合物等)と、金属元素と反応する元素を含む第2の原料物質(例えば水等の酸化物質や硫化水素等の還元性物質等)とを、基板に対して交互に供給するサイクルを単純に繰り返すことにより、基板表面の反応にて反応化合物を1層ずつ基板表面に配置するものであり、供給する回数により膜厚を容易に制御できるとされている。
【0004】
このALE法を使用して、様々な薄膜を形成することが可能である。例えばエレクトロルミネッセンス素子において、絶縁層として用いられる酸化アルミニウムと酸化チタニウムとの複合膜であるATO薄膜や、発光層として用いられる硫化亜鉛、硫化ストロンチウムがある。
【0005】
【特許文献1】
特開昭55−130896号公報
【0006】
【発明が解決しようとする課題】
しかしながら、ALE法は、上記のような利点があるが、一層づつ原子を配置するという形成方法であるため、薄膜を構成する各原料の供給時間を長くすると、所望の膜厚を得るために膨大な時間を要するという問題がある。
【0007】
一方、本発明者の検討によれば、例えばATO薄膜をALE法にて形成する際、Al2O3薄膜とTiO2薄膜を交互に積層する場合において、Al2O3薄膜上にTiO2薄膜を形成する際、若しくはTiO2薄膜上にAl2O3薄膜を形成する際に、成膜時間を短くしようとすると、単分子層膜厚から算出した原料供給回数で形成した膜厚が、狙い膜厚と異なり薄くなってしまうという問題が生じた。
【0008】
そこで、本発明は上記問題に鑑み、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する原子層成長法による薄膜の製造方法において、できるだけ短い形成時間で狙いの膜厚を適切に実現できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上述したATO薄膜の形成において狙い膜厚よりも薄くなってしまうという問題について、さらに検討を進めた。
【0010】
例えばTiO2薄膜上にAl2O3薄膜を形成する際、通常であればAlの原料であるAlCl3を供給し、H2Oを供給することにより酸化しAl2O3分子を形成する。
【0011】
このとき、全体の薄膜形成時間を短縮する目的で、AlCl3原料の供給時間、すなわち1回のAlCl3原料の供給量が少ないと、下地である異種の膜(つまりTiO2薄膜)上には結晶の整合性の悪化により、うまく成長することができない。その結果、1回の原料供給では下地の表面を十分にAlCl3で覆うことができない。
【0012】
そして、このままの状態で、AlCl3とH2Oの供給サイクルを繰り返し、膜成長を継続させると、部分的に成長の早い部分ができ、クラスター状にAl2O3が成長する。その結果、できあがったAl2O3薄膜が不均一な厚さとなり、所望の膜厚を制御良く得ることができないということが実験により判明した。
【0013】
また、逆に1回のAlCl3原料の供給量を十分な量として、供給サイクルを繰り返し継続した場合には、所望の膜厚を得るための成膜時間が膨大なものとなってしまう。
【0014】
さらに、TiO2薄膜上にAl2O3薄膜を形成するような場合には、最初にAlの原料であるAlCl3を供給すると、下地であるTiO2表面の分子とAlCl3分子が置換反応し、TiO2を侵食することを発見した。このことは、蒸気圧が薄膜原料よりも相対的に下地膜の方が高いような場合に起こりうると考えられる。
【0015】
したがって、AlCl3原料が不均一に供給されると、TiO2との置換反応が不均一に行われ、上記した下地との結晶の整合性不良による成長不良と相俟って、薄膜成長速度が異なる部分が生じ、不均一な膜厚となってしまうということがわかった。
【0016】
これらの検討結果から、供給サイクルの初期の段階において下地との結晶の整合性不良や下地と薄膜原料物質との不均一な反応を解消してやれば、その後の供給において均一な膜成長ができるのではないかと考えた。本発明は、このような点に着目し、実験検討した結果、得られたものである。
【0017】
すなわち、請求項1に記載の発明では、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する原子層成長法による薄膜の製造方法において、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を、2回目以降のサイクルにおける第1の原料物質の供給時間よりも長くすることを特徴とする。
【0018】
それによれば、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を十分に長くすることで、金属元素を含む第1の原料物質によって下地を十分に被覆することができる。
【0019】
そのため、形成される薄膜とその下地との結晶の整合性が悪かったり、下地と薄膜原料物質との反応が起こりやすい場合であっても、供給サイクルの2回目以降においては、下地との結晶の整合性が良くなり、また、下地との反応も起こらないため、均一な層成長が可能となる。
【0020】
そして、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間は長くなるが、2回目以降はそれよりも短く、ほぼ通常の供給時間とすることができるため、薄膜の形成時間全体ではさほど長時間とはならない。
【0021】
よって、本発明によれば、できるだけ短い形成時間で狙いの膜厚を適切に実現することができる。
【0022】
ここで、請求項2に記載の発明のように、第1の原料物質としては金属ハロゲン化物または有機金属化合物を用いることができる。
【0023】
また、薄膜としてはアルミナ(Al2O3)等のようなが絶縁体や、チタニア(TiO2)等のような半導体とすることができる。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0025】
【発明の実施の形態】
以下、本発明を具体的な実施形態に基づいて説明する。本実施形態では、形成する薄膜は、EL素子の絶縁膜として用いられるATO薄膜とした。これは、絶縁体であるAl2O3(アルミナ)薄膜と半導体であるTiO2(チタニア)薄膜とをALE法によって交互に多数積層してなる膜である。
【0026】
EL素子の絶縁膜としてのATO薄膜においては、ALE法によって、Al2O3薄膜から順にTiO2薄膜、Al2O3薄膜の順に交互に積層し、最後に再びAl2O3薄膜を形成する。
【0027】
具体的には、Al2O3薄膜をALE法にて形成する場合は、金属元素を含む第1の原料物質であるAlCl3と、金属元素と反応する元素を含む第2の原料物質であるH2Oとを、基板に対して交互に供給するサイクルを繰り返すことで、Al2O3を1原子層ずつ成長させ、所定の膜厚のAl2O3薄膜を形成する。
【0028】
また、TiO2薄膜をALE法にて形成する場合は、金属元素を含む第1の原料物質であるTiCl4と金属元素と反応する元素を含む第2の原料物質であるH2Oとを、基板に対して交互に供給するサイクルを繰り返すことで、TiO2を1原子層ずつ成長させ、所定の膜厚のTiO2薄膜を形成する。
【0029】
そして、各々所定の膜厚のAl2O3薄膜とTiO2薄膜とが交互に積層されて、ATO薄膜ができあがるのである。
【0030】
ここでは、ATO薄膜の最上部のAl2O3薄膜および最下部のAl2O3薄膜を除くAl2O3薄膜の膜厚は5nmとし、TiO2薄膜の膜厚は1.5から5nmの範囲であれば良く、本例では2nmとした。また、最上部および最下部のAl2O3薄膜の膜厚は15から30nmの範囲であれば良く、本例では20nmとした。
【0031】
次に、ATO薄膜の具体的な製造方法について述べる。なお、ここでは、ATO薄膜のうちAl2O3薄膜を形成する方法について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くするようにし、TiO2薄膜については、通常のALE法にて成膜する例を述べる。
【0032】
まず、基板を固定するための基板ホルダーボックス内に基板をセットする。このとき本例では、基板において薄膜が成膜される面を垂直に立ててセットする。そして、基板がセットされた基板ホルダーボックスを真空引き可能なロードロック室に投入する。
【0033】
次に、ロードロック室内を10-3Torr以下まで真空引きし、原料を輸送するキャリアガスである窒素を導入する。この操作を繰り返し、最終的にロードロック室内が再び10-3Torr以下になるように真空引きを行う。
【0034】
そして、ロードロック室で十分に窒素置換され、真空引きされた基板ホルダーボックスを、予め窒素で置換および真空引きされた薄膜形成のための成膜室内に移動させる。
【0035】
そして、基板ホルダーボックスを、成膜室内に設置してある加熱ヒータにて加熱し、基板温度を成膜時の温度である500℃にする。ただし、この加熱中は、成膜開始時の供給ガスによる温度低下を防止するため、キャリアガスである窒素を成膜時と同量、基板ホルダーボックス内に導入しておく。
【0036】
基板温度が500℃に到達し温度が安定したら、その後、次に示すプロセスの内、まず、第1、第2のプロセスを実施し、次に、第3、第4、第5のプロセスを28回繰り返し、最後に第6のプロセスを実施することによりATO薄膜(Al2O3薄膜とTiO2薄膜の積層複合膜)を形成する。なお、各プロセスにおいて()内は供給時間を示す。
【0037】
「第1のプロセス」:原料ガスであるAlCl3ガス(第1の原料物質)を含んだ窒素ガス供給(9秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2O(第2の原料物質)を含んだ窒素ガス供給(2秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを1回実施する。
【0038】
「第2のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを333回繰り返す。
【0039】
「第3のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを111回繰り返す。
【0040】
「第4のプロセス」:原料ガスであるTiCl4ガスを含んだ窒素ガス供給(0.6秒)と、配管内に残留したTiCl4ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(2秒)のサイクルを51回繰り返す。
【0041】
「第5のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(9秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(2秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを1回実施する。
【0042】
「第6のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを444回繰り返す。
【0043】
ここで、第1、第2、第3のプロセスを1回実施することでATO薄膜における最下部のAl2O3薄膜(厚さ20nm)が形成される。次に、第4のプロセスを1回実施することで、その上のTiO2薄膜(厚さ2nm)が形成される。
【0044】
次に、第5のプロセス、第3のプロセスをこの順に1回実施することで、その上のAl2O3薄膜(厚さ5nm)が形成される。次に、第4のプロセスを1回実施してその上のTiO2薄膜(厚さ2nm)を形成し、次に、第5のプロセス、第3のプロセスをこの順に1回実施してその上のAl2O3薄膜(厚さ5nm)を形成する。
【0045】
本例では、このような第3、第4、第5のプロセスの繰り返しが28回行われる。そして、最後のTiO2薄膜の形成すなわち最後の第4のプロセスが終了した後、第5のプロセス、第6のプロセスをこの順に1回実施することにより最上部のAl2O3薄膜(厚さ20nm)が形成され、本例のATO薄膜が完成する。
【0046】
ここで、上記原料ガスおよびパージガスは、基板ホルダーボックスの上部に設置されたガス分配器にて、基板上部からそれぞれ均等に分配されるようになっている。分配された原料ガスおよびパージガスは、成膜面が垂直に配置された基板の上部から下部に向かって流れる。すなわち成膜面に沿ってガスが流れる。
【0047】
また原料となるAlCl3およびTiCl4の原料供給量は、それぞれ7.2×10-6〜9.8×10-5mol/pulse、6.0×10-6〜2.4×10-4mol/pulse(いずれも計算値)の範囲内で、それぞれの原料を基板に供給した。
【0048】
上記製造方法において、Al2O3薄膜の形成について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くしたことは、具体的には、次のようなことである。
【0049】
まず、最下部のAl2O3薄膜(厚さ20nm)は、第1、第2、第3のプロセスを1回実施することで形成されるが、これら第1〜第3のプロセスを1回実施することとは、AlCl3とH2Oとの交互の供給サイクルを(1+333+111)回すなわち445回繰り返すことである。
【0050】
ここで、この供給サイクルの1回目は、第1のプロセスであって、そのAlCl3の供給時間は9秒であり、2回目以降のサイクルにおけるAlCl3の供給時間である0.5秒よりも長くしている。
【0051】
また、1回目のサイクルにおいてAlCl3の供給時間を長くしたことに対応して、1回目のサイクルではH2Oの供給時間(2秒)も2回目以降のサイクルにおけるH2Oの供給時間(0.8秒)よりも長くしている。
【0052】
また、中間のAl2O3薄膜(厚さ5nm)は、第5のプロセス、第3のプロセスを順に1回実施することで形成されるが、これら第5、第3のプロセスを1回実施することとは、AlCl3とH2Oとの交互の供給サイクルを(1+111)回すなわち112回繰り返すことである。
【0053】
ここで、この供給サイクルの1回目は、第5のプロセスであって、そのAlCl3の供給時間は9秒であり、2回目以降のサイクルにおけるAlCl3の供給時間である0.5秒よりも長くしている。H2Oについても、1回目のサイクルの供給時間(2秒)を2回目以降のサイクルにおける供給時間(0.8秒)よりも長くしている。
【0054】
さらに、最上部のAl2O3薄膜についても、これら最下部および中間のAl2O3薄膜と同様である。このように本実施形態では、Al2O3薄膜の形成について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くしている。
【0055】
ここで、図1に、上述した本例のAl2O3薄膜の形成における初期から3回目の供給サイクルまでのAlCl3原料、H2O原料およびそれぞれのパージガスの供給タイミングチャートを同軸の時間軸にて示しておく。図1では、横軸に時間軸、縦軸に原料供給を示すパルス波形を示している。
【0056】
また、図2は、上記製造方法によって、中間のAl2O3薄膜(厚さ5nm)を形成する場合の膜の成長の様子をAl、O、Clの薄膜表面における挙動として模式的に表した図である。この場合、下地はTiO2薄膜であり、初期、ステップ1、2、3、4の順に膜が成長していく。
【0057】
さらに、図3は、上記図1に対する比較例として、従来のALE法によるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。この場合、Al2O3薄膜は、上記第3のプロセスに示した原料供給時間によってすべての供給サイクルが行われる。
【0058】
そして、図4は、上記図2に対する比較例として、従来のALE法によって、中間のAl2O3薄膜(厚さ5nm)を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【0059】
図4に示す従来の製造方法では、1回目のサイクルにおけるAlCl3の供給時間が短く不十分であるため、ステップ1に示すように、TiO2薄膜の表面に乱雑にAlCl3分子が部分的に配置(置換)される。そのため、その後の原料供給サイクルにおいて、ステップ2、3、4の順に示すように、島状にAl2O3薄膜が成長していく。そのため、不均一な膜厚となってしまう。
【0060】
一方、図2に示す本実施形態では、金属元素を含む原料であるAlCl3をTiO2薄膜上に配置する場合、通常0.5秒間であるAlCl3の原料供給時間に対して、1回目のサイクルでは9秒間の長時間の原料供給時間としている。
【0061】
つまり、従来の製造方法に対して、本実施形態のAl2O3薄膜の製造方法は、上記第1のプロセス、第5のプロセスを1回目の供給サイクルに入れた独自の方法となっている。
【0062】
そのため、図2のステップ1に示すように、1回目のAlCl3の供給により、TiO2薄膜表面に整然とAlCl3分子が配列し、その後の通常の原料供給時間(0.5秒)の繰り返しサイクルにおいても、整然とAlおよびOが配置される。こうして、本実施形態によれば、原料の供給サイクル回数に応じた均一な膜厚が得られる。
【0063】
図5は、上記した本実施形態の製造方法によってAl2O3薄膜を形成した場合において、原料(AlCl3、H2O)の供給回数(供給サイクル回数)とAl2O3の膜厚との関係を調べた結果を示す図である。なお、図5には、上記した従来法にてAl2O3薄膜を形成した場合についても調べた結果を併記してある。
【0064】
図5からわかるように、従来法で形成した場合には、薄膜形成初期の成膜速度が不安定であったために、その後の成膜速度も不安定であり、安定した膜厚が得られなかった。それに対して、本実施形態の製造方法を使用することにより、薄膜形成初期の速度が安定し、その結果、膜厚のばらつきがほとんど無くなり、安定した膜の供給が可能になった。
【0065】
例えば、膜厚5nmのAl2O3薄膜を形成する場合、従来の製造方法では、狙いの膜厚5nmに対して1nm程度の膜厚分布のばらつきが生じたのに対し、本実施形態の製造方法では、狙いの膜厚5nmに対して0.3nm程度のばらつきに抑えることができた。
【0066】
すなわち、従来法では、成膜初期段階の成膜状態が不良で、原料が部分的に表面に配置していることから、膜厚分布が悪かった。これに対して、本実施形態の製造方法で形成した場合には、原料供給回数に対して正確に膜厚が制御でき、均一にAlCl3が配置されていることから、膜厚分布状態も良好なものにすることができる。
【0067】
なお、上記例では、ATO薄膜のうちAl2O3薄膜を形成する方法に対して、供給サイクルのうち1回目のサイクルにおける金属元素を含む第1の原料物質の供給時間を2回目以降のサイクルにおける供給時間よりも長くするという製造方法を適用した例を述べたが、TiO2薄膜の形成についても同様の方法を適用して良いことは勿論である。
【0068】
その場合、供給サイクルのうち1回目のサイクルにおけるTiCl4の供給時間を、2回目以降のサイクルにおけるTiCl4の供給時間よりも長くするようにすればよい。それによって、上述したAl2O3薄膜の場合と同様の効果が得られた。
【0069】
以上述べてきたように、本実施形態によれば、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法において、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を、2回目以降のサイクルにおける第1の原料物質の供給時間よりも長くすることを特徴とする薄膜の製造方法が提供される。
【0070】
それによれば、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を十分に長くすることで、金属元素を含む第1の原料物質によって下地を十分に被覆することができる。
【0071】
そのため、形成される薄膜とその下地との結晶の整合性が悪かったり、下地と薄膜原料物質との反応が起こりやすい場合であっても、供給サイクルの2回目以降においては、下地との結晶の整合性が良くなり、また、下地との反応も起こらないため、均一な層成長が可能となる。
【0072】
そして、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間は、長くなるが、2回目以降はそれよりも短く、ほぼ通常の供給時間とすることができるため、薄膜の形成時間全体ではさほど長時間とはならない。
【0073】
よって、本実施形態によれば、薄膜の形成時間を極力短い時間としつつ、狙いの膜厚を適切に実現することができる。
【0074】
なお、2回目以降の供給において、後のサイクルに行くに連れて第1の原料物質の供給時間を短くするようにしても良い。例えば、2回目のサイクルにおけるAlCl3の供給時間を3回目以降のAlCl3の供給時間よりも長くしても良い。ただし、1回目のサイクルの供給時間を最も長いものとした上で行う必要がある。
【0075】
また、本発明の製造方法は、上記したTiO2薄膜上にAl2O3薄膜を形成するプロセスのみでなく、Al2O3薄膜上にTiO2薄膜を形成するプロセス、ガラス基板上にAl2O3薄膜を形成するプロセス、ZnS等の発光層上にAl2O3薄膜を形成するプロセス、その他、有機錯体や塩化物等のハロゲン化物を出発原料とする酸化物薄膜をALE法で形成するプロセス等において適用可能である。
【図面の簡単な説明】
【図1】本発明の実施形態におけるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。
【図2】上記実施形態においてAl2O3薄膜を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【図3】従来の製造方法によるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。
【図4】従来の製造方法においてAl2O3薄膜を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【図5】実施形態の製造方法によってAl2O3薄膜を形成した場合において、原料供給回数と膜厚との関係を調べた結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film manufacturing method for forming a thin film by alternately supplying a first source material containing a metal element and a second source material containing an element that reacts with the metal element to a substrate, a so-called thin film manufacturing method. It relates to atomic layer growth.
[0002]
[Prior art]
Conventionally, atomic layer epitaxy (ALE method) has been used when forming a thin film of metal oxide or metal sulfide as a film forming method with good crystallinity and excellent film thickness controllability. It is used (for example, refer to Patent Document 1).
[0003]
In this method, a first raw material containing a metal element (for example, a metal chloride or an organometallic compound) and a second raw material containing an element that reacts with the metal element (for example, an oxidizing substance such as water or hydrogen sulfide) By simply repeating the cycle of alternately supplying the reducing substance to the substrate, the reaction compound is arranged on the substrate surface one layer at a time by the reaction on the substrate surface. It is said that the film thickness can be easily controlled.
[0004]
Using this ALE method, various thin films can be formed. For example, in an electroluminescence element, there are an ATO thin film which is a composite film of aluminum oxide and titanium oxide used as an insulating layer, and zinc sulfide and strontium sulfide used as a light emitting layer.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 55-130896
[Problems to be solved by the invention]
However, the ALE method has the advantages as described above. However, since the ALE method is a formation method in which atoms are arranged one by one, if the supply time of each raw material constituting the thin film is lengthened, it is enormous to obtain a desired film thickness There is a problem that it takes a long time.
[0007]
On the other hand, according to the study of the present inventor, for example, when an ATO thin film is formed by the ALE method, when an Al2O3 thin film and a TiO2 thin film are alternately laminated, when forming a TiO2 thin film on the Al2O3 thin film, or a TiO2 thin film If an attempt is made to shorten the film formation time when forming an Al2O3 thin film on the film, the problem arises that the film thickness formed by the number of times of supplying the raw material calculated from the monomolecular layer film thickness becomes different from the target film thickness. It was.
[0008]
In view of the above problems, the present invention forms a thin film by alternately supplying a first source material containing a metal element and a second source material containing an element that reacts with the metal element to the substrate. It is an object of the present invention to achieve a target film thickness appropriately in as short a formation time as possible in a thin film manufacturing method using an atomic layer growth method .
[0009]
[Means for Solving the Problems]
The present inventor further investigated the problem that the film thickness becomes thinner than the target film thickness in the formation of the ATO thin film described above.
[0010]
For example, when an Al2O3 thin film is formed on a TiO2 thin film, AlCl3, which is a raw material for Al, is usually supplied and oxidized by supplying H2O to form Al2O3 molecules.
[0011]
At this time, for the purpose of shortening the entire thin film formation time, if the supply time of the AlCl 3 raw material, that is, the supply amount of the AlCl 3 raw material at one time is small, the alignment of the crystal on the dissimilar film (ie, the TiO 2 thin film) as the base Cannot grow well due to sexual deterioration. As a result, it is not possible to sufficiently cover the underlying surface with AlCl 3 with a single supply of raw material.
[0012]
In this state, when the supply cycle of AlCl3 and H2O is repeated and the film growth is continued, a part with a fast growth is formed, and Al2O3 grows in a cluster shape. As a result, it has been experimentally found that the finished Al2O3 thin film has a non-uniform thickness and a desired film thickness cannot be obtained with good control.
[0013]
On the other hand, if the supply cycle is continued repeatedly with a sufficient supply amount of the AlCl 3 raw material once, the film formation time for obtaining a desired film thickness becomes enormous.
[0014]
Further, in the case of forming an Al2O3 thin film on a TiO2 thin film, when AlCl3 as an Al raw material is first supplied, a molecule on the surface of the TiO2 as a base and an AlCl3 molecule undergo a substitution reaction to erode TiO2. discovered. This is considered to occur when the vapor pressure is relatively higher in the base film than in the thin film material.
[0015]
Therefore, when the AlCl 3 raw material is supplied non-uniformly, the substitution reaction with TiO 2 is performed non-uniformly, and the thin film growth rate differs from the above-described growth failure due to poor crystal alignment with the base. As a result, it was found that the film thickness was uneven.
[0016]
From these examination results, if the poor crystal alignment with the substrate and the non-uniform reaction between the substrate and the thin film raw material are eliminated at the initial stage of the supply cycle, uniform film growth cannot be achieved in the subsequent supply. I thought. The present invention has been obtained as a result of experimental studies focusing on these points.
[0017]
That is, in the first aspect of the invention, the thin film is formed by alternately supplying the first source material containing the metal element and the second source material containing the element that reacts with the metal element to the substrate. In the thin film manufacturing method using the atomic layer growth method, the supply time of the first source material in the first cycle of the supply cycles is made longer than the supply time of the first source material in the second and subsequent cycles. It is characterized by.
[0018]
According to this, by sufficiently increasing the supply time of the first raw material in the first cycle of the supply cycles, the base can be sufficiently covered with the first raw material containing the metal element.
[0019]
Therefore, even if the crystal matching between the thin film to be formed and the base is poor or the reaction between the base and the thin film raw material is likely to occur, the crystal of the base and the base is not used after the second supply cycle. Consistency is improved and no reaction with the base occurs, so that uniform layer growth is possible.
[0020]
The supply time of the first source material in the first cycle of the supply cycle becomes longer, but the second and subsequent times are shorter than that, and can be set to a substantially normal supply time. It won't be that long.
[0021]
Therefore, according to the present invention, a target film thickness can be appropriately realized in as short a formation time as possible.
[0022]
Here, as in the invention described in claim 2, a metal halide or an organometallic compound can be used as the first raw material.
[0023]
The thin film may be an insulator such as alumina (Al2O3) or a semiconductor such as titania (TiO2).
[0024]
In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific embodiments. In this embodiment, the thin film to be formed is an ATO thin film used as an insulating film of an EL element. This is a film formed by alternately laminating an Al2O3 (alumina) thin film as an insulator and a TiO2 (titania) thin film as a semiconductor alternately by the ALE method.
[0026]
In the ATO thin film as the insulating film of the EL element, the TiO 2 thin film and the Al 2 O 3 thin film are alternately laminated in this order from the Al 2 O 3 thin film by the ALE method, and finally the Al 2 O 3 thin film is formed again.
[0027]
Specifically, when an Al2O3 thin film is formed by the ALE method, AlCl3 that is a first raw material containing a metal element and H2O that is a second raw material containing an element that reacts with the metal element are used. By repeating the cycle of alternately supplying the substrate, Al2O3 is grown one atomic layer at a time, and an Al2O3 thin film having a predetermined thickness is formed.
[0028]
When the TiO2 thin film is formed by the ALE method, TiCl4, which is a first raw material containing a metal element, and H2O, which is a second raw material containing an element that reacts with the metal element, are formed on the substrate. By repeating the cycle of supplying alternately, TiO2 is grown one atomic layer at a time, and a TiO2 thin film having a predetermined thickness is formed.
[0029]
Then, an Al2O3 thin film and a TiO2 thin film each having a predetermined thickness are alternately laminated to complete an ATO thin film.
[0030]
Here, the film thickness of the Al2O3 thin film excluding the uppermost Al2O3 thin film and the lowermost Al2O3 thin film of the ATO thin film may be 5 nm, and the film thickness of the TiO2 thin film may be in the range of 1.5 to 5 nm. In this example, 2 nm It was. Further, the film thickness of the uppermost and lowermost Al2O3 thin films may be in the range of 15 to 30 nm, and in this example 20 nm.
[0031]
Next, a specific method for manufacturing the ATO thin film will be described. Here, regarding the method of forming the Al2O3 thin film among the ATO thin films, the supply time of AlCl3 in the first cycle of the supply cycles is made longer than the supply time of AlCl3 in the second and subsequent cycles, and TiO2 As for the thin film, an example of forming a film by a normal ALE method will be described.
[0032]
First, a substrate is set in a substrate holder box for fixing the substrate. At this time, in this example, the surface on which the thin film is formed on the substrate is set upright. Then, the substrate holder box on which the substrate is set is put into a load lock chamber that can be evacuated.
[0033]
Next, the load lock chamber is evacuated to 10 −3 Torr or less, and nitrogen, which is a carrier gas for transporting the raw material, is introduced. This operation is repeated, and evacuation is finally performed so that the load lock chamber becomes 10 −3 Torr or less again.
[0034]
Then, the substrate holder box that has been sufficiently purged with nitrogen and evacuated in the load lock chamber is moved into the deposition chamber for forming a thin film that has been previously purged and evacuated with nitrogen.
[0035]
Then, the substrate holder box is heated by a heater installed in the film formation chamber, and the substrate temperature is set to 500 ° C. which is the temperature at the time of film formation. However, during this heating, in order to prevent a temperature drop due to the supply gas at the start of film formation, nitrogen as a carrier gas is introduced into the substrate holder box in the same amount as during film formation.
[0036]
When the substrate temperature reaches 500 ° C. and the temperature becomes stable, first, the first and second processes are performed first, and then the third, fourth, and fifth processes are performed. The ATO thin film (laminated composite film of an Al2O3 thin film and a TiO2 thin film) is formed by repeating the process six times and finally performing the sixth process. In each process, the parentheses indicate the supply time.
[0037]
“First process”: supply of nitrogen gas containing AlCl 3 gas (first source material) as a source gas (9 seconds) and supply of pipe purge gas with nitrogen gas for extruding AlCl 3 gas remaining in the pipe ( 1 second), nitrogen gas supply (2 seconds) containing H2O (second raw material) as a source gas, and pipe purge gas supply (1.5 seconds) using nitrogen gas to push out H2O remaining in the pipe This cycle is performed once.
[0038]
"Second process": supply of nitrogen gas containing AlCl3 gas, which is a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas (1 second) for extruding AlCl3 gas remaining in the pipe, raw material A cycle of supplying nitrogen gas containing gas H2O (0.8 seconds) and supplying pipe purge gas with nitrogen gas (1.5 seconds) for extruding H2O remaining in the pipe is repeated 333 times.
[0039]
“Third process”: supply of nitrogen gas containing AlCl 3 gas, which is a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas (1 second) for extruding AlCl 3 gas remaining in the pipe, raw material A cycle of supplying nitrogen gas containing H 2 O as a gas (0.8 seconds) and supplying pipe purge gas with nitrogen gas (1.5 seconds) for extruding H 2 O remaining in the pipe is repeated 111 times.
[0040]
"Fourth process": Nitrogen gas supply containing TiCl4 gas, which is a raw material gas (0.6 seconds), pipe purge gas supply using nitrogen gas (1 second) for extruding TiCl4 gas remaining in the pipe, raw material The cycle of supplying nitrogen gas containing gas H2O (0.8 seconds) and supplying pipe purge gas with nitrogen gas (2 seconds) for extruding H2O remaining in the pipe is repeated 51 times.
[0041]
"Fifth process": supply of nitrogen gas containing AlCl3 gas, which is a raw material gas (9 seconds), supply of pipe purge gas with nitrogen gas (1 second) to push out AlCl3 gas remaining in the pipe, and supply gas A cycle of supplying nitrogen gas containing H2O (2 seconds) and supplying pipe purge gas with nitrogen gas (1.5 seconds) for extruding H2O remaining in the pipe is performed once.
[0042]
“Sixth process”: supply of nitrogen gas containing AlCl 3 gas, which is a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas (1 second) for extruding AlCl 3 gas remaining in the pipe, raw material A cycle of supplying a nitrogen gas containing H 2 O as a gas (0.8 seconds) and supplying a pipe purge gas with nitrogen gas (1.5 seconds) for extruding H 2 O remaining in the pipe is repeated 444 times.
[0043]
Here, by performing the first, second, and third processes once, the lowermost Al 2 O 3 thin film (thickness 20 nm) in the ATO thin film is formed. Next, by performing the fourth process once, a TiO2 thin film (thickness 2 nm) thereon is formed.
[0044]
Next, by performing the fifth process and the third process once in this order, an Al2O3 thin film (thickness 5 nm) thereon is formed. Next, the fourth process is performed once to form a TiO2 thin film (thickness 2 nm) thereon, then the fifth process and the third process are performed once in this order, and then An Al2O3 thin film (thickness 5 nm) is formed.
[0045]
In this example, the repetition of the third, fourth and fifth processes is performed 28 times. Then, after the final formation of the TiO2 thin film, that is, the final fourth process, the fifth process and the sixth process are performed once in this order to form the uppermost Al2O3 thin film (thickness 20 nm). Thus, the ATO thin film of this example is completed.
[0046]
Here, the source gas and the purge gas are equally distributed from the upper part of the substrate by a gas distributor installed at the upper part of the substrate holder box. The distributed source gas and purge gas flow from the upper part to the lower part of the substrate on which the film formation surfaces are arranged vertically. That is, the gas flows along the film formation surface.
[0047]
The raw material supply amounts of AlCl3 and TiCl4 used as raw materials are 7.2 × 10 −6 to 9.8 × 10 −5 mol / pulse, 6.0 × 10 −6 to 2.4 × 10 −4 mol / pulse, respectively. Each raw material was supplied to the substrate within the range of pulse (both calculated values).
[0048]
In the above manufacturing method, regarding the formation of the Al2O3 thin film, the supply time of AlCl3 in the first cycle of the supply cycles is longer than the supply time of AlCl3 in the second and subsequent cycles. It is like that.
[0049]
First, the lowermost Al2O3 thin film (thickness 20 nm) is formed by performing the first, second, and third processes once, and these first to third processes are performed once. Is to repeat the alternating supply cycle of AlCl 3 and H 2 O (1 + 333 + 111) times, that is, 445 times.
[0050]
Here, the first supply cycle is the first process, and the AlCl3 supply time is 9 seconds, which is longer than the 0.5 second supply time of AlCl3 in the second and subsequent cycles. ing.
[0051]
Corresponding to the increase in the supply time of AlCl3 in the first cycle, the supply time of H2O (2 seconds) in the first cycle is also the supply time of H2O in the second and subsequent cycles (0.8 seconds). Longer than that.
[0052]
The intermediate Al2O3 thin film (thickness 5 nm) is formed by performing the fifth process and the third process once in order. The fifth and third processes are performed once. Is to repeat the alternating supply cycle of AlCl 3 and H 2 O (1 + 111) times, ie 112 times.
[0053]
Here, the first supply cycle is the fifth process, and the supply time of AlCl3 is 9 seconds, which is longer than the 0.5 second supply time of AlCl3 in the second and subsequent cycles. ing. Also for H2O, the supply time (2 seconds) of the first cycle is longer than the supply time (0.8 seconds) of the second and subsequent cycles.
[0054]
Further, the uppermost Al 2 O 3 thin film is the same as the lowermost and intermediate Al 2 O 3 thin films. Thus, in this embodiment, regarding the formation of the Al 2 O 3 thin film, the supply time of AlCl 3 in the first cycle of the supply cycles is set longer than the supply time of AlCl 3 in the second and subsequent cycles.
[0055]
Here, in FIG. 1, the supply timing chart of the AlCl 3 raw material, the H 2 O raw material and the respective purge gases from the initial stage to the third supply cycle in the formation of the Al 2 O 3 thin film of this example described above is shown on a coaxial time axis. In FIG. 1, the horizontal axis represents a time axis, and the vertical axis represents a pulse waveform indicating material supply.
[0056]
FIG. 2 is a diagram schematically showing the state of film growth when an intermediate Al 2 O 3 thin film (thickness 5 nm) is formed by the above manufacturing method as the behavior of the Al, O, Cl thin film surface. . In this case, the base is a TiO 2 thin film, and the film grows in the order of
[0057]
Furthermore, FIG. 3 is a diagram showing a supply timing chart of each raw material in the formation of the Al 2 O 3 thin film by the conventional ALE method as a comparative example with respect to FIG. In this case, all supply cycles of the Al 2 O 3 thin film are performed according to the raw material supply time shown in the third process.
[0058]
FIG. 4 is a diagram schematically showing the state of film growth at the molecular level when an intermediate Al 2 O 3 thin film (thickness 5 nm) is formed by a conventional ALE method as a comparative example with respect to FIG. It is.
[0059]
In the conventional manufacturing method shown in FIG. 4, since the supply time of AlCl3 in the first cycle is short and insufficient, as shown in
[0060]
On the other hand, in this embodiment shown in FIG. 2, when AlCl3, which is a raw material containing a metal element, is arranged on a TiO2 thin film, the AlCl3 raw material supply time, which is normally 0.5 seconds, is 9 in the first cycle. The raw material supply time is a long time for a second.
[0061]
That is, compared with the conventional manufacturing method, the manufacturing method of the Al2O3 thin film of this embodiment is an original method in which the first process and the fifth process are put into the first supply cycle.
[0062]
Therefore, as shown in
[0063]
FIG. 5 is a diagram showing the results of examining the relationship between the number of times of supplying the raw materials (AlCl3, H2O) (the number of supply cycles) and the thickness of the Al2O3 when the Al2O3 thin film is formed by the manufacturing method of the present embodiment described above. It is. Note that FIG. 5 also shows the results obtained by examining the case where the Al 2 O 3 thin film is formed by the above-described conventional method.
[0064]
As can be seen from FIG. 5, when the film was formed by the conventional method, the film formation speed at the initial stage of the thin film formation was unstable, so the subsequent film formation speed was also unstable, and a stable film thickness could not be obtained. It was. On the other hand, by using the manufacturing method of this embodiment, the speed at the initial stage of thin film formation is stabilized, and as a result, there is almost no variation in film thickness, and a stable film supply is possible.
[0065]
For example, when an Al2O3 thin film having a thickness of 5 nm is formed, the conventional manufacturing method has a variation in film thickness distribution of about 1 nm with respect to the target thickness of 5 nm, whereas in the manufacturing method of the present embodiment, The variation was about 0.3 nm with respect to the target film thickness of 5 nm.
[0066]
That is, in the conventional method, since the film formation state at the initial stage of film formation is poor and the raw materials are partially arranged on the surface, the film thickness distribution is poor. On the other hand, when formed by the manufacturing method of the present embodiment, the film thickness can be accurately controlled with respect to the number of times the raw material is supplied, and the AlCl 3 is uniformly arranged, so the film thickness distribution state is also good. Can be a thing.
[0067]
In the above example, compared to the method of forming the Al 2 O 3 thin film among the ATO thin films, the supply time of the first source material containing the metal element in the first cycle in the supply cycle is the supply time in the second and subsequent cycles. Although an example in which the manufacturing method of making it longer is applied has been described, it goes without saying that the same method may be applied to the formation of the TiO 2 thin film.
[0068]
In that case, the supply time of TiCl 4 in the first cycle of the supply cycles may be made longer than the supply time of TiCl 4 in the second and subsequent cycles. Thereby, the same effect as the case of the Al2O3 thin film described above was obtained.
[0069]
As described above, according to the present embodiment, the first source material containing the metal element and the second source material containing the element that reacts with the metal element are alternately supplied to the substrate. In the method of manufacturing a thin film for forming a thin film, the supply time of the first source material in the first cycle of the supply cycles is made longer than the supply time of the first source material in the second and subsequent cycles. A method for producing a thin film is provided.
[0070]
According to this, by sufficiently increasing the supply time of the first raw material in the first cycle of the supply cycles, the base can be sufficiently covered with the first raw material containing the metal element.
[0071]
Therefore, even if the crystal matching between the thin film to be formed and the base is poor or the reaction between the base and the thin film raw material is likely to occur, the crystal of the base and the base is not used after the second supply cycle. Consistency is improved and no reaction with the base occurs, so that uniform layer growth is possible.
[0072]
The supply time of the first source material in the first cycle of the supply cycle becomes longer, but the second and subsequent times are shorter than that, and can be set to a substantially normal supply time. Overall it will not be very long.
[0073]
Therefore, according to the present embodiment, the target film thickness can be appropriately realized while making the thin film formation time as short as possible.
[0074]
In the second and subsequent supply, the supply time of the first source material may be shortened as the cycle proceeds. For example, the supply time of AlCl 3 in the second cycle may be longer than the supply time of AlCl 3 in the third and subsequent cycles. However, it is necessary to carry out after making the supply time of the first cycle the longest.
[0075]
The manufacturing method of the present invention is not limited to the process of forming the Al2O3 thin film on the TiO2 thin film as described above, the process of forming the TiO2 thin film on the Al2O3 thin film, the process of forming the Al2O3 thin film on the glass substrate, ZnS, etc. The present invention can be applied to a process for forming an Al2O3 thin film on a light emitting layer, and a process for forming an oxide thin film using an organic complex, a halide such as chloride as a starting material by the ALE method, and the like.
[Brief description of the drawings]
FIG. 1 is a view showing a supply timing chart of each raw material in forming an Al 2 O 3 thin film in an embodiment of the present invention.
FIG. 2 is a diagram schematically showing a state of film growth at the molecular level when an Al 2 O 3 thin film is formed in the embodiment.
FIG. 3 is a view showing a supply timing chart of each raw material in forming an Al 2 O 3 thin film by a conventional manufacturing method.
FIG. 4 is a diagram schematically showing the state of film growth at the molecular level when an Al 2 O 3 thin film is formed in a conventional manufacturing method.
FIG. 5 is a diagram showing a result of examining a relationship between the number of times of supplying a raw material and a film thickness when an Al 2 O 3 thin film is formed by the manufacturing method of the embodiment.
Claims (6)
供給サイクルのうち1回目のサイクルにおける前記第1の原料物質の供給時間を、2回目以降のサイクルにおける前記第1の原料物質の供給時間よりも長くすることを特徴とする薄膜の製造方法。 A thin film manufacturing method by an atomic layer growth method in which a thin film is formed by alternately supplying a first raw material containing a metal element and a second raw material containing an element that reacts with the metal element to a substrate. In
A method for producing a thin film, characterized in that a supply time of the first source material in a first cycle of the supply cycle is made longer than a supply time of the first source material in a second and subsequent cycles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003033587A JP4168775B2 (en) | 2003-02-12 | 2003-02-12 | Thin film manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003033587A JP4168775B2 (en) | 2003-02-12 | 2003-02-12 | Thin film manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244661A JP2004244661A (en) | 2004-09-02 |
JP4168775B2 true JP4168775B2 (en) | 2008-10-22 |
Family
ID=33019524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003033587A Expired - Fee Related JP4168775B2 (en) | 2003-02-12 | 2003-02-12 | Thin film manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4168775B2 (en) |
Families Citing this family (241)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3920235B2 (en) * | 2003-03-24 | 2007-05-30 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
US7740704B2 (en) * | 2004-06-25 | 2010-06-22 | Tokyo Electron Limited | High rate atomic layer deposition apparatus and method of using |
JP4363365B2 (en) * | 2004-07-20 | 2009-11-11 | 株式会社デンソー | Color organic EL display and manufacturing method thereof |
KR100640638B1 (en) | 2005-03-10 | 2006-10-31 | 삼성전자주식회사 | Method for forming high dielectric film by atomic layer deposition and method of fabricating semiconductor device having high dielectric film |
KR100597322B1 (en) * | 2005-03-16 | 2006-07-06 | 주식회사 아이피에스 | A method for depositing thin film on wafer using impulse ald |
JP4363374B2 (en) * | 2005-08-04 | 2009-11-11 | 株式会社デンソー | Manufacturing method of color organic EL display |
JP4626526B2 (en) * | 2006-01-30 | 2011-02-09 | 株式会社デンソー | Organic EL panel and manufacturing method thereof |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
JP2013122069A (en) * | 2011-12-09 | 2013-06-20 | Ulvac Japan Ltd | Method and apparatus for forming tungsten nitride film |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
JP6476832B2 (en) * | 2014-12-19 | 2019-03-06 | 株式会社デンソー | Method for producing thin film made of aluminum compound |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7214724B2 (en) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | Storage device for storing wafer cassettes used in batch furnaces |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (en) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | Method for depositing gap filling layer by plasma auxiliary deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
JP7124098B2 (en) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) * | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (en) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP6929265B2 (en) * | 2018-12-13 | 2021-09-01 | キヤノン株式会社 | Organic light emitting device and its manufacturing method, lighting device, mobile body, imaging device, electronic device |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
JP6654232B2 (en) * | 2018-12-25 | 2020-02-26 | 株式会社Kokusai Electric | Semiconductor device manufacturing method, substrate processing apparatus, and program |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR20200091543A (en) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
KR20200102357A (en) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for plug fill deposition in 3-d nand applications |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
CN112309843A (en) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | Selective deposition method for achieving high dopant doping |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (en) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
TW202125596A (en) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
JP2021172884A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
TW202219628A (en) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
-
2003
- 2003-02-12 JP JP2003033587A patent/JP4168775B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004244661A (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4168775B2 (en) | Thin film manufacturing method | |
JP5038659B2 (en) | Method for forming tetragonal structure zirconium oxide film and method for manufacturing capacitor having the film | |
JP6023854B1 (en) | Semiconductor device manufacturing method, substrate processing apparatus, and program | |
JP2021061414A5 (en) | ||
US7052953B2 (en) | Dielectric material forming methods and enhanced dielectric materials | |
KR100705926B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
US7198820B2 (en) | Deposition of carbon- and transition metal-containing thin films | |
TWI278529B (en) | Hafnium oxide and aluminium oxide alloyed dielectric layer and method for fabricating the same | |
US8592294B2 (en) | High temperature atomic layer deposition of dielectric oxides | |
JP4133659B2 (en) | Method for depositing multiple high kappa gate dielectrics for CMOS applications | |
TW201809333A (en) | Processes and methods for selective deposition on first surface of substrate relative to second surface of substrate | |
TW201833356A (en) | Method for deposition of thin film and metal oxide thin film on substrate surface | |
US20090297696A1 (en) | Methods for forming conductive titanium oxide thin films | |
WO2001045158A1 (en) | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition | |
CN112889132A (en) | Method for forming molybdenum thin film on substrate | |
CN113957410B (en) | Method and system for depositing molybdenum layers | |
JP6416031B2 (en) | Semiconductor device manufacturing method, substrate processing apparatus, and program | |
TW202041705A (en) | Atomic layer deposition of oxides and nitrides | |
JP2020133002A (en) | Method for depositing hafnium lanthanum oxide film on substrate by circulation deposition process in reaction chamber | |
EP1205574A2 (en) | Atomic layer deposition of Ta205 and high-K dielectrics | |
JP6956099B2 (en) | Method for Producing Aluminum Oxide and / or Aluminum Nitride | |
US20220018025A1 (en) | Method and system for forming structures including transition metal layers | |
US20170018419A1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus and recording medium | |
CN1737193A (en) | Utilize the method for redox reaction depositing noble metal electrode | |
JP6912913B2 (en) | Method for producing yttrium oxide-containing thin film by atomic layer deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080728 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4168775 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |